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We present a multilocus gene mapping method based on linkage disequilibrium, which uses the

ancestral recombination graph to model the history of sequences that may harbor an influential variant. We

describe the construction of a recurrence equation used to make inferences about the location of a trait-

influencing mutation. We demonstrate how a Monte Carlo algorithm combined with a local importance

sampling scheme can be used for mapping. We explain how to simulate the timing of events in the

coalescent in the presence of recombination and mutation, which accomodates variable population size.

We provide an example to illustrate the use of the method, which can be easily extended to more general

situations. Although the method is computationally intensive and variation in the likelihood profiles can

occur, the method offers a great deal of promise. & 2002 Elsevier Science (USA)
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1. INTRODUCTION

Some methods using linkage disequilibrium for
fine mapping purposes have recently been proposed
(Xiong and Guo, 1997; Rannala and Slatkin, 1998;
Graham and Thompson, 1998; McPeek and Strahs,
1999; Service et al., 1999; Morris et al., 2000; Lam et al.,
2000). Some of these methods, like those proposed
by Xiong and Guo (1997), use pairwise statistics to
form a likelihood and assume independence between
marker loci. Others methods, such as those developed
by Graham and Thompson (1998), Morris et al. (2000)
and Rannala and Slatkin (1998), model the ancestry
215
of sequences in a way that allows dependence be-
tween loci. The method of Rannala and Slatkin (1998) is
of particular interest because of its direct use of a
coalescent process to model the evolution of sequences.
Although this method takes into account recombination
in modeling the history of the sequences, it does assume
elements of a standard coalescent process, i.e., without
recombination. It is therefore of interest to design a
gene mapping method that considers both coalescence
events and recombination events, in order to derive a
more powerful method which can work on larger
chromosomal regions. In fact, this idea has begun to
take shape recently in the literature (see, e.g., Marjoram
et al., 2000).
0040-5809/02 $35.00
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In this paper, we propose a method for mapping
a gene influencing a certain trait by modeling the
history of a sample of sequences with an ancestral
recombination graph (Griffiths and Marjoram, 1996a,
b). This is a true multilocus mapping method. We
review the basics of the coalescent process and
its extension to the ancestral recombination graph,
and describe the construction of a recurrence equation
used to make inferences about the location of
the putative disease gene. More details about
the coalescent and extensions taking into account
recombination can be found in works of Griffiths
(1981, 1991), and also Griffiths and Marjoram (1996b)
who consider the problem from a more theoretical point
of view.

2. THE ANCESTRAL RECOMBINATION
GRAPH

The coalescent process (Kingman, 1982) provides a
way to model the ancestry of DNA sequences without
recombination. It should be understand that by
‘‘sequence’’ we mean an actual ordered set of
DNA fragments or markers, some of which may be
variable in the population at large. Both mutation and
coalescence events can be considered and the outcome
be represented by a tree. Excellent reviews of the subject
are given by Hudson (1990), Nordborg and Tavar!ee
(2002) and Nordborg (2001). Inference using the
coalescent has been discussed by Griffiths (1989) and
Griffiths and Tavar!ee (1994a–c, 1996, 1997). More
recently, Stephens and Donnelly (2000) have worked
to develop efficient importance sampling algorithms in
the standard coalescent, followed by Fearnhead and
Donnelly (2001) in the case of the coalescent with
recombination.
An extension of the traditional coalescent, termed

the ancestral recombination graph (ARG), accounts
for recombination (Re), and it has been described
by Griffiths and Marjoram (1996a, b). When re-
combination is considered in a coalescent model,
a sequence is modeled as having one or two parental
sequences in the previous generation (actually, two if
Re occurred and one otherwise), and thus we have
to consider a graph instead of a tree. Notice
that considering recombination in modeling the
evolution of a set of sequences is particularly important
if one wants to develop a tool for gene mapping be-
cause recombination is fundamental in shuffling
DNA from sequence to sequence as chromosomes are
transmitted from generation to generation.
Assume a population of 2N sequences that are

evolving in accordance with the Wright–Fisher
model; in particular, the population size is assumed
constant, generations are discrete, non-overlapping,
and mating is at random. The ancestry of a sample
of sequences is modeled back in time, starting from
the current sample and until the most recent common
ancestor (MRCA) of the sample is found. At each
step in the graph, one of the following events can
occur: (1) two sequences coalesce if they share a
common ancestor; (2) one sequence mutates and then
the genetic material at a single marker locus in
one sequence is changed; or (3) one sequence recom-
bines. When a recombination event occurs, a point of
recombination is chosen randomly from a given
distribution, and the sequence is separated into two
parts coming from two parental sequences called the
‘‘left’’ and ‘‘right’’ parental sequences: the left parental
sequence has the genetic material of the ‘‘child’’ from the
beginning of the sequence to the point of recombination,
and the right parental sequence has the same genetic
material as the child from the point of recombination to
the end of the sequence.
Time is measured in units of 2N generations, and N is

assumed large. The mutation rate u per sequence per
generation is scaled so that y ¼ 4Nu: In the same way,
the recombination rate r per sequence per generation is
scaled so that r ¼ 4Nr: Then, the number of ancestral
sequences in the graph is a birth and death process with
birth and death rates kr=2 and kðk � 1Þ=2; respectively,
when the current number of ancestral sequences is k: A
coalescence event decreases the number of ancestors by
one, while a mutation event does not change the number
of ancestors, and a recombination event increases the
number of ancestors by one. Since coalescence events
occur at a quadratic rate, and recombination events
occur at a linear rate, the number of ancestors remains
finite, and the graph leads eventually to one ancestor,
the MRCA of the sample.
A sample ancestral recombination graph, taken from

Griffiths and Marjoram’s (1996a) paper, is presented in
Fig. 1. This graph shows explicitly the ancestral and
non-ancestral material in a set of sequences. Going
backward in time, a coalescence event occurs when two
sequences join together to form a single one, a mutation
event occurs when one marker allele in one sequence is
changed, and a recombination event occurs when one
sequence is cut into two (note that the number of the
interval that contains the point of recombination is
indicated in a small box in Fig. 1).



