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ABSTRACT. The Iterated Prisoner’s Dilemma with an additive effect on viability selec-
tion as payoff is used to study the evolution of cooperation in finite populations. A con-
dition for weak selection to favor Tit-for-Tat replacing Always-Defect when introduced as
a single mutant strategy in a well-mixed population is deduced from the sum of all future
expected changes in frequency. It is shown by resorting to coalescent theory that the con-
dition reduces to the one-third law of evolution in the realm of the Kingman coalescent in
the limit of a large population size. The condition proves to be more stringent when the
reproductive success of an individual is a random variable having a highly skewed prob-
ability distribution. An explanation of the one-third law of evolution based on the notion
of projected average excess in payoff is provided. A two-timescale argument is applied
for group-structured populations. The condition is found to be less stringent in the case of
uniform dispersal of offspring followed by interactions within groups. The condition be-
comes even less stringent if dispersal occurs after interactions so that there are differential
contributions of groups in offspring. On the other hand, the condition is strengthened by a
highly skewed probability distribution for the contribution of a group in offspring.

1. INTRODUCTION

Al though cooperation is widespread in nature, its evolution is difficult to explain. The
main problem is that cooperation did not always exist and before being common in a popu-
lation it must have been rare. But the advantage of cooperation when rare is not obvious. In
order to study the advantage of cooperation and understand its evolution, we will consider
a game-theoretic framework based on pairwise interactions.

In the Prisoner’s Dilemma (PD) two accomplices in committing a crime are arrested and
each one can either defect (D) by testifying against the other or cooperate with the other
(C) by remaining silent. Each of the accomplices receives a light sentence corresponding
to some reward (R) when both cooperate, compared to a heavy sentence corresponding to
a punishment (P) when both defect. When one defects and the other cooperates the defec-
tor receives a lighter sentence represented by some temptation (T ), while the cooperator
receives a heavier sentence represented by the sucker’s payoff (S). Therefore, the payoffs
in the PD game satisfy the inequalities T > R > P > S. The situation is summarized in Fig.
1 with some particular values for the different payoffs.

Note that the payoff to strategy C is smaller than the payoff to strategy D whatever
the strategy of the opponent is. If pairwise interactions occur at random in an infinite
population, then the expected payoff to C can only be smaller than the expected payoff
to D. Moreover, if the reproductive success of an individual is an increasing function of
the payoff and true breeding is assumed so that an offspring uses the same strategy as its
parent, then C is not expected to increase in frequency.

In order to find conditions that could favor the evolution of cooperation the PD game is
extended by assuming n rounds of the game between the same players. This is known as
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FIGURE 1. Payoffs in the PD game with some particular values.

the Iterated Prisoner’s Dilemma (IPD). Then two sequential strategies are considered: Tit-
for-Tat, represented by A, and Always-Defect, represented by B. Always-Defect consists
obviously in defecting in every round, while Tit-for-Tat consists in cooperating in the first
round and then using the previous strategy of the opponent in the next rounds. Note that
two players using Tit-for-Tat will always cooperate. Moreover, Tit-for-Tat has proved to
do better than any other sequential strategy in computer experiments. See, e.g., Axelrod
(1984) or Hofbauer and Sigmund (1998, Chap. 9) and references therein for more details
and historical perspectives.

Let us assume that the payoffs in the different repetitions of the IPD game are additive.
Then the payoffs to A against A, A against B, B against A, and B against B, denoted by
a,b,c, and d, respectively, take the expressions given in Fig. 2. What is important is that
these payoffs satisfy the inequalities a > c > d > b as soon as the number of repetitions is
large enough, that is,

n >
T −P
R−P

.(1.1)

Actually this is a necessary and sufficient condition for the payoff to A against A to exceed
the payoff to B against A. This is the case, for instance, when n = 10 with the payoffs of
the PD game given in Fig. 1. The consequence of this is that the expected payoff to A will
exceed the expected payoff to B in an infinite population with random pairwise interactions
if the frequency of A exceeds some threshold value.

As a matter of fact, if the frequencies of A and B in an infinite population are x and 1−x,
respectively, then the expected payoffs to A and B are

wA(x) = ax+b(1− x)(1.2)

and

wB(x) = cx+d(1− x),(1.3)

respectively. Therefore, wA(x) > wB(x) if and only if

x >
d−b

a−b− c+d
= x∗.(1.4)
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FIGURE 2. Payoffs in the IPD game with particular values in the case
n = 10 with the numerical payoffs of the PD game given in Fig. 1.

With the expressions of the different payoffs given in Fig. 2, we find that

x∗ =
P−S

(P−S)+(R−P)
(
n− T−P

R−P

) .(1.5)

This threshold value for x decreases from 1 to 0 as n increases from (T −P)/(R−P) to
infinity, but remains always positive. This suggests that the frequency of A in an infinite
population can increase, but only if the initial frequency is high enough.

2. DYNAMICS IN AN INFINITE POPULATION

Consider an infinite haploid population undergoing discrete, non-overlapping genera-
tions and suppose random pairwise interactions among the offspring of the same genera-
tion. These interactions are assumed to have an additive effect on viability. More precisely
the probability for an individual to survive from conception to maturity, and then to con-
tribute to the next generation, is proportional to some fitness given in the form

fitness = 1+ s×payoff.(2.1)

Here, 1 is an arbitrary reference value and s≥ 0 represents an intensity of viability selection
whose coefficient is the payoff to the individual. The intensity of selection will be assumed
small throughout the paper. The case s = 0 corresponds to neutrality.

Let x(t) be the frequency of A in generation t before selection. As a result of random
pairwise interactions, the probability for an individual of type A to survive will be 1 +
swA(x(t)) compared to 1+ swB(x(t)) for an individual of type B. Then the frequency of A
in generation t after selection will be

x̃(t) =
x(t)(1+ swA(x(t)))

1+ sw(x(t))
,(2.2)

where

w(x(t)) = x(t)wA(x(t))+(1− x(t))wB(x(t))(2.3)
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is the mean payoff in generation t. After reproduction and in the absence of mutation,
this frequency will be also the frequency of A in the offspring of generation t + 1, that
is, x(t + 1) = x̃(t). Therefore, the change in the frequency of A before selection from
generation t to generation t +1, represented by ∆x(t) = x(t +1)− x(t), will be given by

∆x(t)x̃(t)− x(t) =
sx(t)(1− x(t))(wA(x(t))−wB(x(t)))

1+ sw(x(t))
,(2.4)

where

wA(x(t))−wB(x(t)) = (a−b− c+d)(x(t)− x∗).(2.5)

We conclude that ∆x(t) = 0 if and only if x(t) = 0,1 or x∗, which are the stationary states.
Moreover, since a−b−c+d > 0 and 0 < x∗ < 1, we have that ∆x(t) > 0 if x(t) > x∗, while
∆x(t) < 0 if x(t) < x∗. Therefore, x(t) increases as t →∞ if x(0) > x∗, while it decreases if
x(0) < x∗. Actually x(t) increases to 1 in the former case, while x(t) decreases to 0 in the
latter case, since the limit of x(t) as t → ∞ must be a stationary state by continuity.

Let us summarize.

Proposition 1. Consider the IPD game in Fig. 2 with a number of rounds satisfying
n > (T −P)/(R−P) so that the payoffs satisfy a > c > d > b. Assume random pairwise in-
teractions in an infinite population undergoing discrete, non-overlapping generations and
viability selection of intensity s with coefficient given by the payoff. The frequency of A in
generation t before selection, x(t), satisfies

x(t) ↑ 1 if x(0) > x? and x(t) ↓ 0 if x(0) < x?,(2.6)

where

x∗ =
d−b

a−b− c+d
(2.7)

is a stationary state in (0,1) for the deterministic dynamics.

