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Abstract We show that the extension of the one-third law of evolution from the 2-player
game to the d-player game is the same for all exchangeable models in the domain of appli-
cation of the Kingman coalescent in the limit of a large neutral population. The extension
relies on an approximation of the probability of fixation of a single mutant in terms of ex-
pected times in ancestral sample states that are calculated by induction. An interpretation
based on the concept of projected average excess in payoff is discussed.

Keywords Evolutionary games ·Multi-player game · One-third law of evolution · Fixation
probability · Exchangeable models · Projected average excess

1 Introduction

The one-third law of evolution states that weak selection favors a single mutant strategy A

replacing a resident strategy B in the limit of a large finite population with random pairwise
interactions among individuals and payoffs as selection coefficients if

x∗ = b0 − a0

a1 − a0 − b1 + b0
<
1

3
. (1)

Actually this condition is necessary if the degenerate case x∗ = 1/3 is ignored. Here, ak and
bk are the payoffs to A and B , respectively, in interaction with A if k = 1 or in interaction
with B if k = 0. Note that x∗ is the equilibrium frequency of A with respect to the deter-
ministic evolutionary dynamics in an infinite population. This law was first established for
the Moran model [14] and the Wright–Fisher model [5, 8]. It has been shown to hold more
generally for exchangeable selection models extending the neutral Cannings model but only
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in the domain of application of the Kingman coalescent in the limit of a large population
size [9, 10].
Kurokawa and Ihara [7] and Gokhale and Traulsen [4] have extended the one-third law

of evolution for a d-player two-strategy game in a Moran population. One individual is
replaced at a time but the payoff to an individual depends not only on its own strategy, but
also of the strategies of d − 1 other interacting individuals chosen at random. This includes
what is known as the public goods game with the payoff depending linearly on the number
of cooperators among the interacting individuals in the same group. In the limit of a large
population size, the condition for weak selection to favor a single strategy A replacing a
strategy B is

d−1∑
k=0

(d − k)ak >

d−1∑
k=0

(d − k)bk, (2)

where ak and bk represent the payoffs to A and B , respectively, in interaction with k A

players and d − 1− k B players. Moreover, condition (2) is necessary in generic cases and
does not depend on the assumption that payoff differences are linear in abundance.
In this note, we establish the validity of condition (2) for the d-player game under ex-

changeable reproduction schemes that fall in the domain of the Kingman coalescent in the
limit of a large neutral population. Such reproduction schemes go well beyond the Moran
model and require a different approach.

2 The Model

Consider interactions between players within random groups of fixed size d in a population
of fixed size N . There are two types of players, A and B , and the payoffs to A and B are ak

and bk , respectively, if there are k players of type A and d − 1− k players of type B among
the other d − 1 players in the same group.
If there are j players of type A in the whole population such that the frequency of A is

x = j/N , then the expected payoffs to A and B are

πA(x) =
d−1∑
k=0

(
j − 1

k

)(
N − j

d − 1− k

)
(

N − 1
d − 1

) ak (3)

and

πB(x) =
d−1∑
k=0

(
j

k

)(
N − j − 1
d − 1− k

)
(

N − 1
d − 1

) bk, (4)

respectively. We have the approximations

πA(x) =
d−1∑
k=0

(
d − 1

k

)
xk(1− x)d−1−kak + O

(
N−1) (5)
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and

πB(x) =
d−1∑
k=0

(
d − 1

k

)
xk(1− x)d−1−kbk + O

(
N−1), (6)

where O(N−1) designates a function of order N−1 uniformly with respect to x, that is,
|O(N−1)| ≤ cN−1 for N large enough and some constant c for 0≤ x ≤ 1.
Assume that the payoff has an additive effect on the relative success in reproduction such

that the fitness of A can be expressed as

fA(x) = 1+ sNπA(x) (7)

and the fitness of B as

fB(x) = 1+ sNπB(x). (8)