FIG. 1. An example of ARG. Symbols: &; primitive ancestral

marker; , mutant ancestral marker; &; non-ancestral marker.

FIG. 2. Sequence configuration if the TIM is at position m:
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3. THE MODEL

We consider sequences of small physical length, so
that we may assume no interference, and that the
distances measured in Morgans are additive. Each
generation, every sequence comes from two parental
sequences with probability r and one parental sequence
with probability 1� r: Here, since we assume no
interference, r is the distance between the first marker
and the last.
We consider a sample of cases and controls, who,

respectively, exhibit (cases) and do not exhibit (controls)
a given phenotype. The trait is assumed to be caused by
a single mutation, and this mutation happened only
once in the history of the sample (this is known as the
infinitely many site model). Moreover, the sample is
assumed to come from a young isolated population, and
the mutation to have high penetrance. Our models and
methods are meant to identify the position of that
mutation.
We suppose n sequences of d possible different types,

with ni sequences of type i ði ¼ 1; . . . ; dÞ: A sequence is
made of Lmarker alleles. These markers are ordered and
the exact locations of L� 1 of them are known. We
denote by rm the distance in Morgans between markers
m and mþ 1: The trait-influencing mutation (TIM) is
itself a marker allele whose location is unknown, and the
state of this allele can be inferred from the phenotype.
This marker will be treated as the others in the
construction of the sample genealogy. The TIM is
supposed to be between the first marker and the last one,
and as such, cannot be outside the observed sequence of
markers. Moreover, the TIM is supposed to be at a
distance rT from the first marker. We derive a maximum
likelihood estimate of rT ; and we find this estimate by
calculating the maximum likelihood of the ancestral
recombination graph conditional on the value of rT : Let
r be the length of the sequences, that is, r ¼

PL�1
p¼1 rp:

Let xm be the location of the marker locus m; with the
convention that the marker locus 1 is at the origin, that
is,

x1 ¼ 0;

xm ¼
Pm�1

p¼1 rp; 24m4L:

(

The sequences can be partitioned into intervals, where
interval p is the segment between markers loci p and
p þ 1: A sequence is illustrated in Fig. 2. It is under-
stood that a ‘‘sequence’’ is simply an ordered set of
markers at known loci except the one associated to the
TIM.
Each marker locus m has a coalescent tree T ðmÞ

describing the history of the sample for this marker. To
obtain T ðmÞ; start from the initial sample, and for each
sequence follow the edges of the ancestral recombina-
tion graph for marker m; when a recombination event
occurs, take the left path if the recombination happened
after m; otherwise take the right path. The set of all these
edges defines T ðmÞ: Figure 3 illustrates this concept,
showing the partial trees for the ARG of Fig. 1. A
marker m in a given sequence is ancestral if this marker
is included in T ðmÞ; otherwise, it is non-ancestral.
Moreover, an ancestral marker can be of two different
types: a primitive type ð&Þ; if it is a copy of an allele
from the MRCA without mutation, or a mutant type
ð Þ; if it is a mutant copy of an allele from the MRCA.
A non-ancestral marker will be represented by &:
The tth historical event backward in time

(t ¼ 0; . . . ; tn; where 0 corresponds to the initial sample
and tn to the last coalescence to the MRCA) is assumed
to occur at time tt: Let us denote by Ht the set of
ancestral sequences at time tt just after t events
occurred. Then, Ht is a set of sets: a set of ancestral



FIG. 3. Partial tree of ARG of Fig. 1 for each marker: partial tree for marker 1(i), 2(ii), 3(iii), and 4(iv).
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markers, a set of mutations, a set of multiplicities, and a
set of information about the trait, so that Ht¼ðA;M ; n;
T Þ; following Griffiths and Marjoram’s (1996a) nota-
tion. The following notation is used for the possible
events as they occur backward in time:

Ci Co of two identical sequences i;

Ck
ij Co of sequences i and j into sequence k;

Mj
i Mu from sequence i to sequence j;

Rjk
i Re of sequence i into sequences j and k;

8>>>><
>>>>:
where Co means coalescence, Mu mutation and Re
recombination.
Let QðHtÞ be the probability distribution of state Ht:

Then, QðHtÞ is a function of QðHtþ1Þ: We will write, by
convention, Htþ1 ¼ ðHt þ Rjk

i Þ; if Ht is modified by an
event of recombination Rjk

i at time ttþ1; and so on.
If a recombination event occurs, the density fZðzÞ of

the point of recombination is assumed to be

fZðzÞ ¼
1

r
if 05z5r:
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Although the point of recombination can be any-
where in the sequence, only a recombination event
between two ancestral markers will affect the original
sample. Such a recombination event will be called an
‘‘ancestral recombination’’, as in Fearnhead and Don-
nelly (2001). Consider, for example, the two sequences
of five markers in Fig. 4.
Following Fig. 4, if a recombination event occurs

involving sequence 1 between markers 1 and 2, the two
resulting sequences will be on one hand a sequence of
five non-ancestral markers and on the other hand the
same sequence as sequence 1. This illustrates the fact
that this event does not modify the history of the sample
nor does it bring any new information. Let gi ðkiÞ be the
number of the first (last) intervals of a sequence of type i
where a recombination event can affect the ancestral
material. For example, in Fig. 4, g1 ¼ 2; k1 ¼ 3 for
sequence 1, and g2 ¼ 1; k2 ¼ 2 for sequence 2. More-
over, let

ci ¼
1

r
½maxfxm; marker m 2 Aig

� minfxm; marker m 2 Aig
;

where Ai represents the set of ancestral markers on
sequence i: Then, ci represents the proportion of
sequence i for which a recombination event could affect
its ancestral material. Moreover, let

b ¼
Xd
i¼1

niðmaxfxm; marker m 2 Aig

� minfxm; marker m 2 AigÞ:

Then, 04b4nr and b is the total sequence length over
all sequences where a recombination event could affect
the ancestral material, taking into account the multi-
plicities of the sequences.
Similarly, a mutation event does not necessarily affect

the history of the sample, and we distinguish between
ancestral and non-ancestral mutation events. Let us
denote by jAij the number of markers loci on sequence i
where a mutation event is ancestral when it occurs, and
by a ¼

Pd
i¼1 nijAij; the corresponding total number of

markers loci over all sequences (n4a4nL). In Fig. 4,
FIG. 4. Example of two sequences.
for example, if the multiplicity of sequences 1 and 2 is
one, then a ¼ 3þ 2:

4. RECURSION PROBABILITIES

Consider the history of a sequence from state ðA;M ;
n; T Þ; and assume that events of coalescence, mutation,
and recombination occur with the corresponding
probabilities:

nðn� 1Þ=½nðn� 1Þ þ nyþ nr
 for a coalescence;

ny=½nðn� 1Þ þ nyþ nr
 for a mutation;

nr=½nðn� 1Þ þ nyþ nr
 for a recombination:

8><
>:
Now, if a coalescence event occurs, there are

n� 1 sequences one step back in time. As each sequence
has the same probability to coalesce, sequences of
type i coalesce with probability ðni � 1Þ=ðn� 1Þ;
since one step back in time, there are ni � 1 sequences
of type i: If two different types of sequence, i and j;
coalesce into a new sequence k; we must take into
account the possibility that types i and k; or j and k; are
identical. Thus, the probability that i and j coalesce to k
is ðnk þ 1� dik � djkÞ=ðn� 1Þ; where dik ¼ 1 if i ¼ k; and
0 if iak:
If the first event back in time is a mutation event, then

there is a sequence i which comes from a sequence k with
probability ðnk þ 1Þ=n; since one step back in time the
number of sequences k is nk þ 1 (the actual number of
sequences, k; plus the new one produced), and the total
number of sequences is unchanged, and so this total
remains equal to n: Moreover, a mutation event occurs
in non-ancestral material with probability ðnL� aÞ=nL:
A recombination event can occur in any of the L� 1

intervals of any sequence. When this happens in a given
interval of some sequence i; then the sequence i has the
same genetic material as some sequence j on the left of
the recombination interval, and the same genetic
material as some sequence k on the right of the
recombination interval. In this context, we thus consider
ordered pairs of sequences j and k: One step back in
time, we have nj þ 1 sequences of type j and nk þ 1
sequences of type k; since the total number of sequences
is then nþ 1; and the total number of possible ordered
pairs of sequences is nðnþ 1Þ: This event has probability
½ðni þ 1Þðnj þ 1Þ
=½nðnþ 1Þ
: Moreover, since 04b4nr; a
recombination event could happen without affecting the
ancestral material with probability ðnr � bÞ=nr:
These facts lead to a recursion, when time is measured

in units of 2N generations, analogous to that discussed
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by Griffiths and Marjoram (1996a) in the derivation of
their formula for a continuous model:

QðHtÞ ¼
nðn� 1Þ

D

X
1

ni � 1

n� 1
QðHt þ CiÞ

"

þ 2
X
2

nk þ 1� dik � djk
n� 1

QðHt þ Ck
ijÞ

#

þ
ny
D

X
3

nj þ 1

n
QðHt þMj

i Þ

"

þ
ðnL� aÞ

nL
QðHtÞ




þ
nr
D

Xd
i¼1

Xki
p¼gi

rp
r
ðnj þ 1Þðnk þ 1Þ

nðnþ 1Þ

("

QðHt þ Rjk
i ðpÞÞ

o
þ
ðnr � bÞ

nr
QðHtÞ



; ð1Þ

where D ¼ ½nðn� 1Þ þ nyþ nr
; and the numbers on the
right refer to the following events:

Coalescence of two sequences of the same type i;
Coalescence of two sequences of different types,
i and j; to one sequence of type k;
Mutation of sequence i to sequence j; where
sequence j may already exist,
Mutation in non-ancestral material,
Recombination of sequence i in interval p that
produces sequences j and k; where sequences j
and k may already exist,
Recombination in non-ancestral material,
and where the numbers under the summation
signs mean:

(1) Summation over types i ¼ 1; . . . ; d; fi; ni > 1g;
(2) Summation over unordered pairs i; j that

possess the same set of mutations in the
ancestral material,

(3) Summation over all singleton mutations.

Note that the parameter rT is hidden in the preceding
formula: for two values of p; corresponding to the
intervals on both sides of the TIM, the values of rp
depend on the value of rT : Let rl and rr be the lengths of
the intervals on the left and the right of the TIM that
depend only on rT : Define:

dlp ¼
1 if maxfx 2 ½xp; xpþ1
g ¼ rT ;

0 otherwise;

(

drp ¼
1 if minfx 2 ½xp; xpþ1
g ¼ rT ;

0 otherwise:

(

In other words, dlp ðdrp) is equal to 1 if the TIM is the
marker on the right (on the left) of interval p; and equal
to 0 otherwise. With this in mind, the recombination
term (line ) in the preceding equation can be written
in the form:

Xd
i¼1

Xki
p¼gi

rp
r
ð1� dlpÞð1� drpÞ þ

rl
r
dlp þ

rr
r
drp

h i

ðnj þ 1Þðnk þ 1Þ
nðnþ 1Þ

QðHt þ Rjk
i ðpÞÞ:

ð2Þ

Note that nj þ 1 and nk þ 1 are the numbers of
sequences of types j and k existing one step back in time.
In Griffiths and Marjoram’s (1996a) model, assuming a
continuous segment of DNA, they always have nj ¼
nk ¼ 0; but in the discrete implementation, nj and nk are
not always zero.