Proposition 1 means that x∗ is an unstable polymorphic equilibrium, while 0 and 1 are
monomorphic stable equilibria. Unfortunately this cannot explain the spread of A from an
initial low frequency following its introduction as a rare mutant strategy.

3. FIXATION PROBABILITY IN A FINITE POPULATION

In a finite population, random drift that results from sampling effects can ultimately
bring the frequency of A to fixation from any low initial frequency. In this section we
consider the probability of this event.

Each generation starts with N parents labeled from 1 to N. These produce virtually
infinite numbers of offspring identical to themselves in the relative proportions π1, . . . ,πN ,
respectively. The population size N is assumed to be finite and constant. The proportions
π1, . . . ,πN are exchangeable random variables. This means that the joint distribution is
invariant under any permutation. Furthermore, they satisfy 0≤ πi ≤ 1 for i = 1, . . . ,N and
∑N

i=1 πi = 1. In particular this implies that the expected proportion of offspring produced
by each parent is the same. It is given by

E(π1) = N−1
N

∑
i=1

E(πi) = N−1E

(
N

∑
i=1

πi

)
= N−1.(3.1)
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FIGURE 3. Life cycle from generation t to generation t +1 and notation
for the frequency of A in the whole population at each step.

Moreover, it is assumed that

cN = NE(π2
1 ) =

N

∑
i=1

E(π2
i )→ 0(3.2)

as N → ∞. This says that the probability for two offspring chosen at random without
replacement to have the same parent tends to 0 as the population size increases.

The Wright-Fisher model (Fisher 1930, Wright 1931) corresponds to the situation where
πi = N−1 for i = 1, . . . ,N. In this case, we have cN = N−1.

A modified Wright-Fisher model with a skewed distribution of progeny size can be
obtained by allowing for πi = ψ for some i chosen at random and π j = (1−ψ)(N−1)−1

for every j 6= i, for some fixed 0 < ψ < 1. A combination of this reproduction scheme
with probability N−α and the Wright-Fisher scheme with the complementary probability
1−N−α , and this for each generation, has been considered and applied to oysters for
instance (Eldon and Wakeley 2006). In this case, we find that

cN =
1
N

(
1− 1

Nα

)
+

1
Nα

(
ψ2 +

(1−ψ)2

N−1

)
,(3.3)

whose leading term is ψ2N−α if 0 < α < 1, but (1+ψ)2N−1 if α = 1, and N−1 if α > 1.
The general situation of exchangeable proportions of offspring produced by the N par-

ents each generation corresponds to the Cannings model (Cannings 1974).
The frequency of A in the parents of generation t is represented by a random variable

z(t). This random variable can take only the values i/N for i = 0,1, . . . ,N. The frequency
of A in the offspring of generation t is represented by x(t), which has the same expected
value as z(t). This frequency becomes x̃(t) as defined in the previous section in the adults
of generation t after viability selection as a result of random pairwise interactions among
the offspring. Then N adults are chosen at random to be the parents of the offspring of
generation t +1. The frequency of A in these parents is z(t +1). The conditional distribu-
tion of z(t + 1) given x(t) is the distribution of a binomial random variable of parameters
N and x̃(t), divided by N. In particular, the conditional expected value of z(t + 1) is x̃(t),
which is the same as the conditional expected value of x(t +1). (See Fig. 3 for a schematic
representation of the life cycle.)

Actually z(t) for t ≥ 0 is a Markov chain on the finite state space {i/N : i = 0,1, . . . ,N}
with fixation states 0 and 1, all other states being transient. From any initial state z(0),
the chain will hit 0 or 1 in a finite time with probability 1 owing to the ergodic theorem.
Actually as t → ∞ the chain z(t) will converge in probability to a random variable z(∞)
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that takes the value 1 with some probability u(s), which is the probability for the chain
to hit 1 before 0, and the value 0 with the complementary probability 1−u(s). Here, u(s)
represents the probability of ultimate fixation of A as a function of the intensity of selection.

Note that

u(s) = Es[z(∞)],(3.4)

where Es denotes expectation as a function of s. Moreover u(0) = z(0), since one of the
offspring in the initial generation will be the ancestor of the whole population in the long
run, and it will be one offspring chosen at random in the initial generation by symmetry if
no selection takes place.

Being uniformly bounded by 1, the chain will also converge in mean. Therefore, we
have

Es[z(∞)] = lim
T→∞

Es[z(T ))](3.5)

= lim
T→∞

Es

[
z(0)+

T

∑
t=0

(z(t +1)− z(t))
]

= z(0)+ lim
T→∞

T

∑
t=0

Es[z(t +1)− z(t)]

= z(0)+
∞

∑
t=0

Es[z(t +1)− z(t)].

On the other hand, the tower property of conditional expectation and (2.4) yield

Es[z(t +1)− z(t)] = Es[x(t +1)− x(t)](3.6)
= Es

[
Es[x(t +1)− x(t)|x(t)]]

= Es [x̃(t)− x(t)]

= s(a−b− c+d)Es

[
x(t)(1− x(t))(x(t)− x∗)

1+ sw(x(t))

]

= s(a−b− c+d)E [x(t)(1− x(t))(x(t)− x∗)]+o(s),

where E denotes expectation in the absence of selection, that is, Es when s = 0, while
|o(s)|/s→ 0 as s→ 0. This leads to the approximation

u(s) = u(0)+ s(a−b− c+d)
∞

∑
t=0

E [x(t)(1− x(t))(x(t)− x∗)]+o(s)(3.7)

for the probability of ultimate fixation of A under weak selection.
The above approach was suggested in Rousset (2003) and ascertained in Lessard and

Ladret (2007) under mild regularity conditions on the transition probabilities of the Markov
chain. Actually it suffices that these probabilities and their derivatives are continuous func-
tions of s at s = 0, which is the case here.

The following definition was introduced in Nowak et al. (2004).

Definition 1. Selection favors A replacing B if the probability of ultimate fixation of A is
larger in the presence of selection than in the absence of selection.
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The inequality u(s) > u(0) for s > 0 small enough guarantees that weak selection favors A
replacing B. This will be the case if u′(0) > 0, where

u′(0) = (a−b− c+d)
∞

∑
t=0

E [x(t)(1− x(t))(x(t)− x∗)](3.8)

is the derivative of the fixation probability with respect to the intensity of selection evalu-
ated at s = 0. The condition a−b− c+d > 0 leads to the following conclusion.

Proposition 2. Assume that the offspring of generation t are produced in infinite numbers
in exchangeable proportions by a fixed finite number N of adults chosen at random in the
previous generation and that they undergo viability selection according to the IPD game
as in Proposition 1. Weak selection favors A replacing B if

x∗ <
∑t≥0 E[x(t)2(1− x(t))]
∑t≥0 E[x(t)(1− x(t))]

= x̂,(3.9)

where x(t) is the frequency of A in the offspring of generation t and E denotes expectation
under neutrality.

Note that the condition for A to be favored for replacement under weak selection is more
stringent if the upper bound x̂ defined in Proposition 2, which satisfies 0 < x̂ < 1, is closer
to 0.

4. GENERALIZED ONE-THIRD LAW OF EVOLUTION

In this section we calculate the upper bound x̂ in Proposition 2. This is done under the
assumption that A is initially a single mutant, that is, u(0) = z(0) = N−1. Moreover, all
calculations are made under neutrality.

