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ABSTRACT 
We show that  the  Fundamental  Theorem of Natural Selection in Ewens' sense is valid in the case of 

fertility selection: the additive genetic variance in fertility divided by the  mean fertility is exactly equal 
to  the partial change in the  mean fertility from  the  current  generation  to  the next.  This partial change 
is the increase  in the  mean additive value caused by frequency  changes from  one  generation  to  the  next 
but  keeping  unchanged  the additive values. The only hypothesis on mating is that it does not affect the 
allelic frequencies  in the sense that these are  the same  before and  after mating  in the  parental  generation, 
which occurs  for  a wide range of mating  patterns  going from  random mating to several regular systems 
of inbreeding  and cases  of assortative mating. The fertility of couples is determined by the genes at  an 
arbitrary number of loci, and  the additive (average) allelic effects are  defined by a  linear system of 
equations, which is used to  extend Ewens' optimality principle to  the case of fertility selection. 

T HE Fundamental  Theorem of Natural Selection 
(FTNS)  as interpreted by EWENS (1989) in the 

case  of  viability selection in an infinite diploid popula- 
tion undergoing discrete nonoverlapping generations 
states that  the partial change in the mean fitness is 
exactly equal to the ratio of the additive genetic vari- 
ance in fitness to  the mean fitness. The theorem holds 
for any mating scheme,  random or  not, as long as there 
is no change between the allelic frequencies in the 
adults just before mating and in the offspring just after 
reproduction, and it is true no matter  the  number of 
loci  involved  in  fitness determination  and no matter 
the  number of alleles at these loci. Some of the key 
elements in the analysis are  the equations satisfied by 
the additive (average) allelic  effects (see EWENS 1992; 
WTILLOUX and LESSARD 1995, for  corrected equa- 
tions). This analysis can also be used to deduce opti- 
mality principles, a  matter  that we also  take up. 

In this paper we study the case of fertility selection 
as suggested in EWENS (1989), which was thought to be 
more difficult (W. J. EWENS, personal communication) 
but certainly interesting since it is known that  the mean 
fertility does not generally increase over  successive gen- 
erations. As for  the mean viability, the partial change 
in the mean fertility is obtained by replacing the exact 
fertility  values by the associated additive  fertility  values 
and by keeping these values constant from one genera- 
tion to the next. It is shown that this partial change is 
exactly equal to u;/J where u; is the additive genetic 
variance in fertility and Tis  the mean fertility. A linear 
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system  of equations for the additive  allelic  effects on 
fertility determined  at several  loci is deduced and 
EWENS' (1992) optimality principle is shown to hold in 
this  case. The arguments  are valid whether mating is 
random or  not as long as it does not  change  the allelic 
frequencies in the adults of the  parental  generation as 
in  cases of mating based on kinship or assortment. 

MODEL AND NOTATION 

Let A$"', . . . , AI,"' be  the s, alleles  of a  gene at locus 
m for m = 1, . . . , n in a sexual diploid population of 
infinite size. A genotype in this n locus system  is made 
of  two gametes, i and j ,  of the form 

i = (il, . . . , in), 
j = (jb . . . ,jn), 

with 1 5 i, 5 s, and 1 5 j, 5 s,, for m = 1, . . . , n. 
The  appearance of the  parameter i, at the mth compo- 
nent of gamete i means that  the allele A::) is present 
at locus m of this gamete, for m = 1, . . . , n, and similarly 
for  gametej. If  we do  not distinguish the origin (mater- 
nal or paternal) of the gametes, then  the genotype is 
represented by the  nonordered pair {i, j ) .  The fre- 
quency of this genotype at conception is assumed to be 
identical for females and for males and is represented 
by 2g,, if j f i, and by gi,, if j = i. If we order at  random 
the gametes of the  nonordered genotype {i, j } ,  then we 
get  the  ordered genotype (i, j )  with probability 1/2 and 
the  ordered genotype ( j ,  i) with probability 1/2. Then 
the frequency of the  ordered genotype (i, j )  is gj for 
all i, j .  

The frequency of gamete i at conception is repre- 
sented by p,. We have 
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p i  = C g;. 
I  

We represent  the frequency at conception of allele 
A$:) at locus m by pmim. We get this frequency by sum- 
ming pi  over  all gametes i that contain the fixed i, at 
the mth component,  that is 

P m z ,  = c C &I. 
S i ,  j 

A mated pair of individuals consisting of a female of 
genotype (i, j ]  and of a male of genotype ( k ,  I] is repre- 
sented by the  ordered couple ((i, j } ,  ( k ,  I)). The fre- 
quency of this couple after mating is represented by 
4 x I , k l ,  if j + i and 1 * k, 2 x < k l ,  if j = i and 1 + k, 2 X l j k k ,  

if j f i and 1 = k, X t , , k k ,  if j = i and 1 = k. If  we order 
the genotypes as above, then  the frequency of the cou- 
ple ( (i, j )  , ( k ,  E ) )  is for all i, j ,  k, 1. We assume x, , ,  
> 0 for all i, j ,  k, 1. Moreover, we have the symmetry 
conditions 

x j , k l  = x$& = &p,kl = q i , l k -  
But, we  may have x ] , , ,  f In the particular case  of 
random mating, we have x , &  = &@. 

