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In a recent paper, Grafen (2018) discussed the left-hand side in the equation stating Fisher’s (1930, 1958)
“Fundamental Theorem of Natural Selection” (FTNS). Fisher’s original statement of the FINS is, in effect,
“The rate of increase in fitness of any organism is equal to its genetic variance in fitness at that time”
with the rate of increase in fitness understood as the one “due to all changes in gene ratios” (Fisher,
1930, p. 35). For purposes of exposition, Grafen (2018) considered what is today called the analogous
discrete-time model, and restated the FTNS on p. 181 as “The increase in population [mean fitness] due
to changes in gene frequencies [is equal to the] additive genetic variance in fitness [divided by the] mean
fitness”. Allowing for the fact that Grafen’s statement of the FTNS relates to a discrete-time model, his
statement is in effect a discrete-time version of Fisher’s. It has however been widely accepted for many
years, ever since Price’s (1972) deep analysis of the FINS, that Fisher's wording does not correctly de-
scribe the content of the FTNS. The same is therefore true of Grafen’s statement. The confusion caused
by these misstatements is unfortunate and adds to a continuing misunderstanding of the FTNS, whose
source can also be found in Fisher’s (1941) own explanation. Our purpose is to review the detailed anal-
ysis of the calculations leading to the FINS to clarify the points at issue.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The Fundamental Theorem of Natural Selection (FTNS) (Fisher,
1930; 1958) was an attempt to capture the effect of natural selec-
tion in Mendelian populations. A direct consequence of selection is
to change gene frequencies, but with many different possible com-
binations of genes and complex mating schemes in diploid popula-
tions, the effect of selection on gene frequencies becomes rapidly
intricate. On the other hand, it is of interest to describe the ef-
fect of changes in gene frequencies on the population state and
its evolution over time. This is the aim of the FTNS. But a diploid
population evolves under multiple effects of multiple types, genetic
and environmental. Nevertheless, it is imagined that the effect of
changes in gene frequencies can be isolated from all other effects.
All these are combined together in what is called the effect of the
environment of the genes. When this effect on the mean fitness is
removed, what is left is generally accepted to give the FTNS. There-
fore, the FTNS concerns a partial change in mean fitness. It took
some time for this to be understood (Price, 1972; Ewens, 1989;
Lessard, 1997), but it is now widely accepted. Apart perhaps the
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definition of fitness in age-structured populations and more gen-
erally in class-structured populations (Grafen, 2015a; Lessard and
Soares, 2016), what remains a matter of debate over the FTNS is
the interpretation and biological significance of the partial change
in mean fitness. It is widely viewed as the change due to natural
selection, and more precisely due to changes in gene frequencies
by natural selection. In a recent paper (Ewens and Lessard, 2015),
we have argued that this partial change does not actually take into
account all effects of changes in gene frequencies. As a result, it
may be of limited interest to describe the effect of natural selec-
tion on long-term as well as short-term evolution. More recently,
Grafen (2018) has challenged this point of view, revisiting the par-
tition of the mean fitness and claiming that the FTNS captures the
effect of changes in gene frequencies on mean fitness and remains
fully meaningful to biologists. We will review the arguments and
see what are exactly the issues.

2. Fisher’s FTNS

We initially discuss the case focused on by Grafen (2018) for
which the fitness of any individual depends on the genes this in-
dividual has at one locus only, say locus “A”. We call this the
“one-locus” case, and generalize to the “whole-genome” case with
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multiple loci later, as is necessary since Fisher’s FTNS is a whole-
genome result. Suppose that the possible alleles at the “A” locus
are Ay, Ay, ..., A, and that the viability fitness of an A;A; individual
is wy;. Suppose also that at the beginning of a parental generation,
in a framework of an infinite population undergoing discrete, non-
overlapping generations, the frequency of the (ordered) genotype
AjA; is Py. Then the mean fitness w of the population at that time

Fisher’s analysis focused on the concept of the average effect
of an allele (or a gene in Fisher’s terminology). At the beginning of
the parental generation, the average effects of Ay, A,. . ... A, are de-
fined as those values of 81, B9, ..., B which minimize the expres-
sion 37 375 Py(wy; — B —/3]»)2. In other words, the average effects
are defined so that 8; + ;. called the “additive genetic value”, pro-
vides the best linear fit (in the sense of weighted least squares) to
the fitness w;; of A;A; as determined by the alleles A; and A; in that
genotype. Since these average effects are characteristic of the alle-
les A. Ay, ..., Ay. they were viewed by Fisher as being central to
his quantification of evolution by natural selection. They can in-
deed be thought of as the “fitnesses” of the alleles A1, A, ..., Ay, a
view that Fisher held, as do we. Regression theory shows that the
average effects also have the property that the mean fitness w is
identical to Y7; >"; P;(B; + B;). In other words, the mean fitness w
of the population can be found from the “fitnesses” of the alleles
in it.

