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Abstract. We investigate the equilibrium structure for an evolutionary genetic model in
discrete time involving two monoecious populations subject to intraspecific and interspecific
random pairwise interactions. A characterization for local stability of an equilibrium is found,
related to the proximity of this equilibrium with evolutionarily stable strategies (ESS). This
extends to a multi-population framework a principle initially proposed for single populations,
which states that the mean population strategy at a locally stable equilibrium is as close as
possible to an ESS.

1. Introduction

Within the framework of single populations undergoing frequency-dependent se-
lection, a great amount of work have been done introducing Mendelian inheritance
and dynamical properties to the static concept of an evolutionarily stable strategy
(ESS), an optimality principle based on phenotypic fitness differences.

For instance, for a variety of locally adaptive models, where two alternative
strategies are available to players, Eshel (1982) has shown that a stable allelic equi-
librium corresponds to a fixation state or to a mixed strategy which is an ESS of a
restricted game (restricted to the attainable set of mean strategies, or ASMS [Hines,
1984; Cressman, 1988], imposed by genetic considerations). Moreover, for diploid
populations, Lessard (1984) has shown global convergence, over successive equi-
libria following the introduction of mutant alleles if necessary, to an equilibrium
point corresponding to an ESS at least in the case of linear fitnesses, therefore
excluding the possibilities of periodic solutions or chaos. However, relaxing the
assumption of linear fitnesses, Tao et al. (1999) considered fitnesses in an exponen-
tial form, and found examples of chaotic behavior. Nevertheless, Lessard’s (1984)
result can be viewed as precursory for what is now called the long-term theory of
evolution (Weissing, 1996; Hammerstein, 1996; Eshel, 1996) where the emphasis
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Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. e-mail:
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is on a “final stop” for the process of evolution, an equilibrium which is immune,
ideally at least, to the invasion of any conceivable mutant allele, enlightening the
distinct roles of internal and external stability.

A definition of a two-population ESS has been proposed by Cressman (1992,
1996), motivated by the necessity of an evolutionary principle for two-population
dynamical model, that would extend the ESS concept for single populations (May-
nard Smith and Price, 1973; Maynard Smith, 1974; Vickers and Cannings, 1987;
see also Hines, 1987; Lessard, 1990). It is through Roughgarden’s (1979) coevolu-
tion model, that combines evolution in gene frequencies with population growth,
that the extension has been developed.

Suppose that two populations, say P1 and P2, are subject to intraspecific and
interspecific random pairwise interactions. Every individual can choose either one
of two pure strategies, or a mixture of both, with probabilities represented by (x, 1−
x), a strategy vector for an individual in P1, or (y, 1 − y), a strategy vector for an
individual in P2. Denote by (x, y) the mean strategy used in both populations.

Let φi(x, y) and ψi(x, y) be the expected fitnesses of individuals in P1 and
P2, respectively, using the pure strategy i (i = 1, 2). Then a two-population ESS
has been defined (Cressman (1992, 1996); reworded in the two-phenotype context
used hereafter) as a strategy vector (x∗, y∗) for which we have

x∗φ1(x, y) + (1 − x∗)φ2(x, y) > xφ1(x, y) + (1 − x)φ2(x, y)

or
y∗ψ1(x, y) + (1 − y∗)ψ2(x, y) > yψ1(x, y) + (1 − y)ψ2(x, y), (1)

for any other strategy vector (x, y) at least close enough to (x∗, y∗). This definition
could provide an extension to the well documented models for Hawk and Dove
behaviors with asymmetries in payoff functions (Maynard Smith and Parker, 1976;
Selten, 1980; Eshel and Sansone, 1995; Crowley, 2000, and references therein).
In a pairwise contest and with probability x (respectively y), an individual from
P1 (respectively P2) would behave accordingly to what has been defined as a
Hawk behavior, that is with an escalation of aggressiveness until injury or else the
opponent retreats. With complementary probability 1 − x (respectively 1 − y), that
individual behaves as a Dove during the contest, and only displays without getting
involved in an aggressive fight over the fitness-related coveted ressource.

The local stability of an interior equilibrium corresponding to a two-population
ESS has been further analyzed in continuous time by Tao (1998), when two pure
strategies (phenotypes) are available and the mixed strategy used by any player is
genetically determined at a single locus where two alleles are segregating.

In this paper, we consider the corresponding model in discrete time, and we
propose a characterization of a locally stable equilibrium, through an analysis of
the whole equilibrium structure of the dynamics involved.

2. Dynamical equations

Two populations, P1 and P2, are subject to intraspecific and interspecific random
pairwise interactions. We suppose the sizes of both populations infinite, but in equal



Equilibrium structure in a two-population model 3

proportion, although a different ratio could be used; such a ratio would only change
the elements of the fitness matrices below. Introducing genetics, we suppose that
the mixed strategy adopted by an individual is determined at a single locus where
two alleles, A1 and A2, are segregating. For convenience, we use the same notation
for the alleles in both populations, although these are not necessarily the same.
Mating is only allowed within each population.