The frequency of genotype (i, j )  in mated females is 
and the  corresponding frequency in mated 

males is x k , l x , & 2 j . .  Then the frequency of gamete i is 
x ; , k , l x q , k l  in mated females and Z j , h l x k & q  in mated males, 
in such a way that  the overall frequency of gamete i in 
mated individuals is 

( X i j k l  + X k k q ) / 2 .  
j ,  k,  1 

If  we assume that mating does not  change  the allelic 
frequencies from the time of conception to the time of 
reproduction, and this is the case for several mating 
patterns,  then we have 

p m i ,  = x ( x i g , , k l  + x k & Q ) / 2 .  (1) 
23im 1,k.l 

Now let  be  the fertility of couple ( (i, j ) ,  ( k ,  I)). 
This parameter, which may be frequency-dependent, 
can be  interpreted as the  expected  number of offspring 
in the progeny. The progeny sex ratio is assumed to be 
one-to-one, which means that  there  are as many  males 
as females in the progeny on the average. We have the 
symmetry conditions 

f .  y,kl  = f .  p , k l  = f  y,(k = f  ~ z , l ! i t  

for all i, j ,  k, 1. But, we  may havej& f fklil, which means 
that  the sexes  of the  parents  matter. The mean fertility 
in the  population is 

f = X i j , k l h j 3 k l .  
t,j,k,l 

If pkim denotes  the frequency of A::' at  the  beginning 
of the  next  generation,  then we have, assuming Mende- 
lian segregation and  no gametic selection, 

pki,,, = ( x Q , k d j , k l  + & i j f k L t j ) / ( 2 7 ) ,  ( 2 )  
2 3 2 ,  I ,kJ 

for i, = 1, . . . , s, and m = 1, . . . , n. Therefore,  the 
change in the frequency of A$:) from the  mother gen- 
eration to the  daughter  generation is 

Apm, = $ m W ,  - pmtm 

1 
= - [ x J , k l ( $ I , k l  - 7) f x k & j ( f k & j  - 7)12 (3) 

2fi3i, I ,k , l  

for i, = 1, . . . , s, and m = 1, . . . , n. 

ADDITIVE ALLELIC EFFECTS 

The additive  allelic  effects on fertility are  obtained 
by the classical least-square method (see, e.g., FISHER 
1918,  1930; KEMPTHORNE 1957; EWENS 1979). We write 
the fertility parameter f&l in the form 

A j , k l  = 7+ + a77 + a&, + a&) + Y $ , k l t  (4) 
I 

such that 

s = x &,kl A j , k l  - 7- (an, + ag, + ark, + ad,) 
i , j M  c I 

is minimum under the constraint 

an,pnr = 0, (5) 
2, 

for r = 1, . . . , n. The parameter an, represents the 
additive effect of allele A$: on fertility,  while Y i j k l  mea- 
sures the effect of  all interactions between genes carried 
by i, j ,  k, 1. Using Lagrange multipliers, the additive 
allelic  effects  have to minimize 

3 = x j , k l  - 7- f ff7, + ark, + a?&) 
i,j,k.l [ I r 

+ C C an,pn,,  
1 ' r  

for some X ,  for r = 1, . . . , n. The partial derivatives of 
s are given by 

aS 
- = -4 x & k l [ J $ k l  - f 

mtn, S i ,  ],k,l 

- c (ari, + + %k, + ad,) 
f 1 

- 4 C C xkl,q[fkl,ij - f 
13i, I.k.1 

- c ( a n ,  + a?, + ark, + a r k ) ]  + X m p m i , ,  
7 

for i, = 1, . . . , s, and m = 1, . . . , n. By equating these 
partial derivatives to 0 and by summing over i, for each 
m, we find 
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for m = 1, . . . , n. According to (3) ,  we have 

Then the equality 

for im = 1, . . . , s, and m = 1, . . . , n is equivalent to 
the  equation 

2@Pmi,, ,  = C C ( x t , , k L  + %<ij) 
23i, j ,kJ 

X C (a+ + arjT + + a r b ) ,  (7) 
7 

for i ,  = 1, . . . , s, and m = 1, . . . , n. 
By developing the  right  hand side of (7), one obtains 