The total variance o2 in fitness at the beginning of the parental
generation is given by Y;>; P;(w;; — )2, That part of this vari-
ance which is explained by the average effects B, 82, .... B is
called the “additive genetic variance” (for Fisher, the “genetic vari-
ance”), and is denoted by ¢2. If it so happens that w;; = g; + B; for
all (i, j) combinations, then the average effects explain the geno-
typic fitnesses exactly and o? = o2, If w;; # B;+ B; for one or
more (i, j) combinations, then the average effects do not explain
the genotypic fitnesses exactly and oj < o2, In regression terms,
oj is a regression sum of squares.

It is a central and crucial observation that the average effects
are not fixed constants, but depend on the set of genotype fre-
quency values {P;}, and thus in general will differ from one set of
genotype frequency values to another, in particular from a parental
generation to an offspring generation. The only exception to this
arises in the case discussed above where w;; = g; + B; for all (i, j)
combinations. In this case (and in this case only), 81, B, ..., By are
fixed constants in that they do not change from one generation to
the next.

Define APy as the change in the frequency of the genotype A;A;
from the beginning of the parental generation to the beginning of
the offspring generation, and correspondingly Ap; as the change in
the frequency of the allele A; during the same time period. Then it
was shown by Ewens (1989) and many subsequent authors that

2) (Ap)Bi=ai/w. (1)

We present this equation first since it relates to changes in gene
frequencies, which were of central interest to Fisher. On the way
to developing (1), it was shown that

DY (AR (Bi+ B)) = 9 /W (2)
i

Note that no particular mating scheme was assumed in deriving
these equations. In particular, they do not rely on the usual as-
sumption of random mating.

Fisher's statement of the FTNS implied a continuous-time
model. The continuous-time analogue of Eq. (1) is

2y ()= ©)

while
dp;

22<dt><ﬂi+ﬁj>=cﬁ (4)
g

is the continuous-time analogue of Eq. (2).

Fisher's FTNS is a whole-genome result, so that Eqgs. (1)-(4)
are not sufficient to discuss the FINS in full detail. We there-
fore state the whole-genome generalization of the above equa-
tions. We list the large number of genotypes at multiple loci in
some agreed order as G, ..., Gg. ...,Gm. We denote the fitnesses
of these genotypes by wy. ..., Wy, ..., Wy respectively, and assume
that at the beginning of the parental generation they have respec-
tive frequencies P;. ....P,. ..., Py. Then the population mean fitness
at that time is w = 3, Pwg. The average effects of the various alle-
les at all loci in the genome at that time are found by minimizing
> g Pe(wg — Bg)?, where fg is defined as the sum of the average ef-
fects of all alleles at all loci in the genome in genotype g, with the
average effect of any allele at any locus being counted once, twice
or not at all in B¢ depending on whether that allele occurs once,
twice or not at all in the whole-genome genotype g. Thus B is the
whole-genome generalization of the additive genetic value B; + B;
described above for the one-locus case. The whole-genome addi-
tive genetic variance, for which we again use the notation aj, now
of course having a whole-genome interpretation, is that part of the
total variance in fitness Y g Ps(wg — w)? which is explained by the
average effects of all the alleles, at all loci, in the genome. It is
therefore the whole-genome generalization of the additive genetic
variance discussed above for the case where the fitness of any indi-
vidual depends on the genes this individual has at one locus only.
As in the one-locus case, aj is a regression sum of squares.

Define AP; as the change in the frequency of the whole-
genome genotype g from the beginning of the parental generation
to the beginning of the offspring generation, and correspondingly
Apy, as the change in the frequency of the allele A, at gene locus
u during the same time period. We denote the average effect of
the allele Ay, derived from the minimization procedure described
above, by B,,. Then in the discrete-time model, the whole-genome
generalization of (1) is

ZZZ(APku),Bku = O'AZ/W (5)

u-k

Similarly the statement

> (AP By =07 /W (6)
g

is the generalization of (2).

The continuous-time model versions of (5) and (6), found after
an analysis parallel to that which leads to (5) and (6) in a discrete-
time model, are

2;;(d§§“)ﬁ,<u = o} )
and

dP,
> (d—f>ﬁg = o}, (8)
g

respectively. Note that, again, random mating is not assumed in
deriving these equations. By analogy with the concept of a par-
tial derivative, the left-hand sides in (1), (2), (5) and (6) have
been called “partial” changes in mean fitness, and the left-hand
sides in (3), (4), (7) and (8) have been called “partial” rates of
change in mean fitness. Eqgs. (1)-(8) have been known for 30 years
and are accepted statements of the FTNS, respectively, in the one-
locus/whole-genome and discrete-time/continuous-time cases.
What do these equations imply? We first discuss Fisher’s claim
for the continuous-time model that the left-hand side in (7) is the




