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ABSTRACT

Frequency- and density-dependent selection models in the case of interspecific
competition are studied. Several definitions of Evolutionary Siability (ES) and suffi-
cient conditions for ES are proposed. The stability of phenotypic equilibria is studied
using the center manifold theory and an appropriate coupling of dynamic equations.

1. INTRODUCTION

Resources in natural populations have been studied from many perspec-
tives: competition for resources in density-dependent selection models (see,
e.g., [16, 21, 18)), animzl conflicts and evolutionarily stable strategies (ESS)
in frequency-dependent selection models [20, 19}, and resource allocation to
male and female functions in sexual populations [15, 3].

The mathematics of ESS theory has been developed by Taylor and Jonker
[22], Zeeman [25], Hines [8], Akin [1], Hofbauer et al. [9], Thomas [23],
Lessard [12], and Cressman [4], among cthers, while sex allocation has been
treated rigorously by Eshel [6], Uyenoyama and Bengtsson [24], Eshel and
Feldman [7], Karlin and Lessard [10, 11], and Lessard [13, 14]. More
recently, Cressman [5] extended ESS theory to include density-dependent
effects.

From the original definition, an ESS is a mixed strategy (a frequency
vector with a given number of components, each componert being the
probability of using some pure strategy or behavior) that is uninvadable once

*Research supported in part by the National Sciences and Engineering Research Council of
Canada.

APPLIED MATHEMATICS AND COMPUTATION 32:207-226 (1989) 207

© Elsevier Science Publishing Co., Inc., 1989
655 Avenue of the Americas, New York, NY 10010 0096-3003 /89 /$03.50



208 SABIN LESSARD

adopted by all members of a population. Most further works have consisted
in trying to establish the evolutionary stability of a population in which the
mean strategy corresponds to an ESS. Evolutionary stability (ES) is under-
stood as stability against perturbations caused by mutations within a given
framework, here a strategy set. One of the main difficulties comes from the
fact that a whole equilibrium manifold associated with a mean strategy in a
population, that is, a phenotypic equilibrium manifold, may correspond to an
ESS. This happens, for instance, when there are more types of individuals {or
genotypes) than pure strategies. Ancther difficulty arises when strategies are
replaced by resourcz cliocation vectors (that is, nonnegative vectors) and
density-dependent selection is added to frequency-dependent selection, not
tc mention sex-differentiated selection, since then the original definition of an
ESS must be extended.

In this paper, we study frequency- and density-dependent selection mod-
els in the case of interspecific competition. Several definitions of evolutionary
stability (ES) and sufficient conditions for it are given. In particular, a
statement in [8] is rectified. The stability of phenotypic equilibria is studied
using the center manifold theory (see, e.g., [17, 2]) as in Cressman [4, 5] but
in a way that gives more general results by an appropriate coupling of
dynamic equations.

2. GENERAL FORMULATION

2.1. Description of the Model and Some Definitions

Consider a population with n types of individuals. A type may correspond
to an allele or a species. Let x; be the density of type i in the population
(i=1,...,n). Then x;>0 for all i (but not all 0), and x=(x,,...,%,)
represents the population state. Now denote F(x) the instantaneous growth
rate of type i when the population state is x (i =1,...,n). Then the dynamic
eya~tions for x4,..., x,, are

or, in vector notation,

x=x-F(x), (2.1)

where - denotes the Schur product, that is, the product componc:-t by
component, and F(x) = (Fy(x),..., F(x)) is the growth rate function. Note
that the population density N=X"_,x,>0 and the type frequencies p;, =
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x;/N fori=1,...,n satisfy

pi=p:|F(Np) —(p.F(Np))]  for i=1...,n,  (2:2a)

and

N = N(p,F(Np)), (2.2b)

where (o, o) denotes the wusual scalar product, which is the sum of the
products component by component, and p = x/N. If F(Np) depends only on
p, then we have a pure frequency-dependent selection model, while if F(Np)
depends only on N, then we have a pure density-dependent selection model.
In general, we have a frequency- and density-dependent selection model.

A polymorphic equilibrium or interior equilibrium x* of (2.1) is a popula-
tion state x* with all positive components (x* > 0 for i =1,..., n) satisfying
F(x*)=0 (F(x*)=0 for i=1,...,n). At a polymorphic equilibrium x*, all
types are represented and have a growth rate equal to 0.

