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ABSTRACT 

Frequency- and density-dependent selection models in the case of interspecific 
competition are studied. Several definitions of Evolutionary Stability (ES) and s&i- 
cient con&ions for ES are proposed. The stat&y of phenotypic equilibria is studied 
using the center manifold theory and an appropriate coupling of dynamic equations. 

1. INTRODUCTION 

Resources in natural populati.ons have been studied from many perspec- 
tives: competition for resources in density-dependent selection models (see, 

e.g., [16, 21, 181), animal conflicts and evo~utionarily stable strategies (ESS) 
in frequency-dependent selection models [20, 191, and resource allocation to 
male and female functiuns in sexual populations [15, 31. 

The mathematics of ESS theory has been developed by Taylor and Jonker 
[22], Zeeman [25], Hines [8], Akin [l], Hofbauer et al. [9], Thomas [23], 
Lessard 1121, and Cressman [4], among others, while sex allocation has been 
treated rigorously by Eshel [S], Uyenoyama and Bengtsson [24], Eshel and 
Feldman [7], Karlin and Lessard [ 10, ml], and Lessard [ 13, 141. More 
recently, Cressman [5] extended ESS theory to include density-dependent 
effects. 

From the original definition, an ESS is a mixed strategy (a frequency 
vector with a given number of components, each component being the 
probability of using some pure strategy or behavior) that is uninvadable once 
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adopted by all members of a population. Most further worlcs have consisted 
in trying to establish the evolutionary stability of a population in which the 
meats strategy corresponds to an ESS. EuoZutiorurry stability (ES) is under- 
stood as stability against perturbations caused by mutations within a given 
framework, here a strategy set. One of the main difficulties comes from the 
fact that a whole equilibrium manifold associated with a mean strategy in a 
population, that is, a phenotypic equi&ium manifold, may correspond to an 
ESS. This happens, for instance, when there are more Q~S sf ~l&V*&& (or 

genotypes) than pure strategies. An&-zr difficulty arises when strategies are 
replaced by resource a&cation vectors (that is, nonnegative vectors) and 
density-dependent selection is added to frequency-dependent selection, not 
to mention sex-differentiated selection, since then the original definition of an 
ESS must be extended. 

In this paper, we study frequency- and density-dependent selection mod- 
els in the case of interspecific competition. Several definitions of evolutionary 
stability (ES) and sufficient conditions for it are given. In particular, a 
statement in [S] is rectified. The stability of phenotypic equilibria is studied 
using the center manifold theory (see, e.g., [17, 21) as in Cressman [4, 51 but 
in a way that gives more general results by an appropriate coupling of 
dynamic equations. 

2. GENERAL FORMULATION 

2. I. Description of the Model and Some Definitions 
Consider a population with n types of individuals. A type may correspond 

to an allele or a species. Let xi be the density of type i in the population 
(i = I,..., n). Then Iri>, 0 for all i (but not all 0), and X=(X,,..., x,) 

represents the popuhtion state. Ngw denote Fi(x) the instantaneous growth 
rate of type i when the population state is x (i = 1,. . . , n). Then the dynamic 
E;+ptions for x1,. . . , x, are 

2; = ~igii(X)j i=l,...,n, 

or, in vector notation, 

i = x=F(x), (2 1) . 

where l denotes the Schur product, that is, the product cornporli:‘? by 
mtj and F(x) = (F,(x), . . . , F,,(x)) is the gwth rate function. Note 

ukOn den&y IV = x:=1 Xi )Z 0 and the type frequencies pi = 
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xi/N for i = l,...,n satisfy 

fii=Pi[F,(Np)-(p,F(Np))] for i=l,...sn, 

and 

fi= N(pJ(Np)), 

(2.2a) 

(2.2b) 

where ( 0 , 0 ) denotes th e usuul scalar product, which is the sum of the 
products component by component, and p = x/N. If F(Np) depends only on 
p, then we have a purefiequency-dependent selection model, while if F(Np) 
depends only on N? then we have a pure densitydependent selection model. 
In general, we have a J+~9uency- and density-dependent selection mo&l. 