S. Lessard and W,J. Ewens/Journal of Theoretical Biology 472 (2019) 77-83 79

“rate of increase in fitness due to all changes in gene [frequen-
cies]” (Fisher, 1930, p. 35, Fisher, 1958, p. 37). We have replaced
Fisher’s “ratio” by “frequencies” in the statement since we allow
for an arbitrary number of alleles at each locus. At first sight this
statement seems plausible. The left-hand side in (7) does indeed
explicitly contain the set {dpy,/dt} of all rates of change in the fre-
quencies of all alleles at all loci in the genome. The difficulty with
Fisher’s statement, repeated several times by several authors since
(Price, 1972), is that in practice the average effects {8y, } appearing
in (7) are almost certainly not constant over time. This is because
their values depend on gene frequencies so that they will them-
selves change as gene frequencies change. Thus the left-hand side
in (7) is not the rate of change in mean fitness due to changes
in gene frequencies, since it ignores changes in the average effects
{Bru}- These changes might indeed often be small, but one of the
purposes of the calculations in Ewens and Lessard (2015) was to
show that they need not be small. In fact, it has been known for
more than 50 years (Moran, 1964) that, when fitness depends on
the alleles at just two loci, changes in the average effects can be
so large relative to changes in gene frequencies that the popula-
tion mean fitness can decrease over time. Thus, if taken literally,
Fisher’s wording does not describe exactly the content of (7).

3. Grafen’s analysis

The left-hand side in the statement of the FTNS is the subject
of Grafen's (2018) discrete-time analysis paper, as the title of that
paper indicates. Before discussing this paper we make a general
comment on it. We are disappointed in Grafen’s (2018, p. 175-176)
attacks on “mathematical population geneticists”, who are accused
of “wrongly proving [the FTNS] false”, “wrongly proving it requires
more assumptions than Fisher admitted”, “doubting its biological
significance”, distracting biologists by “serious misreading of the
theorem”, that there is a “lack of appreciation by mathematical
population geneticists (e.g., Ewens and Lessard, 2015)”, and so on.
All these statements are unfortunate since what should matter is
scientific truth irrespective of the background of the researchers. It
is certainly true that various mathematicians (and also many biol-
ogists) have misunderstood the statement of the FTNS. In our opin-
ion, Grafen’s paper adds to these misunderstandings. Moreover, in-
sofar as Grafen’s comments relate to Ewens and Lessard (2015),
they are unwarranted and incorrect. The true situation is provided
below.

For purposes of exposition, Grafen (2018) only analysed the case
where the fitness of any individual depends on his genetic make-
up at a single locus, with only two alleles possible at this locus.
For the whole-genome analysis, he relies on, and quotes, the re-
sults given in Ewens and Lessard (2015), specifically (6) above.
Again for purposes of exposition, he only considered a discrete-
time model. Grafen’s analysis proceeds via regression coefficients,
but we proceeded above via average effects, since operating in this
way makes the analysis more transparent and closer to Fisher's
work. (The average effects are, however, identical to Grafen’s re-
gression coefficients, as both he and we note, so this is only a mat-
ter of style.)

Grafen (2018) subdivides the total change in mean fitness from
one year to the next, in effect from one generation to the next,
into three components. He calls these the “additive genetic compo-
nent”, the “non-additive genetic component” and the “phenotype-
genotype component”, and denotes them Ajg, Anag and Apgy, re-
spectively. He states that “So far as I know, this particular partition
[of the total change in mean fitness as Ay; + Anag + Apgr] has not
been proposed before”. The phenotype-genotype component is im-
portant indeed. It relates to the case where fitness values change
from one generation to the next. Certainly such changes are very
likely to occur, but then the fitness values in the offspring gen-

eration will usually not be known in advance. Changes in fitness
values are associated in the classical literature to changes in the
environment excluding the genic environment (Fisher, 1930, 1941,
see, e.g., Crow and Kimura, 1970, Egs. (5.6.15) and (5.6.19)). In all
analyses of the FTNS, including Fisher’s, attention focuses on the
case of constant fitness values. In this case, Grafen’s (2018) parti-
tion reduces to two components. The formula for the additive ge-
netic component Ay is, in Grafen’s (2018) notation, Y, (Apg)&g.
which is Y, 3 (AP;)(B; + B;) in the present notation, that is the
left-hand side in (2) as in Ewens (1989). As for the non-additive
genetic component Apag, it is what is left in the case of constant
fitness values once the additive genetic component is removed. As
the title of Grafen’s paper, and of ours, indicates, the focus of his
paper, and of ours, is on these two components, so only these are
discussed here.