Writing x =x*+ £ for £ small so that x is a small perturbation of a
polymorphic equilibrium x*, we have

£ = x*- dF(x*)£ + higher order terms (2.3)

where dF(x*) represents the differential of F at x*, that is,

aFcr) =] 25 e
(")‘|ax,")

i,j=1

Note that (2.3) can be written in the form
£ = D,.dF(x*)£ + higher order terms

where D,. stands for the diagonal matrix with x* on the diagonal.

The polymorphic equilibrium x* is stable at a geometric rate if all
eigenvalues of D,.dF(x*) have negative real parts; it is unstable at a
geometric rate if at least one eigenvalue of D,. dF(x*) has a positive real part.
We are interested in conditions that ensure stability at a geometric rate or at
ieast preciude instability at a geometric rate. In the former case, we will say
that x* is strongly evoluticiu..ly; sable (SES), in the latter, potentially
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evolutionarily stable (PES). If x* is PES and belongs to an equilibrium
manifold & of dimension >1 whose tangent space at x* coincides with the
generalized eigenspace associated with the eigenvalues of D,.d F(x*) having
null real parts, then we will say that the equilibrium point x* is weakly
evolutionarily stable (WES) and the equilibrium manifold & locally ~volu-
tionarily stable (LES) at x*.

In general, for any admissible equilibrium x* of (2.1), that is, any x*
satisfying x*>0 for i=1,...,n and F(x*)=0 if x* >0 such that the
growth rates of all types represented at equilibrium are 0, we have

E= [Dx. dF(x*) + Dge,] € +higher order terms (2.4)

where § =x — x*. If x* = 0 for all i, then x* is a polymorphic equilibrium. If
x* =0 for some i, then x* is a boundary equilibrium.

For any admissible equilibrium x*, the eigenvalues in the linear approxi-
mation of (2.4) are the quantities

F(x*) forwhich x*=0,

that is, the growth rates of all types not represented at equilibrium, and the
eigenvalues of D,.dF(x*) on the closed subspace

Fr={k=(£....4,):§,=0if 2} =0}

for perturbations affecting only the densities of types represented at equilib-
rium. If the latter eigenvalues have all real parts <0 ( <0), then x* is
internally PES (internally SES). If the former eigenvalues are all <0 (<0),
then x* is externally PES (externally SES). If all t-= eigenvalues have real
parts <0 ( <0), then x* is PES (SES). For ».goiymorphic equilibrium, PES
(SES) is equivalent to internally PES (internally SES). In general, if the
generalized eigenspace associated with the eigenvalues having null real parts
is of dimension > 1 and coincides with the tangent space of an equilibrium
manifold & at x*, then x* is WES and & is LES at x*.

2.2. Stability Conditions
Let us consider the following conditions:

Conprrion 1. dF(x*) is negative semidefinite with respect to the usual

scalar product (¢, ), or simply, negative semidefinite, in the sense that
(&, dF(x*)£) <0 for all &.
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Conprrion I'. dF(x*) is negative definite with respect to (o,°), or
simply, negative definite, in the sense that we have Condition I with equality
only if £=0.

Conprtion II. QdF(x*) is negative semidefinite with respect to the
scalar product (e, ¢)g = (e, Q! o), where Q! is the inverse of Q, for all
Q symmetric positive definite with respect to (o, o), that is, Q satisfying
(E,0n) = (Q%&,n) for all £, n and (£, QE) > O for all { with equality only if
£=10. (In such a case, the scalar product (e, o), is well defined, since Q~*
is symmetric positive definite.)

Conprrion IT'.  @dF(x*) is negative definite with respect to (o, ¢ ), in
Condition II.

Conprrion III.  QdF(x*) has only eigenvalues with nonpositive real parts
for all Q symmetric positive semidefinite.

ConprTion III'.  QdF(x*) has only eigenvalues with negative real parts
for all Q symmetric positive definite.

Condition I implies Condition II, since for all Q symmetric positive
definite we have

(£, QdF(x*) £)o= (£, dF(x*)£)<0  forall § 2.5)

if Condition I holds. But then all eigenvalues of QdF(x*) have nonpositive
real parts: if A is an eigenvalue, then there exist real vectors ¢ and 1y, not

both equal to 0, satisfying
QdF(x*)p=ReAg—ImAy,

QdF(x*)y=ReA{ +ImAg,
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and for these vectors, (2.5) implies

ReA(9, o) — ImA(g,$) <0, (2.6a)
ReA(y, ¥)+ImA(Y, @) <O, (2.6b)
which entails by summation
ReA ({9, @) +(¥,¥)) <0, (2.7)
and therefore
ReA <0, (2.8)

since (@, )+ (¥, ¥) > 0. We also conclude by continuity that QdF(x*) has
only eigenvalues with nonpositive real parts for all ) symmetric positive
semidefinite (take Q + eI with I the identity, and let £ — Q).