The mixed strategy associated with the genotype AiAj for an individual inP1 is
entirely described by the probability Pij . This is the probability for the individual to
choose the pure strategy 1, or, say, Hawk. The individual chooses the pure strategy
2, Dove, with the complementary probability 1−Pij . Similarly, the mixed strategy
of an individual in P2 with genotype AiAj is described by the probability Qij ,
the probability of adopting the Hawk bahavior, 1 − Qij being the probability of
adopting the Dove behavior.

If we let p and q represent the frequency of allele A1 inP1 andP2, respectively,
and if we assume discrete, nonoverlapping generations with random mating within
each population, then the mean population strategies in P1 and P2, respectively,
are

x = x(p) = p2P11 + 2p(1 − p)P12 + (1 − p)2P22,

y = y(q) = q2Q11 + 2q(1 − q)Q12 + (1 − q)2Q22.

These are the frequencies of Hawk in P1 and P2, respectively.
The fitness of an individual will depend on its own strategy and on the strategy

of the individual interacting with it. Thus it depends on the state of the system at any
time. Given pairwise interactions between individuals of two populations, P1 and
P2, each individual can interact either with an individual from the same population
or with an individual from the other population. We denote by aij the expected
fitness of a P1-individual using the pure strategy i when interacting with a P1-
individual using the pure strategy j . We denote by bij , cij and dij the corresponding
fitnesses, when the interacting individuals are from the populations P1 versus P2,
P2 versus P1, and P2 versus P2, respectively. With two pure strategies, Hawk and
Dove, we have the fitness matrices

F11 =
(

a11 a12
a21 a22

)
, F12 =

(
b11 b12
b21 b22

)
,

F21 =
(

c11 c12
c21 c22

)
, F22 =

(
d11 d12
d21 d22

)
.

Let φi and ψi be the expected fitnesses of the individuals in populationsP1 andP2,
respectively, using the pure strategy i. The populations being in equal proportion
and pairwise interactions being random, we have

φi = φi(x, y) = [xai1 + (1 − x)ai2 + ybi1 + (1 − y)bi2]/2,

and
ψi = ψi(x, y) = [xci1 + (1 − x)ci2 + ydi1 + (1 − y)di2]/2.
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The fitness of a P1-individual having genotype AiAj is

vij = Pij φ1 + (1 − Pij )φ2,

and the corresponding fitness for a P2-individual is

wij = Qij ψ1 + (1 − Qij )ψ2.

With these fitnesses, the recurrence equations for the frequency of A1 in P1 and
P2 from one generation to the next are respectively

p′ = p2v11 + p(1 − p)v12

v̄
,

q ′ = q2w11 + q(1 − q)w12

w̄
,

where

v̄ = p2v11 + 2p(1 − p)v12 + (1 − p)2v22

= xφ1 + (1 − x)φ2,

w̄ = q2w11 + 2q(1 − q)w12 + (1 − q)2w22

= yψ1 + (1 − y)ψ2.

Let

µ1 = pP11 + (1 − p)P12,

µ2 = pP12 + (1 − p)P22,

be the marginal strategies of alleles A1 and A2, respectively, in P1 and

ν1 = qQ11 + (1 − q)Q12,

ν2 = qQ12 + (1 − q)Q22,

be the corresponding marginal strategies in P2. Then we have

p′ − p = p(1 − p)(µ1 − µ2)(φ1 − φ2)/v̄,

q ′ − q = q(1 − q)(ν1 − ν2)(ψ1 − ψ2)/w̄.
(2)

The differences φ1 − φ2 and ψ1 − ψ2 can be expressed as

φ1 − φ2 = α11x + α12y − β1,

ψ1 − ψ2 = α21x + α22y − β2,

where the parameters are defined as

α11 = (a11 − a12 − a21 + a22)/2,

α12 = (b11 − b12 − b21 + b22)/2,

α21 = (c11 − c12 − c21 + c22)/2,

α22 = (d11 − d12 − d21 + d22)/2,

β1 = (a22 − a12 + b22 − b12)/2,

β2 = (c22 − c12 + d22 − d12)/2.
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In the next generation, x′ can be expressed as

x′ = (p′ − p)2(P11 − 2P12 + P22) + 2(p′ − p)(µ1 − µ2) + x,

so that, using (2), we have

x′ − x = p(1 − p)(µ1 − µ2)2(φ1 − φ2)

v̄

×
{

2 + p(1 − p)(P11 − 2P12 + P22)(φ1 − φ2)

v̄

}
,

and a similar equation for the difference y′ − y. The expression in brackets being
positive (see Appendix), the direction taken by the mean population strategy x

solely depends on the sign of φ1 − φ2. On the other hand, the direction taken by y

only depends on the difference ψ1 − ψ2. Thus we are in the presence of a locally
adaptive model (Eshel, 1982).

For a given strategy y in population P2, let �φ(y) be the strategy in population
P1 for which both pure strategies have equal fitnesses (φ1 = φ2). We have

�φ(y) = −α12y + β1

α11
.

Similarly, for a given strategy x in population P1, we denote by �ψ(x) the strategy
in population P2 for which we have ψ1 = ψ2. We get

�ψ(x) = −α21x + β2

α22
.