Grafen (2018) states the one-locus FTNS via his Eq. (2). He de-
notes the left-hand side in this equation by Answ (using a sub-
script found in Price, 1972, and Ewens and Lessard, 2015), but this
is simply a new notation for his Ap;w. which as noted above
is, in our present notation, };3"; (APi]-)(,B,- + B;j). The right-hand
side in his Eq. (2) is aj/w. Therefore, his Eq. (2) is identical
to our Eq. (2) above. Thus, his Ayg is our }; Y ; (Aljij)(ﬁi+/3j).
Thus Grafen’s partition of the total change in mean fitness in dis-
crete time with constant fitness values as Aj; + Apnac iS not
really new, except perhaps in the wording, the notation or the
graphical representation. It is the same partition as was made in
Ewens (1989) (see, e.g., Lessard, 1997, Sections 5 and 8.2 and refer-
ences therein, for similar discrete-time as well as continuous-time
versions).

The fact that Grafen's Eq. (2) agrees with the standard state-
ment of the FTNS in discrete time in the one-locus case as given
by (1) and (2) above at least implies that there is no disagreement
on what that statement is. However, Grafen (2018, p. 181) then re-
writes his Eq. (2) as “The increase in population w due to changes
in gene frequencies [is equal to] the additive genetic variance in
fitness [divided by the] mean fitness”. This is justified only by the
facts that it is the change predicted by a linear regression on gene
frequencies and that the corresponding change for any quantita-
tive trait in the case of no fitness differences is zero owing to the
Hardy-Weinberg law (Grafen, 2018, p. 177-178). However, Grafen
never presents a formula for the change in mean fitness due to
changes in gene frequencies alone. His verbal presentation of the
FTNS (and its explanation) is the discrete-time analogue of Fisher’s,
and is similarly incorrect as stated, since changes in gene frequen-
cies cause changes in average effects, not to mention changes in
the genic environment. It has been suggested in the literature that
the FTNS deals only with the “direct effect” of changes in gene
frequencies by natural selection (see, e.g., Frank and Slatkin, 1992;
Lee and Chow, 2013; Okasha, 2018), or with “changes in genotypic
frequencies directly consequent on changes in gene frequencies”
(Lessard, 1997), under the view that all other changes including
changes in average effects, and more generally in the environment
of the genes, are indirect. This verbal explanation is certainly better
than Fisher’s and Grafen’s statements. Moreover, explicit algebraic
expressions are important to understand the exact meaning of the
FTNS and its interpretation.

Unfortunately, Grafen (2015a) appears to be quite explicit in
making the same incorrect interpretation of the FTNS in an age-
structured population as that discussed above, namely that the
partial change in mean fitness obtained by keeping fixed the aver-
age effects is the change due to changes in gene frequencies. Here,
he considers a “breeding value” ¢ for any genotype g, which, for
that genotype, is (in our notation) exactly fg in (6) minus the
mean. He then goes on to say that this sum is to be regarded as
“fixed over time” (Grafen, 2015a, p. 5). This is precisely the mis-
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understanding referred to above: this sum does change over time
as gene frequencies change. To the extent that Grafen’s (2015a)
approach depends on this assumption, it will arrive at the “age-
structure” generalization of (7), or equivalently of (8), with an in-
correct interpretation. It will then be subject to the same criticisms
of Fisher's and Grafen’s previous statements as were made above,
that the expression derived will not be the change in mean fit-
ness “due to natural selection” understood as “due to all changes
in gene frequencies” as claimed (Grafen, 2015a, p. 7).

4. What are the implications?

Once the mathematical forms of the various FTNS equations
have been established it is not only appropriate, but also nec-
essary, for biologists to assess what the biological usefulness of
these equations might be. But it is not unreasonable for mathe-
matical population geneticists, having established the equations, to
comment on them also. Price (1972) was the first to do so. Since
then, mathematical population geneticists have pointed out several
times that these equations do not agree with Fisher’s (1930) ver-
bal statement of the theorem. Nor would they agree with Grafen’s
(2018) statement of the theorem. There is no misreading of the
theorem by mathematical population geneticists. Grafen’s com-
ments and his verbal statement of the FTNS given in his Eq. (2) add
nothing to the ongoing discussion, and indeed only obfuscate the
issue.

Mathematicians have gone further, in an attempt at being con-
structive, to find a biologically useful interpretation of the left-
hand sides in Eqgs. (5)-(8). For example, the first sentence in the
“Interpretations” section of Ewens and Lessard (2015, p. 62) is:
“What biological interpretation can be given to [this left-hand
side]?” We show, for example, that this left-hand side is not af-
fected by changes in the mating scheme in discrete time since this
scheme does not change the gene frequencies, a point of inter-
est to Fisher. Mathematicians have derived the whole-genome ver-
sion of the FTNS and confirmed Fisher’s insight that it is a whole-
genome statement. Nagylaki (1976) initiated a line of research as-
sessing the circumstances under which changes in mean fitness
due to changes in average effects are small, so that Fisher's claim
is “almost” correct. On the other hand, some authoritative state-
ments made by biologists have contributed to a negative view of
the FINS. In their definitive exposition of the theory of evolution
of quantitative traits, Walsh and Lynch (2018) state in effect that:
“The bold, sweeping classical interpretation of Fisher's statement
is replaced by an exact [ ... ] result that is absolutely correct, but
not really useful”. This is a stronger negative statement than math-
ematicians have made about the FTNS, in contrast to Grafen’s as-
sertions.