A polymorphic equilibrium or W&r equilibrium x* of (2.1) is a popula- 
tion state x* with all positive components (x: > 0 for i = 1,. . . , n) satisfying 
F(x*) = 0 (Fi(X*) = 0 for i = 1,. . . , n). At a polymorphic equilibrium x*, all 
types are represented and have a growth rate equal to 0. 

writing x = x* + c for & small so that x is a small perturbation of a 
polymorphic equilibrium x*, we have 

. e = x* l dF(x*) 5 + higher order terms (2 3) . 

where dF(x*) represents the differential of F at x*, that is, 

. 

Note that (2.3) can be written in the form 

6 = DX* d F( x*) 6 + higher order terms 

wh.ere DX* stands for the diagonal matrix with x* on the diagonal. 
The polymorphic equilibrium x* is stable at a geometric rate if 4l 

eigenvalues of DX* dF(x*) have negative real parts; it is unstable at a 
geometric rate if at least one eigenvalue of DX* d F(x*) has a positive real part. 
We are interested in conditions that ensure stability at a geometric rate or at 
ieast preclude instability at a geometric rate. In the former case, we will say 
that x* is strongly moliltic~ 2; 3mble (SES), in the latter, potentially 
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evolutionarily stable (PES). If x* is PES and belongs to an equilibrium 
manifoki 8 of dimension >, 1 whose tangent space at x* coincides with the 
generalized eigenspace associated with the eigenvalues of D,dF(x*) having 
null real parts, then we will say that the equilibrium point x* is weakly 
moldonarily stable (WEB) and the equilibrium manifold 8 l&ally volu- 
tionatily stable (LES) at-x*. 

In general, for any admhible equilibrium x* of (2.1), that is, any x* 
satisfying xi*>,0 for i=l,...,n and F,(x*)=8 if X: >O such that the 
growth rates of all types represented at equilibrium are 0, we have 

g = [ & dF(x*) + D~(~.,] c + higher order terms (2 4) . 

where 5=x-x*.Ifx~ = 8 for all i, then x* is a polymorphic equilibrium. If 
xi* = 0 for some i, then x* is a bow&y equil@ium. 

For any admissible eq@librium x*, the eigenvalues in the linear approxi- 
mation of (2.4) are the quantities 

4(x*) for which XT = 0, 

that is, the growth rates of all types not represented at equilibrium, and the 
eigenvalues of Dx. dF(x*) on the closed subspace 

y+= (5=(51,...,~,):5i=oifxT=o} 

for perturbations affecting only the densities of types represented at equilib- 
rium. If the latter eigenvalues have all real parts < 0 ( < 0), then x* is 
internally PES (internally SES). If the former eigenvalues are all 6 0 ( < 0), 
then x* is exterr~~ZZy PES (extemu~Zy SES). If all tJx eigenvalues have real 
parts < 0 ( < 0), then x* is PES (SES). For 9. ~dymorphic equilibrium, PES 
(SES) is equivalent to internally PES (internally SES). In general, if the 
generalized eigenspace associated with the eigenvalues having null real parts 
is of dimension >, 1 and coincides with the tangent space of an equilibrium 
manifold 8 at x*, then x* is WES and 6’ is LES at x*. 

2.2. Stability Conditionss 
Let us consider the following conditions: 

CONDITION I. dF(x*) is negative semidefe with respect to the usual 
scalar product ( 0, 0 >, or simply, negative semidefinite, in the sense that 

*)6)0forall k 
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CONDITION I’. dF(x*) is negative definite with respect to ( 0,~ ), or 
simply, negative definite, in the sense that we have Condition I with equality 
only if E=o. 