We will simply refer to the lines �φ and �ψ to represent the regions in the strategy
space where φ1 = φ2 and ψ1 = ψ2, respectively.

Throughout this paper, to avoid degenerate situations, we assume that all the
αij are different from 0, all the Pij distinct, and all the Qij distinct.

3. Equilibrium points

An equilibrium for the system (2) satisfies either

p = 0 or 1, or µ1 = µ2, or φ1 = φ2,

and either
q = 0 or 1, or ν1 = ν2, or ψ1 = ψ2

(see Table 1). When p = 0 or 1, we have fixation in the P1-population, and
similarly, when q = 0 or 1, fixation in the P2-population. When we have both, we
have double fixation in the two populations.

When µ1 = µ2, the marginal allelic strategies are the same in P1 and then the
equilibrium is said to be a genetic equilibrium with respect to the P1-population.
This occurs when p = p̂ in (0, 1), where

p̂ = P22 − P12

P11 − 2P12 + P22
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Table 1. List of all possible equilibria.

Genotypic Phenotypic
p = 0, p = 1 p = p̂ φ1 − φ2 = 0

q = 0, Double fixation Singly- Singly-
q = 1 (0, 0), (0, 1) Genetic Phenotypic

Geno- (1, 0), (1, 1) (p̂, 0), (p̂, 1) (p̄, 0), (p̄, 1)
typic Singly- Doubly- Genetic-

q = q̂ Genetic Genetic Phenotypic
(0, q̂), (1, q̂) (p̂, q̂) (p̄, q̂)

Pheno- Singly- Genetic- Doubly-
typic ψ1 − ψ2 = 0 Phenotypic Phenotypic Phenotypic

(0, q̄), (1, q̄) (p̂, q̄) (p∗, q∗)

(when P11 − 2P12 + P22 
= 0). Such a p̂ corresponds to a minimum or maximum
point for the parabola x = x(p) in (0, 1). Note that p̂ is in (0, 1) only when we
are in the presence of overdominance or underdominance (that is, when P12 is
higher or lower, respectively, than both P11 and P22). Similarly, we have a genetic
equilibrium with respect to the P2-population when ν1 = ν2, that is, when q = q̂

in (0, 1), where

q̂ = Q22 − Q12

Q11 − 2Q12 + Q22
,

(when Q11 − 2Q12 + Q22 
= 0). Such a q̂ corresponds to a minimum or a max-
imum point for the parabola y = y(q) in (0, 1), and exists only when there is
overdominance or underdominance.

A fixation state or a genetic equilibrium is said to be a genotypic equilibrium,
since the genotypic frequencies at those equilibria do not change regardless of any
phenotypic selection that might be taking place (Lessard, 1984).

On the other hand, when φ1 = φ2 or ψ1 = ψ2, the expected fitnesses of the two
pure strategies are the same in P1 or P2, respectively, and then the equilibrium is
said to be a phenotypic equilibrium with respect to P1 or P2, respectively.

In order to avoid unnecessary complication in the notation, we simply denote
by p̄, the allelic frequency value in P1 for which we have φ1 = φ2, regardless of
the allelic frequency in P2 (p̄ is actually a function of the allelic frequency in P2,
but the notation used should not cause any confusion). Similarly, q̄ is the allelic
frequency in P2 for which we have ψ1 = ψ2.

An equilibrium is said to be a singly-genetic equilibrium or a singly-phenotypic
equilibrium if it is genetic or phenotypic, respectively, with respect to one population
while there is fixation in the other. It is said to be a doubly-genetic equilibrium or
a doubly-phenotypic equilibrium if it is genetic or phenotypic, respectively, with
respect to both populations. Finally it is said to be a genetic-phenotypic equilibrium
if it is genetic with respect to one population and phenotypic with respect to the
other.

In the pq-plane, the regions bounded by the lines p = p̂ and q = q̂, if they
exist, along with the lines corresponding to the fixation states, are invariant with
respect to the dynamics (2), since a trajectory starting in any one of these regions
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always remains in it. Indeed, we have

v̄(p′ − p̂) = p(1 − p)(µ1 − µ2)(φ1 − φ2) + v̄(p − p̂)

= (p − p̂){p(1 − p)(P11 − 2P12 + P22)(φ1 − φ2) + v̄}
= (p − p̂){[p(1 − p)(P11 − 2P12 + P22) + x](φ1 − φ2) + φ2}
= (p − p̂){[pP11 + (1 − p)P12](φ1 − φ2) + φ2}.

Since the expression in brackets is always positive, the sign of p′ − p̂ is the same as
the sign of p − p̂. Therefore, we have up to four invariant regions in the pq-plane.

An equivalent notation (x̂, ŷ, x̄, ȳ, x∗ and y∗) is used to represent the strategies
used in each population when the frequencies are at genetic or phenotypic equilibria.

To avoid degenerate situations, we suppose that an equilibrium cannot be of two
types. It is an equilibrium due to either equality in the expected strategy fitnesses or
equality in the marginal allelic strategies or fixation, in both populations. Otherwise,
the local stability analysis done by linearizing the transformation given in (2) fails
since then the Jacobian matrix of the transformation exhibits an eigenvalue of
modulus 1. A finer criterion, using a second order approximation, would thus be
needed. We refer to Lessard and Karlin (1982), along with Morris et al. (1987), for
such a criterion and its applications.