5. ALGEBRAIC IDENTITIES AND
IMPORTANCE SAMPLING

We now use a Monte Carlo strategy introduced for
the first time by Griffiths and Tavar!ee (1994b). Using the
notation a ¼ a=ðnLÞ; b ¼ b=ðnrÞ; DHt ¼ ½nðn� 1Þ þ nay
þnbr
; and SHt ¼ n

P
1 ðni � 1Þ þ 2n

P
2 ðnk þ 1�

dik � djkÞ þ y
P

3 ðnj þ 1Þ þ
Pd

i¼1

Pki
p¼gi

½rrpr 
=½ðnþ 1Þ
;
recursion (1) can be written in the form

QðHtÞ ¼
X
1

SHt

DHt

nðni � 1Þ
SHt

QðHt þ CiÞ

þ
X
2

SHt

DHt

2nðnk þ 1� dik � djkÞ
SHt

QðHt þ Ck
ijÞ

þ
X
3

SHt

DHt

yðnj þ 1Þ
SHt

QðHt þMj
i Þ

þ
Xd
i¼1

Xki
p¼gi

ðnj þ 1Þðnk þ 1ÞSHt

DHt

rrpr
SHt ðnþ 1Þ

QðHt þ Rjk
i ðpÞÞ:

Let us define a Markov chain with transition probabil-
ities from Ht to Htþ1; denoted by P ðHtþ1jHtÞ; as
follows. At time tþ 1; a transition is made from Ht to

ðHt þ CiÞ w:p: nðni � 1Þ=SHt ;

ðHt þ Ck
ijÞ w:p: 2nðnk þ 1� dik � djkÞ=SHt ;

ðHt þMj
i Þ w:p: yðnj þ 1Þ=SHt ;

ðHt þ Rjk
i ðpÞÞ w:p: rrpr =½ðnþ 1ÞSHt 
; ð3Þ
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where w.p. means ‘‘with probability’’. Let

f ðHt;Htþ1Þ

¼
SHt=DHt if Co or Mu;

ðnj þ 1Þðnk þ 1ÞSHt=DHt if Re:

(
ð4Þ

The state Ht is the state chain at step t for t ¼ 0; . . . ; tn

(where tn is the absorption time). There is an absorb-
ing state when a common ancestor is found for
all sequences, and then the configuration is denoted
by Htn . Since the MRCA has primitive ancestral
markers at all loci, HðtnÞ is uniquely determined
with probability 1. This means that QðHtnÞ is 1
for a single sequence and 0 for all others. Then, we
have

QðH0Þ ¼
X
Htþ1

f ðHt;Htþ1ÞP ðHtþ1jHtÞQðHtþ1Þ

for t ¼ 0; . . . ; tn; from which

QðH0Þ ¼
X
H1

X
H2

� � �
X
Htn

f ðH0Þf ðH1Þf ðH2Þ � � �

f ðHtn�1ÞP ðH1jH0ÞP ðH2jH1Þ � � �

P ðHtn jHtn�1ÞQðHtnÞ

and therefore

QðH0Þ ¼ EP

Ytn�1
t¼0

f ðHt;Htþ1Þ

" #
: ð5Þ

This is an importance sampling representation with
proposal distribution P :
Let Y ¼ fy; rT g be the set of the unknown parameters

of the process. Then, given Y0 ¼ ðy0; rT0Þ; an estimate of
QYðHtÞ can be found for different values of Y: We have

QYðHtÞ ¼
X
Htþ1

hYY0
ðHt;Htþ1ÞPY0

ðHtþ1jHtÞQYðHtþ1Þ;

where

hYY0
ðHt;Htþ1Þ ¼

fYðHt;Htþ1ÞPYðHtþ1jHtÞ
PY0

ðHtþ1jHtÞ
;

which can be estimated by the expectation

EPY0

Ytn�1
t¼0

hYY0
ðHt;Htþ1Þ

" #
:

Denoting by r0l and r0r the parameters rl and rr under
Y0; and with fY as defined in (4) and PY as in (3), the
function hYY0

takes the form

hYY0
ðHt;Htþ1Þ ¼

SðHt;Y0Þ

DðHt;YÞ
fðHt;Htþ1Þ;
where fðHt;Htþ1Þ

¼

y=y0 if Mu;

ðnj þ 1Þðnk þ 1Þ

rpð1�dlpÞð1�drpÞþ rld
l
pþ rrd

r
p

rpð1�dlpÞð1�drpÞþ r0ld
l
pþ r0rd

r
p

if Re;

1
otherwise:

8>>>>>>>><
>>>>>>>>:

It is important to note that if a recombination event
occurs in an interval where the TIM does not exist, then
fðHt;Htþ1Þ ¼ ðnj þ 1Þðnk þ 1Þ; and f ¼ h: On the other
hand, fðHt;Htþ1Þ is different from 1 as soon as a
recombination event occurs in the interval harboring the
TIM, i.e., whenever dlp or drp is different from 0, and
then fah:
The proposed method to evaluate the likelihood

of rT along a sequence involves evaluating QY0
for

Y0 ¼ ffy0; rT1g; fy0; rT2g; . . . ; fy0; rTL�1gg; i.e., the use
of L� 1 driving sets. Note that only one driving
value is used for the parameter y; but several values
could, in theory, be used in combination with different
values of rT : For the driving value rTp ; we take
the middle of interval p (14p4L� 1). The likelihood
in interval p for values other than rTp is evaluated by
the importance sampling scheme described above:
graphs constructed with a driving value rTp are used to
evaluate the likelihood in the region ðxp; xpþ1Þ of the
sequence.