CONDITION II. QdF(x*) is negative semidefinite with respect to the 
scalar product (0, 0 )Q = (o,Q-’ o), where Q-’ is the inverse of Q, for all 
Q symmetric positive definite with respect to ( 0,~ ), that is, Q satisfying 
(& Qq) = (06, rl) for all k q and (6, QE) >, 0 for all t with equality only if 
k = 0. (In such a case, the scalar product ( 0, o)~ is well defined, since Q- ’ 
is symmetric positive definite.) 

CONDITION II’. 
Condition II. 

QdF(x*) is negative definite with respect to (0, o)~ in. 

CONDITION III. QdF(x*) h as only eigenvalues with nonposir-‘_ve real parts 
for all Q symmetric positive semidefinite. 

CONDITION III’. QdF(x*) has only eigenvalues with negative real parts 
for all Q symmetric positive definite. 

Condition I implies Condition II, since for all Q symmetric positive 
definite we have 

(6, QdF(x*) & = (6, dF(x*) E) Q 0 for all C (2 5) . 

if Condition I holds. But then all eigenvahres of QdF(x*) have nonpositive 
real parts: if A is an eigenvalue, then there exist real vectors cp and +, not 
both equal to 0, satisfying 

QdF(x*)cp=ReAq-ImX\lr, 

QdF(x*)4=ReX++Imhcp, 
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and for these vectors, (2.5) implies 

which entails by summation 

ReWP,4+(44)) GO, 
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(2.6a) 

(2.6b) 

(2 7) . 

and therefore 

Reh<O, (2 8) . 

tic43 (qvp)+(\k,\t)>O- Weals o conclude by continuity that QdF(x*) has 
only eigenvalues with nonpositive real parts for all Q symmetric positive 
semidefinite (take Q + &I with 1 the identity, and let e + 0). 

Conversely, if we assume Condition III, we can take Q = EST (T for 
transpose) to conclude that the real parts of all eigenvaluues of QdF(x*), in 
particular (c, dF(x*)Q with right eigenvector E, are nonpositive. 

Assuming Condition I’, we have a strict inequality ti (2.5) for all 6 # 0, 
which compels a strict in@ty somewhere in (2.6a, b) and consequently a 
strict inequality in (2.7) and (2.8). 

To sum up, we have the following result, which can be traced back for thz 
main part to Hines [8]: 

LEMMA 1. Conditions I, I’, II, II’, III, III’ are related by the implications 

I - II = III 
ll 1 1T 
I’ e=, II’ * III’ 

A 
REMAM 1 ON LEMMA 1. Hines [S] proved I’ @ III’. But III’ * I’ is false. 
counterexample is provided by 

dF(x*)= -6 -; . [ 1 -_ 
2 
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For k = (&, &), we have 

(wF(x*)t)= - ;(r, + 62J2 G 0 

with equality only if & + g2 = 0: and therefore dF(x*) is negative semidefi- 
nite but not negative definite. Nevertheless, given any matrix 

positive definite, that is, with c > 0, c > 0, M= - b2 > 0, the eigenvalues of 

b 
-a-- 

2 

-b-i 1 
have negative real parts, since 

det[QdF(x*) - XI] = A2 + Q,X + a2 

has 

c+a 
a,=b+y >,b+&>b+IblaO, 

m-b2 
a2= 4 > 0. 

Hines’s proof used properties of the trace of a matrix 
(6, dF(x*) [) = 0 for some E # 0 is precluded in the case 
This claim is false, as illustrated above. 

and the claim that 
dF(x*) nonsingular. 

I~IARK 2 ON LEMMA 1. In the case dF(x*) symmetric, that is, symmet- 
ric with respect to ( 0,~ ), we have III’ * I’. Moreover, in such a case, 
Condition III’ (III) has only to hold for some Q symmetric positive definite to 
imply Condition I’ (I). For QdF(x*) is then symmetric with respect to 
( 0 , 0 )Q and negative definite (semidezinite) with respect to the same scalar 
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product if and only if all the eigenvalues of Q&F@*), which are necessarily 
real, are negative (nonpositive). In such a case, dF(x*) is negative definite 
(semidefinite) owing to (2.5) 

~SEMARK 3 ON LEMMA 1. A more refined statement of I’ (I) - III’ (III) is: 

QdF(x*) has m tigen&ue-s with negative (nunpositive) real parts on a 
closed subspace 9, that is, QdF(x*) [ belongs to Y if E belongs to 9, if Q 
is symmetric positivt? definite and dF(x*) negative definite (semidefinite) 
on 9. 