4. Existence of a two-population ESS

Rewriting definition (1), an equivalent condition for a point (x∗, y∗) to be a
two-population ESS is that, for any other point (x, y) at least sufficiently close
to it, we have either

(x − x∗)(φ1 − φ2) < 0

or
(y − y∗)(ψ1 − ψ2) < 0. (3)

Let (x∗, y∗) be an interior point of the xy-plane (actually, of the [0, 1] × [0, 1]
square). To be a two-population ESS, (x∗, y∗) must lie at the intersection of the
lines �φ and �ψ . Solving, we get the values

x∗ = α22β1 − α12β2

α11α22 − α12α21
,

y∗ = α11β2 − α21β1

α11α22 − α12α21
.

Using these values, we have

φ1 − φ2 = α11(x − x∗) + α12(y − y∗),

ψ1 − ψ2 = α21(x − x∗) + α22(y − y∗).

Letting s = x − x∗ and t = y − y∗, condition (3) becomes

s(α11s + α12t) < 0
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or
t (α21s + α22t) < 0,

for (s, t) at least sufficiently close but unequal to (0, 0) (actually, for all (s, t) 
=
(0, 0), since the game is linear). As pointed out by Tao (1998), referring to Hofbauer
and Sigmund (1988), at least one of the two inequalities is satisfied if and only if
the matrix

−
(

α11 α12
α21 α22

)

is a P-matrix, that is, if and only if it satisfies

α11 < 0,

α22 < 0,

α11α22 − α12α21 > 0.

(4)

In the classical Hawk-Dove model with asymmetries in payoffs, commonly
labelled as Owner-Intruder conflicts, or more generally in the classes of bimatrix
games (see, e.g., Hofbauer and Sigmund, 1988), both matrices F11 and F22 are the
zero matrices, and then α11 = α22 = 0. Thus, no mixed (interior) strategy vector
can be evolutionarily stable. Such a result is true for all bimatrix games (Selten,
1980).

Figure 1 shows the four possibilities for the lines �φ and �ψ , based on the
conditions above, along with the signs of φ1(x, y) − φ2(x, y) and ψ1(x, y) −
ψ2(x, y) in each region. Please note that Figure 1 is only an illustration of the
possible slopes of �φ and �ψ : either their slopes are of different signs, or else the
slope of �φ is greater than the slope of �ψ in absolute value. Since both α11 and α22
are nonzero, these slopes are neither null nor undetermined. Since α11α22 −α12α21
is different from 0, the lines �φ and �ψ are never parallel.

In the remaining of this paper, we assume the existence of an interior two-
population ESS; the lines �φ and �ψ do have an intersection in the interior of the
xy-plane, and conditions (4) are satisfied. Note however that the results in section 6
remain true even when an interior ESS does not exist but conditions (4) are satisfied.

Let the mean strategy used in P2 be fixed at some value ỹ, and let the mean
strategy used in P1 be �φ(ỹ), the corresponding point on the line �φ . Since (see
Figure 1) φ1(x, ỹ) − φ2(x, ỹ) > 0 when x < �φ(ỹ), and φ1(x, ỹ) − φ2(x, ỹ) < 0
when x > �φ(ỹ), we have

[x − �φ(ỹ)][φ1(x, ỹ) − φ2(x, ỹ)] < 0,

or equivalently

�φ(ỹ)φ1(x, ỹ) + [1 − �φ(ỹ)]φ2(x, ỹ) > xφ1(x, ỹ) + [1 − x]φ2(x, ỹ).

This indicates that the fitness of an individual in P1 playing �φ(ỹ) is greater than
the fitness of an individual in P1 playing any other strategy x when the population
is at (x, ỹ). We can then interpret �φ(ỹ) as an ESS in P1 when the mean strategy
used in P2 is fixed at ỹ. Similarly, �ψ(x̃) is an ESS in P2 when the mean strategy
used in P1 is fixed at x̃.
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Fig. 1. The four possibilities for the lines �φ and �ψ , as imposed by conditions (4), along
with the signs of φ = φ1 − φ2 and ψ = ψ1 − ψ2.

5. Local stability of the ESS

Let (p∗, q∗) be a doubly-phenotypic equilibrium, for which the corresponding
strategy vector (x∗, y∗) is a two-population ESS.

We investigate the local stability of this equilibrium using a first order approx-
imation of the recurrence equations (2). The Jacobian matrix is given by




∂p′

∂p

∂p′

∂q

∂q ′

∂p

∂q ′

∂q




∣∣∣∣∣∣∣∣∣
(p∗,q∗)

,

where (omitting the superscript *)

∂p′

∂p

∣∣∣∣
(p∗,q∗)

= 1 + 2p(1 − p)(µ1 − µ2)2

v̄
α11,

∂p′

∂q

∣∣∣∣
(p∗,q∗)

= 2p(1 − p)(µ1 − µ2)(ν1 − ν2)

v̄
α12,
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∂q ′

∂p

∣∣∣∣
(p∗,q∗)

= 2q(1 − q)(µ1 − µ2)(ν1 − ν2)

w̄
α21,

∂q ′

∂q

∣∣∣∣
(p∗,q∗)

= 1 + 2q(1 − q)(ν1 − ν2)2

w̄
α22.