5. Final thoughts

Various simplifying assumptions were made by Fisher (1930) in
developing the FTNS. For example, random changes in gene fre-
quencies (random drift) and the effect of the sex chromosomes
are ignored. This is perfectly reasonable since no useful analysis
could be made when all possible complicating factors are taken
into account. His work has never been criticized for this and
indeed most analyses of the FTNS, by most authors, make the
same simplifying assumptions. On the other hand, non-random
mating, whole-genome fitness determination and age effects with
non-overlapping generations, which were explicitly not excluded
by Fisher, have received much attention by mathematical popula-
tion geneticists (see, e.g., Kempthorne, 1957; Kimura, 1958; Ewens,
1989; Lessard, 1997). Thus Grafen’s (2018, p. 175) claim that they
have been “wrongly proving that [the FTNS] requires more as-
sumptions than Fisher admitted” is untrue.

Apart from his comments referred to above, Grafen (2018,
p. 176) claims that the main interest of Ewens and
Lessard (2015) “seems to be in total change in the mean fit-
ness”. This is not the truth. This is shown by the very fact that
the focus of our calculations is precisely the same as Grafen’s,
namely the additive genetic variance and its relation to that part
of the total change in mean fitness that has some evolutionary
importance. More precisely, the quantities that Grafen and we
focus on (his additive genetic component A,; and the left-hand
side in our Eq. (5)) are mathematically identical, differing only in
notation, and neither is the total change in mean fitness nor the
partial change due to changes in gene frequencies. This is that
part of the total change in mean fitness for which we and others
are attempting to find some biological relevance. Grafen’s various
comments on Ewens and Lessard (2015), and on mathematical
population geneticists generally, are inaccurate.

Next, Fisher (1941) referred to the “environment” in which a
gene finds itself, and discussed for example the concept of a “con-
stant genic environment”. He considered the rest of the genome
besides the locus at which any gene arises, and also the population
mating scheme (which might change from one generation to an-
other), as part of the environment in which the gene finds itself, in
addition to the physical and ecological parts that may be responsi-
ble for stochastic as well as frequency-and-density-dependent vari-
ations (see Appendix A). It is now widely recognised that Fisher's
(1930) FTNS concerns the change in mean fitness obtained by
keeping fixed the environment, including the genic environment.
This change corresponds to a partial change in mean fitness and
does not require restrictive assumptions such as weak selection
and random mating. Nevertheless, the conditions for a constant
genic environment happen to correspond exactly to conditions that
prevail under these assumptions (see Appendix B). Then all statis-
tical interactions between genes can be neglected (at least in the
long run) and the change in a mean measurement can be predicted
from average effects of genes and changes in their frequencies. The
biological significance of the FTNS when these assumptions do not
closely hold is unclear, however, since all effects depend on the
population state, and in particular on gene frequencies. The partial
change it concerns may be far from being the dominant compo-
nent of the total change in mean fitness by selection in natural
populations. It is a statistical simplification that tries to explain as
much change as possible from the perspective of individual genes.
It can become an oversimplification, and even a misrepresentation,
of a complex biological reality in presence of interactions.

Moreover, and perhaps most important, there seems to be a cir-
cularity in Fisher’s (1941) interpretation of the FTNS. The original
argument has been presented in a continuous-time setting with
two alleles at one locus (see Appendix A for details). Put in a
discrete-time setting with multiple alleles at a single locus, the ar-
gument goes as follows.

First, the increase in mean fitness from one generation to the
next is said to be ascribable only to changes in gene frequencies
(or ascribable to natural selection) when it is given by the addi-
tive genetic variance in fitness divided by the mean fitness. The
latter condition holds when changes in genotype frequencies sat-
isfy Eq. (22). But then this condition involving Eq. (22) is used as
the definition of a constant genic environment which, finally, is
seen as justifying the initial attribution of increase in mean fit-
ness to changes in gene frequencies alone. This is the reasoning
in Fisher (1941) to conclude that the additive genetic variance in
fitness divided by the mean fitness is the increase in mean fitness
from one generation to the next ascribable only to changes in gene
frequencies. This looks like a circular argument.