Conversely, if we assume Condition ITI, we can take Q =£&&£T (T for
transpose) to conclude that the real parts of all eigenvalues of QdF(x*), in
particular (§, dF(x*)£) with right eigenvector £, are nonpositive.

Assuming Condition I', we have a strict inequality in (2.5) for all £+ 0,
which compels a strict inequality somewhere in (2.6a, b) and consequently a
strict inequality in (2.7) and (2.5).

To sum up, we have the following result, which can be traced back for the
main part to Hines [8]:

Lemma 1. Conditions 1, I, 11, IV, 1L, I’ are related by the implications
I e« II  III

t f f
I' '« II' > 1II

ReEmARK 1 oN LEmMma 1. Hines [8] proved I’ = III’. But III' = I’ is false.
A counterexample is provided by

dF(x*) = [ -

QO o=
I
DO et
| S——
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For §=(§,, £,), we have
(6. dF(x*) &)= — 1(£,+£,)* <0

with equality only if £, + £, =0, and therefore dF(x*) is negative semidefi-
nite but not negative definite. Nevertheless, given any matrix

o-[; 7]

positive definite, that is, with @ > 0, ¢ > 0, ac — b% > 0, the eigenvalues of

a b
— — —a———
2 2

*) =—
QdF(x*) b e
2 "9

have negative real parts, since
det[QdF(x*) —AI] =A+agA +a,
has

c+a

a;=b+ >b+vVac >b+|b|>0,

Hines’s proof used properties of the trace of a matrix and the claim that
(§,dF(x*)£) = 0 for some £ +# 0 is precluded in the case dF(x*) nonsingular.
This claim is false, as illustrated above.

ReMark 2 oN LEmMma 1. In the case dF(x*) symmetric, that is, symmet-
ric with respect to (°,°), we have III'=I'. Moreover, in such a case,
Condition III’ (III) has only to hold for some Q symmetric positive definite to
imply Condition I’ (I). For QdF(x*) is then symmetric with respect to
(°,°)p and negative definite (semide:inite) with respect to the same scalar
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product if and only if all the eigenvalues of QdF(x*), which are necessarily
real, are negative (nonpositive). In such a case, dF(x*) is negative definite
(semidefinite) owing to (2.5).

ReMARK 3 oN LEMMA 1. A more refined statement of I' (I) = III’ (III) is:

QdF(x*) has only eigenvrlues with negative (nonpositive) real parts on a
closed subspace &, that is, QdF(x*) & belongs to & if & belongs to &, if Q
is symmetric positive definite and dF(x*) negative definite (semidefinite)
on &.

2.3. Stability of Polymorphic Equilibria
A direct c~usequence of Lemma 1 is:

ResuLr 1. A polymorphic equilibrium x* of (2.1) is strongly evolution-
arily stable (SES) if dF(x*) is negative definite (Condition '), and at least
potentially evolutionarily stable (PES) if dF(x*) is negative semidefinite
(Condition 1).

REMARK ON REsuLT 1. Actually it is sufficient that dF(x*) be negative
definite (semidefinite, respectively) with respect to (o, o), where D is some
positive diagonal matrix (a diagonal matrix with all positive entries on the
main diagonal), since then dF(x*) = DD~ 'dF(x*) and D~ !dF(x*) is nega-
tive definite (semidefinite, respectively) with respect to (¢, © ), so that all the
eigenvalues of

D,.dF(x*)=(D,.D)[ D 'dF(x*)] (2.9)
have negative (nonpositive, respectively) real parts by Lemma 1.