This matrix admits the two eigenvalues

λ± = 1 + B ±
√

A,

where

A = B2 − 4C,

B = p(1 − p)(µ1 − µ2)2

v̄
α11 + q(1 − q)(ν1 − ν2)2

w̄
α22,

C = p(1 − p)q(1 − q)(µ1 − µ2)2(ν1 − ν2)2

v̄w̄
(α11α22 − α12α21).

Note that in the situation where α11α22 − α12α21 is large enough, it is quite
possible that both eigenvalues be complex. Suppose first that they are real, that is,
suppose A > 0. Since B < 0 and 0 <

√
A < −B, we have

λ+ = 1 + B +
√

A

{
< 1
> 1 + B

and

λ− = 1 + B −
√

A

{
< 1
> 1 + 2B

.

At this point, we need the following Lemma. The proof is relegated to the Appendix.

Lemma 1. At the equilibrium (p∗, q∗),

p∗(1 − p∗)(µ1 − µ2)2

v̄
α11 > −1

2
,

q∗(1 − q∗)(ν1 − ν2)2

w̄
α22 > −1

2
.

Then, using these inequalities, both λ+ and λ− are greater than −1. Therefore the
doubly-phenotypic equilibrium (p∗, q∗) is locally stable.

On the other hand, if A < 0, then the two eigenvalues are complex, with
modulus satisfying

0 ≤ |λ|2 = (1 + B)2 − A

= 1 + 2(B + 2C).

If α11α22 − α12α21 is large enough, it is quite possible that B + 2C > 0, which
would lead to instability of (p∗, q∗). Yet, sufficient conditions for local stability
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can be deduced. First, if α12α21 > 0, the equilibrium is locally stable. Indeed, let
us write, for convenience,

−1

2
< a = p∗(1 − p∗)(µ1 − µ2)2

v̄
α11 < 0,

−1

2
< b = q∗(1 − q∗)(ν1 − ν2)2

w̄
α22 < 0.

Then

B + 2C = a + b + 2ab

(
1 − α12α21

α11α22

)

= a(1 + b) + b(1 + a) − 2ab
α12α21

α11α22

< 0.

Moreover, if α12α21 < 0 but −α12α21 < α11α22, then

1 − α12α21

α11α22
< 2.

Suppose a ≤ b (or otherwise interchange a and b in the following). Since −2a < 1,
we have 4ab < −2b and then

B + 2C = a + b + 2ab

(
1 − α12α21

α11α22

)

< a + b + 4ab

< a − b

≤ 0.

Thus (p∗, q∗) is locally stable.
Therefore, it is in the case −α12α21 positive and large enough that instability

happens. It is a situation where there is interspecific heterogeneity: when interspe-
cific competition occurs, a member from one population receives higher payoff if
both players use the same behavior, or pure strategy, while the member from the
other population receives higher payoff if both members behave differently.

Otherwise, the allelic equilibrium corresponding to a two-population ESS is
locally stable.

6. Local stability of the other equilibria

In this section, we study the local stability of all equilibria other than a doubly-
phenotypic equilibrium corresponding to an ESS, and find a characterization of
such locally stable equilibria. Then we analyze the equilibrium structure of the
whole system and we show that in any invariant region for the dynamics (2), one
and only one equilibrium can be locally stable, except maybe when the ESS itself
is unstable. When the ESS is unstable, a cyclic behavior in the trajectories of (2)
has been numerically observed (see Figure 3 below).



12 M. Lemire, S. Lessard

We first present a Lemma where conditions for local stability are stated. We re-
strict ourself to only a particular representative of each class of equilibria, but
similar conditions hold for the other equilibria. The proof is relegated to the
Appendix.

Lemma 2. Consider system (2) and suppose conditions (4) satisfied.

1. The double fixation (0, 0) is locally stable if and only if

P12 < P22 < �φ(Q22) or P12 > P22 > �φ(Q22)

and

Q12 < Q22 < �ψ(P22) or Q12 > Q22 > �ψ(P22);
2. the singly-genetic equilibrium (p̂, 0) is locally stable if and only if

�φ(Q22) < x̂ if underdominance in P1

�φ(Q22) > x̂ if overdominance in P1

and

Q12 < Q22 < �ψ(x̂) or Q12 > Q22 > �ψ(x̂);
3. the singly-phenotypic equilibrium (p̄, 0) is locally stable if and only if

Q12 < Q22 < �ψ(x̄) or Q12 > Q22 > �ψ(x̄);

4. the doubly-genetic equilibrium (p̂, q̂) is locally stable if and only if

�φ(ŷ) < x̂ if underdominance in P1

�φ(ŷ) > x̂ if overdominance in P1

and

�ψ(x̂) < ŷ if underdominance in P2

�ψ(x̂) > ŷ if overdominance in P2;

5. the genetic-phenotypic equilibrium (p̂, q̄) is locally stable if and only if

�φ(ȳ) < x̂ if underdominance in P1

�φ(ȳ) > x̂ if overdominance in P1.

