
Dynamic Games and Applications (2021) 11:803–834
https://doi.org/10.1007/s13235-021-00383-2

Effect of Variability in Payoffs on Conditions for the Evolution
of Cooperation in a Small Population

Dhaker Kroumi1 · Éloi Martin2 · Cong Li2,3 · Sabin Lessard2

Accepted: 12 March 2021 / Published online: 17 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we study the effect of stochastic fluctuations in payoffs for two strategies,
cooperation and defection, used in random pairwise interactions in a population of fixed
finite size with an update according to a Moran model. We assume that the means, variances
and covariances of the payoffs are of the same small order while all higher-order moments
are negligible. We show that more variability in the payoffs to defection and less variability
in the payoffs to cooperation contribute to the evolutionary success of cooperation over
defection as measured by fixation probabilities under weak selection. This conclusion is
drawn by comparing the probabilities of ultimate fixation of cooperation and defection as
single mutants to each other and to what they would be under neutrality. These comparisons
are examined in detail with respect to the population size and the second moments of the
payoffs in five cases of additive Prisoner’s Dilemmas. The analysis is extended to a Prisoner’s
Dilemma repeated a random number of times with Tit-for-Tat starting with cooperation and
Always-Defect as strategies. Moreover, simulations with an update according to a Wright–
Fisher model suggest that the conclusions are robust.
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1 Introduction

Evolutionary game theory was originally formulated in the framework of an infinite pop-
ulation in continuous time where payoffs of strategies are interpreted as growth rates and
changes in strategy frequencies are described by a deterministic replicator equation [6,27,31].
However, deterministic dynamics fail to capture the fact that real populations are finite. To
take this fact into account, we have to resort to stochastic processes such as Markov chains.
In the situation of two strategies A and B in a population of fixed finite size N with updating
at discrete time steps, the frequency of A is a Markov chain in discrete time. In the absence
of recurrent mutation, this Markov chain possesses two absorbing states corresponding to
A fixation and B fixation, and then the chain converges to these states with probability one
(see, e.g., Karlin and Taylor [9]). Then, the success of A can be measured by comparing
its fixation probability under selection to what it would be without selection. In a neutral
model, the probability of ultimate fixation of A from any initial frequency is equal to this
initial frequency. Therefore, in the absence of selection, the probability of ultimate fixation
of a single A introduced in an all B population of fixed total size N is given by N−1. In the
presence of selection, selection is said to favor the evolution of A if the fixation probability
of A from an initial frequency N−1 is larger than N−1 [13,14,19]. Note that this condition is
neither sufficient nor necessary for the probability of ultimate fixation of a single A to exceed
the probability of ultimate fixation of a single B. In such a case, selection is said to favor the
evolution of A more than the evolution of B [19].

In the above situation but in the presence of recurrent mutation, the frequency of A over
successive time steps is an irreducible Markov chain on a finite state space, and then the
chain converges in law to a stationary distribution (see, e.g., Karlin and Taylor [9]). In the
absence of selection, the average abundance of A with respect to the stationary distribution
is 1/2. If the average abundance of A becomes larger than 1/2 in the presence of selection,
then selection is said to favor the abundance of A more than the abundance of B [1]. Note
that the condition for selection to favor the evolution of Amore than the evolution of B in the
absence of mutation, and the condition for selection to favor the abundance of A more than
the abundance of B in the presence of mutation, are the same in the limit of a low mutation
rate [4,23,24].

The key assumption in all the above models is that the payoff matrix is constant. This
supposes that the surrounding environment remains exactly the same over time, which is
unrealistic. Environmental conditions are subject to fluctuations that happen at random, and
so are competition capabilities as well as birth and/or death rates [7,11,17]. Such fluctuations
can cause changes in the population size over time and many authors have explored the
effects of such changes. These include Lambert [12], Parsons and Quince [21,22] and Otto
and Whitlock [20] who studied the fixation probability for a mutant type in a well-mixed
populationwhose size fluctuates dynamically according to a variety of demographic scenarios
of growth or decline. Uecker and Hermisson [28] addressed the case of a single beneficial
allele in a population that experiences temporal variation in its size and selection pressure.