2.3. Stability of Polymorphic Equilibria 
A direct pnnsequence of Lemma 1 is: 

RESULT 1. A polymorphic equi&ium x* of (2.1) is strongly evoh.Am- 
arily stabk (SES) if dF(x*) b negative dkfinite (Condition I’), and at least 
potentially evolutiunarily stable (PES) if d F(x*) is negative semidefinite 
(condition I). 

~MARK ON RESULT 1. Actually it is sufficient that dF(x*) be negative 
definite (semidefinite, respectively) with rpqLTect to ( 0, * )D where D is some 
positive diagonal matrix (a diagonal matrix with all positive entries on the 
main diagonal), since then dF(x*) = DDV1 dF(x*) and D-r dF(x*) is nega- 
tive definite (semidefinite: respectively) with respect to ( 0, * ), so that aN the 
eigenvalues of 

Z&dF(x*) = (D,,D)[D-rdF(x*)] (2 9) . 

have negative (nonpositive, respectively) real parts by Lemma 1. 

EXAMFZ.Z. The L&a-Volterra competition model assumes near equihb- 
rium (see, e.g., [16, 211) 

$(.)=cl[lir- j~~ij~j] for i=l,...,n, (2.10) 

where Ci > 0, ki > 0, and aij >, 0 for i, j = 1,. . . , n. The terms in square 
brackets on the right side of (2.10) can be viewed as the first terms in a 
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Taylor series of 4(x) near equilibrium. The differential of F(x) = 
(F,(x), l ” l 9 F,(x)) is 

dF(x) = 11 - ciaiili~ i= 1. (2.11) 

Therefore, dF(x) is negative definite (semidefinite) with respect to ( 0 , 0 )Dc, 

where c =(cr,..., c,), if and only if the matrix IldYijlltj=l is positive definite 
(semidefinite) with respect to the usual scalar product. This matrix has been 
called the cox~@ition~ m&k 

2.4. Stability ojc Bowday Equilibria 
From Remark 3 on Lemma 1, we conclude: 

RESULT 2. A boundary equi&rium x’ of (2.?.) is SES (PES) if dF(x*) is 
negative definite (semi&finite) on the subs-pace Y+ cmespding to the 
positive components of x” and Fi(x*) < 0 ( < 0) for all i such that XT = 0. 

As in Result 1, it is sufficient that dF(x*) be negative definite (semidefi- 
nite) on Y+ with respect to ( 0, 0 jD for some positive -diagonal matrix D. 

2.5. Case of Pure Frequency Dependence 
Consider the system of equations (2.2a) in the case Fi(Np) = Fi@) for 

l - z- 1 ,..., rg and p=(pr ,..., p,) satisfying Ey=lpi=l with pi>0 for i= 
1 , . . . , n. According to Result 1, a polymorphic equilibrium p* is SES (PES) if 

dF(p*) - UD,, dF(p*), (2.12) 

where U is the unit matrix (a matrix with all entries equal to l), is negative 
definite (semidefinite) on 

(2.13) 

which fs the same as dF(p*) negative definite (semidefinite) on YL. For a 
boundary equilibrium p *, Result 2 gives the fohowing conditions: dF(p*) 
negative definite (semidefinite) on 

q= E= (51,*-, tn) : i bi = 0, ti = 0 whenever pi* = 0 , (2.14) 

izz 1 
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and 

I, - (p*,F(p*)) < 0 ( d 0) whenever pi* = 0, (2.15) 

while the equilibrium condition is 

F,(p*) - (p*J(g*)) = 0 whenever pi* 3 0. (2.16) 