The following corollary is a characterization of a locally stable equilibrium. The
proof follows from the conditions cited above. Corollary 1 generalizes, to the multi-
population framework, a note by Maynard Smith (1981) where it is argued that for
a single sexual population, a locally stable equilibrium is an equilibrium for which
the mean population strategy is as close as possible to an ESS, in any invariant
region.
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Fig. 2. Region R in the xy-plane corresponding to some invariant region in the pq-plane.

Corollary 1. An equilibrium (p̃, q̃) with the corresponding two-population mean
strategy (x̃, ỹ) that is not a two-population ESS is locally stable if and only if a
perturbation in the gene frequencies in one population moves the mean strategy
of that population away from �φ(ỹ), if the perturbation is in P1, and away from
�ψ(x̃), if the perturbation is in P2.

Result 1. In any invariant region, one and only one equilibrium is locally stable.

(Of course, we exclude the case where the ESS itself is unstable. Otherwise a cyclic
behavior of the system is observed, but nevertheless such a cycle is still restrained
to one invariant region where no other equilibrium is stable. See Figure 3 for an
illustration.)

Proof. The proof is only a matter of tracing the lines �φ and �ψ in the xy-plane, and
verifying whether or not conditions given in Corollary 1 apply. Figure 2 illustrates
a region R in the xy-plane corresponding to an invariant region of the pq-plane
bounded in part by the lines p = p̂ and q = q̂ when they exist. It gives the directions
of the two-population strategy following a perturbation in the gene frequencies in
one of the two populations. Points at the corners correspond to doubly-genotypic
equilibria (with both components representing fixation states and/or genetic equi-
libria), while points on the edges correspond to genotypic-phenotypic equilibria, if
they exist. The interior point corresponds to an ESS, if it exists.

By Corollary 1, two equilibria on the same edge cannot be simultaneously
stable, since at least one of the two would be brought closer to a one-population
ESS following a perturbation in the gene frequency in the appropriate population.
Then if we take any two equilibria not on a same edge of R and suppose these
both locally stable, and if we trace the lines �φ and �ψ satisfying the conditions
of Corollary 1, we would find an arrangement of those lines that does not satisfy
any of the four possibilities of Figure 1. Thus, only one equilibrium can be locally
stable in any invariant region.
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Now, let us look at the existence of a locally stable equilibrium in any invariant
region. If both �φ and �ψ intersect in the interior of R, then a doubly-phenotypic
equilibrium exists in the invariant region, which is locally stable (or leads to an
observed cyclic behavior). Suppose from now on that they do not intersect in R.

Assume that there exists at least one genotypic-phenotypic equilibrium (either
singly-phenotypic or genetic-phenotypic). Suppose that �φ crosses both the lower
and upper edge of R, at (x̄1, y1) and (x̄2, y2), respectively. Both equilibria are
genotypic with respect to P2 and phenotypic with respect to P1. Since both �φ

and �ψ do not intersect in R, we must have

either �ψ(x̄1) < y1 or �ψ(x̄2) > y2,

and therefore one is locally stable.
On the other hand, suppose without loss of generality that �φ only crosses the

lower edge of R at (x̄1, y1), and crosses, say, the left edge at (x1, ỹ1). If �ψ(x̄1) <

y1, the equilibrium (x̄1, y1) is locally stable. On the other hand, if �ψ(x̄1) > y1,
we must have

�ψ(x1) > ỹ1,

since otherwise both lines would intersect in R. If �ψ also intersects the left edge
at (x1, ȳ1), we have a phenotypic-genotypic equilibrium which is locally stable,
since then �φ(ȳ1) < x1. If not, then (x1, y2) is locally stable. Indeed, we would
have x̄2 = �φ(y2) < x1 and ȳ1 = �ψ(x1) > y2. Symmetry holds whenever there
exists any phenotypic-genotypic equilibrium.

Finally, if no phenotypic-genotypic equilibrium exists, then one of the four
corners is locally stable. It has coordinates x1 or x2, depending on whether �φ has
positive or negative slope, respectively, and y1 or y2, if �ψ has positive or negative
slope, respectively.

7. Numerical examples

In this section we give two examples to illustrate our results.

Example 1. Figure 3 shows both the xy-plane along with the pq-plane (actually
illustrated as a qp-plane), with �φ and �ψ which are lines in the xy-plane, hyper-
bolas or ellipses in the qp-plane. The parabolas x(p) and y(q) help determine the
direction of the mean strategy following a perturbation in the gene frequency in
one population. The set of parameters used is

F11 =
(

.634 .009

.727 .076

)
, F12 =

(
.565 .372
.064 .884

)
,

F21 =
(

.372 .565

.884 .064

)
, F22 =

(
.080 .867
.009 .758

)
,

with P11 = Q11 = .4, P12 = Q12 = .1 and P22 = Q22 = .8. With these, the two-
population ESS (x∗, y∗) = (0.580, 0.586), corresponding to the unique doubly-
phenotypic equilibrium (q∗, p∗) = (0.174, 0.180) in the qp-plane, is unstable. Any
trajectory starting in the interior of the invariant region bounded by p = 0, p = p̂,
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Fig. 3. The xy-plane and qp-plane with four invariant regions bounded by the lines p = p̂
and q = q̂. Bold dots indicate locally stable equilibria.

q = 0 and q = q̂, evolves to the periodic orbit shown in Figure 3. Moreover, there
exist two locally stable equilibria, (x̂, Q11) and (P11, Q22) (or respectively (0, 1)

and (1, p̂) in the qp-plane) in agreement with the caracterization of Corollary 1.