2 7 A p r n i ,  = ami , , ,  C. C ( x j , k l  f x k l t j . )  
1 3 i m  j.k.1 

+ C an, ( x j , k l  + xklij)  
I t m  i ,  &3i,,zm j,k,l 

+ arj, C ( x j , k l  + x k l q )  
r j ,   t 3 i m   j 3 j 7   k , l  

+ 2 ad, ( x j , , h l  + x k l i j ) .  
T k, E3im k 3 k ,  j.1 

This can be written in the form 

f A p m i ,  = a m i d m i , , ,  + C C a + P m i , t i r  
I t m  i, 

+ C C aq,Qmi,vjv + 2 C C ark,Rni,,,,rk,, (8 )  
7 j ,  r k ,  

where 

pmim,.i, = ( x c j , k l  + x k l , i j ) / 2 >  
1 3  I,, i,,, j ,  k, 1 

= C ( x j , k l  + &l,c j ) /2  
i 3  i ,  13 j ,  k, 1 

and 

&i,,d, = ( x j k l  + X h l i j ) / 2 .  
i 3 im k 3 k ,  j.1 

The quantity Pmimi is the frequency of  all gametes in 
mated individuals carrying Ai:) at locus m and A::) at 
locus r, &i,,a, is the frequency of  all genotypes among 

mated individuals carrying AI_"' at locus m on  one ga- 
mete chosen at random and Aj:) at locus r on the  other 
gamete and Rrnt,,*, is the frequency of  all couples car- 
rying A::) at locus m on  one gamete chosen at random 
in one of the  parents chosen at  random and Aj: at 
locus r on  one gamete chosen at random in the  other 
parent. 

A more compact form for (8) is 

where 

when r f m, 

when j ,  f i,, and 

In every case, with reference to the above definitions, 
the  element Tmlmrjr can be interpreted as follows. This 
element is four times the probability that two genes 
chosen at random  and  independently,  the first one at 
locus m and the second one  at locus r, in a same couple 
chosen at random,  be Ai_"' and A)? in this order. This 
is so since then  the two genes will be chosen on the 
same gamete with probability 1/4, on two different ga- 
metes in a same individual with probability l/q and  on 
two different gametes in two different individuals of a 
same couple with probability 1/2. Moreover, if the two 
genes are chosen at  the same locus m on the same 
gamete, then they are different with probability 0 and 
they are  the same gene A::) with probability pmi,, which 
is the frequency of that  gene in the population. Equa- 
tion 9 for im = l, . . . , s, and m = l, , , . , n, characterizes 
the additive  allelic  effects on fertility. 

DECOMPOSITION OF GENETIC VARIANCE 
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But, by using (3) and (7), we find 

xij,kl[Jj,kl - 7- ( f f v i?  + ffd7 + ff% + 

Therefore we have 

ff;. = ff; + 0;, (10) 

where 

= X j , k l   A j , k l  - f -  (ffvi, + f f r j 7  f f f r k ,  + f f r l )  
1, j ,  k, 1 [ T l2 

and 

ffi = x t j , k 1 [  (ffri, + ffrjr + f f r k ,  + ffd) . 
z,j, k, 1 T r 

The quantity &is  the variance of the  interaction effects, 
also called the residual genetic variance, and 0; is the 
variance of the additive  allelic effects, called the additive 
genetic variance. Moreover, by using (7), we have 

Let us consider the change in the mean fertility from 
one  generation to the next. This change can be caused 
by a change in the frequency of the couple ( (i, j ) ,  ( k ,  
I)), noted AX&,, by a change in the fertility  of the 
couple ( (  i, j )  , ( k ,  1) ) , noted a J j , k l ,  or by a change in 
these two quantities simultaneously, and this for every 
couple ( (i, j )  , ( k ,  I) ) in the  population. To resume, we 
have 

af= (axij,kl)Jj,kl + X j , k l ( a J j , k l )  
i.j.k.1 i . j M  

+ ( a x j , k l )   ( a J j , k l ) .  ( 12) 
1ljh.l 

Let f $)1 be the additive  fertility corresponding to Jj,kl,  

that is 

f91 = f +  ( f f r i r  f ffrj, + f fy ,k ,  + ffrl,), 
I 

such that, according to (4), we have 

f .  y,kl = f ! P )  y,kl + 7 . .  tl,kl. 

Then the first term on the right hand side of (12) 
becomes 

(axi j ,k l ) f$ l  + ( a X j , k l ) Y y . k l .  
i , j M  k, 1 

We consider the  change in the mean fertility  only 
through  the changes of couple frequencies and by re- 
placing the fertilities by the  corresponding additive fer- 
tilities. Therefore, we consider the following partial 
change in the mean fertility: 

apartf = ( a xaj, kl ) f  $1 
+,l 

z .~,k,l  r I = ( a x i j , k l )  [ f +  x (ffvi, + f f r j T  + ffrk, + ffd) 

= x ( A x i j , k l )  (ffvi, + f f q ,  + ffrk, + f fd)  
i,j, k, 1 7 

= 2 x f fr i? a ( x j , k l  + xklq) 
r I, i 3 i ,  j , 4 1  

= 4 c e ffn,ap,,. (13) 
r l, 

From the above expressions for u; and a,,,J we con- 
clude that 

Therefore,  the partial change in the mean fertility is 
always exactly equal  to  the ratio of the additive genetic 
variance in  fertility  over the  mean fertility. In particular, 
this partial change is  always nonnegative. 