First note that E[x(t)(1− x(t))] is the probability for two offspring chosen at random
without replacement in generation t to be of types A and B in this order. This is a con-
sequence of the tower property of conditional expectation. As a matter of fact, using the
indicator random variable ξi(t) = 1 if the i-th offspring chosen at random without replace-
ment in generation t is of type A, and 0 otherwise, for i = 1,2, we have

E [x(t)(1− x(t))] = E [E [ξ1(t)(1−ξ2(t))|x(t)]] = E [ξ1(t)(1−ξ2(t))] .(4.1)

Going backwards in time from generation t to generation 0, we obtain

E [ξ1(t)(1−ξ2(t))] =
p22(t +1)

N
,(4.2)

where p22(t +1) = pt+1
22 is the probability that two offspring chosen at random without re-

placement in generation t descend from two distinct ancestral parents in generation 0, and
1/N the probability that the ancestral parent of the first offspring is of type A. Then neces-
sarily the ancestral parent of the second offspring will be of type B, since A is represented
only once in the initial generation. Here, the quantity p22 denotes the probability for two
offspring chosen at random without replacement in the same generation to have different
parents. Therefore,

∑
t≥0

E[x(t)(1− x(t))] =
p22

N(1− p22)
.(4.3)

Similarly,

E
[
x(t)2(1− x(t))

]
= E [ξ1(t)ξ2(t)(1−ξ3(t))] =

p32(t +1)
3N

,(4.4)
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where p32(t + 1) represents the probability that three offspring chosen at random without
replacement in generation t descend from two distinct ancestral parents in generation 0 and
1/3 is the conditional probability that it is then the first two offspring that descend from
the same ancestral parent (see Fig. 4.). Here,

p32(t +1) =
t

∑
r=0

pt−r
33 p32 pr

22 = p32
pt+1

33 − pt+1
22

p33− p22
,(4.5)

where

pi j = ∑
a1 + · · ·+a j = i

a1, . . . ,a j ≥ 1

E

(
j

∏
r=1

πar
r

)
(4.6)

represents the probability that i offspring chosen at random without replacement in the
same generation have j distinct parents. This leads to

∑
t≥0

E
[
x(t)2(1− x(t))

]
=

p32

3N(1− p22)(1− p33)
.(4.7)

Finally we obtain

x̂ =
p32

3p22(1− p33)
(4.8)

for the upper bound in Proposition 2. Note that

p22 = 1− cN → 1,(4.9)

as N → ∞, and

p32 ≤ p32 + p31 = 1− p3,(4.10)

which complete the proof of the following statement.

Proposition 3. In the case of a single initial A, the upper bound x̂ in the condition given
in Proposition 2 for weak selection to favor A replacing B satisfies

lim
N→∞

x̂ = lim
N→∞

p32

3(1− p33)
≤ 1

3
,(4.11)

where pi j is the probability that i offspring chosen at random without replacement in the
same generation have j distinct parents.

An equality on the right-hand side of the equation in Proposition 3 gives the weakest con-
dition for A to be favored for replacement under weak selection. This is known as the
one-third law of evolution (Nowak et al. 2004).

Definition 2. The one-third law of evolution states that weak selection favors a single A
replacing B in the limit of a large population size if x∗ < 1/3.

According to Proposition 3, the one-third law of evolution holds if and only if at most two
lineages out of three coalesce at a time backwards in time with probability 1 in the limit
of a large population size. This is the necessary and sufficient condition for the limiting
backward process of the neutral Cannings model with c−1

N generations as unit of time to be
the Kingman coalescent (Kingman 1982, Möhle 2000, Möhle and Sagitov 2001).

Let us recall that the number of lineages backwards in time under the Kingman coales-
cent is a death process on the positive integers with death rate from k≥ 1 to k−1 given by
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FIGURE 4. Lineages of two offspring of types A,B and three offspring
of types A,A,B from generation t to generation 0.

λk = k(k−1)/2. This means that each pair of lineages coalesces with rate 1 independently
of each other.

The above conclusion first drawn in Lessard and Ladret (2007) shows that the one-third
law of evolution originally deduced for the Moran model (Nowak et al. 2004) and the
Wright-Fisher model (Lessard 2005, Imhof and Nowak 2006) holds for a wide class of
models. Moreover it shows how the one-third law extends beyond this class. Note that the
Moran model (Moran 1958) assumes overlapping generations with one individual replaced
at a time, but such models lead to the same conclusion (Lessard and Ladret 2007, Lessard
2007a).

In the case of the Eldon-Wakeley model with probability N−α for a random parent to
produce a fraction ψ of all offspring (Eldon and Wakeley 2006), we find that

p31 =
1

N2

(
1− 1

Nα

)
+

1
Nα

(
ψ3 +

(1−ψ)3

(N−1)2

)
(4.12)

and

p32 =
3
N

(
1− 1

N

)(
1− 1

Nα

)
+

3(1−ψ)
Nα

(
ψ2 +

1−ψ
N−1

− (1−ψ)2

(N−1)2

)
.(4.13)

In this case,

lim
N→∞

p32

3(1− p33)
=





1
3 if α > 1,

1−ψ
3−2ψ if α < 1,

1+ψ2(1−ψ)
3+ψ3(3−2ψ) if α = 1.

(4.14)

The limit is strictly less than 1/3 if and only if α ≤ 1. This means a more stringent
condition for A to be favored for replacement under weak selection when the distribution
of progeny size is highly skewed.

Note that α ≤ 1 is the condition for the limit backward process of the neutral Eldon-
Wakeley model with c−1

N generations as unit of time to be a Λ-coalescent allowing for
multiple mergers involving more than two lineages (Pitman 1999, Sagitov 1999). In the
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case α < 1, the rate of an m-merger among k lineages is given by

λk,m =
(

k
m

)
ψm−2(1−ψ)k−m,(4.15)

for m = 2, . . . ,k.

5. EXPLANATION FOR THE ONE-THIRD LAW OF EVOLUTION: PROJECTED AVERAGE
EXCESS

The following explanation for the one-third law of evolution in the limit of a large
Moran or Wright-Fisher population has been proposed (Ohtsuki et al. 2007): in an inva-
sion attempt by a single mutant of type A up to extinction or fixation in the absence of
selection, A-players effectively interact on average with B-players twice as often as with
A-players. The argument is based on the mean effective sojourn times in the different pop-
ulation states. These can be obtained exactly for the Moran model and approximated for
the Wright-Fisher model (Fisher 1930, p. 90).

In this section, we propose another explanation based on the notion of projected av-
erage excess (Lessard and Lahaie 2009). This is an extension of the classical notion of
average excess in fitness for a gene substitution (Fisher 1930). Here, we consider the ex-
cess in payoff for a mutant strategy not only in the current generation but also in all future
generations.

First observe that

∑
t≥0

E[x(t)(1− x(t))] =
p22E(S2)

N
(5.1)

and

∑
t≥0

E
[
x(t)2(1− x(t))

]
=

E(S2)−E(S3)
2N

,(5.2)

where S2 and S3 represent the numbers of generations spent backwards in time with two
and three lineages, respectively, before the first coalescence event occurs. As a matter of
fact, we have

E(S2) =
1

1− p22
(5.3)

and

E(S3) =
1

1− p33
,(5.4)

so that

E(S2)−E(S3) =
p22− p33

(1− p22)(1− p33)
.(5.5)

Moreover, we have

p22− p33 =
2p32

3
,(5.6)

which are two different expressions for the probability that exactly two given offspring
out of three chosen at random without replacement have different parents. Therefore, the
above equalities agree with the corresponding expressions given in the previous section.
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FIGURE 5. Average excess in payoff for A in generation t. The indices
F , T and I are used for focal, typical and interacting offspring, respec-
tively. Only typical offspring of type B have to be considered. The coa-
lescence time S2 is for F and T , while S3 is for F , T and I.