Example 2. This example is inspired from Maynard Smith and Parker’s (1976)
model of an asymmetric game involving two pure strategies, Hawk and Dove,
where two types of players differ in their fighting abilities for the control of some
ressource.

Let V1 be the value of the ressource in terms of increase in fitness for members
of P1 and V2 be the corresponding value for members of P2. The cost of losing a
fight by being injured is denoted by Di for members of population Pi (i = 1, 2).
Suppose that in an intraspecific contest, two contestants behaving according to the
same pure strategy have equal chance of winning the ressource. We might suppose
a different probability when it comes to interspecific competition. A Dove always
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Fig. 4. Equilibrium structure for Example 2.

retreats when opposed with a Hawk. Take the fitness matrices

F11 =
(

(V1 − D1)/2 V1
0 V1/2

)
, F12 =

(
V1h − D1(1 − h) V1

0 V1d

)
,

F21 =
(

V2(1 − h) − D2h V2
0 V2(1 − d)

)
, F22 =

(
(V2 − D2)/2 V2

0 V2/2

)
,

where h, respectively d , is the probability that a Hawk, respectively a Dove, fromP1
wins a contest against a Hawk, respectively a Dove, from P2. Note that the payoffs
must all be positive when studying the discrete dynamics of the game. One could
add a same constant to all the above matrices without changing the equilibrium
structure.

Numerically, Figure 4 represents the structure of this game, with V1 = 6, V2 =
2, C1 = 10, C2 = 6, h = .25 and d = .25. The strategies used are P11 =
.6, P12 = .75, P22 = 1, Q11 = .4, Q12 = .75 and Q22 = .25. Bold dots indicate
a locally stable phenotypic-genotypic equilibrium; small circles are the unstable
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phenotypic-genotypic equilibria. Note that although in these three states one of the
two populations is at a phenotypic equilibrium, hence at a (single-population) ESS,
two of those are unstable because a shift in the mean strategy in one population,
through a perturbation in the gene frequency, would initially bring that population
closer to its ESS. Moreover, the vertical distance between the point (x̃, Q22) with
the line �ψ , measuring the actual distance between the state in population P2,
namely Q22, with its ESS, namely �ψ(x̃), is actually smaller than the distance
between the point (P11, ỹ) with the line �φ , which is the distance between the
state in population P1, namely P11, with its ESS, namely �φ(ỹ). So the key in
determining whether or not an equilibrium is locally stable does not rely on the
simultaneous minimization of distances from evolutionarily stable strategies in the
single-population context, but rather on the statement of Corollary 1.

8. Conclusion

In this paper we have been concerned with the equilibrium structure of a dynamical
system involving two diploid populations undergoing intra- and interspecific ran-
dom pairwise interactions. We have used a definition proposed by Cressman (1992,
1996) relating the concept of an evolutionarily stable strategy with the coevolution
of two populations. but called it a two-population ESS instead of a two-species ESS
as originally. We believe that this terminology is more appropriate since the con-
cept can be extended to populations within a single species. We have not considered
restricted games (as in Eshel, 1982); ESS could have been defined within the set of
attainable strategies, but would have then failed to satisfy the ESS conditions for
the “whole” game. Our main objective has been to find a characterization for local
stability of an equilibrium in relation with the existence of a two-population ESS,
having in mind the limitation of the dynamics within an invariant region imposed
by genetic constraints such as over- and underdominance.

As shown by Corollary 1, local stability of an equilibrium can be predicted
from the simultaneous “proximity” of each mean population strategy with the
corresponding single-population ESS that prevails. Actually, a shift of the mean
population strategy in one population toward a single-population ESS, following a
perturbation on gene frequencies in that population, proved to be sufficient to predict
instability of the equilibrium. Note that we do not use the terminology “proximity”
in a common sense. There are situations where two genotypic-phenotypic equilib-
ria coexist within the same invariant region, one being locally stable and the other
unstable, while the unstable one is actually closer (in the common sense) to both
corresponding single-population ESSs.

However, with the dynamical properties enlightened in this paper, Maynard
Smith’s (1981) claim that a locally stable equilibrium has a mean strategy as close
as possible (with genetic constraints in mind) to an ESS, extends to the framework
of two populations.

Acknowledgements. The authors wish to thank Prof. Alan Hastings and one anonymous
referee for helpful comments.
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A. Conditions for local stability

We find sufficient conditions for local stability of any equilibrium, by means of a
linear approximation of the dynamical system (2). Under the assumptions made
throughout this paper, these are necessary conditions as well; the only situation
where the eigenvalues above could have modulus 1 is when the equilibrium is of
two types (being simultaneously phenotypic and genotypic, or being a fixation state
while being genetic), or else if the Pij ’s or the Qij ’s are not all unequal.