Also, stochastic fluctuations will generally affect the payoffs of strategies used by interact-
ing individuals that determine their reproductive successes, and consequently the underlying
evolutionary game dynamics. Broom [2] has considered matrix games where the payoffs are
functions of time. He showed that the evolution of a strategy is more complex than under
constant payoffs, where increasing the variability of the payoffs pushes the time average of
a population state far from its interior Nash equilibrium. Stollmeier and Naglar [25] showed
that variability of the payoffs affects the stability of a fixation state. Zheng et al. [32,33]
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have investigated stochastic stability in a two-strategy evolutionary game for an infinite well-
mixed population under stochastic perturbations of the payoffs. Kroumi and Lessard [10]
have studied the abundance of cooperation in a finite well-mixed population with random
payoffs. They showed that increasing the variance coefficient of any payoff to defection
against cooperation or defection, or their covariance, will increase the abundance of cooper-
ation. In the case of an infinite well-mixed population and in the absence of mutation, Li et
al. [16] have shown that natural selection tends to favor the evolution of cooperation if the
variance coefficients of the payoffs to defection are larger than the variance coefficients of
the payoffs to cooperation.

The effect of random noise in payoffs in two-player two-strategy linear games in a finite
population, mainly Prisoner’s Dilemmas with cooperation and defection as possible strate-
gies, was studied recently by Li and Lessard [15]. Assuming an update of the population
according to a Wright–Fisher model and using a diffusion approximation in the limit of a
large population size with appropriately scaled first and second moments of the payoffs as in
[8] for population genetics models, conditions for selection to favor the evolution of cooper-
ation, disfavor the evolution of defection, and favor more the evolution of cooperation than
the evolution of defection were deduced. These conditions are valid only in a large enough
population and most of them are given only in the special case of independent payoffs.

In this paper, we study the effect of stochastic fluctuations in payoffs for two strategies,
cooperation (C) and defection (D), used in random pairwise interactions in a population
of finite size N ≥ 2. The update of the population from one time step to the next is done
through a birth–death event according to a Moran model that keeps the population size
constant. Assuming that the first and second moments of the payoffs are of the same small
order corresponding to the magnitude of selection and that all higher-order moments are
negligible, we deduce the first-order effect of selection on the fixation probability of each
strategy given an initial frequency N−1. This allows us to study the effects of the population
size, besides those of the second moments of the payoffs including their covariances, on
conditions that could be favorable to the evolution of cooperation. This study is completed
by simulations under both a Moran model and a Wright–Fisher model.

The remainder of this paper is organized as follows. In Sects. 2 and 3, we present the
model and derive the probabilities of ultimate fixation of a single C and a single D under
weak selection. In Sect. 4, we deduce the effects of increasing or decreasing the variances or
covariances of the payoffs on these probabilities. Conditions for weak selection to favor the
evolution of cooperation, disfavor the evolution of defection, and favor more the evolution of
cooperation than the evolution of defection are studied in detail in the case of five particular
Prisoner’sDilemmaswith additive cost andbenefit for cooperation inSection5, and in the case
of a repeated Prisoner’s Dilemma in Section 6. Simulation results are presented in Section 7.
The concluding Section 8 summarizes our findings and discusses their interpretations.

2 Two-Player Gamewith Random Payoffs

We consider a two-player game in discrete time in a well-mixed population composed of
N individuals. Each individual can adopt one of two strategies, C for cooperation or D for
defection. The payoffs to C and D against C and D, respectively, in a pairwise interaction
are given by the entries of the matrix
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( C D

C η1 η2
D η3 η4

)
. (1)

A cooperator interacting with another cooperator receives η1, while a defector interacting
with another defector obtains η4. If a cooperator interacts with a defector, it receives η2,
whereas the defector obtains η3 in this situation. We suppose that ηi is a random variable
whose probability distribution does not depend on time and such that |ηi | ≤ M for some
constant M in (0, 1) for i = 1, 2, 3, 4.