These two conditions are equivalent to 

(P*APJ) a (PS(P)) (2.17) 

for all p close enough to p*, with equality if and only if p = p*. As a matter of 
fact, we have under the equilibrium condition 

+ higher order terms 

= C (pi-p*)Fi(p*)+ C (Pi- PFI(P*~F(P*)) 
i : pi* = 0 i:pi* >O 

+ (p - p*v ~F(P*)(P - P*,> 

t-higher order term :: 

= i:p~_o(Pi - P:)[ J%P*) - (p*,F(p*))] 

+ (P - P*¶ ~F(P*)(P - P*>> 

+ higher order terms, (2.18) 

and the equivalence immediately ensues. The condition (2.17) is known as 
the ESS condition [ZO, 22,9]. 

2.6. Case of Pure Density Dqedeme 
In the case of pure density dependence, we have the equations (2.2a, b) 

with F(Np)=f(N) for alI N>O and all p=(p,,...,p,) with cy_-lp,=l, 
pi&Ofor i=l,..., 92. Near a polymorphic equilibkun (p*, IV*) such that 

pr>o and ~(N*)=(p*,f(N*))==O for i==l,...,n, 
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we have 

Up’( df( N*) - (p*, df( N*))u) p - p* 

N*(p*, df(N*)) I[ 1 N-N* 

+ higher order terms, (2.19) 

where 0 denotes a zero matrix (a matrix with all entries equal to 0), u a unit 
vector (a vector with all components equal to l), and 

df( N*) = 

lf 

’ dfi 
-(N ,1 4 

2; i 
. 

a: I . E * w ) 

(p*,df( N*)) < 6 (2.20) 

then the equilibrium (p*, IV*) is PES. Actually, owing to the center manifold 
theory (see, e.g., [17, Z]), the equilibrium manifold 4” characterized by 
N = N* is locally evolutionarily stable (LES) at (p*, N* j in the sense that 
there will be convergence to a nearby equilibrium point (p, IV*) belonging to 
&* from any point near (p, N*). 3?inally, if 

df( N*) < 0, 

that is, 

$N*)d for i =l,...,rt, 

then 6’* is LES at every polymorphic equilibrium (p*, N*) belonging to 8”. 
For a boundary equilibrium (p*, NY), we can relabel the types if necessary 

so that 

(2.21) 
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with 

and 

with 

pz* = (Pk*+l,.**, p;) = (o....,o), 

f(N*) = (f,(N*),f,(N*)) (2.22) 

f,(N*) = (fi(N*),-,fk(N*)) = (O,-,o), 

f@*) = (fk+@*)J.-, f,(N*)), 

where fk+XN*) rf Cl,..., f,(N*) f 0. Near the equilibrium we have 

+ higher order terms, (2.23) 

A= - qpf,(N*) 9 B = Dpr { df,(N*) - (pf.df,(N*))u} 

C = N*f2( N*)T, E = N*(p; , cY@<*)) 

(T for transpose). Apart from 0, the eigenvalues of the matrix in (2.23) are 
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If these quantities are all negative, which will be necessarily the case if 

fa+#*) a..., f,W*) < 0, $(N') CO,..., s(N*) ~0, 

then the equilibrium point (p*, N*) is PES, and the equilibrium manifold 8* 
to which it belongs, characterized by 

N=N* (2.25a) 

and 

pi 3 o with equality if f,‘(N*) +O, i=l,...,n, (22W 

is LES at (p*, N*) 

3. RESOURCE ALLOCATION AND INTERSPECIFIC COMPETITION 

3.1. Dynamical Equation for Resource Allocation 

Assume that type i corresponds to a species characterized by some 
resource allocation vector Ri = (R(i’), . . , r R$“)), where Rik) >, 0 ( > 0 for some 
k) represents the quantity of resources allocated to a function or activity k 
(k=I,..., m and i=l,..., n). The total resource allocation vector in a 
population in state x = (xi,. . . , x ,, ), where xi 2 0 represents the density of 
species i (i=l,...,n) and Cy=ixi=N, is 