6. SIMULATING RECOMBINATION

In the construction of the graph, we have to
calculate at each step of the process the probabilities
of all the events that can occur one step back in time.
In order to simulate a recombination event, we can
first choose a sequence at random, and then an interval
of recombination at random on the chosen sequence,
as in Griffiths and Marjoram (1996a), or equivalently,
use the following method: first choose an interval
of recombination at random and then choose a seq-
uence at random that will recombine at a point in
the chosen interval. Denote by n0p the number
of sequences for which interval p is ancestral
for recombination. This is the case for type i if inter-
val p is between the first marker ðgiÞ and the last
marker ðkiÞ in the set of the ancestral markers.
From this, a reformulation of the previous scheme can
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be derived:

QðHtÞ

¼
1

DHt

n
X
1

ðni � 1ÞQðHt þ CiÞ

"

þ 2n
X
2

ðnk þ 1� dik � djkÞQðHt þ Ck
ijÞ

þ y
X
3

ðnj þ 1ÞQðHt þMj
i Þ þ

r
nþ 1

XL�1
p¼1

n0p
rp
r
ðnJ þ 1ÞðnK þ 1ÞQðHt þ RJK

I ðpÞÞ

#
;

where I is a sequence chosen at random, and sequences J
and K are determined by I and p: The last term of the
previous equation can be written:

r
nþ 1

XL�1
p¼1

n0p
d

rp
r
ð1� dlpÞð1� drpÞ þ

rl
r
dlp þ

rr
r
drp

h i
� ðnJ þ 1ÞðnK þ 1ÞQðHt þ RJK

I ðpÞÞ:

Therefore, we will choose an interval of recombination
at random, then a sequence I at random, and finally we
will calculate the factor ðnJ þ 1ÞðnK þ 1Þ: With this
scheme in mind, the recursion becomes

QðHtÞ ¼
X
1

SHt

DHt

nðni � 1Þ
SHt

QðHt þ CiÞ

þ
X
2

SHt

DHt

2nðnk þ 1� dik � djkÞ
SHt

QðHt þ Ck
ijÞ

þ
X
3

SHt

DHt

yðnj þ 1Þ
SHt

QðHt þMj
i Þ

þ
XL�1
p¼1

ðnJ þ 1ÞðnK þ 1ÞSHt

DHt

rn0p½rp=r


SHt ðnþ 1Þ
QðHt þ RJK

I ðpÞÞ;

which is of the form

QðHtÞ ¼
X
Htþ1

f ðHt;Htþ1ÞP ðHtþ1 jHtÞQðHtþ1Þ;

where DHt ¼ ½nðn� 1Þ þ nayþ nbr
 as previously de-
fined and

SHt ¼ n
X
1

ðni � 1Þ þ 2n
X
2

ðnk þ 1� dik � djkÞ

þ y
X
3

ðnj þ 1Þ þ
XL�1
p¼1

rn0p½rp=r


ðnþ 1Þ
:

At time tþ 1; a transition is made from Ht to:

ðHt þ CiÞ w:p: nðni � 1Þ=SHt ;

ðHt þ Ck
ijÞ w:p: 2nðnk þ 1� dik � djkÞ=SHt ;

ðHt þMj
i Þ w:p: yðnj þ 1Þ=SHt ;

ðHt þ RJK
I ðpÞÞ w:p: r½n0p½rp=r

=½ðnþ 1ÞSHt 
;

where w.p. means ‘‘with probability’’. The function f is
of the same form:

f ðHt;Htþ1Þ ¼

SHt=DHt ;

if Co or Mu;

ðnJ þ 1ÞðnK þ 1ÞSHt=DHt ;

if Re;

8>>>>>><
>>>>>>:

while the functions h and f differ only by replacing the
sequences i; j; k; assuming a recombination event, by I ;
J ; K; that is,

hYY0
ðHt;Htþ1Þ ¼

SðHt ;Y0Þ

DðHt;YÞ
fðHt;Htþ1Þ;

where fðHt;Htþ1Þ

¼

y=y0 if Mu;

ðnJ þ 1ÞðnK þ 1Þ

rpð1� dlpÞð1� drpÞ þ rld
l
p þ rrd

r
p

rpð1� dlpÞð1� drpÞ þ r0ld
l
p þ r0rd

r
p

if Re;

1
otherwise:

8>>>>>>>><
>>>>>>>>:

Note again that if a recombination event happens in an
interval where the TIM does not exist, then dlp ¼ drp ¼ 0;
fðHt;Htþ1Þ ¼ ðnJ þ 1ÞðnK þ 1Þ; and f ð� ; �Þ ¼ hð� ; �Þ: On
the other hand, fðHt;Htþ1Þ is different from 1, as soon
as a recombination event happens in the interval
harboring the TIM, i.e., whenever dlp or drp is different
from 0, and then f ð� ; �Þahð� ; �Þ:

7. VARIABLE POPULATION SIZE

We have assumed until now that the population size is
constant. For realistic applications however, it is useful
to allow variable population size. In the coalescent
without recombination (Donnelly and Tavar!ee, 1995;
Griffiths and Tavar!ee, 1997; Norborg, 2001), the change
in population size causes a change of scale in the
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coalescent tree. For example, if a population experiences
an exponential expansion, the more one goes back into
the past, the more a coalescence event is likely to
occur, since the population gets smaller and it takes
less time for a coalescence event to occur.
With recombination, a variable population size does
not only change the scale of the ancestral graph, but also
its topology. In the case of an exponential expansion, for
example, the more one goes back into the past, the more
a coalescence event is likely to occur instead of a
recombination event.
Let Wt be the time of occurrence of the tth

event ðt ¼ 0; . . . ; tnÞ; and St ¼ Wt � Wt�1: If the popula-
tion size is 2N and the number of sequences in
the sample is n; then the probabilities of coalescence,
recombination and mutation in one generation are,
respectively, ðn

2
Þ=2N ; br and au: Moreover, the time until

an event occurs is exponentially distributed with
parameter:

1� 1�
nðn� 1Þ
4N

� �
ð1� brÞnð1� auÞn

�
n
4N

ðn� 1þ ayþ brÞ:

Therefore, the expected time to the next event in
units of 2N generations (Griffiths and Marjoram,
1996a) is

EðStjWtÞ ¼ 2=½nðn� 1þ ayþ brÞ
: ð6Þ

Let us now suppose that the population size varies
with time in a deterministic fashion. We will suppose
that we know 2N ðtÞ; the size of the population at time t:
Let us denote by nðtÞ the ratio of the population size at
time t and 0, so that nðtÞ ¼ N ðtÞ=N ð0Þ; where N ð0Þ ¼ N :
Let lðtÞ ¼ 1=nðtÞ: Given a sample of n sequences at time
t; we have P ðCoÞ ¼ ðn

2
Þ=2N ðtÞ ¼ ½nðn� 1Þ
=½4nðtÞN 
;

P ðReÞ ¼ nr and P ðMuÞ ¼ nu: Therefore, the probabil-
ities of these events, given that at least one of them
occurs, are:

P ðCoj�Þ ¼
½nðn� 1Þ
=½4nðtÞN 


½nðn� 1Þ
=½4nðtÞN 
 þ nr þ nu

¼
nðn� 1ÞlðtÞ

nðn� 1ÞlðtÞ þ nrþ ny
;

P ðRej�Þ ¼
nr

½nðn� 1Þ
=½4nðtÞN 
 þ nr þ nu

¼
nr

nðn� 1ÞlðtÞ þ nrþ ny
;

P ðMuj�Þ ¼
nu

½nðn� 1Þ
=½4nðtÞN 
 þ nr þ nu

¼
ny

nðn� 1ÞlðtÞ þ nrþ ny
:

Then, the recurrence equation for QðHtÞ is

QðHtÞ ¼
Z 1

Wt

"
ðnL� aÞy=Lþ ðnr � bÞr=r
½nðn� 1ÞlðWtþ1Þ þ nyþ nr


QðHtÞ

þ
nðn� 1ÞlðWtþ1Þ

D0

X
1

ðni � 1Þ
ðn� 1Þ

QðHt þ CiÞ

þ
2nðn� 1ÞlðWtþ1Þ

D0

X
2

ðnk þ 1� dik � djkÞ
ðn� 1Þ

QðHt þ Ck
ijÞ þ

ny
D0

X
3

ðnj þ 1Þ
n

QðHt þMj
i Þ þ

nr
D0

Xd
i¼1

Xki
p¼gi

rp
r
ðnj þ 1Þðnk þ 1Þ

nðnþ 1Þ

�QðHt þ Rjk
i ðpÞÞ

#
gðWtþ1jWtÞ dWtþ1;

where D0 ¼ ½nðn� 1ÞlðWtþ1Þ þ nyþ nr
; and gðWtþ1jWtÞ
is the distribution of the time of occurrence of the
ðtþ 1Þth event, given the time of occurrence of the tth
event. The probability that Wtþ1 exceeds s given Wt is the
probability that no coalescence, recombination, or
mutation event occurs in the time interval St; and is
given by

P ðWtþ1 > sjWtÞ ¼ exp �
Z s

Wt

FðuÞ du
� �

;

where

FðuÞ ¼
nðn� 1Þ

2
lðuÞ þ

nay
2

þ
nbr
2

:

Now, in order to take into account time and variable
population size in the Monte Carlo algorithm, we can
simulate the time to the next event according to the right
distribution (Donnelly and Tavar!ee, 1995; Griffiths and
Tavar!ee, 1996). Suppose that lðuÞ ¼ expðkuÞ; so that the
population grows exponentially fast. Donnelly and
Tavar!ee (1995) have suggested simulating time in the
following way: let fU0;U1; . . .g be a sequence of
mutually independent uniform random variables, and
then solve the following equation:

1� P ðWtþ14sjWtÞ ¼ Ut;

, exp �
Z s

Wt

FðuÞ du
� �

¼ Ut;
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, �
Z s

Wt

(
nðn� 1Þ

2
expðkuÞþ

nay
2

þ
nbr
2

)
du¼logðUtÞ

,
�nðn� 1Þ

2k
expðksÞ � s

nay
2

þ
nbr
2

� �

þ
nðn� 1Þ

2k
expðkWtÞ þ Wt

nay
2

þ
nbr
2

� �

� logðUtÞ ¼ 0:

There is no direct solution to express the unknown
variable s as a function of the other parameters.
However, in the particular case where y ¼ r ¼ 0; the
above equation becomes

s ¼
1

k
log �

2

nðn� 1Þ
k logðUtÞ þ expðkWtÞ

� 

: ð7Þ

This result can be found in Griffiths and Tavar!ee (1998)
and Griffiths (2001). Going back to the general case, we
have to find the solution of

a expðbsÞ þ scþ d ¼ 0;

which can be derived using the algebraic software
package Maple:

s ¼ �
1

bc
W

1

c
ab exp �

db
c

� �� �
cþ db

� 

; ð8Þ

where W is the Lambert W function defined by

W ðxÞ ¼
X1
n¼1

ð�1Þn�1nn�2

ðn� 1Þ!
xn:

This function is the inverse of the function wew (Corless
et al., 1996). Note that the above series oscillates
between large negative and positive values for real x5
4 (Weissten, 2000). However, an algorithm based on
Halley iteration converges rapidly for all valid x (Briggs,
1998). The algorithm produces the value Wt ¼ W ðxÞ:
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FIG. 5. Densities for the three cases (a), (b) and
Using this strategy, we can now model variable
population sizes of exponential growth.
We now show an example for the distribution of the

time to the next event. Simulating 80,000 variates
distributed uniformly on [0, 1], the observations were
regrouped to approximate the densities of sc (coalescence
only) using (7) and scrm (coalescence, recombination and
mutation) using (8), and corresponding means mc and mcrm:
Three cases were considered with n ¼ 88;k ¼ 1700; t ¼
10�5 and the following values for the other parameters:

(a) y ¼ 10; r ¼ 10; in which case mc ¼ 2:01� 10�4 and
mcrm ¼ 1:78� 10�4;

(b) y ¼ 100; r ¼ 100; in which case mc ¼ 2:01� 10�4

and mcrm ¼ 8:55� 10�5;
(c) y ¼ 358; r ¼ 358; in which case mc ¼ 2:01� 10�4

and mcrm ¼ 3:81� 10�5:

The densities for the three cases are illustrated in
Fig. 5.
In case (a), where y and r are small, the two densities

are almost identical. In case (b), we see a significant
difference in the distributions: the ‘‘next event’’ will
occur sooner. The third case, (c), illustrates a situation in
which recombination and mutation rates are higher
(corresponding to the case of EPM disease, see
Virtaneva et al., 1996). The larger y and r are, the
smaller the mean time to the next event, and it thus
becomes more important to take into account variable
population size. A larger value for the parameter of
recombination r is especially important in view of
studies of sequences of moderate length.

8. COMPUTER IMPLEMENTATION

A computer program, written in C++, implements the
above procedure in the case of a constant population
0

10

20

30

6 0.0008 0.0010 0.0012 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(c)

(c). Plain line is for sc and dash line for scrm:



FIG. 6. Simulated data. Multiplicity of each sequence ðniÞ; marker
loci and information on the trait (TIM).
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size, and also for variable population size. The program
compiles adequately with the standard GNU compiler
on several operating systems (e.g., Windows, Linux,
Solaris, Irix).
However, there are numerical problems related to the

computation of the likelihood value. As we have seen
(Eq. (5)), the likelihood value is estimated by

LðrT Þ ¼ EP

Ytn�1
t¼0

f ðHt;Htþ1Þ

" #
: ð9Þ

Usually the function f at each step of the graph is less
than one, while the number of steps, tn; is large,
particularly if the number and the length of the
sequences are large. Therefore, the product in (9) can
be very small, in fact smaller than the precision of the
computer. One approach to solve this problem is to
rescale the likelihood value such that lL; for some l; is
estimated for K simulations:

l
1

K

XK
i¼1

Ytn�1
t¼0

f ðHt;Htþ1Þ

" #

¼
1

K

XK
i¼1

l
Ytn�1
t¼0

f ðHt;Htþ1Þ

" #
:

This approach can work, but it is still limited by the
precision of the computer. Another approach is to use
an extended numeric range floating point type. The
EXTNUM package can be used (NBIC, 2001). An EXTNUM

number can take any (positive or negative) value
between 1� 10�646;456;993 and 2� 10646;456;992; and there-
fore solve this problem.
Another important point is to have a good random

number generator, which should be fast, and have a long
period. We have used a C++ implementation (Wagner,
2001) of the Mersenne Twister (Matsumoto and
Nishimura, 1998), which has a period of 219937 � 1:
The program takes ASCII files for input (one data file

and one file with the parameter values), and generates
ASCII files for output. Graphs can be made with this
output directly by the GNUPLOT program, or, for
example, the SAS program.

9. AN EXAMPLE

In order to verify the proposed theory and its
implementation in a computer program, we consider
an example. This example also illustrates the results
produced by the program.
The data is generated according to a Wright–Fisher
neutral model by the ms program from Hudson (2001),
using a constant population size. A sample of 30
sequences are generated with r ¼ 60; in order to have
five segregating sites in the sequence (using an option in
the program). To illustrate the method, we will suppose
that the third site is unknown and in complete linkage
with a gene causing a disease, and that we have full
penetrance. In assessing the data under these assump-
tions, we have also removed information on the third
site, but consider information on disease status. The
position of the TIM is then in the second interval.
The data consists of seven different sequence types

and four marker loci, and information on the trait. We
have 20 control sequences and 10 case sequences. The
data are shown in Fig. 6.
We set r ¼ 60; and y ¼ 60 for analyzing the data.

Given an effective population size of 10,000, we have
r ¼ 0:15 cM: The distance between marker loci was
assumed to be 0:05 cM for each of the three intervals.
Results are shown in Fig. 7. The scale is the same on all
the graphs to compare the heights of the curves: the y-
axis is the logarithm of the likelihood, and the x-axis is
the position of the TIM on the sequence ðrT Þ; where 0 is
the position of the first marker of the sequence. The first
graph (Fig. 7a) shows likelihood profiles of two
independent runs of 16 millions iterations (plain lines),
and the combined likelihood on these 32 millions
iterations (dash line).
The maximum likelihood estimate of rT is #rrT �

0:078 cM: The two profiles are very similar, even if a
difference of height in the likelihood is observed. If fact,
each of these two runs of 16 millions is constructed on
three independent runs: one of 1 million, a second one of
5 millions and a third run of 10 millions. To see
variability in the profiles, Fig. 7b–d shows likelihood
profiles for the two runs of 1, 5 and 10 million iterations,