In addition, we assume that

E [ηi ] = μiδ + o(δ), (2a)

E
[
η2i

] = σ 2
i δ + o(δ), (2b)

E
[
ηiη j

] = σi jδ + o(δ), (2c)

for i, j = 1, 2, 3, 4 with i �= j . The parameter δ ≥ 0 represents a magnitude of selection.
It measures the order of the first and second moments of the payoffs so that μi , σ 2

i and σi j
for i, j = 1, 2, 3, 4 with i �= j represent their scaled means, variances and covariances,
respectively. Note that this is different from the assumption that the payoffs are in the form
δ times bounded random variables. As for the higher-order moments of the payoffs, they
satisfy

E

[
4∏

i=1

|ηi |ki
]

= o(δ), (3)

for k1+k2+k3+k4 ≥ 3 and k1, k2, k3, k4 ≥ 0. It is assumed that δ is small, so that o(δ) terms
can be neglected. Finally, the payoffs at a given time step are assumed to be independent of
the payoffs at all other time steps. Such assumptions are current for selection parameters in
random environments (see, e.g., Ewens [3, pp. 181–188] and references therein). Note that
the inequalitiesμ3 > μ1 > μ4 > μ2 and 2μ1 > μ2+μ3 for the scaled means of the payoffs
define a randomized Prisoner’s Dilemma (PD) game [15].

An example of payoffs satisfying the above conditions is given by η2 = η3 = η4 = 0 and
η1 = −σ1

√
δ + μ1δ or σ1

√
δ + μ1δ with the same probability 1/2. Then, it is easy to check

that E (η1) = δμ1 and E
(
η21

) = σ 2
1 δ + o(δ), while

E
(
|η1|k

)
= Ck × δk/2 + o

(
δk/2

)
(4)

for k ≥ 3, where Ck is a constant that depends on σ1 and μ1.
Returning to the general model, pairwise interactions including self-interactions occur at

random at each time step, and the payoff accumulated by an individual is translated into some
reproductive fitness. More precisely, the reproductive fitness of an individual is given by a
sum of a baseline term equal to 1 and the average payoff received by the individual. When
the frequency of C in the whole population is x , the reproductive fitnesses of a cooperator
and a defector, respectively, are

fC (x) = 1 + PC (x) = 1 + [xη1 + (1 − x)η2] , (5a)

fD(x) = 1 + PD(x) = 1 + [xη3 + (1 − x)η4] . (5b)

Note that the reproductive fitnesses are positive random variables under the assumption of
random payoffs that are less than 1 in absolute value. Moreover, the average reproductive
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fitness is given by

f (x) = x fC (x) + (1 − x) fD(x) = 1 + x PC (x) + (1 − x)PD(x) = 1 + P̄(x), (6)

where P̄(x) is the average payoff in the whole population.
Finally, the update of the population from one time step to the next follows aMoranmodel.

At each time step, an individual is selected with probability proportional to its reproductive
fitness to give birth to an offspring. After reproduction, an individual is chosen at random to
die, possibly the reproducing individual but not the new offspring.

3 Fixation Probabilities

Let Xn be the number of cooperators in the population at time step n ≥ 0. From one time
step to the next, there are three types of event that can happen: Xn increases by 1, decreases
by 1, or remains the same. We denote by

T+
i = P(Xn+1 = i + 1|Xn = i), (7a)

T−
i = P(Xn+1 = i − 1|Xn = i), (7b)

T 0
i = P(Xn+1 = i |Xn = i), (7c)

the different transition probabilities from time step n to time step n + 1, for i = 0, 1, . . . , N .
Note that Xn increases by 1 if a cooperator is selected to give birth to an offspring, which

occurs with probability proportional to fC (i/N ), and a defector is chosen to die, which
occurs with probability 1 − i/N . Therefore, we have

T+
i =

(
1 − i

N

)
E

[
i
N fC

( i
N

)
i
N fC

( i
N

) + (
1 − i

N

)
fD

( i
N

)
]

= i

N

(
1 − i

N

)
E

[
1 + PC

( i
N

)
1 + P̄

( i
N

)
]

.