The quantity sN represents an intensity of selection. It will be assumed throughout that
sN = σN−1, where the population-scaled parameter σ is supposed to be small and positive.
Time is discrete and an expected fraction γ of the population is replaced from one time

step to the next. The case γ = 1 corresponds to non-overlapping generations as in the
Wright–Fisher model [3, 18]. At the other extreme, we have γ = N−1 in the case of sin-
gle birth-death events as in the Moran model [13]. Note that the fraction of the population
that is replaced may be a random variable. However, only its expected value will matter.
If the frequency of A at a given time step is x, then this frequency at the next time step

will have an expected value x in the fraction of the population that is not replaced, and an
expected value xfA(x)/f̄ (x) in the fraction that is replaced, where

f̄ (x) = xfA(x) + (1− x)fB(x) (9)

is the mean fitness in the whole population. Here, we assume that the individuals replaced are
chosen at random. Moreover, each of them is replaced, not necessarily independently from
the others, by a copy of any given individual at the previous time step with a probability
proportional to the fitness of that individual. Actually, we assume that the contributions of
players of the same type from one time step to the next are exchangeable random variables
whose expected value depends linearly on the fitness of the type. In the absence of selection
(σ = 0), the contributions of all individuals are exchangeable as in the neutral Cannings
model [1, 10].
Then the change in the frequency of A, denoted by Δx, will have a conditional expected

value given by

Eσ (Δx|x) = γ x(fA(x) − f̄ (x))

f̄ (x)
. (10)

Note that the conditional distribution of Δx depends not only on the selection pressure but
also on the reproduction scheme.

3 Fixation Probability

Suppose that A is a mutant strategy represented only once initially (time step t = 0) and let
x(t) be the frequency ofA at time step t = 0,1,2, . . . . In particular, we have x(0) = N−1. As
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a result of the combined effects of selection and drift, the frequency of A will converge as t

goes to∞ to a limit random variable x(∞)which will take the value 1 with some probability
ρA(σ ) and 0 with the complementary probability 1− ρA(σ ). In fact, ρA(σ ) represents the
probability of fixation of A as a function of the scaled intensity of selection. Note that this
probability is given under neutrality by the initial frequency of A, that is, ρA(0) = x(0). As
a matter of fact, one of the individuals at t = 0 will be the ancestor of the whole population
in the long run. Moreover, if no selection takes place, this ancestor will be one individual
chosen at random at t = 0 by symmetry.
Following Rousset [16] and Lessard and Ladret [10], we write the limit frequency of A

in the population as

x(∞) = x(0) +
∑
t≥0

Δx(t), (11)

where

Δx(t) = x(t + 1) − x(t) (12)

is the change in the frequency of A from time step t to time step t + 1. Taking expectation
on both sides of the above equality and assuming mild regularity conditions [10], we obtain
that

Eσ

(
x(∞)

) = x(0) +
∑
t≥0

Eσ

(
Δx(t)

)
. (13)

Moreover, the law of total expectation gives

Eσ

(
Δx(t)

) = Eσ

(
Eσ

(
Δx(t)|x(t)

))
. (14)

For σ small enough, (10) leads to the approximation

Eσ

(
Δx(t)|x(t)

) ≈ γ σ

N
x(t)

(
1− x(t)

)(
πA

(
x(t)

) − πB

(
x(t)

))
. (15)

Plugging (5) and (6), this can be written as

Eσ

(
Δx(t)|x(t)

) ≈ γ σ

N

d−1∑
k=0

(
d − 1

k

)
x(t)k+1(1− x(t)

)d−k
(ak − bk)

+ γ σ

N
x(t)

(
1− x(t)

)
O

(
N−1). (16)

In summary, (13) yields

ρA(σ ) ≈ 1

N
+ γ σ

N

d−1∑
k=0

dk(ak − bk) + γ σ

N
d0O

(
N−1) (17)

as a first-order approximation for the probability of fixation ofA with respect to the intensity
of selection, where

dk =
(

d − 1
k

)∑
t≥0

E0
(
x(t)k+1(1− x(t)

)d−k)
. (18)



412 Dyn Games Appl (2011) 1:408–418

Here, E0 is used for the expected value in the neutral model, which differs only by terms of
order σ from the expected value Eσ in the selection model.
In order to go further, we will assume that the following condition holds.