R= ~ xiRi, 
i= 1 

(3 1) . 

whose components are denoted R(l), . . . , Rtrn). Now suppose that the growth 
rateof type : (i=l,...,n)isintheform 

Fi(X) = RTG(R) (T for transpose) 

= i @k’G’k:jR), 
k-1 

(3 2) . 
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where the kth component of G(R), Gtk)(R), represents the growth rate per 
unit of resources allocated to a function k when the total resource allocation 
vector in the population is R (k = 1,. . . , m). ‘I%e function G(R) is the growth 
rate Jirnction per unit of resources. 

Since the growth rates depend only on R, it is convenient to transform the 
dynamical system of equations (2.1) for x into a system for (x, R) using (3.2) 
and 

k = i fiRi. (3 3) . 
i= 1 

We get 

fi = xiR~G(R), i = l,...,n, (3.4a) 

~ = ~ xiRiR~G(R). 
i = 1 

(3.4b) 

The relation (5.1) between x and R is invariant in (3.4a, b) and will be 
assumed throughout this section. 

3.2. Stability of Pherwtypic Equilibria 
Let x*=(x,*,...,x~) and R*=C~=1X*Ri be such that X: >O for i= 

1 ¶***, n and G(R*) = 0. Then (x*,R*) is said to be a polymorphic pherwtypic 
equilibrium of (3.4a, b). Note that (x*,R*) belongs to a pherwtypic equilib- 
rium manifold 

\ i= 1 

writing_ 

we have 

xi =XT +5i, i=l,...,n, 

R= ~ (ri*+Si)Ri=R*+S, 
i= 1 

(3.6a) 

(3.6b) 

ii = xzRTdG(R*) g +higher order terms, i=l,..., n, (3.7a) 

g = Q(x*) dG(R*) [ +higher order terms, (3.7b) 
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where 

Q(X*) = ~ xi*RiR~ 
i= 1 

. 

221 

(3 8) . 

(3 9) . 

Let 9 denote the space engendered by R r, . . . , R n, that is, 

9= / \s= i tiRi:[i rdfori=l,...,n (3.10) 
i= 1 

9’ is the space engendered by the resource allocation vectors. Note that 
Q(x*) dG(R*) is closed on 9 [take t{ in (3.7b), let t + 0, and use the 
invariance of (3.1)]. Moreover, Q(x*) is symmetric and positive definite on 
9, since 

(5’eb*)s) = (w(x*), s) = i “~(g,Ry > 0 (3.11) 
i= 1 

withequahtyifandonlyif ([,Ri)=Ofori=l,...,n,whichispossibleonly 
if 5 = 0 for 5 in 9. Therefore, all eigenvalues of Q(x*) dG(R*) on 9’ will 
have negative real parts if dG(R*) is negative definite on 9, (Remark 3 on 
Lemma 1). On the other hand, all other eigenvahres in the linear approxima- 
tion of (3.7a, b) for any 6 = ([r, . . . ‘6,) small and [ = Ey= 1 5iR i are 0, since 
we have the linear approximation 

. 

E [I [ 0 S(x*)dG(R*) E 

s = 0 I[ 1 Q(x*) dG(R*) 1 ’ (3.12) 

where Q designates a zero matrix, while S(x*) is a matrix whose ith row is 
xPRT for Z = l,..., r~ We conclude at once: 
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RESULT 3. Every polmhic phenotypic eqdibrium (x*,R*) of 
(3.4a, b) is PES if dG(R*) is negative definite on 9. 