(8)

Here, E denotes an expectation with respect to the probability distribution of the payoffs.
Similarly, Xn decreases by 1 with probability

T−
i = i

N
E

[ (
1 − i

N

)
fD

( i
N

)
i
N fC

( i
N

) + (
1 − i

N

)
fD

( i
N

)
]

= i

N

(
1 − i

N

)
E

[
1 + PD

( i
N

)
1 + P̄

( i
N

)
]

. (9)

Finally, Xn does not change with probability T 0
i = 1 − T+

i − T−
i . The states 0 and N

are absorbing since T 0
0 = T 0

N = 1. The population spends some finite random time in the
transient states 1, . . . , N − 1 before reaching one of the two absorbing states, 0 or N . (See,
e.g., Karlin and Taylor [9] for properties of discrete-time birth–death Markov chains.)

Let
τ = min{n ≥ 0 : Xn = 0 or N } (10)

be the absorbing time, so that Xτ = 0 or N , and

FC = P(Xτ = N |X0 = 1) (11)

be the probability of ultimate fixation of C introduced as a single mutant in all D population.
Analogously,

FD = P(Xτ = 0|X0 = N − 1) (12)

represents the probability of ultimate fixation of D introduced as a single mutant in an all C
population.
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It is known (see, e.g., Karlin and Taylor [9]) that

FC = 1

1 + ∑N−1
j=1

(∏ j
i=1

T−
i

T+
i

) . (13)

It is also known (see, e.g., Nowak et al. [19]) that

FC
FD

=
N−1∏
i=1

T+
i

T−
i

. (14)

It remains to compute the products in these two expressions.
Using Eqs. (2) and (5), the first two moments of PC (x) are found to be

E
[
PC (x)

]
=

[
xμ1 + (1 − x)μ2

]
δ + o(δ) (15)

and

E
[
P2
C (x)

]
=

[
x2σ 2

1 + 2x(1 − x)σ12 + (1 − x)2σ 2
2

]
δ + o(δ). (16)

Analogously, the first two moments of PD(x) are given by

E
[
PD(x)

]
=

[
xμ3 + (1 − x)μ4

]
δ + o(δ), (17a)

E
[
P2
D(x)

]
=

[
x2σ 2

3 + 2x(1 − x)σ34 + (1 − x)2σ 2
4

]
δ + o(δ). (17b)

We have also

E
[
PC (x)PD(x)

]
=

[
x2σ13 + x(1 − x)(σ14 + σ23) + (1 − x)2σ24

]
δ + o(δ) (18)

for the expected value of the product. Moreover, as shown in “Appendix A”, we have

E

[
1 + PC (x)

1 + P̄(x)

]
= E

[
(1 + PC (x))

(
1 − P̄(x) + P̄2(x)

) ]
+ o(δ), (19)

where P̄(x) = x PC (x) + (1 − x)PD(x). Then, using Eqs. (15)–(18), we find

E

[
1 + PC (x)

1 + P̄(x)

]
= 1 + δm1(x) + o(δ), (20)

where

m1(x) = x4
[
σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 + 2σ14 + 2σ23 − 2σ12 − 2σ13 − 2σ24 − 2σ34
]

+ x3
[
4σ12 + 3σ13 + 7σ24 + 6σ34 − σ 2

1 − 3σ 2
2 − 2σ 2

3 − 4σ 2
4 − 5σ14 − 5σ23

]
+ x2

[
3σ 2

2 + σ 2
3 + 6σ 2

4 + 4σ14 + 4σ23 − 2σ12 − σ13 − 9σ24 − 6σ34
]