Exampre. The Lotka-Volterra competition model assumes near equilib-
rium (see, e.g., [16, 21])

F,-(x)=c,-[k,.-— ¥y aijxj] for i=1,...,n, (2.10)
i=1

where ¢;>0, k,>0, and a;; >0 for i, j=1,...,n. The terms in square
brackets on the right side of (2.10) can be viewed as the first terms in a
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Taylor series of F(x) near equilibrium. The differential of F(x) =
(Fy®),..., F.(x)) is

dF(x) =|| - Ciotyllf, j=1- (2.11)

Therefore, dF(x) is negative definite (semidefinite) with respect to (e, ),
where ¢ =(cy,...,¢,), if and only if the matrix |ja;;||} ;. is positive definite
(semidefinite) with respect to the usual scalar product. This matrix has been
called the competition matrix.

2.4. Stability of Boundary Equilibria
From Remark 3 on Lemma 1, we conclude:

ResuLT 2. A boundary equilibrium x* of (2.1) is SES (PES) if dF(x*) is
negative definite (semidefinite) on the subspace &#* corresponding to the
positive components of x* and F(x*) < 0 ( <0) for all i such that x* = 0.

As in Result 1, it is sufficient that dF(x*) be negative definite (semidefi-
nite) on #* with respect to (o, ), for some positive diagonal matrix D.

2.5. Case of Pure Frequency Dependence

Consider the system of equations (2.2a) in the case F,(Np)= F(p) for
i=1,...,n and p=(p;,...,p,) satisfying X' p,=1 with p,>0 for i=
1,..., n. According to Result 1, a polymorphic equilibrium p* is SES (PES) if

dF(p*) - UD,.dF(p*), (2.12)

where U is the unit matrix (a matrix with all entries equal to 1), is negative
definite (semidefinite) on

A

%={e=(zl,...,£,.)=is,:o}, (2.13)

i=1

which is the same as dF(p*) negative definite (semidefinite) on &, . For a
boundary equilibrium p*, Result 2 gives the foliowing conditions: dF(p*)
negative definite (semidefinite) on

n

L= {§= (51,...,&): Z §,=0, §,=0 whenever p* =0}’ (2.14)

i=1
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and
F(p*) - (p*.F(p*))<0(<0)  whenever p*=0, (2.15)
while the equilibrium condition is
F(p*) - (p*.F(p*))=0  whenever p}>0. (2.16)
These two conditions are eguivalent to

(p*.F(p)) > (p.F(p)) (2.17)

for all p close enough to p*, with equality if and only if p = p*. As a matter of
fact, we have under the equilibrium condition

(o —p*.F(@))=(p-p*F(@*))+ (p ~ p*.dF¥(p*)(p — p*))
+ higher order terms

= X (p. p*)E@)+ X (p:—p*){p*.F(p*))

irp*= itp*>0
+(p—p*,dF(p*)(p ~ p*))

+higher order term:

= X (p, p*)[Fip*) — (p*.F(p*))]

irpt=
+(p - p*.dF(p*)(p - p*))
+ higher order terms, (2.18)

and the equivalence immediately ensues. The condition (2.17) is known as
the ESS condition {20, 22, 9].

2.6. Case of Pure Density Dependence

In the case of pure density deperdence, we bave the equations (2.2a, b)
with F(Np)={(N) for all N>0 and all p=(p,,...,p,) with L p,=
p;>0for i=1,...,n. Near a polymorphic equilibrium (p*, N*) such that

p*>0 and f(N*)=(p*f(N*))=0 for i=1,...,n,
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we have
[p.'p* ] _[o D, {df(N*) - (p*,di(N*)}u} p,p*]
N —~ N* o N*(p*, df(N*)) N-N*
+ higher order terms, (2.19)

where O denotes a zero matrix (a matrix with all entries equal to 0), u a unit
vector {a vector with all components equal to 1), and

- %— (N*)_
df(N*) = :
If
(p*,df(N*)) <0, (2.20)

then the equilibrium (p*, N*) is PES. Actually, owing to the center manifold
theory (see, e.g., [17, 2]), the equilibrium manifold &* characterized by
N = N* is locally evolutionarily stable (LES) at (p*, N*) in the sense that
there will be convergence to a nearby equilibrium point (p, N*) belonging to
&* from any point near (p, N*). Finally, if

df(N*) <0,

l (ZU ) :O fOl "“1,---,’!,

then &* is LES at every polymorphic equilibrium {p*, N*) belonging to &*.
For a boundary equilibrium (p*, N*), we can relabel the types if necessary
so that

p*={(pt.p}) (2.21)
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with
pf=(pf--s p¥),
pf = (pf e pr) =(0....,0),
and
f(N*) = (£,(N*),£5(5*)) (2.22)
with