On the other hand, the first derivative of the probability of ultimate fixation of A with
respect to the intensity of selection evaluated at s = 0 can be written as

u′(0) = (a− c)
∞

∑
t=0

E
[
x(t)2(1− x(t))

]
+(b−d)

∞

∑
t=0

E
[
x(t)(1− x(t))2] ,(5.7)

where

E
[
x(t)(1− x(t))2] = E [x(t)(1− x(t))]−E

[
x(t)2(1− x(t))

]
.(5.8)

Then, the above equalities and the assumption that cN = 1− p22 → 0 as N →∞ lead to the
approximation

u′(0)≈ (a− c)
(

E(S2)−E(S3)
2N

)
+(b−d)

(
E(S2)+E(S3)

2N

)
.(5.9)

This can be written in the form

u′(0)≈ 1
N

{(
a− c+b−d

2

)
(E(S2)−E(S3))+(b−d)E(S3)

}
.(5.10)

The fraction N−1 is the frequency of A in the initial generation, while the expression in
curly brackets represents its projected average excess in payoff. This is the sum of the
differences between the marginal payoff to A and the mean payoff to a competitor in the
same generation over all generations t ≥ 0 as long as fixation is not reached.

The concept of projected average excess in payoff for A can be better understood with
the help of Fig. 5. Consider a focal offspring (F) of type A in generation t ≥ 0. We want to
compare its marginal payoff to the mean payoff in the same generation. This mean will be
the expected payoff to a typical offspring (T ) chosen at random in the same generation. If
this offspring has the same ancestor in generation 0 as the focal offspring, then its marginal
payoff will also be the same. Therefore, it suffices to consider the case of distinct ancestors
for F and T in generation 0. Then a third offspring (I) is chosen at random in the same
generation and it may interact with either F or T .

Let S3 be the number of generations backwards in time for the first coalescence event
in the genealogies of the three offspring F , T , and I, and S2 be the corresponding number
for F and T only. If t < S3, the three ancestors in generation 0 are all distinct and therefore
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T and I are both of type B. Then the payoff to F would be b compared to d for T . On the
other hand, if S3 ≤ t < S2 with F and I having a common ancestor in generation 0, whose
conditional probability is 1/2, then F and I are of type A, while T is of type B. This gives a
payoff a to T compared to c to T . Finally, if S3 ≤ t < S2 but with F and I having a common
ancestor in generation 0, whose conditional probability is 1/2, then T and I are of type B,
while F is of type A. In this case, the payoff to F is b compared to d for T . In all other
cases, F and T would be of the same type A, and then they would have the same payoff.

The final argument for the interpretation follows from the facts that
∞

∑
t=0

P(S3 > t) = E(S3)(5.11)

and
∞

∑
t=0

P(S3 ≤ t < S2) =
∞

∑
t=0

(P(S2 > t)−P(S3 > t)) = E(S2)−E(S3).(5.12)

Scaled expected times in the limit of a large population size are obtained by multiplying S2
and S3 by cN and by letting N tend to infinity, that is,

µi = lim
N→∞

E(cNSi),(5.13)

for i = 2,3. Then the sign of the first derivative of the probability of ultimate fixation of A,
and therefore whether or not weak selection favors A for replacement, is given by the sign
of a scaled projected average excess in fitness.

Let us summarize.

Proposition 4. In the case of a single initial A and in the limit of a large population size,
the condition given in Propositions 2 and 3 for weak selection to favor A replacing B is
equivalent to

aA =
(

a− c+b−d
2

)
(µ2−µ3)+(b−d)µ3 > 0,(5.14)

where µ2 and µ3 designate expected times, in number of c−1
N generations in the limit of a

large population size, with two and three lineages, respectively, and aA represents a scaled
projected average excess in payoff of A.

Note that

µ2 ≥ 3µ3,(5.15)

and the one-third law of evolution

x∗ =
d−b

a−b− c+d
<

1
3

(5.16)

is obtained when µ2 = 3µ3, which occurs with µ2 = 1 in the case of the Kingman coales-
cent.

6. ISLAND MODEL WITH DISPERSAL PRECEDING SELECTION

In this section we examine the effect of a group structure on the condition for a single A
to be favored for replacing B. Actually we consider the Wright (1931) island model for a
population subdivided into a finite number of groups of the same size, assuming a Wright-
Fisher reproduction scheme within groups and partial uniform dispersal of offspring before
selection.
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N parents offspring offspring adults N parents

reproduction dispersal interactions sampling

zk(t) zk(t) xk(t) x̃k(t) zk(t +1)

FIGURE 6. Life cycle from generation t to generation t +1 and notation
for the frequency of A in group k at each step in the island model with
dispersal before selection.

We have D groups of N parents producing virtually infinite numbers of offspring in
equal relative proportions, that is, (ND)−1 for each parent. We suppose that a fixed pro-
portion m of offspring disperse uniformly among all groups, while the complementary
proportion 1−m stay in their native group. This is followed by random pairwise inter-
actions within groups affecting viability as previously. Finally N parents are sampled at
random in each group to start the next generation.

Under the assumption of a Wright-Fisher reproduction scheme, the frequency of A in
the offspring in group k in generation t before dispersal, for k = 1, . . . ,D and t ≥ 0, is
the same as the frequency of A in the parents of group k at the beginning of generation t,
denoted by zk(t). Then this frequency becomes

xk(t) = (1−m)zk(t)+mz(t)(6.1)

in the offspring after dispersal, and

x̃k(t) =
xk(t)(1+ swA(xk(t)))

1+ sw(xk(t))
(6.2)

in the offspring after selection. Here,

z(t) = D−1
D

∑
k=1

zk(t) = D−1
D

∑
k=1

xk(t) = x(t)(6.3)

is the frequency of A in all parents of generation t, which is the same as the frequency of
A in all their offspring before dispersal as well as after dispersal, but before selection (see
Fig. 6).

Proceeding as previously, we find that the probability of ultimate fixation of A is

u(s) = Es

[
z(∞)

]
(6.4)

= z(0)+
∞

∑
t=0

Es

[
z(t +1)− z(t)

]

= u(0)+D−1
∞

∑
t=0

D

∑
k=1

Es [x̃k(t)− xk(t)] ,

where

Es [x̃k(t)− xk(t)] = s(a−b− c+d)E [xk(t)(1− xk(t))(xk(t)− x∗)]+o(s).(6.5)
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FIGURE 7. States for the ancestors of three offspring in the island model.

Actually the derivative evaluated at s = 0 is given by

u′(0) = (a−b− c+d)D−1
∞

∑
t=0

D

∑
k=1

E [xk(t)(1− xk(t))(xk(t)− x∗)] .(6.6)

We conclude that u′(0) > 0 if and only if x∗ < x̂, where

x̂ =
∑t≥0 E[x(t)2(1− x(t))]

∑t≥0 E[x(t)(1− x(t))]
.(6.7)

Here, we have

x(t)2(1− x(t)) = D−1
D

∑
k=1

xk(t)2(1− xk(t))(6.8)

and

x(t)(1− x(t)) = D−1
D

∑
k=1

xk(t)(1− xk(t)).(6.9)

Then the tower property of conditional expectation ascertains the following statement.

Proposition 5. Consider the Wright island model for a finite number of groups of size
N and assume a Wright-Fisher reproduction scheme followed by uniform dispersal of a
proportion m of offspring and viability selection within groups according to the IPD game
of Proposition 1. Weak selection favors A replacing B if

x∗ <
∑t≥0 E[ξ1(t)ξ2(t)(1−ξ3(t))]

∑t≥0 E[ξ1(t)(1−ξ2(t))]
= x̂,(6.10)

where ξ1(t),ξ2(t),ξ3(t) are indicator random variables for type A in offspring chosen at
random without replacement in the same group chosen at random in generation t after
dispersal.