Actually, Fisher's (1941) explanation of the FTNS relies on a
property of the average effects of any measurement, here fitness
(call it measurement A) that is explained by the average effects
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of another measurement, namely the relative change in genotype
frequency (call it measurement B, see Appendix A). A constant
genic environment corresponds to a measurement B that is addi-
tive, which is equivalent to saying a measurement that is deter-
mined by its average effects. This ensures that the change in the
mean measurement of A is such that the non-additive genetic com-
ponent Apug, in Grafen’s (2018) terminology and notation, van-
ishes even if the measurement A is not additive. Then, necessar-
ily, the change in the mean measurement of A, assuming that it is
frequency-independent, is equal to the additive genetic component.
However, this does not mean that the average effects of A nor the
residual addends (dominance and epistasis effects) are kept con-
stant. It means only that the change in the mean measurement of
A in a constant genic environment is like the change in a popula-
tion of genes with the same average effects, which are kept con-
stant, and without any population structure. This corresponds to
the growth-rate theorem for a haploid population (Edwards, 1994)
with fitnesses given by the average effects.

Moreover, the partial change in mean fitness in the FTNS is
not generally the change due to changes in gene frequencies, since
these modify not only the average effects but also the residual
addends. It is actually the change due to changes in the relative
genotype frequencies as best predicted from the gene frequencies
in each genotype (Lessard, 1997). In a partial selfing model in the
limit of weak selection, for instance, the changes in genotype fre-
quencies are functions of the changes in gene frequencies only and
the change in mean fitness due to changes in gene frequencies
is the total change, not just its additive genetic component (see
Appendix B). Let us recall that the failure of the FTNS to capture
satisfactorily the effect of natural selection in populations with in-
breeding was a motivation for Hamilton (1964) to introduce the
concept of inclusive fitness.

Finally, Grafen (2018) takes number of offspring as the measure
of fitness in a context of non-overlapping generations but makes
the surprising claim that “it is the accompanying definition of fit-
ness that should be admired and recognised as the hallmark of
genius in the fundamental theorem” (p. 187) in a context of age-
structured populations with reference to Grafen (2015a). This def-
inition is based on birth and death rates that depend on genotype
and age but with reproductive values that depend only on age, and
is such that the mean fitness at every age is the same in agreement
with a neutrality principle recently stated for class-structured pop-
ulations (Grafen, 2015b). It takes some imagination to find all this
in Fisher’s work. The partial change in mean fitness was obtained
with the more classical Malthusian parameter as measure of geno-
typic fitness and reproductive values that depend on genotype and
age in Lessard (1997). It was shown in Lessard and Soares (2016,
2018) that the two definitions of fitness agree in the limit of weak
selection with a time scale shorter for changes in age distribution
than for changes in gene frequencies.
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Appendix A. Constant genic environment in the FINS

The key argument in Fisher’s (1930) Fundamental Theorem of
Natural Selection (FTNS) on “the rate of increase in fitness of any
organism at any time” (p. 35) understood as “the rate of increase in
the mean value [ ... ] produced by Natural Selection” (p. 42) is that
“any increase dp in the proportion of one type of gene at the ex-
pense of the other will be accompanied by an increase aedp in the
average fitness of the species” (p. 34). This increase is corrected to

2adp for a diploid population in Fisher (1941) whose main objec-
tive is to clarify the meaning of the average effect «. The fact that
this increase corresponds to Wdt where W is the genetic variance
in fitness (called today additive genetic variance) gives the rate of
increase in fitness meant in the FTNS.

The average effect of a given gene substitution on any measure-
ment is defined as follows in Fisher (1941, p. 53-54): “It is natural
to conceive this as the actual increase in the total of the measure-
ments of a population, when without change in the environment,
or in the mating system, the gene substitution is experimentally
brought about, as it might be by mutation. [ ... | To find the ef-
fect of the gene substitution in a constant environment, any effect
of the gene substitution itself on the environment must be dis-
counted. In other words, the effect that is wanted is only that due
to the change in the frequencies of the different possible geno-
types, not including any change in the average measurement of a
given genotype, which the change in gene frequency may in fact
bring about.”

In a context of two alleles at one locus, the above verbal defini-
tion is followed by a mathematical definition (p. 54) : “The direct
mathematical measure of the average effect of a proposed gene
substitution is the partial regression, in the population as actually
constituted, of the genotype measurement on the numbers 0, 1 or
2 of the allelomorphic genes in each genotype.”

Therefore, the calculation of the average effect of substituting G
for g, represented by «, is made by assigning genetic values p +
o, o and w— o to the genotypes GG, Gg and gg associated with
measurements i, j and k and occurring with frequencies P, 2Q and
R, respectively, such that the sum of squares

PGi— (n+a))?+2Q( — m)* +R(k— (n—a))? 9)
is minimum. The solution is found to be
B P(Q+R) . R(P+0Q) .
“=p@iRRErQ P TR nrReT Y
(10)

This means that « is the average change in the genotypic measure-
ment for one substitution of G for g with this substitution occur-
ring on genotype Gg or gg with probability

P(Q+R)

"= PQTRTRPTQ) (n
or
1 R(P+Q) (12)

“ZPQIR FRPT Q)

respectively. Moreover, it is noted that the change in the total mea-
surement of the population

idP + 2jdQ + kdR = (i — j)dP — (j — k)dR (13)

is ascribable to a change dp in the frequency of G and given by
2adp, if the change in genotype frequencies is given by