£(N*) = (A(N*),.... fi(N*)) = (0,...,0),
£o(N*) = (i A(N*),.... £(N¥)),

where f, (N*)#0,..., £,(N*) # 0. Near the equilibrium we have

p.-pi] [0 A BI[Pi-p}
P.—P3|=|0 D Ol}|p—ps
N-N* O C EJIN-N*
+ higher order terms, (2.23)

where

A= -D,UD; +, B=D,{dfy(N*)—(pt,df;(N*))u}

D= sz( N*),
C = N*,(N*)", E=N*(p},cf{N*))
(T for transpose). Apart from 0, the eigenvalues of the matrix in (2.23) are

fisr(N*),..., £,(N*) and  N*(pf,df(N*)). (2.24)
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If these quantities are all negative, which will be necessarily the case if
dfy df;
N*) <0,..., * , —(N* - —(N*

then the equilibrium point (p*, N*) is PES, and the equilibrium manifold &*
to which it belongs, characterized by

N=N* (2.252)

)
b

p; >0 withequality if f(N*)+£0, i=1,...,n, (2.25b)

is LES at (p*, N¥)

3. RESOURCE ALLOCATION AND INTERSPECIFIC COMPETITION

3.1. Dynamical Equation for Resource Allocation

Assume that type i corresponds to a species characterized by some
resource allocation vector R,=(R®,..., R™), where R} > 0 (> 0 for some
k) represents the quantity of resources aliocated to a function or activity k
(k=1,...,m and i=1,...,n). The total resource allocation vector in a
population in state x =(x,,...,x,), where x, > 0 represents the density of
species ¢ (i=1,...,n)and X}_,x,=N, is

R= i xR, (3.1)

i=1

whose components are denoted R®,..., R™). Now suppose that the growth
rate of typc { (i =1,...,n) is in the form

F(x) =RIG(R) (T for transpose)

= ¥ RWGE(R), (3.2)
k=1
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where the kth component of G(R), G*(R), represents the growth rate per
unit of resources allocated to a function k when the total resource allocation
vector in the population is R (k =1,..., m). The function G(R) is the growth
rate function per unit of resources.

Since the growth rates depend only on R, it is convenient to transform the
dynamical system of equations (2.1) for x into a system for (x,R) using (3.2)
and

R=Y iR, (3.3)
i=1
We get
% =x,RIGR), i=1,...,n, (3.4a)
R= Y zR,RIG(R). (3.4b)
i=1

The relation (5.1) between x and R is invariant in (3.4a, b) and will be
assumed throughout this section.

3.2. Stability of Phenotypic Equilibria

Let x*=(xf,...,x¥) and R*=%"_,x*R,; be such that x* >0 for i=
1,...,n and G(R*) = 0. Then (x*,R*) is said to be a polymorphic phenotypic
equilibrium of (3.4a, b). Note that (x*,R*) belongs to a phenotypic equilib-
rium manifold

M*= {(X,R*): Y. »R,=R*, xi>0fori=l,...,n}. (3.5)
i=1
Writing _
x,=x*+¢, i=1,...,n, (3.6a)

R= ¥ (xf +£)R, = R*+§, (3.6b)
i=1

we have
£, = x*RTdG(R*){ + higher order terms, i=1,...,n, (3.7a)
¢ = Q(x*) dG(R*)¢ + higher order terms, (3.7b)
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where
Q(x*)= ¥ x*R.R] (3.8)
i=1
and
aG® "
*) — *
dG(R*) “ 2RO (R )|k,z=1 (3.9)

Let & denote the space engendered by R,,...,R , that is,
.?={§= ¢§R: & realfori=l,...,n}. (3.10)
=1

& is the space engendered by the resource allocation vectors. Note that
Q(x*)dG(R*) is closed on & [take t{ in (3.7b), let t > 0, and use the

invariance of (3.1)]. Moreover, Q(x*) is symmetric and positive definite on
&, since

(8. 0()t) = (0(x*), £) = ,Zi:lx.-*«,ﬁozzo (3.11)

with equality if and only if ({,R;) =0 for i =1,...,n, which is possible only
if {=0 for § in %. Therefore, all eigenvalues of Q(x*)dG(R*) on & will
have negative real parts if dG{R*) is negative definite ocn & {Remark 2 on
Lemma 1). On the other hand, all other eigenvalues in the linear approxima-
tion of (3.7a, b) for any §=(£,,...,£,) small and § =X7_, ¢, R, are 0, since
we have the linear approximation

{e[g seaemnyg

where O designates a zero matrix, while S(x*) is a matrix whose ith row is
x*RT for i =1,..., n. We conclude at once:
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ResuLt 3. Every polymorphic phenotypic equilibrium (x*,R*) of
(3.4a, b) is PES if dG(R¥) is negative definite on &%.