7. CALCULATION FOR THE ISLAND MODEL WITH DISPERSAL PRECEDING SELECTION

We want to calculate x̂ in Proposition 5 for the island model with dispersal preceding
selection in the limit of a large number of groups and in the case where A is initially a single
mutant. Without loss of generality, suppose z1(0) = N−1 and zk(0) = 0 for k = 2, . . . ,D.
See Ladret and Lessard (2007) for the analysis in the case of a fixed number of groups.

We will have to trace backwards in time the ancestors of two or three offspring after
dispersal. Actually we will just need to know the number of groups d containing at least
one ancestor and the number of groups ni containing i ancestors for i = 1, . . . ,d with 1 ≤
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∑d
i=1 ni ≤ 3. There are six possible states in the form n = (n1, . . . ,nd): (1), (2,0), (3,0,0),

(0,1), (1,1,0), (0,0,1), and they are labeled from 1 to 6 (see Fig. 7).
The state space S is partitioned into two subsets, S1 = {1,2,3} with all ancestors in

different groups and S2 = {4,5,6} with at least two ancestors in the same group. State 1
is absorbing while all other states are transient. As D increases, transitions from the other
states occur according to two different timescales with expected sojourn times in state 4, 5
or 6 becoming negligible compared to expected sojourn times in state 2 or 3.

As shown in Appendix A1, in the limit D→∞ with ND generations as unit of time, lin-
eages within the same group either coalesce or migrate instantaneously to different groups,
while each pair of lineages in different groups coalesces at rate f22, which is the probability
for two offspring chosen at random without replacement in the same group after dispersal
to have ultimately two ancestors in different groups in the case of an infinite number of
groups. In other words, after an initial scattering phase during which instantaneous transi-
tions from states in S2 to states in S1 take place, there is a collecting phase during which
transitions within S1 occur according to the Kingman (1982) coalescent but with rate f22
instead of 1.

Let pi j(t) be the probability for the chain to be in state j and vi j(t) the probability for
the chain to visit state j for the first time in the t-th generation backwards in time, given
that the chain is in state i in the current generation. Note that

vi j = ∑
t≥1

vi j(t)(7.1)

is the probability for the chain to reach state j from state i for j 6= i. Moreover,

E(Ti) = (ND)−1 ∑
t≥0

pii(t)(7.2)

is the expected value of the time Ti spent in state i starting from state i before absorption
into state 1 with ND generations as unit of time. In particular we have (see Appendix A1)

lim
D→∞

E(T2) = f−1
22 and lim

D→∞
E(T4) = 0,(7.3)

so that only the time spent in state 2 has to be taken into account in the expected time with
two lineages in the limit of a large population size. Moreover,

lim
D→∞

v42 = f22 = 1− f21 and lim
D→∞

v62 = f32 + f33 = 1− f31,(7.4)

where fnk represents the probability for n offspring chosen at random without replacement
in the same group after dispersal to have ultimately k ancestors in different groups in the
case of an infinite number of groups.

Considering all possible transitions from state 4 for two offspring chosen at random
without replacement in generation t ≥ 0 after dispersal to states in generation 0 so that the
two offspring are of types A and B in this order, we obtain

∑
t≥0

E[ξ1(t)(1−ξ2(t))] = (ND)−1 ∑
t≥1

p42(t)+(ND)−1 ∑
t≥1

p44(t),(7.5)

since

∑
t≥1

p42(t) = ∑
t≥1

t

∑
r=1

v42(r)p22(t− r) = ∑
r≥1

∑
t≥0

v42(r)p22(t).(7.6)

Therefore, we have

∑
t≥0

E[ξ1(t)(1−ξ2(t))] = v42E(T2)+E(T4)− (ND)−1 → 1,
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FIGURE 8. Lineages of three offspring of types A,A,B in the same group
in the island model from generation t to generation 0.

as D→ ∞.
For three offspring chosen at random without replacement in state 6 in generation t ≥ 0

after dispersal and of types A, A and B in this order, we obtain in a similar way

∑
t≥0

E[ξ1(t)ξ2(t)(1−ξ3(t))] = (3ND)−1 ∑
t≥1

p62(t)+(3ND)−1 ∑
t≥1

p64(t),(7.7)

from which

∑
t≥0

E[ξ1(t)ξ2(t)(1−ξ3(t))] =
v62

3
E(T2)+

v64

3
E(T4)→ 1− f31

3(1− f21)
,(7.8)

as D → ∞. Here, 1/3 is the probability that two lineages in particular coalesce given that
two lineages out of three coalesce (see Fig. 8).

Exact expressions of f21 and f31 in terms of m and N are given in Appendix A1. Note
that the inequality f31 < f21 always holds.

It remains to plug the above calculations in the upper bound given in Proposition 5. The
following conclusion ensues.

Proposition 6. In the case of a single initial A, the upper bound x̂ in the condition given in
Proposition 5 for weak selection to favor A replacing B in the island model with dispersal
preceding selection satisfies

lim
D→∞

x̂ =
1− f31

3(1− f21)
>

1
3
,(7.9)

where f21 and f31 are the probabilities that two and three offspring, respectively, chosen at
random without replacement in the same group after dispersal have ultimately a common
ancestor in the case of an infinite number of groups.

Proposition 6 means a less stringent condition for a single A to be favored for replacing B
when the population is subdivided into a large number of small groups.

8. ISLAND MODEL WITH DISPERSAL FOLLOWING SELECTION

In this section we consider a variant of the previous island model by assuming that
uniform dispersal occurs after selection. The main effect of this assumption is to introduce
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differential contributions of groups according to their composition from one generation to
the next.

Here, the frequency of A in the offspring in group k in generation t goes from xk(t) =
zk(t) before selection to

x̃k(t) =
xk(t)(1+ swA(xk(t)))

1+ sw(xk(t))
(8.1)

after selection, and finally to

˜̃xk(t) =
(1−m)xk(t)(1+ swA(xk(t))+mD−1 ∑D

l=1 xl(t)(1+ swA(xl(t))
(1−m)(1+ sw(xk(t))+mD−1 ∑D

l=1(1+ sw(xl(t))
(8.2)

after selection and dispersal, since the relative size of group k after selection is 1+sw(xk(t)).
(See Fig. 9.)

After some algebraic manipulations, the frequency of A in generation t in the whole
population after selection and dispersal is found to be

D−1
D

∑
k=1

˜̃xk(t) = x(t)+ s(b−d)x(t)(1− x(t))(8.3)

+ s(a−b− c+d)x(t)2(1− x(t))

+ sm(2−m)(b+ c−2d)(x(t)2− x(t)
2
)

+ sm(2−m)(a−b− c+d)(x(t)3− x(t) x(t)2)+o(s).

Here, x(t), x(t)(1− x(t)) and x(t)2(1− x(t)) are defined as in Section 6, while

x(t)2− x(t)
2

= D−1
D

∑
k=1

xk(t)2−
(

D−1
D

∑
k=1

xk(t)

)2

= D−2
D

∑
k=1

D

∑
l=1,l 6=k

xk(t)(1− xl(t))− (1−D−1)x(t)(1− x(t))(8.4)

and

x(t)3− x(t) x(t)2 = D−1
D

∑
k=1

xk(t)3−
(

D−1
D

∑
k=1

xk(t)

)(
D−1

D

∑
l=1

xl(t)2

)

= D−2
D

∑
k=1

D

∑
l=1,l 6=k

xk(t)2(1− xl(t))− (1−D−1)x(t)2(1− x(t)).(8.5)

The tower property of conditional expectation yields

E[x(t)(1− x(t))] = E[ζ1(t)(1−ζ2(t))](8.6)

and

E[x(t)2(1− x(t))] = E[ζ1(t)ζ2(t)(1−ζ3(t))](8.7)

as before, but with ζ1(t),ζ2(t),ζ3(t) being indicator random variables for A in offspring
chosen at random without replacement in generation t in the same group before dispersal.