+ x2
[
μ3 + μ2 − μ1 − μ4

]
+ x

[
2σ34 + 5σ24 − σ 2

2 − 4σ 2
4 − σ14 − σ23 + μ1 − 2μ2 − μ3 + 2μ4

]
+ σ 2

4 − σ24 + μ2 − μ4. (21)

Similarly, we find

E

[
1 + PD(x)

1 + P̄(x)

]
= 1 + δm2(x) + o(δ), (22)
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where

m2(x) = x4
[
σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 + 2σ14 + 2σ23 − 2σ12 − 2σ13 − 2σ24 − 2σ34
]

+ x3
[
2σ12 + σ13 + 5σ24 + 4σ34 − 2σ 2

2 − σ 2
3 − 3σ 2

4 − 3σ14 − 3σ23
]

+ x2
[
σ 2
2 + 3σ 2

4 + σ14 + σ23 − 2σ34 − 4σ24 + μ3 + μ2 − μ1 − μ4
]

+ x
[
σ24 − σ 2

4 + μ4 − μ2
]
. (23)

Then, using these approximations in (8) and (9) leads to

T+
i

T−
i

= 1 + δm1
( i
N

) + o(δ)

1 + δm2
( i
N

) + o(δ)
= 1 + δm

(
i

N

)
+ o(δ), (24a)

T−
i

T+
i

= 1 + δm2
( i
N

) + o(δ)

1 + δm1
( i
N

) + o(δ)
= 1 − δm

(
i

N

)
+ o(δ), (24b)

where
m(x) = m1(x) − m2(x) = A3x

3 + A2x
2 + A1x + A0 (25)

with

A3 = 2σ12 + 2σ13 + 2σ24 + 2σ34 − σ 2
1 − σ 2

2 − σ 2
3 − σ 2

4 − 2σ14 − 2σ23, (26a)

A2 = 2σ 2
2 + σ 2

3 + 3σ 2
4 + 3σ14 + 3σ23 − 2σ12 − σ13 − 5σ24 − 4σ34, (26b)

A1 = 4σ24 + 2σ34 − σ 2
2 − 3σ 2

4 − σ14 − σ23 + μ1 − μ2 − μ3 + μ4, (26c)

A0 = σ 2
4 − σ24 + μ2 − μ4. (26d)

Finally, using all this in (13) and (14) yields

FC = 1

N
+ δ

N 2

N−1∑
i=1

(N − i)m

(
i

N

)
+ o(δ), (27)

where (see “Appendix B”)

N−1∑
i=1

(N − i)m

(
i

N

)
= N 2 − 1

2

[
3N 2 − 2

30N 2 A3 + A2 + 2A1

6
+ N

N + 1
A0

]
, (28)

and
FC
FD

= 1 + δ

N−1∑
i=1

m

(
i

N

)
+ o(δ), (29)

where (see “Appendix B”)

N−1∑
i=1

m

(
i

N

)
= (N − 1)

[
N − 1

4N
A3 + 2N − 1

6N
A2 + A1

2
+ A0

]
. (30)

These expressions give first-order approximations for FC and FC/FD with respect to the
magnitude of selection.

It is worth noting that m(x) can be written as

m(x) =
3∑

k=0

(ak − bk)

(
3

k

)
xk(1 − x)3−k, (31)
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where

a0 = μ2 − σ24, (32a)

b0 = μ4 − σ 2
4 , (32b)

a1 = μ1 + 2μ2 − σ14 − σ23 − σ 2
2

3
, (32c)

b1 = μ3 + 2μ4 − σ24 − 2σ34
3

, (32d)

a2 = 2μ1 + μ2 − σ13 − 2σ12
3

, (32e)

b2 = 2μ3 + μ4 − σ14 − σ23 − σ 2
3

3
, (32f)

a3 = μ1 − σ 2
1 , (32g)

b3 = μ3 − σ13. (32h)

Therefore, our two-player game with random payoffs is equivalent in the limit of weak
selection to a four-player game with constant payoffs. In interaction with i cooperators and
3 − i defectors, a cooperator in this four-player game receives a payoff ai while a defector
receives a payoff bi . This game is summarized in the following table. Note the symmetries
in the payoffs.