FIG. 7. Likelihood profile obtained with data from a simulated example of 30 sequences. Plain lines are independent results for a defined number

of iterations of the process, and dashed lines are the combined likelihood of these two runs. (a) 16� 106 iterations run twice (b) 1� 106 iterations run

twice (c) 5� 106 iterations run twice (d) 10� 106 iterations run twice.
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respectively. We can see that the value of the maximum
likelihood is higher when more iterations of the process
are done. In the three cases, the maximum likelihood of
rT is in the second interval, as expected. Even though the
likelihood profiles are similar, there are non-negligible
variations in the likelihood curves. To observe two
similar replications of the likelihood curves, more
iterations are probably needed.
With a high-performance desktop computer (Pentium

III 1 GHz), a mean time of approximately 7 h is needed
to do 1 million iterations for this data. A total of 9 days
of computing time have been necessary to do the 32
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millions iterations. Of course, several machines were
used and the time needed to analyze data is greatly
reduced from a few days to a day as a result. But, it is
clear that a high performance computer is a prerequisite
if one is to use the method with real data.
In the implementation of the method, there is an

option to abort construction of graphs that take too
much time, in case the process is ‘‘lost’’. In such cases,
the likelihood returned by the program for the graph is
0. Let n be the maximum number of events allowed in a
construction of a graph. For the above example, n ¼
1000; which in reality is just a precaution, because none
of the 32 millions graphs have been aborted. When
making millions of graphs, there are large differences in
likelihood heights between different graphs, and as such,
only a few graphs contribute significantly to the
likelihood. Therefore, even if there is no direct relation-
ship between the number of events in a graph and the
likelihood, we can improve the speed of the process by
aborting early graphs that contain too many events.
Note that a similar process is used by Griffiths and
Marjoram (1996a), but the switch to abort the
construction of a graph is based on a combinatorial
constant.
We have arbitrarily set n in order to have between 5%

and 10% of the graphs really constructed; this can easily
be done after a few short trials. We chose n ¼ 75 to
match (approximately) our proposed requirements. We
observed that the percentage of aborted graphs is 91%,
FIG. 8. Likelihood profile based on 20 millions iter
94% and 95% in the first, second and third interval,
respectively. Results of a process of 20 millions
iterations is shown in Fig. 8a. As expected, the like-
lihood profile is almost the same as the likelihood on the
32 millions iterations with n ¼ 1000; and we obtain #rTrT ¼
0:083; slightly higher than our previous estimation. The
difference is in the computation time used to run the
process: only 4:5 h are necessary to do 1 million
iterations, instead of 7 h when n was 1000.
Another parameter we can use to improve the speed

of the process is the probability of recombination. We
know that the larger the sequence, the longer the time
needed to relate the observed sequences to a common
ancestor. We introduce now the factor x which is a
recombination weight. First divide and multiply by x the
probability of recombination in Eq. (1), such that the
probability of the event Rjk

i ðpÞ is now

xrrp=r
SHt ðnþ 1Þ

and the function f ðHt;Htþ1Þ associated with this event
is now

ðnj þ 1Þðnk þ 1ÞSHt

xDHt

:

We considered another estimation with x ¼ 0:33 and n ¼
60; and the likelihood profile based on 20 millions
iterations and the results are shown if Fig. 8b. The
estimate of rT is now 0:072 cM: We can see that the
ations a) with n ¼ 75; b) with x ¼ 0:33 and n ¼ 60:
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likelihood is very similar to the other estimations,
particularly the original estimation based on 32 millions
iterations. There is a significant difference in computing
time however: a mean time of 1 h 51 m was necessary
for each of the million iterations, so the process is almost
four times faster than the first set of estimations.
Of course, a value for x is difficult to choose. If x is

too small, not enough recombination events will occur,
and the estimation of rT will become difficult. Also, if x
is too small, the likelihood in a single interval will be flat.
Therefore, if the x parameter is used (i.e., xa1), great
caution should be used to interpret the results. The use
of the x parameter in the above example does not
provide proof of its applicability, but is only shown to
make clear that its use can greatly help to shorten the
speed of the process. Also, it demonstrates the facility to
work with the ancestral recombination graph and the
Griffiths–Tavar!ee’s (1994b) method of estimation.

10. DISCUSSION

We have developed a framework for gene mapping
using linkage disequilibrium, by modeling the history of
observed sequences collected on cases and controls via
the ancestral recombination graph. The likelihood of the
location of the disease gene is estimated by a Monte
Carlo method based on a recurrence equation involving
probability distributions. Several driving values for the
Markov chain are used, and an importance sampling
scheme is developed to obtain the likelihood for other
values inside a single interval between two markers. One
strength of this method is that it is a true multilocus
method. Sequences of any length could be studied by
this method, as long as interference can be ignored. We
think that this method can be extended to more general
situations and have a lot of potential. The method is
designed to use markers with low mutation rates, but
can be adapted easily to any type of marker, as well as
any kind of mutation process. We have shown how to
simulate the time to the next event in the presence of
coalescence, mutation and recombination, and have also
developed our method to accommodate variable popu-
lation size. As pointed out by an anonymous referee and
already mentioned by R.C. Griffiths (pers. comm.), an
alternative way is to simulate two independent random
variables X and Y such that

P ðX > xÞ ¼ exp �
Z x

t

2

n

 !
expðkuÞ du

 !
;

P ðY > yÞ ¼ exp �
n
2
ðy � tÞðayþ brÞ

� �
;

and then take Wtþ1 ¼ minðX ; Y Þ: We think that our
proposed method to map a disease gene has potential,
and it is our hope that its description will spark further
interest in the subject.
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