OPTIMALITY  PRINCIPLE 

We  may  now  ask if we could derive an optimality 
principle for fertility selection similar to that of EWENS 
(1992) for viability selection. That is, we would  like to 
find a quadratic function of gene frequency changes, 
dl,, . . . , dns,, that is minimized, subject to some con- 
straint, at the natural selection  values, A b l ,  . . . , Apns,. 

The  gene frequency changes from one  generation to 
the  next caused by fertility selection are characterized 
by (9) for i, = 1, . . . , s, and m = 1, . . . , n. In matrix 
form, we have 
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$5 = Ta, (15) 

where 

6 = (61, . . . , 6,) with 6, = (Af,l, . . . , A&,) 

for r =  1 , .  . . , n, 

a = (a1, . . . , a,) with a, = (ad, . . . , an,) 
for r =  1 , .  . . , n, 

T = l l T n , r l l ~ , ~ 1  with Tm,, = IITmimrjT II:$;l 
form, r =  1 , .  . . , n. 

It is shown in the APPENDIX that T is a nonnegative 
definite symmetric matrix whose nullspace, the space 
of  all 6 such that Tg = 0, is 

-"I"= 6 = (El ,  . . . 7 En): J r  = (Erl,  * * * 9 E n )  { 
= c, (1, . . . , 1) for r = 1, . . . , n and c, = 0 . 

I 1 
Moreover, owing to (1 l),  we have 

0; 

f 
*=a=:. (16) 

Therefore, we consider any vector of gene frequency 
changes 

d = (dl,  . . . , d, ) ,  with d, = ( A l ,  . . . , d,J and 

C ~ , , , = O  for r = l ,  ..., n, 
i 

satisfying 

0: 

f 
4dTa = z . (17) 

Owing to (14), this condition fixes the value  of the 
partial change in the  mean fertility to be achieved by 
the changes of gene frequencies at the n loci  given by 
d. We claim the following principle. 

MINIMIZING PRINCIPLE. The quadratic f m  dTT"d is 
minimized at 6 over the  set of all vectors of gene  ji-equency 
changes satisjjing ( 17). 

Observe that  the  quadratic  form dTT"d is well defined 
for every vector d of gene frequency changes, since such 
a d is perpendicular  to  the nullspace 3" of T. 

Let 

g(d) = dTT"d - 4AdTa - pT A,, 
r i, 

where X and pi, . . . , pm are Lagrange multipliers. The 
partial derivatives  of g(d) with respect to  the compo- 
nents of d are 

2T"d - 4Xa - p, 

where the ri, element of the vector p is p, for i, = 1, 
. . . , s, and r = 1, . . . , n. Therefore, for all partial deriva- 
tives to be 0,  we must have 

d = 2XTa + - . TP 
2 (18) 

But,  as  shown in the APPENDIX for a vector in the form 
of p, we have 

Tp = (PI + * * * + pn)p, (19) 

where p is the vector  of gene frequencies given by 

p = ( P l ,  . . . > p,) with p r  = ( p r l  f . . . 9 p 4  7 pn, > 0 
for i,= 1, .  . . , s, and 1 for r =  1,. . . , n. 

IT 

Owing to  (15)  and  (19) and recalling that d is a vector 
of gene frequency changes, the summation of all  com- 
ponents in the vector equation (18) yields 

0 = ( p l  + * - * + p , ) n ,  

which is possible  only if 

(p1 + - * * + p*)  = 0. 

Therefore, Tp = 0 and (18) reduces to 

d = 2XTa. 

Then, using (15), we get 

d = 2@, 

which  shows that d is a multiple of 6. This is compatible 
with (16) and (17) only if 

d = 6, 

which is the case if 

1 

Therefore  the  quadratic form dTT"d is minimized at 
6 over the  set of all vectors  of gene frequency changes 
that would  give the same partial change in the mean 
fertility. 

The above minimizing principle can be stated in an 
equivalent converse form: 

MAXIMIZING PRINCIPLE. Subject  to  the constraint 

the  vector d of gene ji-equency changes that maximizes the 
partial change in mean f i i l i t y  given 4dTa is 6. 

To prove the equivalence, let 

h(d)  = 4dTa - XdTT"d - x p, dnr, 
r ZI- 

where X and p l ,  . . . , p, are Lagrange multipliers. The 
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partial derivatives  of h ( d )  with respect to the compo- 
nents of d are 

4a  - 2XT"d - p. 

Equating all partial derivatives to 0 produces 

2Ta Tp 
X 2X 

d="- 

As shown above, we have T p  = 0, so that 

X X 

Then (21) becomes 

which  gives,  owing to (15) and  (16), 

X = 2J 

and  hence 

d = S. 