Opposing C players 0 1 2 3

C μ2 − σ24
μ1+2μ2−σ14−σ23−σ2

2
3

2μ1+μ2−σ13−2σ12
3 μ1 − σ 2

1

D μ4 − σ 2
4

μ3+2μ4−σ24−2σ34
3

2μ3+μ4−σ14−σ23−σ2
3

3 μ3 − σ13

4 Conditions for the Evolution of Cooperation

In finite populations in the absence of recurrentmutation, three conditions have been proposed
to characterize the effects of selection on the evolution of cooperation. The first two conditions
are based on comparisons of fixation probabilities for C and D in the presence of selection
to what they would be in the absence of selection. We say that selection favors the evolution
of cooperation if FC > N−1 [19]. Here, N−1 is the probability of ultimate fixation of C
when represented only once in a population of size N under neutrality, while FC is the
corresponding probability under selection. Analogously, we say that selection disfavors the
evolution of defection if FD < N−1. Selection may favor the evolution of cooperation and
defection, FC > N−1 and FD > N−1, or may disfavor the evolution of cooperation and
defection, FC < N−1 and FD < N−1. To have a complete view of the evolutionary success
of cooperation, a third condition has been introduced [5,19]. We say that selection favors the
evolution of cooperation more than the evolution of defection if FC > FD . In this case, the
ultimate fixation of a single C is more likely than the ultimate fixation of a single D. Finally,
if selection favors the evolution of cooperation and disfavors the evolution of defection, that
is, FC > N−1 > FD , we say that selection fully favors the evolution of cooperation [15].
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Owing to Eq. (27), FC > N−1 and weak selection favors the evolution of cooperation if

3N 2 − 2

30N 2 A3 + A2 + 2A1

6
+ N

N + 1
A0 > 0. (33)

In terms of the scaled means, variances and covariances of the payoffs, the above condition
can be written as

1

3(N + 1)

[
(N + 1)μ1 + (2N − 1)μ2 − (N + 1)μ3 − (2N − 1)μ4

]

− 3N 2 − 2

30N 2 (σ 2
1 + σ 2

2 ) − 2(N 2 + 1)

15N 2 σ12 + N 2 + 1

15N 2 σ 2
3 + 3N 2 − 2

15N 2 σ34

+ (2N − 1)(3N 2 − 3N − 1)

15N 2(N + 1)
σ 2
4 + N 2 − 4

30N 2 (σ13 − σ14 − σ23)

− (N − 2)(3N + 1)(3N − 2)

30N 2(N + 1)
σ24 > 0. (34)

If the inequality is reversed, weak selection disfavors the evolution of cooperation, that is,
FC < N−1. By symmetry, FD < N−1 if the inequality is reversed and the indices 1 and 4
as well as 2 and 3 are permuted. This gives the condition

1

3(N + 1)

[
(N + 1)μ4 + (2N − 1)μ3 − (N + 1)μ2 − (2N − 1)μ1

]

− 3N 2 − 2

30N 2 (σ 2
4 + σ 2

3 ) − 2(N 2 + 1)

15N 2 σ34 + (2N − 1)(3N 2 − 3N − 1)

15N 2(N + 1)
σ 2
1

+ N 2 + 1

15N 2 σ 2
2 + 3N 2 − 2

15N 2 σ12 + N 2 − 4

30N 2 (σ24 − σ14 − σ23)

− (N − 2)(3N + 1)(3N − 2)

30N 2(N + 1)
σ13 < 0 (35)

for weak selection to disfavor the evolution of defection.
Note that the left-hand members in conditions (34) and (35) are the coefficients of δ

times (N 2 − 1)/(2N 2) in the approximations of FC and FD , respectively. The fixation
probability of a strategy is not only driven positively by the means of the payoffs received by
the individuals using this strategy as shown in classical studies with constant payoffs but also
driven negatively by their variances and covariances in the case of random fluctuations in the
payoffs. Less uncertainty in the payoffs to C or more uncertainty in the payoffs to D will
increase the fixation probability of C as a single mutant and decrease the fixation probability
of D as a single mutant, which plays in favor of the evolution of C in any sense. The best
strategy has large average payoffs with low uncertainty, and the effect of lowering an average
payoff can be compensated by lowering uncertainty as well.