Assumption A The probability under neutrality for two individuals chosen at random with-
out replacement at any given time step to have the same parent one time step back, repre-
sented by cN , and the corresponding probability for three individuals, represented by bN ,
satisfy

lim
N→∞

cN = 0 (19)

and

lim
N→∞

bNc−1
N = 0. (20)

Assumption A means that cN and bN tend to 0 as N tends to infinity but bN does it
more quickly so that bN = o(cN). This ensures that the probability of a 3-merger, and then
the probability of a k-merger for any k ≥ 3 by monotonicity, can be neglected compared to
the probability of a 2-merger in the absence of selection when the population size is large
enough. Actually this assumption guarantees that the ancestral neutral process in the limit of
a large population size with c−1

N time steps as unit of time will be the Kingman [6] coalescent
[12]. This assumption holds unless the contributions of individuals from one time step to the
next are highly skewed [2, 15, 17], which is unlikely in most real situations.
Under Assumption A (see Lemma 1 below), we obtain that

lim
N→∞

NcN

∑
t≥0

E0
(
x(t)k+1(1− x(t)

)d−k) = 2k!(d − k)!
(d + 1)! . (21)

In the neutral Wright–Fisher model with the numbers of descendants left by the N individ-
uals of a given generation having a multi-nomial distribution, we have cN = N−1. On the
other hand, cN = 2(N(N − 1))−1 in the Moran model with one individual chosen at random
to be replaced by an offspring of another individual chosen at random at every time step.
Using (21) in (18), we find that

dk = 2(d − k)

d(d + 1)NcN

(
1+ o(1)

)
, (22)

where o(1) → 0 as N → ∞. Therefore, we conclude the following.

Result 1 Under Assumption A, a first-order approximation for the probability of fixation of
A represented once initially is given by

ρA(σ ) ≈ 1

N
+ 2γ σ

N2cNd(d + 1)
d−1∑
k=0

(d − k)(ak − bk), (23)

for σ small enough and N large enough.

This approximation agrees with the result given in [7] and [4] in the case of a Moran
model in continuous time and extends it to a much wider class of models. Moreover, it leads
to the condition given in (2) to have ρA(σ ) > ρA(0) for σ small enough and N large enough.
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4 Key Lemma

Let us define

FN(n,m) = NcN

∑
t≥0

E0
(
x(t)n

(
1− x(t)

)m)
, (24)

where x(t) denotes the frequency of A at time step t ≥ 0 with x(0) = N−1. In this section,
we prove the following result.

Lemma 1 Under Assumption A, we have

lim
N→∞

FN(n,m) = 2(n − 1)!m!
(n + m)! , (25)

for n,m ≥ 1.

Proof Let us introduce the notation

F∞(n,m) = lim
N→∞

FN(n,m), (26)

for n,m ≥ 1. In the case n + m = 2, that is, n = m = 1, we have
FN(1,1) = NcN

∑
t≥0

(
1− N−1)E0(ξ1(t)(1− ξ2(t)

))
, (27)

where (1−N−1) is the probability for two individuals arbitrarily labeled by 1 and 2 that are
chosen at random at time step t not to be the same, and ξi(t) = 1 if individual i is of type A

and 0 otherwise, for i = 1,2. On the other hand,
E0

(
ξ1(t)

(
1− ξ2(t)

)) = N−1P0(t2 > t), (28)

where N−1 is the probability for the ancestor of individual 1 at time step 0 to be of type A,
and t2 stands for the number of time steps back for the ancestors of individuals 1 and 2 to be
the same. Moreover, P0 denotes probability under neutrality. Actually,

P0(t2 > t) = (1− cN)t , (29)

and, therefore, ∑
t≥0

E0
(
ξ1(t)