Remark. The Hessian matrix of g ( d )  is  2T" while the 
Hessian matrix of h ( d )  is  -2T". To  ensure  that g ( d )  
is minimized while h ( d )  is maximized at  the critical 
point d = S ,  we have to check that  the matrix T" is 
positive definite, or equivalently that  the matrix T is 
positive definite, on  the set of all  vectors of gene fre- 
quency changes. This is shown in the APPENDIX. Note 
also that the Hessian matrix of  is  BT, which is positive 
definite on  the set of  all a satisfying (5). This guarantees 
that  the additive allelic  effects minimize 9. 

DISCUSSION 

FISHER (1930, 1958) stated his Fundamental  Theo- 
rem of Natural Selection (FTNS) in a  context of Mal- 
thusian individual fitness in continuous-time models in 
the following  words: "The rate of increase in jitness of any 
organism at any time is equal to its genetic variance injitness 
at that time. "By genetic variance, Fisher meant what we 
call  today additive genetic variance or genic variance. 

Analyzing a multiallele one-locus model, KIMURA 

(1958) found  that  the total rate of increase in fitness is 
exactly equal to the additive genetic variance only if the 
Malthusian fitness parameters  are  constant and  there 
is no  dominance or, if there is dominance,  then  the 
coefficients of departure from Hardy-Weinberg propor- 
tions for genotypic frequencies  are  constant. In the case 
of  several loci, there must be in addition no epistatic 
effects or, otherwise, constant coefficients of departure 
from random combinations of alleles at  different loci. 
Under  the hypotheses of constant fitness parameters 
and random combinations of alleles intra- and interlo- 
cus, JSIMURA (1958) also showed the following  Maxi- 
mum Principle (see also CROW and IMURA 1970): "For 

a giuen short  time interval [. . .], natural selection  causes 
gme frequency  changes [. . .] in such a way that the  increase 
of population jitness [. . .] shall be maximum under the 
restriction [that  a relation between the  gene frequency 
changes and  the additive genetic variance be satisfied; 
see below for  a precise statement in the case of discrete- 
time models] ". Finally, it was claimed, without proof, 
that this principle could be extended to more  general 
situations. 

For discrete-time models with random  mating and 
individual fitness expressed by constant selective  values 
understood as expected  contributions to the  next gen- 
eration and  determined  at  a single multiallelic locus, 
WRIGHT (1937, 1942) had shown that  a  gene increases 
in frequency from one generation to the  next if and 
only if an infinitesimal increase of  this gene  alone, all 
other genes decreasing in frequency at  the same relative 
rate, would increase the  mean fitness.  His conclusion 
is the following (WRIGHT 1942): "the mean selective vulues 
ofpossible random breedingpopulations form a surface [. . .] , 
the gradient of which  determines  the  way in which  the popula- 
tion tends to chunge under the influence of selection". Such 
a surface has been called an adaptive topography. It 
was proved later, under  the same assumptions, that  the 
mean fitness increases from one generation to the  next 
(MULHOLLAND and SMITH 1959; SCHEUER and MANDEL 
1959; K~NGMAN 1961). This increase is given  exactly by 
the ratio of the additive genetic variance over the mean 
fitness, which is always nonnegative, plus another  term 
that may be negative but without exceeding  the first one 
in absolute value (see, e.g., LI 1969). With nonrandom 
mating, there is an  extra term that is generally nonnegli- 
gible (see, e.g., KEMPTHORNE 1957). More terms have 
to be added  for  the  change of the  mean fitness if selec- 
tive  values are variable or determined  at two or several 
loci in discrete-time as  well  as continuous-time models 
with or without random  mating  (see, e.g., KIMURA 1958; 
CROW and NAGYLAKI 1976; NAGYLAKJ 1989). In such 
cases, it is  well known that  the  mean fitness may de- 
crease (see, e.g., WRIGHT 1942; KOJIMA and KELLEHER 
1961; MORAN 1964; KIMURA 1965) and cycles  may exist 
(HASTINGS 1981; AKIN 1982). With selection for fecun- 
dity of mating pairs, steady decreases or oscillations of 
the  mean fitness can occur even in  the case  of constant 
selection parameters  determined at a single locus in 
random  mating  populations  (see, e.g., HADELER and 
LIBERMAN 1975; POLLAK 1978),  but  then the selection 
parameters must not be products of two factors associ- 
ated with the genotypes of the mates irrespective of sex, 
which lead to a situation equivalent to a viability model 
complying with the steady increase of the mean value 
(BODMER 1965; see EWENS 1979 and NAGYL.AKI 1992, for 
more  details).  Thus  there  are several difficulties associ- 
ated with the conventional interpretation of the  funda- 
mental theorem. 