Proceeding as in the previous section, we find that

lim
D→∞ ∑

t≥0
E[ζ1(t)(1−ζ2(t))] = 1(8.8)
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N parents offspring adults adults N parents

reproduction interactions dispersal sampling

zk(t) xk(t) x̃k(t) ˜̃xk(t) zk(t +1)

FIGURE 9. Life cycle from generation t to generation t +1 and notation
for the frequency of A in group k at each step in the island model with
dispersal after selection.

and

lim
D→∞ ∑

t≥0
E[ζ1(t)ζ2(t)(1−ζ3(t))] =

1− f̃31

3(1− f̃21)
,(8.9)

where

f̃n1 = fn1(1−m)−n(8.10)

represents the probability that n offspring chosen at random without replacement in the
same group before dispersal have ultimately a common ancestor in the case of an infinite
number of groups.

On the other hand, we have

E

[
(D2−D)−1

D

∑
k=1

D

∑
l=1,l 6=k

xk(t)(1− xl(t))

]
= E[ζ1(t)(1−η2(t))](8.11)

and

E

[
(D2−D)−1

D

∑
k=1

D

∑
l=1,l 6=k

xk(t)2(1− xl(t))

]
= E[ζ1(t)ζ2(t)(1−η3(t))],(8.12)

where η2(t) and η3(t) are indicator random variables for A in offspring chosen at random
without replacement in generation t before dispersal, but in a different group than the one
for the indicator random variables ζ1(t),ζ2(t),ζ3(t). In this case, we find that

lim
D→∞ ∑

t≥0
E[ζ1(t)(1−η2(t))] =

1
1− f̃21

(8.13)

and

lim
D→∞ ∑

t≥0
E[ζ1(t)ζ2(t)(1−η3(t))] =

1
3

+
f̃21

1− f̃21
.(8.14)

These results are obtained by considering all transitions from states 2 and 5, respectively,
for offspring sampled at random without replacement in generation t ≥ 0 before dispersal
to states in generation 0 that are compatible with the sample configuration.



EVOLUTION OF COOPERATION IN FINITE POPULATIONS 19

The probability of ultimate fixation of A as a function of the intensity of selection is
given by

u(s) = u(0)+D−1
∞

∑
t=0

D

∑
k=1

Es
[

˜̃xk(t)− xk(t)
]
.(8.15)

Its derivative evaluated at s = 0 is given by

u′(0) = (b−d) ∑
t≥0

E[x(t)(1− x(t))](8.16)

+ (a−b− c+d) ∑
t≥0

E[x(t)2(1− x(t))]

+ m(2−m)(b+ c−2d) ∑
t≥0

E[x(t)2− x(t)
2
]

+ m(2−m)(a−b− c+d) ∑
t≥0

E[x(t)3− x(t) x(t)2].

In the limit of a large number of groups and after some algebraic manipulations, we find
that

lim
D→∞

u′(0) = (b−d)+(a−b− c+d)
1− f̃21 +(1−m)2( f̃21− f̃31)

3(1− f̃21)
(8.17)

+ (a−d)m(2−m)
f̃21

1− f̃21
.

Using the exact expressions of f21 = (1−m)2 f̃21 and f31 == (1−m)3 f̃31 given in Appen-
dix A1, it can be checked that

m(2−m)
f̃21

1− f̃21
=

1
N−1

(8.18)

and

1− f̃21 +(1−m)2( f̃21− f̃31)
3(1− f̃21)

>
1− f31

3(1− f21)
,(8.19)

as soon as N > 1. Then the condition limD→∞ u′(0) > 0 yields the following result.

Proposition 7. In the case of dispersal following selection in the Wright island model of
Proposition 5 in the limit of a large number of groups of fixed size N > 1, weak selection
favors a single A replacing B if

x∗ <
1− f̃21 +(1−m)2( f̃21− f̃31)

3(1− f̃21)
+

a−d
(N−1)(a−b− c+d)

,(8.20)

where f̃21 and f̃31 are the probabilities that two and three offspring, respectively, chosen at
random without replacement in the same group before dispersal have ultimately a common
ancestor in the case of an infinite number of groups.

Note that the upper bound for x∗ given in Proposition 7 is always larger than the upper
bound given in Proposition 6. This means an even less stringent condition for A to be
favored for replacing B in the Wright island model when dispersal follows selection instead
of preceding it.
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9. MODIFIED ISLAND MODEL WITH SKEWED CONTRIBUTIONS OF GROUPS
PRECEDING SELECTION

In this section we consider the effect of a skewed distribution for the contribution of
a group in offspring in a subdivided population. We assume D groups of size N with
dispersal of offspring preceding selection in each generation as in the island model of
Section 6. However, with a small probability D−β for β < 1, one group chosen at random
provides a proportion χ of all offspring, produced equally by all members of the group,
compared to (1−χ)(D−1)−1 for every other group. With the complementary probability,
the proportion is uniformly the same. In all cases, a proportion m of offspring in each group
disperse and are replaced by as many migrants chosen at random among all migrants.
This is followed by selection and random sampling within each group to start the next
generation. This corresponds to the Eldon-Wakeley model applied to groups instead of
parents.

The conclusion of Proposition 5 still holds. Moreover, a two-timescale argument can be
applied in the limit of a large number of groups as in Section 7, but with NDβ generations
as unit of time (see Appendix A2).

In number of NDβ generations, the expected time spent in state i before absorption into
state 1 is written in the form

E(Ti) = (NDβ )−1 ∑
t≥0

pii(t).(9.1)

It can be shown that

lim
D→∞

E(T2) = λ−1
21 and lim

D→∞
E(T4) = 0,(9.2)

where λ21 represents the rate of coalescence of two lineages in different groups backwards
in time in the limit of a large number of groups. Moreover, the limiting probabilities of
reaching state 2 from states 4 and 6, respectively, are given by

lim
D→∞

v42 = f22 and lim
D→∞

v62 = f32 +
f33λ32

λ32 +λ31
,(9.3)

where λ3i represents the rate of transition from 3 to i lineages, for i = 1,2, in different
groups backwards in time in the limit of a large number of groups.

Assuming a single initial A, we find that

D1−β ∑
t≥0

E[ξ1(t)(1−ξ2(t))] = v42E(T2)+E(T4)− (NDβ )−1(9.4)

→ f22λ−1
21 ,

and

D1−β ∑
t≥0

E[ξ1(t)ξ2(t)(1−ξ3(t))] =
v62

3
E(T2)+

v64

3
E(T4)(9.5)

→ f32

3λ21
+

f33λ32

3λ21(λ32 +λ31)
,

as D → ∞. Here, ξ1(t),ξ2(t),ξ3(t) are indicator random variables for type A in offspring
chosen at random without replacement in the same group chosen at random in generation
t after dispersal like in Proposition 5.