_ _ 2P(Q +R)
dP_zudp_P(Q+R)+R(P+Q)dp' (14)
2R(P+Q)
dR=—2(1—u)dp:—P(Q+R)+R(P+Q)dp (15)
and
2dQ = —dP — dR = 2(1 — 2u)dp = 20 f%(’i_ngJr o) dp. (16)

These expressions are the formulas given in Fisher (1941, p. 55)
times a missing common factor 2 in order to have dP+dQ = dp.
Furthermore, they entail the relationship

dp R _2d0

P+R_Q’ (17)
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which means that “Q%/PR maintains a constant ratio A” as stated
in Fisher (1941, p. 56), since then

0. (18)

d Q*\ _ 2PRQdQ — Q*(PdR+RdP)
PR) ™ P2R2 -

More importantly, this condition is used to define a constant genic
environment, and it is implied for a change in genotype frequen-
cies to be ascribable only to change in gene ratio, which is equiva-
lent to change in gene frequencies in the case of two alleles.

In Fisher (1941, p. 57), it is recalled that the rate of increase
in the average fitness ascribable to natural selection meant in the
FTNS corresponds to the increase of average fitness ascribable to
a change in gene frequency dp given by 2adp, actually ascribable
only to a change in gene frequency dp owing to what precedes
with fitness as measurement.

Therefore, we are in the following situation. The increase in
fitness produced by Natural Selection in Fisher’s (1930) FTNS is
defined as the increase in the average fitness ascribable only to
change in gene ratio but this increase is ascribable only to change
in gene ratio because it is given by the proposed increase. Conse-
quently, saying that the variance of the genetic values, called today
the additive genetic variance, is the rate of increase ascribable only
to change in gene ratio, or produced by Natural Selection in this
sense, is an arbitrary statement.

Note that the condition for a constant genic environment given
in Eq. (17) ensures that the residual addend vanishes even in the
non-additive case, that is,

(i—(u+a))dP + 2 —u)dQ + (k- (u—a))dR
—(i—j—a)dP—(j—k—a)dR=0,  (19)

not only when i — j = j — k = o, but also when i — j # j — k. More-
over, for the change in genotype frequencies to depend only on the
change in gene ratio as in (14)-(16), the genotype frequencies have
to be functions only of the gene ratio. Note that the average effect
of substituting G for g with the relative changes in genotype fre-
quencies dP/P, dQ/Q and dR/R as measurements for GG, Gg and gg,
respectively, is given by

1
“PQ+R +RP+Q)

o d(P+Q). (20)

This uses the fact that P+ 2Q + R = 1. This fact implies also that
the mean measurement is O and, therefore, that the genetic values
of the measurements can be expressed in the form 281, f1 + B,
and 2f,, respectively, with 8y = (Q +R)a and S, = —(P+ Q)c.
With the fact that P+ Q = p, this means that the change in geno-
type frequencies given in (14)-(16) is actually a partial change
obtained from a least-squares linear approximation of the rela-
tive changes in genotype frequencies as determined by the alleles
present in each genotype. Hence, the main property of the average
effect of any measurement is actually explained by the average ef-
fect of another measurement.

In Fisher (1958), the average effects of substituting given alleles
for a random selection of the alleles present at the same locus are
considered in a context of multiple alleles, but it is the same ap-
parently circular reasoning and the same assumption on genotype
frequencies that lead to the statement of the FTNS.

As for the genetic variance in fitness, which is the largest pos-
sible component of variance explainable by gene frequencies and
known today as additive genetic variance, it can be said at best
that it corresponds to a partial change in mean fitness (Price, 1972;
Ewens, 1989; Lessard, 1997; Edwards, 2002; Ewens and Lessard,
2015).

Appendix B. Conditions for a constant genic environment

The conditions for a constant genic environment may not
have received sufficient attention in the literature, notable excep-
tions being Kempthorne (1957), Kimura (1958), Lessard (1997) and
Edwards (2002, 2014), and we therefore discuss it here. To do so
we consider first the case where the fitness of any individual de-
pends only on the genes at some locus “A”. Suppose that only two
alleles, Ay and A,, are possible at this locus. Let Py;, 2Py, and Py, be
the respective frequencies of the genotypes A;A;, A;A; and A5A, at
the time of conception of any parental generation and APq1, 2APq;
and AP,, be the changes in these genotype frequencies between
that time and the time of conception of the corresponding off-
spring generation. Fisher (1941) in effect considered in some detail
the case when the relative changes in genotype frequencies satisfy
the linear equation
APy + APy 2AP,

Py Py Py
and referred to this situation as one of “constant genic environ-
ment” (see Appendix A for the original continuous-time setting).
More generally one can consider the case where k alleles are pos-
sible at this locus and the linear equation
AbRy + AP _ 2AR; (22)

PPy R
holds for every (i, j) pair with i#j. Ewens (2004), following
Lessard (1997), showed that when all possible equations of the
form (22) hold, the total change in mean fitness from one gen-
eration to the next is equal to a partial change in mean fitness in
agreement with Fisher’s statement of the FTNS. It is therefore rel-
evant to investigate the circumstances under which equations of
the form (22) hold, and to assess what implications these equa-
tions have if they do hold.