Using a first order approximation, we seek conditions under which the leading
eigenvalue of the Jacobian matrix




∂p′

∂p

∂p′

∂q

∂q ′

∂p

∂q ′

∂q


 ,

(where all elements are evaluated at the equilibrium under investigation) is less than
1 in modulus. Except at an equilibrium (p∗, q∗) corresponding to an ESS, at least
one of ∂p′/∂q or ∂q ′/∂p is 0 when evaluated at the equilibrium. Indeed, at any
other equilibrium, at least one of p′ − p or q ′ − q is identically 0, independently
of q or p, respectively. Then, the eigenvalues of the Jacobian matrix are simply the
elements on the diagonal.

For simplicity, we only seek conditions for which ∂p′/∂p is less than 1 in
modulus, since equivalent conditions can be found from those below for the second
eigenvalue ∂q ′/∂q. We use q̃ for an arbitrary component of an equilibrium, and ỹ

for its corresponding strategy.
Starting with an equilibrium (0, q̃), with corresponding strategy vector (P22, ỹ),

we find conditions for which we have

−1 <
∂p′

∂p

∣∣∣∣
(0,q̃)

< 1.

The eigenvalue is

∂p′

∂p

∣∣∣∣
(0,q̃)

= (P12 − P22)(φ1 − φ2)

v̄

∣∣∣∣
(0,q̃)

+ 1,

where
v̄|(0,q̃) = [P22(φ1 − φ2) + φ2](0,q̃) .

Simplifying, it can easily be seen that the eigenvalue is positive. Now φ1 − φ2 > 0
if (P22, ỹ) lies to the left of �φ , and φ1 − φ2 < 0 if (P22, ỹ) lies to the right of �φ .
So the eigenvalue is less than 1 if either

P12 < P22 and P22 < �φ(ỹ)

or
P12 > P22 and P22 > �φ(ỹ).
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For an equilibrium in the form (p̂, q̃), we have

∂p′

∂p

∣∣∣∣
(p̂,q̃)

= p̂(1 − p̂)(P11 − 2P12 + P22)(φ1 − φ2)

v̄

∣∣∣∣
(p̂,q̃)

+ 1

where, once evaluated at (p̂, q̃), v̄ = x̂(φ1 − φ2) + φ2. We have

p̂(1 − p̂)(P11 − 2P12 + P22)(φ1 − φ2) + v̄

= {p̂P11 + (1 − p̂)P22}(φ1 − φ2) + φ2,

which is positive, since the expression in brackets is between 0 and 1. Then, the
eigenvalue is positive. For it to be less than 1, we need φ1 − φ2 < 0 at (p̂, q̃) when
there is underdominance in P1, since P11 − 2P12 + P22 > 0. That is, we need

�φ(ỹ) < x̂.

On the other hand, when there is overdominance (P11 − 2P12 + P22 < 0), we need
φ1 − φ2 > 0, or equivalently

�φ(ỹ) > x̂.

Finally, for an equilibrium (p̄, q̃), the eigenvalue is

∂p′

∂p

∣∣∣∣
(p̄,q̃)

= 2p̄(1 − p̄)(µ1 − µ2)2α11

v̄

∣∣∣∣
(p̄,q̃)

+ 1,

which is less than 1 since we suppose α11 negative. It is also positive, as shown in
the next Appendix.

B. Proof of Lemma 1

Here we show the required inequality

p(1 − p)(µ1 − µ2)2α11

v̄

∣∣∣∣
(p∗,q∗)

> −1

2
. (5)

where (p∗, q∗) is a doubly-phenotypic equilibrium for which the strategy vector
(x∗, y∗) is a two-population ESS. Let the allele frequencies in P2 be fixed at q∗.
Write

φ1 = x

(
a11 + k1

2

)
+ (1 − x)

(
a12 + k1

2

)
,

φ2 = x

(
a21 + k2

2

)
+ (1 − x)

(
a22 + k2

2

)
,

where

k1 = y∗b11 + (1 − y∗)b12,

k2 = y∗b21 + (1 − y∗)b22.
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Then the recurrence equation

p′ − p = p(1 − p)(µ1 − µ2)(φ1 − φ2)

v̄
, (6)

is the classical dynamics involved in a single-population model of evolutionarily
stability, with two strategies and two alleles, with payoff matrix


a11 + k1

2

a12 + k1

2

a21 + k2

2

a22 + k2

2


 .

In the single-population context, Lessard (1984) has shown that
|φ1 −φ2| is a strict Lyapounov function. Moreover (Hofbauer and Sigmund, 1988),
φ1 − φ2 does not change its sign. This, in turn, implies that near enough the phe-
notypic equilibrium p∗, the difference p′ − p in (6) does not change its sign, or,
equivalently, that

dp′

dp

∣∣∣∣
p∗

= 1 + 2p(1 − p)(µ1 − µ2)2α11

v̄

∣∣∣∣
(p∗,q∗)

> 0.

Hence, (5) is true.
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