This leads to the following result.
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Proposition 8. In the case of the Wright island model of Proposition 5 for D groups with
a proportion m of migrant offspring each generation in each group before selection but
a probability Dβ for β < 1 that they come in proportion χ from a same group chosen at
random, weak selection favors a single A replacing B in the limit of a large number of
groups if

x∗ <
1− f31− f33

(
λ31

λ32+λ31

)

3(1− f21)
<

1− f31

3(1− f21)
,(9.6)

where f̃21 and f̃31 are defined as in Proposition 6, while λ31 and λ32 are the rates of tran-
sition from 3 to 1 and from 3 to 2, respectively, for the number lineages in different groups
backwards in time with NDβ generations as unit of time in the limit of a large number of
groups.

Proposition 8 means a more stringent condition for a single A to be favored for replacing B
in an island model with a highly skewed distribution for the contribution of a group in the
limit of a large number of groups.

10. SUMMARY AND COMMENTS

In conclusion we have shown in this paper that:

• Viability selection determined by the Iterated Prisoner’s Dilemma (IPD) in an
infinite population predicts the increase in frequency of Tit-for-Tat (A) against
Always-Defect (B), and therefore can explain the spread of cooperation, but only
from a frequency x > x?, where x? is the frequency of A at an unstable polymorphic
equilibrium.

• Weak viability selection determined by the IPD game in a finite population favors
a single mutant A replacing B, and therefore can explain the advantage for coop-
eration to go to fixation from a low frequency, but only under the condition x? < x̂
for some threshold frequency x̂.

• In the limit of a large population size, we have x̂≤ 1/3. Actually x̂ = 1/3, which is
known as the one-third law of evolution, in a Wright-Fisher model, and more gen-
erally in the domain of application of the Kingman coalescent. On the other hand,
x̂ < 1/3, which leads to a more stringent condition for the evolution of coopera-
tion, if the contribution of a parent in offspring has a skewed enough distribution.

• In a group-structured population with uniform dispersal of offspring and weak
viability selection within groups determined by the IPD game in the limit of a
large number of groups of finite size, we have x̂ > 1/3. This means a less strin-
gent condition for cooperation to evolve. Moreover, the condition is weaker if
dispersal occurs after selection rather than before selection so that there are differ-
ential contributions of groups according to their composition. On the other hand,
the condition is stronger if the contribution of a group in offspring has a highly
skewed idstribution.
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• The first-order effect of selection on the probability of fixation of a single mutant
strategy is proportional to a projected average excess in payoff. This is the excess
in payoff to the mutant strategy compared to the mean payoff in the population not
only in the current generation but in all future generations as long as fixation is not
reached.

Our results are based on approximations for the probability of ultimate fixation of a
single mutant that are ascertained under the assumption of very weak selection. Actually,
the intensity of selection is assumed to be small compared to the intensity of the other
evolutionary forces. These are random drift, whose intensity is measured by the inverse of
the population size, and dispersal in the case of a group-structured population, whose rate is
supposed to be constant as the population size increases. On the other hand, the approach is
not limited by restrictive assumptions on the production of offspring by parents or groups.

An alternative approach under the assumption that the intensity of selection is of the
same order of magnitude as the other evolutionary forces is a diffusion approximation
(see, e.g., Kimura 1984, Nagylaki 1980, 1997, Lessard 2005, 2007b, 2009). In this case,
however, the contributions of parents and groups in offspring cannot be too highly skewed
in distribution to avoid jump processes.

Our motivation in this paper was the evolution of cooperation and this is the reason
for considering the Prisoner’s Dilemma and its iterated version with Tit-for-Tat (A) and
Always-Defect (B) as strategies. Of course, the approach used to deduce the first-order
effect of selection on the probability of fixation of a single mutant is not limited to this
particular game. Indeed, it does not depend on special relationships between the payoffs a,
b, c and d.

Actually the approach is not limited to a matrix game, or linear expected payoffs wA(x)
and wB(x) to A and B, respectively, with respect to the frequency of A represented by x. It
can be extended to more general cases of frequency dependence with wA(x)−wB(x) being
a polynomial of any degree n with respect to x. Then expected backward times with up to
n+2 lineages have to be computed to approximate the fixation probability. Moreover, this
can be used to get approximations in the case where the difference wA(x)−wB(x) is any
continuous function of x. (See Lessard and Ladret 2007.)

An approximation for the fixation probability can be obtained also in the case of a matrix
game with any number of strategies. Then the approximation depends on the initial state
of the population. Moreover, it can be expressed in terms of projected average excess in
payoff given any initial frequencies (Lessard and Lahaie 2009).

We have considered pairwise interactions between offspring in infinite numbers. The
case of pairwise interactions between adults in finite numbers is also of interest and it can
be dealt with in a similar manner (see, e.g., Lessard 2005, Hilbe 2011). The analysis of the
more general case of a multi-player game like the Public goods game is more recondite but
not out of reach (Kurokawa and Ihara 2009, Gokhale and Traulsen 2010, Lessard 2011a).

Finally it can be shown that a matrix game in a finite group-structured population with
uniform dispersal of offspring, or local extinction and recolonization, and payoff matrix
A within groups is formally equivalent in the limit of a large population size to a matrix
game in a well-mixed population with some effective game matrix A◦ (Lessard 2011b).
The entries of this matrix are linear combinations of interaction or competition effects
weighted by coefficients of identity-by-descent in an infinite population in the absence of
selection. Then what is known about matrix games (see, e.g., Lessard 1990, Hofbauer and
Sigmund 1998) can be applied mutatis mutandis.
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APPENDIX A1. TWO TIMESCALES FOR THE WRIGHT ISLAND MODEL

Consider the neutral Wright island model for D groups of size N. In each generation,
infinite numbers of offspring are produced in equal proportions and a fraction m of these
disperse uniformly among all groups. This is followed by random sampling of N offspring
in each group to start the next generation.

The six possible states for the ancestors of three offspring chosen after dispersal are
given in Fig. 7. The transition matrix from one generation to the previous one, whose
entries are represented by pi j(1) for i, j in S = {1, . . . ,6}, takes the form

P = R+(ND)−1M(D),(10.1)

where R is the transition matrix in the case of an infinite number of groups. See Lessard
and Wakeley (2004) for exact expressions of R and M(D).

Since all states in S1 = {1,2,3} are absorbing and all states in S2 = {4,5,6} transient
in the case D = ∞, the ergodic theorem guarantees that

lim
t→∞

Rt = H =
(

I 0
F 0

)
,(10.2)

where I designates the 3×3 identity matrix and 0 the 3×3 zero matrix. Moreover,

F =




f21 f22 0
0 f21 f22
f31 f32 f33


 ,(10.3)

with fnk denoting the probability for n offspring chosen at random without replacement in
the same group after dispersal to have ultimately k ancestors in different groups in the case
of an infinite number of groups. On the other hand, it can be checked that

lim
D→∞

M(D) = M =
(

M11 M12
M21 M22

)
,(10.4)

where

M11 =




0 0 0
m(2−m) −Nm(2−m) 0

0 3m(2−m) −3Nm(2−m)


(10.5)

and

M12 =




0 0 0
(N−1)m(2−m) 0 0

0 3(N−1)m(2−m) 0


 .(10.6)

Applying a lemma due to Möhle (1998) to the transition matrix from time 0 to time τ in
the past with ND generations as unit of time, we obtain

lim
D→∞

PbNDτc = HeτHMH =
(

eτG 0
FeτG 0

)
= Q(τ),(10.7)

where b c denotes the integer value and

G = M11 +M12F = f22




0 0 0
1 −1 0
0 3 −3


 .(10.8)

This uses the equality

f22 = Nm(2−m)
[

1
N

+
(

1− 1
N

)
f21

]
,(10.9)
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which can deduced from the exact expressions of f21 and f22 = 1− f21 (see below).
The matrix G is the generator of the death process of the Kingman (1982) coalescent

with rate f22 instead of 1. The matrix Q(τ), whose entries are denoted by qi j(τ) for i, j in S,
is a transition matrix from time 0 to time τ for a continuous-time Markov chain with initial
instantaneous transitions from states in S2 to states in S1 and generator G for transitions
within S1.