But if a  theorem is to be called the  Fundamental 
Theorem of Natural Selection, it should be of general 
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validity. One view is to consider that  the ITNS is a  good 
approximation if selection is  weak enough (see, e.g., 
CROW and KIMURA 1970; NAGYLAKI 1992). It has been 
shown, for instance, that  the  change in the  mean fitness 
in discrete-time models is approximately given by the 
additive genetic variance at least after enough genera- 
tions and away enough from equilibrium in  cases  of 
viability selection parameters close enough to 1 and 
determined  at several linked loci (NAGYLAKI 1993) and 
in  cases  of sex-differentiated viability and fertility selec- 
tion parameters close enough to 1 and determined  at 
a single multiallelic locus if the  mean fitness is defined 
in an  appropriate way (NAGYLAKI 1987; LESSARD 1993). 
To  the  order of the approximations, these results entail 
the increase of the mean fitness as long as there is 
enough genetic variability. 

Another view  is to consider  that  the FTNS is exact 
but “the rigour of the &onstration requires that the  terms 
employed should be used strict4  as defined” (FISHER 1958). 
This is the view of PRICE (1972) for continuous-time 
models and EWENS (1989) for discrete-time as  well  as 
continuous-time models. According to PRICE (1972), 
the ITNS concerns  the  change in mean fitness due 
to  natural selection (that is, due to additive effects of 
changes in gene  frequencies) and  not  the total change 
that also comprises the  change  due to  environment 
effects (including  dominance and epistasis). The 
change in mean fitness due to  natural selection is equal 
to what EWENS (1989) has called the partial change in 
mean fitness. This  change  can  be  obtained by replacing 
the fitness of  every genotype by the  corresponding ad- 
ditive fitness (“the  value of  the genotype as best predicted 
from the genes present”) (FISHER 1958) and by consider- 
ing  the  change in the  mean value  only through  changes 
in genotypic frequencies. This is in agreement with the 
equations in FISHER’S (1958) proof of the FTNS but 
not necessarily  with Fisher’s words and his derivation 
of the ITNS as made clear by PRICE (1972). According 
to EWENS (1989), the FTNS is about  the partial change 
in  mean fitness and is not limited to continuoustime 
models. For discrete-time models he claims that the 
following interpretation applies. The partial change in 
mean fitness is equal  to  the  ratio of the additive genetic 
variance in fitness over the  mean fitness. This was 
shown originally in the case of viability differences 
among individuals determined  at any number of loci 
with  any number of alleles at these loci and without 
any assumption of random mating. It is remarkable 
that  the same statement exactly holds in the case  of 
fertility selection on mating pairs. Hence EWENS’ inter- 
pretation of the FTNS proves to  be applicable to  an 
important class of models without restrictive assump 
tions on  the  number of loci and  number of alleles at 
these loci and  on  the mating scheme. The only condi- 
tion on mating is that  the  gene  frequencies  be  the same 
before and after mating, which is the case  with  several 
regular systems  of inbreeding  and some uniform pat- 

terns  of assortative mating. Since there is no viability 
selection in the  paper  at  hand, this condition means 
that  the  gene  frequencies do not  change from the time 
of conception  to  the time of reproduction. With  viabil- 
ity selection from the time of conception to the time 
of mating but no fertility selection, nor meiotic and 
gametic selection, the same condition would mean in- 
variant gene  frequencies  from  the time of mating to 
the time of conception of the  next  generation. This is 
the assumption made in EWENS (1989). 

The equations characterizing the additive  allelic  ef- 
fects on fertility determined  at several loci, linked or 
not,  and without any assumption of random mating, 
are of prime interest. These  equations involve  only the 
mean fertility, the vector of gene frequency changes 
and  a nonnegative definite symmetric matrix, noted 
T, that  depends  on  the genetic structure in couples, 
specifically on the  joint distributions of all pairs of genes 
in couples. The part of this matrix that  concerns pairs 
of genes in individuals has already been  found,  and 
has been  noted V, in the  equations characterizing the 
additive allelic  effects on viability determined  at many 
loci without the assumption of random mating (CASTIL 
LOUX and LESSARD 1995). At least if every  possible  cou- 
ple type has a positive frequency, the matrix T is positive 
definite on the set of all  vectors  of gene frequency 
changes and therefore invertible on this set. This is 
also the case for the matrix V at least if  every possible 
genotype has a positive frequency. 

The matrix T plays a  central  role in optimality princi- 
ples associated with  fertility selection. If  we write 

(d - S ) T ’ ( d  - 6) 

= dTT”d - 2dTT-lS + GTT-16, (24) 

where 6 is the vector  of gene frequency changes re- 
sulting from fertility selection, then it is clear that, over 
the set of all  vectors  of gene frequency changes, 

minimizing dTT“d subject to dTT”6 = 0: (25) 
4f 

gives the same solution d = 6 as 
2 

maximizing dTT“6 subject to dTT”d = (TA 
4f2 ’  (26) 

since 

owing to (15) and (16), where 0; is the additive genetic 
variance in fertility, and 