But according to the center manifold theory (see, e.g., [17, 2]), the
generalized eigenspace associated with the eigenvalue 0 at (x*,R*) of Result-
3 will be tangent to an invariant manifold passing through (x*,R¥). In the
case at hand such an invariant manifold can only be the phenotypic equilib-
rium manifold corresponding to { =0 in (3.6b), that is, .#* as defined in
(3.5) and characterized by R = R*. Moreover, every point in.#* being an
equilibrium, .#* as a manifold will attract every trajectory of (3.4a, b)
starting from (x,R) satisfying (3.1) and close enough to (x*,R*) in the sense
that the trajectory will converge to a point on .#* but not necessarily
(x*,R*). Then we have that .#* is locally evolutionarily stable (LES) at
(x*, R*).

ResuLt 4. The phenotypic equilibrium manifold .#* of (3.5) is locally
evolutionarily stable (LES) for (3.4a, b) at every polymorphic equilibrium
x*,R*) of #* if dG(R*) is negative definite on <.

The condition that (x*,R*) is polymorphic in Result 4 is not necessary in
generic cases: it suffices that if

Y. x*R,=R* with x*>0 for i=1,...,n (3.13)

i=1

then
{(R;i:x*>0} and {R;:x}*>0} (3.14)

engender the same space . This guarantees that Q(x*) is positive definite
on ¥ [see (3.11)]. If the above condition defining a generic case is not
satisfied, small perturbations on R,,...,R , can make the conditions satisfied.
We may also assume, without loss of generality, that % is the space of all
m-~dimensional vectors. If this is not the case, we consider an orthonormal
basis for & with all nonnegative basis vectors, which are defined as new
functions or activities. All resource allocation vectors are then expressed in
this new coordinate system with a number of coordinates equal to the
dimension of %. Defining a phenotypic equilibrium satisfying (3.13) as
admissible, we have:
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REsuLT 5.  In generic cases, the phenotypic equilibrium manifold #* of
(3.5) is LES for (3.4a, b) at every admissible equilibrium (x*,R) of 4* if
dG(R*) is negative definite on <.

3.3. Stability against ihe Introduction of a New Function or Activity
The stability of an equilibrium manifcld against the introduction of a new

function or activity is also of interest. Consider the extended resource
allocation vectors

R,=(R®,...,R™,R™*D)  for i=1,...,n+l,
where
R{"*D=0 for i=1,...,n,
R(™*D>0 for i=n+l,
and the extended growth rate function per unit of resources,
G(R) = (GOR), .., C™(R), G (R)),
where

n+1
R =(AO,..., B&™, Fm0)= ¥ xR,
i=1

is the total resource allocation vector in the population if the density of R, is
x;,>0fori=1,...,n+1. Let

~ * %
x*=(x{k,"',xn ’xn+l)
and

f{* — (R‘*(l)’___’ ﬁ*(m)’ ﬁ*(m+1))
—~ n ~
= E xR, = Z x*R;

be such that

* —
xn+l—0



224 SABIN LESSARD

and
GUES = - -- = GM(R*) =0,

Then (£*,R*) is an admissible phenotypic »ouilibrium which belongs to the
phenotypic equilibrium manifold

M* = {(xl,...,xn,o,il*): Y xR, =R*, x,->0fori=1,...,s~.\.
i=1

)
For
§= (e: £n+l) = (glﬁ""gn’ £n+l)
=(xl—xf’---,xn—xfsxnu‘x:ﬂ)

and

- - ~ n+l

{=R-R*= Z ¢(R,,

i=1

we have

- n+l .
§= R RIG(R),
i=1
such that near (&* R*)
¢t 1lo o) S(x*)dGR*) | ¢
(a1 |lO RT, GR* 0] i1 |,