(
1− ξ2(t)

)) = N−1c−1
N . (30)

We conclude that

FN(1,1) = 1− N−1, (31)

from which

F∞(1,1) = 1. (32)

This establishes (25) for n + m = 2.
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Suppose now that (25) holds for m + n = 2, . . . , r − 1 and consider the case where m +
n = r . The induction hypothesis and the fact that n + m individuals chosen at random at the
same time step t will not be all different with probability O(N−1) guarantee that

FN(n,m) = GN(n,m) + O
(
N−1), (33)

for n + m ≤ r , where

GN(n,m) = NcN

∑
t≥0

E0

((
n∏

i=1
ξi(t)

)(
n+m∏

i=n+1

(
1− ξi(t)

)))
, (34)

with ξi(t) defined as previously for n+m individuals arbitrarily labeled by i = 1, . . . , n+m

that are chosen at random without replacement at time step t . This can be obtained by
expressing the frequency of A at time step t in the form x(t) = N−1∑N

i=1 ξi(t) with
ξ1(t), . . . , ξN(t) being exchangeable indicator random variables for the frequency of A in
the N individuals of the population. In particular, in the limit of a large population size, we
have

G∞(n,m) = lim
N→∞

GN(n,m) = F∞(n,m), (35)

for n + m ≤ r .
Let tn+m be the time back before the occurrence of the first merger in the ancestry of

n + m individuals chosen at random without replacement at time t . Under neutrality, this
time will take the value s ≥ 1 with probability

pn+m(s) = (1− qn+m)s−1qn+m, (36)

where qn+m is the probability of at least one merger among n + m lineages under neutrality.
Under our assumptions, this probability takes the form

qn+m =
(

n + m

2

)
cN + o(cN) = (n + m)(n + m − 1)cN

2
+ o(cN). (37)

Therefore,

E0(tn+m) = q−1
n+m = 2

(n + m)(n + m − 1)cN

(
1+ o(1)

)
. (38)

Moreover, given that tn+m = s, the individuals labeled by 1, . . . , n at time step t < s have a
single ancestor at time step 0 with probability 1 in the case n ≥ 1 but probability 0 in the
case n ≥ 2. In this case, they have n−1 ancestors at time step r = t − s ≥ 0 with probability

un−1,m =

(
n

2

)
cN + o(cN)(

n + m

2

)
cN + o(cN)

= n(n − 1)
(n + m)(n + m − 1) + o(cN), (39)

and n − l ancestors with probability un−l,m = o(cN) for l ≥ 2. Similarly, given that tn+m = s

and m ≥ 2, the individuals labeled by n + 1, . . . , n + m will have m − 1 ancestors at time
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step r = t − s ≥ 0 with probability

vn,m−1 =

(
m

2

)
cN + o(cN)(

n + m

2

)
cN + o(cN)

= m(m − 1)
(n + m)(n + m − 1) + o(cN), (40)

and n − l ancestors with probability vn,m−l = o(cN) for l ≥ 2.
Therefore, conditioning on the time step tn+m and the numbers of ancestor at this time

step, we obtain

NcN

∑
s≥1

pn+m(s)

s−1∑
t=0

E0

(
ξ1(0)

(
m+1∏
i=2

(
1− ξi(0)

)))

+ NcN

∑
s≥1

pn+m(s)

m−1∑
l=1

v1,m−l

∑
t≥s

E0

(
ξ1(t − s)

(
m−l+1∏

i=2

(
1− ξi(t − s)

)))
(41)

for GN(1,m), and

NcN

∑
s≥1

pn+m(s)

n−1∑
l=1

un−l,m

∑
t≥s

E0

((
n−l∏
i=1

ξi(t − s)

)(
n+m−l∏

i=n−l+1

(
1− ξi(t − s)

)))

+ NcN

∑
s≥1

pn+m(s)

m−1∑
l=1

vn,m−l

∑
t≥s

E0

((
n∏

i=1
ξi(t − s)

)(
n+m−l∏
i=n+1

(
1− ξi(t − s)

)))

for GN(n,m) in the case n ≥ 2. This leads to

GN(1,m) = cNE0(tn+m) +
m−1∑
l=1

vn,m−lGN(1,m − l) (42)

and

GN(n,m) =
n−1∑
l=1

un−l,mGN(n − l,m) +
m−1∑
l=1

vn,m−lGN(n,m − l), (43)

respectively.
Then the induction hypothesis yields

G∞(1,m) = 2

m(m + 1) + 2(m − 1)(m − 1)!
(m + 1)! = 2m!