The expected time in state 2 in number of ND generations is

E(T2) = (ND)−1
∞

∑
t=0

p22(t) =
∫ ∞

0
p22(bNDτc)dτ,(10.10)

from which

lim
D→∞

E(T2) =
∫ ∞

0
q22(τ)dτ = f−1

22 .(10.11)

This is the case because two lineages coalesce at the rate f22 in the limit of a large number
of groups. Moreover,

p22(bNDτc)≤
(

1− m(2−m)
ND

)bNDτc
≤ (1−N−1)−1e−m(2−m)τ .(10.12)

Therefore, the dominated convergence theorem can be applied. Similarly the expected time
in state 4 in number of ND generations is

E(T4) = (ND)−1
∞

∑
t=0

p44(t)(10.13)

and

lim
D→∞

E(T4) =
∫ ∞

0
q44(τ)dτ = 0,(10.14)

since q44(τ) = 0 for all τ > 0.
On the other hand, the vector vT

•2 = (0,1,v32,v42,v52,v62), where vi2 is the probability
of reaching state 2 from state i for i = 3, . . . ,6, satisfies the linear system of equations

v•2 = P̃NDv•2,(10.15)

where P̃ is the transition matrix on S with state 2 assumed to be absorbing. In this case,
Möhle’s (1998) lemma yields

lim
D→∞

P̃ND = Q̃ =

(
eG̃ 0

FeG̃ 0

)
,(10.16)

where

G̃ = f22




0 0 0
0 0 0
0 3 −3


 .(10.17)

Therefore,

lim
D→∞

v•2 = Q̃ lim
D→∞

v•2.(10.18)

It can be checked directly that the unique solution is

lim
D→∞

vT
•2 = (0,1,1, f22,1, f32 + f33).(10.19)
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Finally, f22 = 1− f21 and f32 + f33 = 1− f31, where

f21 = (1−m)2
[

1
N

+
(

1− 1
N

)
f21

]
,(10.20)

f31 = (1−m)3
[

1
N2 +

3
N

(
1− 1

N

)
f21 +

(
1− 1

N

)(
1− 2

N

)
f31

]
.(10.21)

This system of linear equations is obtained from a first-step analysis. Its solution is given
by

f21 =
(1−m)2

Nm(2−m)+(1−m)2 ,(10.22)

f31 = f21

[
N(1−m)+2(N−1)(1−m)3

N2m(3−3m+m2)+(3N−2)(1−m)3

]
.(10.23)

Note that

f32 = 3( f21− f31).(10.24)

This is the case because there are 3 possibilities for two offspring out of three to have a
common ancestor.

Similarly the vector v•3 = (0,0,1,v43,v53,v63), where vi3 is the probability of reaching
state 3 from state i for i = 3, . . . ,6, must satisfy

lim
D→∞

v•3 = ˜̃Q lim
D→∞

v•3,(10.25)

where

˜̃Q =
(

I 0
F 0

)
.(10.26)

The unique solution is

lim
D→∞

vT
•3 = (0,0,1,0, f22, f33).(10.27)

APPENDIX A2. TWO TIMESCALES FOR THE MODIFIED WRIGHT ISLAND MODEL

Consider the neutral Wright island model for D groups of size N but suppose that, in
each generation and with probability D−β for β < 1, the proportion of offspring produced
equally by all members of a group chosen at random is χ compared to (1− χ)(D− 1)−1

in every other group. With the complementary probability, the proportion is uniformly the
same. In all cases, a proportion m of offspring in each group disperse and they are replaced
by as many migrants chosen at random among all migrants before random sampling of N
offspring to start the next generation.

The transition matrix on the state space for the ancestors of three offspring chosen after
dispersal takes the form

P = R+(NDβ )−1M(D),(10.28)

where R is the same as in Appendix A1. The entries of the matrix M(D) can be found
explicitly (Lasalle Ialongo 2008). The important point is that

lim
D→∞

M(D) = M =
(

M11 M12
M21 M22

)
,(10.29)
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where

M11 =




0 0 0
(χm)2 −N(χm)2 0

N−1(χm)3 3(χm)2(1−χm) −3N(χm)2 +2N(χm)3




and

M12 =




0 0 0
(N−1)(χm)2 0 0

3(1−N−1)(χm)3 3(N−1)(χm)2(1−χm) (1−N−1)(N−2)(χm)3


 .

In this case, Möhle’s (1998) lemma guarantees that

limD→ ∞PbNDβ τc =
(

eτG 0
FeτG 0

)
= Q(τ),(10.30)

where

G = M11 +M12F =




0 0 0
λ21 −λ21 0
λ31 λ32 −λ31−λ32


 .(10.31)

The parameters λlk for l > k ≥ 1 are the rates of transition from l to k lineages in different
groups backwards in time with NDβ generations as unit of time as D→ ∞. We find that

λ21 = N(χm)2
[

1
N

+
(

1− 1
N

)
f21

]
,(10.32)

λ31 = N(χm)3
[

1
N2 +

3
N

(
1− 1

N

)
f21 +

(
1− 1

N

)(
1− 2

N

)
f31

]
,(10.33)

λ32 = N(χm)3
[

3
N

(
1− 1

N

)
f22 +

(
1− 1

N

)(
1− 2

N

)
f32

]
,(10.34)

+ 3N(χm)2(1−χm)
[

1
N

+
(

1− 1
N

)
f21

]
.

Note that

λlk = N ∑
l≥ j≥n≥k−l+ j≥1

(
l
j

)
(χm) j(1−χm)l− j p jn fn,k−l+ j,(10.35)

where p jn is the probability that j offspring chosen at random without replacement in the
same group before dispersal have n parents, and fnk is the probability that n parents chosen
at random without replacement in the same group have ultimately k ancestors in different
groups in the case D = ∞. The relationships between the parameters fnk for 3≥ n≥ k ≥ 1
exhibited in Appendix A1 lead to the expressions

λ21 = N
(

χm
1−m

)2

f21,(10.36)

λ31 = N
(

χm
1−m

)3

f31,(10.37)

λ32 = 3N
(

χm
1−m

)2

f21−3N
(

χm
1−m

)3

f31.(10.38)

Note that

λlk = N ∑
l≥ j≥k−l+ j≥1

(
l
j

)
(χm) j(1−χm)l− j f̃n,k−l+ j,(10.39)
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where f̃nk is the probability that n offspring chosen at random without replacement in the
same group before dispersal have ultimately k ancestors in different groups in the case
D = ∞.

Proceeding as previously, the expected time with two lineages in different groups in
number of NDβ generations before coalescence satisfies

E(T2) = (NDβ )−1
∞

∑
t=0

p22(t)→ λ−1
21(10.40)

as D → ∞, while the corresponding expected time with two lineages in the same group,
E(T4), tends to 0.

Finally the vector vT
•2 = (0,1,v32,v42,v52,v62), where vi2 is the probability of reaching

state 2 from state i for i = 3, . . . ,6, satisfies

lim
D→∞

v•2 =

(
eG̃ 0

FeG̃ 0

)
lim

D→∞
v•2,(10.41)

where

G̃ =




0 0 0
0 0 0

λ31 λ32 −λ31−λ32


 .(10.42)

The solution is found to be

lim
D→∞

vT
•2 =

(
0,1,

λ32

λ32 +λ31
, f22, f21 +

f22λ32

λ32 +λ31
, f32 +

f33λ32

λ32 +λ31

)
.(10.43)
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