But according to the center manifold theory (see, e.g., [17, 2]), the 
generalized eigenspace associated with the eigenvalue 0 at (x*, R*) of Result - 

3 will be tangent to an invariant manifold passing through (x”,R*). In the 
case at hand such an invariant manifold can only be the phenotypic equilib- 
rium manifold corresponding to g = 0 in (3.6b), that is, A* as defined in 
(3.5) and characterized by R = R*. Moreover, every point inA* being an 
equilibrium, A* as a manifold will attract every trajectory of (3.4a, b) 
starting from (x,R) satisfying (3.1) and close enough to (x*, R*) in the sense 
that the trajectory will converge to a point on A* but not necessarily 
(x*,R*). Then we have that A* is locally evolutionarily stable (LES) at 
(x*, R*). 

RESULT 4. T%4? pheplotypic equilibrium manifold A* of (3.5) is locally 
evolutionwily stable (LES) for (3.4a, b) at every polymorphic equilibrium 
(x*,R*) of A* if dG(R*) is negative definite on 9’. 

The condition that (x*,R*) is polymorphic in Result 4 is not necessary in 
g&c ca8f~: it suffices that if 

2 x;Ri=R* with xi* 20 for i=l,...,n (3.13) 
i=l 

then 

(R&'-O) and (Ri:xp>,O) (3.14) 

engender the same space 9. This guarantees that Q(x*) is positive definite 
on 9 [see (3.11)]. If the above condition defining a generic case is not 
satisfied, smalii perturbations on R,, . . . , W, can make the conditions satisfied. 
We may also assume, without loss of generality, that 9 is the space of all 
m-dimensional vectors. If this is not the case, we consider an orthonormal 
basis for 9 with all nonnegative basis vectors, which are defined as new 
functions or activities. AU resource allocation vectors are then expressed in 
this new coordinate system with a number of coordinates equal to the 
dimension of 9. Defining a phenotypic equilibrium satisfying (3.13) as 
admissible, we have: 
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RESULT 5. In generic cases, th.e pherwtypic equilibrium manifold J?P of 
(3.5) is LES for (3.4a, b) at every admissible equilibrium (x*,W) of A* if 
dG(R*) is negative definite on 9. 

3.3. Stability aga++ ’ -6 the Introduction of a Neu Function OT Activity 
TIx stability of an equilibrium manik$d against the introduction of a new 

function or activity is also of intewk IConsider the extended resource 
allocation vectors 

j$ = (R$l),..., RI”‘, Rlm+l’) for i=B,...,n+l, 

@m+‘) = 0 
i for i = l,...,n, 

fp+ 1) > 0 
i for i=n+l, 

and the extended growth rate function per unit of resources, 

e(l) = (d”‘(iii),...,d(myR),G”(m+lyR)), 

n+l 

k = (jp),..., p), &m+l)) = c Xiki 
i=l 

is the total resource allocation vector in the population if the density of ai is 
Xi>,OfOri=l,...,n+l.Let 

and 

n+l 

= c x:i&= i x*ili 
i=l ; = 1 

be such that 
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Then @*,k*) is an admissible phenotypic xyClibrium which belongs to the 
phenotypic equilibrium manifold 

J?* = (x1,..., X,,OyB*): i Xi~i=i*, Xi>,Ofori=l,...,b.: \ 
i= 1 1’ 

For 

and 

n+l 

f=R-R*= c &Ri, 
i= 1 

we have 

. 

E 

[ I 5 n+l 

e 

ii = Xi~~~(iir)) i = l,...,n, 

in+l=I n+lRi+lc(h)~ 
n+l 

5= C .,a,~~~(~), 
i = 1 

such that near (jii*,R*) 
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where !@*) is a matrix whose ith row is x:RT for i = 1,. . . , n and 

Since the last row of &*) is 0 and 

ii;+@@*) = R (nm=ll)~(m+l)@*), 

we have: 

RESULT 6. Under the generic condition r-hat 

engende-rs the subz>-?ce 9 of all (m + I>dbnensionul vectors with the 
(m + 1)th component equ& :g 0, the phenotypic equilibrium manifold A@ is 
LES at @*,R*) if de@*) is rwg&ve definite on Z? and dtrn+‘@*) < 0. 
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