(d - 6)TT-1(d - 6) 2 0 

with equality if and only if d = 6, (28) 

if d is to be  a vector of gene frequency changes. This 
shows the equivalence of the two optimality principles. 
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If  we make the  change of  variables 

a = fT-ld, (29) 

defined such that 

a = (al, . . . , a,) with a, = (aTl, . . . , am$ 
for r =  1 , .  . . , n 

satisfies 

a,+p,, = o for r = 1, . . . , n, (30) 
i, 

then  the  quadratic form (24) becomes 

1 - (a - fT"S)'T(a - JT"S), (31) 7' 
whose partial derivatives  with respect to the compo- 
nents of a are given by 

2 
- (Ta - @*a), (32) 7' 

which gives also the partial derivatives  of 

- C X j , k l  J j , k l - J -  X (a,, + aq, + a+ + 7 (33) 
4 f2  l [  i,j,kl T r 

owing to (6), (7) and (9). But (31) is  obviously  mini- 
mum when 

a = fT"6, (34) 

which  gives the additive allelic  effects. Therefore,  the 
optimality principles for fertility selection have the same 
biological grounds (the definition of additive allelic  ef- 
fects) as the  corresponding principles for viability  selec- 
tion (EWENS 1992, 1995). 

Notice that 

d'a 
S T ' d  = T , 

f (35) 

where a is the vector of the additive allelic  effects  given 
by (15). This is a multiple of the partial change in 
the  mean fertility corresponding  to changes in gene 
frequencies given by d, which is 4dTa. Therefore, (26) 
shows that  the vector of gene frequency changes d that 
maximizes the partial change in the mean fertility is 
the vector of gene frequency changes S resulting from 
natural selection, under  the constraint 

dTT"d = 7 . d 
4f * (36) 

Observe that  the  quadratic form dTT"d defines a met- 
ric on the set of all vectors of gene frequency changes, 
since T" is  positive definite on this set. 

If there is random mating, then T takes the form 

T = Dp + P + Q + 2ppT, (37) 

where p is the vector  of gene frequencies at n loci, 
which is a positive  vector in  the form 

p = (PI, . . . , Pn) with 

P, = ( ~ ~ 1 ,  . . . , prs,), C p,, = 1, for r = 1, . . . , n, 
L 

Dp is the diagonal matrix with the  components of p on 
the diagonal, P is the matrix whose (mzm, r j )  element 
is the frequency of  all gametes in mated individuals 
carrying A!_"' at locus m and A;:) at locus r for i, = 1, 
. . . , s, and i, = 1,  . . . , sr for m, r = 1, . . . , n (m f r) 
and whose (mim, mj,) element is 0 for i,, j ,  = 1, . . . , 
s, for m = 1, . . . , n, and Q is the matrix whose (mim, 
r j , )  element is the frequency of all genotypes among 
mated individuals carrying A::) at locus m on  one ga- 
mete chosen at random and  at locus r on the  other 
gamete for i, = 1, . . . , s, and j ,  = 1, . . . , s, for m, r = 
1, . . . ,  n. 

If there is random mating and fertilities are multipli- 
cative, being products of two factors associated  with the 
genotypes of the mates irrespective of  sex, then 

Q = pp' 

and 

T = D, + P + 3pp'. (38) 

This model is equivalent to a viability model without 
sex differences. In this case, if d is a vector of gene 
frequency changes in the form 

d = (dl, . . . , d,) with 

d, = (d,,, . . . , d,,), X d ~ v  = 0, for r = 1, . . . , n, 
1, 

then  the vector 

b = T"d 

can be chosen in the form (see the APPENDIX) 

b = ( h ,  . . . , b,) with b, = (bvl, . . . , bn,) 

and b&,, = 0 for r = 1, . . . , n. 
i, 

Then b satisfies 

Tb = (0, + P)b = d, (39) 

from which we have 

b = (0, + P)"d (40) 

and 

dTT"d = dT(Dp + P)"d. (41) 

This reduces  to  the Riemannian metric used by SHAHS 
HAHANI (1979) to interpret JSimura's  Maximum Princi- 
ple, but only  in the case  of a single locus for which 

dT(Dp + P)"d = dTDi'd. (42) 
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As a  matter of fact, in this particular case, the maximiz- 
ing principle corresponds to kMURA’s (1958) principle 
and the minimizing principle to EDWARDS’ (1974) 
equivalent principle. It suffices to replace the factor 4 
by a  factor 2 and to change fertility for fitness to  get 
the exact corresponding  statement (see EWENS 1992). 
In general, with two or  more loci, the metric (41) differs 
from the SHAHSHAHANI metric used to study linkage 
and epistasis in viability models with random mating, 
which is obtained from the inverse of the diagonal ma- 
trix with the gametic frequencies on the diagonal (see, 
e.g., AKIN 1979). 