¢ [lo R, RT,GHRY OE)dGRY) [l §
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where S(x*) is a matrix whose ith row is x*RT for i=1,...,n and

n+1

O(x*) = Z RRT= Z R R

Since the last row of Q~(i*) is 0 and

R, G(R*) = RTL1PCm D(R),

we have:;

ResuLt 6. Under the generic condition that

{i{i: xr> 0}

engenders the subs.cce & of all (m + 1)-dimensional vectors wzth the
(m + 1)th component equai *o 0, the phenotypic equilibrium manifold #* is
LES at (x*,R¥) if dG(R*) is negstive definite on & and G™*D(R*) < O

REFERENCES

1 E. Akin, Exponential families and game dynamics, Canad. j. >f+th. 34:374-405
(1982).

2 J. Carr, Applications of Centre Manifold Theory, Appl. Math. Sci.,, vi: 35,
Springer-Verlag, New York, 1981.

3 E. Charnov, The Theory of Sex Allocation, Monographs in Population Biology,
No. 18, Princeton U.P., Princeton, N.J., 1982.

4 R. Cressman, Frequency-dependent viability selection (a single-locus, multiphe-
notype model), J. Theoret. Biol. 130:147-165 (1988).

5 R. Cressman, Frequency- and density-dependent selection: The two phenotype
model, Theoret. Population Biol. 34:378-398 (1988).

6 1. Eshel, Selection on sex-ratio and the evolution of sex-determination, Heredity
34:351-361 (1975).

7 I Eshel and M. W. Feldman, On evolutionary genetic stability of the sex ratio,
Theoret. Population Biol. 21:430-439 (1982).

8 W. G. S. Hines, Three characterizations of population strategy stability, J. Appl.
Probab. 17:333-340 (1980).

9 ]. Hofbauer, P. Schuster, and K. Sigmund, A note on evolutionary stable

10

strategies and game dynamics, J. Theoret. Biol. 81:609-612 (1979).

S. Karlin and S. Lessard, On the optimal sex ratio: A stability analysis based on a
characterization for one-locus multiallele viability models, J. Math. Biol. 20:15-38
(1984).



11

12

13

14

15

16

8

8 R8 BE

SABIN LESSARD

S. Karlin and S. Lessard, Theoretical Studies on Sex Ratio Evolution, Monographs
in Population Biology, No. 22, Princeton U.P., Princeton, N.J., 1986.

S. Lessard, Evolutionary dynamics in frequency-dependent two-phenotype mod-
els, Theoret. Population Biol. 25:210-234 (1984).

S. Lessard, Evolutionary principles for general frequency-dependent two-pheno-
type models in sexual populations, J. Theoret. Biol. 119:329-344 (1986).

S. Lessard, Resource allocation in Mendelian populations: Further in ESS theory,
in Mathematical Evolutionary Theory (M. W. Feldman, Ed.), Princeton U.P,,
Princeton, N.J., 1988, pp. 207-246.

R. H. MacArthur, Ecological consequences of natural selection, in Theoretical
and Mathematical Biology (T. H. Waterman and H. Morowitz, Eds.), Blaisdell,
New York, 1965, pp. 388-397.

R. MacArthur, Species packing and competitive equilibrium for many species,
Theoret. Population Biol. 1:1-11 (1970).

J. E. Marsden and M. F. McCracken, The Hopf Bifurcation and Its Applications,
Appl. Math. Sci., Vol. 19, Springer-Verlag, New York, 1976.

C. Matessi and S. D. Jayakar, Coevolution of species in competition: A theoreti-
cal study, Proc. Nat. Acad. Sci. U.S.A. 78:1081-1084 (1981).

J. Maynard Smith, Evolution and the Theory of Games, Cambridge U.P.,
Cambridge, 1982.

J- Maynard Smith and G. R. Price, The logic of animal conflict, Nature
246:15-18 (1973).

I. Roughgarden, Evelution of niche width, Amer. Natur. 106:683-718 (1972).
P. D. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynam-
ics, Math. Biosci. 40:145-156 (1978).

B. Thomas, On evolutionarily stable sets, J. Math. Biol. 22:105-115 (1985).

M. K. Uyenoyama and B. O. Bengtsson, Towards a genetic theory for the
evolution of the sex ratio, Genetics 93:721-736 (1979).

E. C. Zeeman, Population dynamics from game theory, in Global Theory of
Dynamical Systems, Lecture Notes in Math., Vol. 819, Springer-Verlag, Berlin,
1980, pp. 471-497.