To a first-order approximation, Eq. (22) holds, as was in effect
stated by Fisher (1941), if P%/(Pi,-ij) is unchanging over time for
every (i, j) with i#j, and the most realistic case when this holds is
when Hardy-Weinberg frequencies obtain, or in effect when mat-
ing is at random. This then recovers the classroom result that
when mating is at random and fitnesses depend on the genes at
one locus only, mean population fitness increases over time (or re-
mains constant), and that when all genotypic fitnesses are close to
each other, the increase in mean population fitness from one gen-
eration to the next is close to the parental generation additive ge-
netic variance in fitness. However, the random mating requirement
does not seem to correspond to a reasonable concept of constant
genic environment. Moreover, random mating does not exactly im-
ply Eq. (22) for a discrete-time model with non-overlapping gener-
ations, and does not at all imply the corresponding linear equation

(21)

dp; dP;;  2dP;

ERETI =
for the relative changes in genotype frequencies for i#j in a
continuous-time model with overlapping generations, since then
Hardy-Weinberg proportions are generally approached only in the
long run even under neutrality.

A biological interpretation of Eq. (22) or its continuous-time
analogue (23) is puzzling. Let us recall that they come from con-
ditions on changes in genotype frequencies for the change in a
mean measurement to be given by average effects times changes
in gene frequencies (see Appendix A). First, these conditions do
not necessarily have a biological interpretation. The statistical no-
tion of average effect can be defined more generally for pairs of
any objects and the probability distribution of pairs can change
according to rules that have nothing to do with genetics. Second,
changes in genotype frequencies do not generally depend only on
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changes in gene frequencies as required. This is the case, how-
ever, for partial changes obtained by replacing the relative changes
in genotype frequencies with their additive genetic values. These
changes have been said ascribable only to changes in gene frequen-
cies (Fisher, 1941). But they do not generally take into account all
changes in gene frequencies.

In the limit of weak selection with any regular system of mat-
ing as partial selfing, for instance, the genotype frequencies at one
locus with two possible alleles A; and A, are given by

Py =Fp+ (1-F)p%

Pp=F(1-p)+(1-F)(1-p?
2P = (1-F)2p(1 - p), (24)
where p = Py; + Py is the frequency of A; and F is the inbreeding
coefficient (with partial selfing, F = s/(2 —s) where s is the proba-

bility of selfing). Then the total changes in genotype frequencies in
continuous time are

dPy = (F+2p(1-F))dp,
dPy; = —(F+2(1-p)(1 —F))dp,
2dPi, = 2(1 - 2p)(1 — F)dp, (25)

while the changes said ascribable to a change dp (in a constant
genic environment) given in Fisher (1941) (see Appendix A with
P = P;1.R =Py and Q = Pyy) are given in this case (after simple al-
gebraic manipulations) by

2(F+p(1 -F)) dp

dP]]: 1—|—F
2F+(1—-p)(1—F
dp22=_(+(1+p;( ) dp.
21 =2p)(1 —F
2dPy; = % dp. (26)

These changes are different from the total changes due to a change
dp in the frequency of A; unless F = 0, which means genotypes in
Hardy-Weinberg proportions.

Fisher (1930, 1958) actually never considered the whole-
genome analysis associated with Eq. (22). It is known (Ewens,
2004, p. 260) that even if these equations hold for all possible
pairs of alleles at all possible loci in the genome, it is no longer
true in the whole-genome case that the total change in mean fit-
ness from one generation to the next is equal to the partial change
in mean fitness unless there is total linkage equilibrium. Actually,
the partial change in the whole-genome case with constant fit-
nesses is equal to the total change if the relative change in the
frequency of genotype g, namely APg/P; in discrete time or dPg/Pg
in continuous time, is linear with respect to gene frequencies in g
(Lessard, 1997), which extends conditions (22) and (23). It is there-
fore no longer necessarily true in the whole-genome case, even
under random mating, that population mean fitness increases (or
remains constant) from one generation to the next as has been
known for a long time since an exact analysis in the two-locus case

(Moran, 1964), in contrast to the situation for the one-locus case.
It is known, however, that if selection is weak in a random mating
population undergoing discrete, non-overlapping generations, then
the population evolves approximately as if it were in linkage equi-
librium and the total change in mean fitness from one generation
to the next is approximately given by the additive genetic variance
in fitness divided by the mean fitness (Nagylaki, 1993).
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