Finally, our results can be  applied to fertility-viability 
selection models with general fertilities and sex-differ- 
entiated viabilities in nonrandom mating populations 
since sexdifferentiated viability selection and nonran- 
dom mating can be  incorporated  into fertility selection 
models with random pairings of  males and females if 
fertility parameters, possibly frequencydependent,  are 
appropriately  defined. This is done by ROUX (1977) for 
one-locus models (see HOFBAUER and SIGMUND 1988). 
The extension to multilocus models with recombina- 
tion appears to be straightforward. 
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APPENDIX 

Recall that T is a matrix whose (mim, r j )  element 
is four times the probability that two genes chosen at 
random and independently,  the first one  at locus m and 
the second one  at locus r, in a same couple chosen at 
random, be A::) and A;:) in this order.  Conditioning 
on  the couple type, we get  the expression 

= xj.kPij,kPij,kl, 
T (AI) 

rJ.k.1 

where x y , k l  is the frequency of couple ( (2, j )  , ( k ,  I) ) and 
Vij# is the vector of  allelic frequencies in couple ( (  i, j )  , 
(k, I)). More  precisely, the ry, element of Vij,& gives the 
frequency of A: among  the genes carried by the ga- 
metes i, j ,  k, I at locus r for y, = l, . . . , s, and r = l ,  
. . . , n. Therefore  the  components of v ~ , ~ ~  can take  as 
values 0, 1/4, ’/*, 3/4, 1 and  the  ones associated to  the 
same locus sum up to 1, that is, 

vi:: = 0 or y4 or Y2 or y4 or 1, 

for yr = 1, . . . , s,, (A2) 

and 

x vLz> = I, for r = 1, . . . , n. (A3) 
Yr 
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Note that, since T is a linear combination of nonnega- 
tive definite symmetric matrices with nonnegative coef- 
ficients, it is necessarily a nonnegative definite symmet- 
ric matrix. Therefore, 5 = (I1, . . . , In) with = 
(erl, . . . , Em) for r = 1, . . . , n is in the nullspace of T, 
noted <Y, that is,  satisfies TE = 0, if and only if gTTg = 
0. But, we have 

ST% = 4 c X j , k l ( V $ k l 5 ) * ,  (A4) 
Z , j M  

and this is equal to 0 if and only if 

VT y,kl 6 = 0  

as soon as X& > 0, which is the case for all i, j ,  k, 1 by 
assumption. In  particular, for i, j ,  k, 1 such that 

V$p) = 1 

vi$J = 1 for p, =+ ym 

- "  - 
and for i, j ,  k, E such that 

and 

vi!) = v;:? for y 7 =  1, .  . . , s, and r f  m, 

we have, recalling (A2) and (A3), that 

0 = v f , s  - v g s  
T 

= c e [vi:? - V$f)ltrY, 
7 Yr 

- 
- < m y m  - Imp,. (A6) 

We conclude  that every 5 in  the nullspace of T must 
be in the form 

5 = (I13 . . . t < n )  with t r  = ~ ( 1 ,  . . , t 1) 

for r = 1, . . . , n. (A7) 

But then, owing to (Al)  and (A3), we have 

Tg = 4 X X j , k y i j , k t (  C CY) 

i , j M  

= 4 ( 4  G)P, 

where p is the vector of gene frequencies in  the popula- 
tion,  that is, 

p = (ply . * .  , prA, p, = (pd, . . . 9  prs) 
for T = 1, . . . , n, p,, > 0 for i, = 1, . . . , s, 

and cp,,= 1 for r =  1 , .  . . , n. 
i, 

In such a case, we get 

and this is 0, that is 6 in  the form (A7) is in the nullspace 
X of T, if and only if 

c, = 0. 
r 

As a consequence,  the image space of T, which is the 
subspace perpendicular to ;% necessarily contains the 
set of  all vectors of gene frequency changes. Moreover, 
T is  positive definite, and invertible, on its image space. 

By convention, we can choose 

b = T-ld, (-410) 

where d is a vector  of gene frequency changes, such 
that 

b = ( h ,  . . . , 6,) with 6, = (brl, . . . , bnT) 

and b,&, = 0 for r = 1 , .  . . , n. 
i 

If this is not the case, it suffices to replace b by 

b = b - c ,  (A1 1) 

where 

5 = (ti, . . . , In)  with J7 = ~ ( 1 ,  . . . , 1 )  

and c,. = b~Tp,T for r = 1, . . . , n. 
I ,  

Then,  the vector 

b = (6 ,  . . . , Jn) with ir = ( Lr1, . . . , $) 

for r =  1 , .  . . , n 

satisfies 

X &,p+ = ( k ,  - 4 ps, = b,&? - cr = 0, 
1, i, I ,  

for r = 1, . . . , n. Moreover, we have 

T i i = T b - T & = T b ,  (A13  

since, owing to (A8) and (AlO), we have 

p = 4(pTb)p = 4 [ E) 'T" d] p 

1 
n 

= - (lTd)p = 0,  (A13) 

where 1 is the vector with  every component  equal to 1. 
Equation A13 means that 5 is in the nullspace of T and 
(A12) means that  the image of b is the same as the 
image of b, which is d by (AlO), that is 

l % = d  

or 

b = T-ld. 