(m + 1)! , (44)

and

G∞(n,m) = 2n!m!
(n + m − 1)(n + m)! + 2(m − 1)(n − 1)!m!

(n + m − 1)(n + m)!
= 2(n − 1)!m!

(n + m + 1)! , (45)

in the case n ≥ 2, which completes the proof. �
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5 Discussion

By analogy with Lessard and Lahaie [11] in the case where the intensity of selection is
σN−1, (17) means that

aA(0) = γN

d−1∑
k=0

dk(ak − bk) (46)

is the projected average excess in payoff of the mutant strategy A. This is the difference
between the marginal payoff to an A player and the mean payoff in the whole population
not only at the initial time step but also at all future time steps.
Note that

dk =
(

d − 1
k

)∑
t≥0

E0
(
x(t)k+1(1− x(t)

)d−k)
(47)

is the expected time back in number of time steps under neutrality that a focal individual
and k other individuals out of d − 1 will have the same common ancestor of a given label,
different from the ancestors of d − k − 1 other individuals and different from the ancestor of
another individual in competition with the focal individual. Here, the individuals are chosen
at random with replacement and an ancestor at any time step back has a label from 1 to N .
Lemma 1 entails that

lim
N→∞

NcNdk = 2(d − k)

d(d + 1) . (48)

Therefore, the condition for weak selection to favor A replacing B in the limit of a large
population size, given by (2), is equivalent to aA(0) > 0. This holds in the case where A is
represented only once initially.
In general, the quantity

HN(n,m) =
(

n + m

n

)∑
t≥0

E0
(
x(t)n

(
1− x(t)

)m)
, (49)

represents the expected time back in number of time steps under neutrality that n individuals
out of n + m individuals chosen at random with replacement will have the same ancestor of
a given label, different from the ancestors of the others. Lemma 1 ascertains that

lim
N→∞

NcNHN(n,m) = 2

n
. (50)

It is rather surprising that this limit does not depend on m.
On the other hand, the binomial theorem allows us to develop the quantity FN(n,m) in

Lemma 1 in the form

FN(n,m) = NcN

∑
t≥0

m∑
l=0

(−1)l

(
m

l

)
E0

(
x(t)n+l

)
. (51)

Note that

E0
(
x(t)n+l

) = N−1(1− P0(Sn+l > t)
)
, (52)
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where Sn+l represents the number of time steps back before the occurrence of the last merger
in the ancestry of n + l individuals sampled at random with replacement at any given time
step. Moreover, we have

P0(Sn+l > t) � P0(Tn+l > t), (53)

where Tn+l represents the corresponding time in the case of sampling without replacement.
Here, we use the notation f (N) � g(N) to mean that f (N) is asymptotic to g(N) in the
sense that f (N)/g(N) → 1 as N → ∞. Convergence to the Kingman coalescent ensures
that

cN

∑
t≥0

P0(Tn+l > t) = cNE0(Tn+l ) �
n+l∑
j=2

2

j (j − 1) = 2
(
1− 1

n + l

)
. (54)

Using this in the above expression for FN(n,m) and applying twice the binomial theorem
yield

lim
N→∞

FN(n,m) = 2
m∑

l=0
(−1)l

(
m

l

)
1

n + l
. (55)

Therefore, Lemma 1 states that

m∑
l=0

(−1)l

(
n + m

m

)(
m

l

)
n

n + l
= 1. (56)
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