Considering the signs of the coefficients of the different variances and covariances in these
expressions, we can draw the following conclusions.

Result 1 An increase in the variance of any payoff to D against C or D, σ 2
3 or σ 2

4 , their
covariance, σ34, or the covariance between the payoff to C against C and the payoff to D
against C, σ13, will increase the probability of ultimate fixation of a single C and decrease
the probability of ultimate fixation of a single D at least if selection is weak enough

Result 2 An increase in the variance of any payoff to C against C or D, σ 2
1 or σ 2

2 , their
covariance, σ12, or the covariance between the payoff to C against C and the payoff to D
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against D, σ24, will decrease the probability of ultimate fixation of a single C and increase
the probability of ultimate fixation of a single D at least if selection is weak enough

Another observation is that the coefficient of σ14 or σ23 in (34) is the same as the coefficient
of σ14 or σ23 in (35). This leads to the following complementary conclusion.

Result 3 An increase in the covariance between the payoff to C against C and the payoff to
D against D, σ14, or an increase in the covariance between the payoff to C against D and
the payoff to D against C, σ23, will decrease both the probabilities of ultimate fixation of a
single C and a single D at the same rate if selection is weak enough.

Results 1 and 2 extend results obtained by Li and Lessard [15] for a Wright–Fisher model
in the limit of a large population size to a Moran model with a fixed population size. They
assumed that the fluctuations of the payoffs are of order proportional to the inverse of the
population size. In that paper, using a diffusion approximation in the case of independent
payoffs with δ = N−1 in a Wright–Fisher population of large size N , it was shown that
an increase in σ 2

3 or σ 2
4 or a decrease in σ 2

1 or σ 2
2 will increase the probability of ultimate

fixation of a singleC and decrease the probability of ultimate fixation of a single D. Results 1
and 2 show the same in the case of weak selection in a Moran population of any fixed size N
and furthermore point out the effects of increasing or decreasing covariances of dependent
payoffs.

Another point of interest is to know which strategy is more favored by weak selection.
Owing to (29), weak selection favors the evolution of cooperation more than the evolution
of defection, that is, FC > FD , if

N − 1

4N
A3 + 2N − 1

6N
A2 + A1

2
+ A0 > 0. (36)

In terms of the scaled means, variances and covariances of the payoffs, this condition can be
written as

μ1 + μ2 − μ3 − μ4 + N − 1

2N
(σ 2

4 − σ 2
1 ) + N + 1

6N
(σ 2

3 − σ 2
2 )

+ N + 1

3N
(σ34 − σ12) + N − 2

3N
(σ13 − σ24) > 0. (37)

If the inequality is reversed, weak selection favors the evolution of defection more than the
evolution of cooperation, that is, FC < FD . It is clear that a decrease in any term among
{σ 2

1 , σ 2
2 , σ12, σ24} or an increase in any term among {σ 2

3 , σ 2
4 , σ13, σ34} makes it easier for

weak selection to favor more the evolution of cooperation than the evolution of defection.
This is in agreement with Results 1 and 2. Moreover, it is clear that neither σ14 nor σ23 has
an effect on the condition FC > FD since they do not come into play in (37). Note that this
conclusion is in agreement with a result obtained by Kroumi and Lessard [10] in the case of
a large well-mixed population in the presence of symmetric mutation, that is, neither σ14 nor
σ23 comes into play in the condition for weak selection to favor the abundance of C more
than the abundance of D for any mutation rate.

For a large population, conditions (34), (35) and (37), for FC > N−1, FD < N−1 and
FC > FD , respectively, take the forms

1

3

[
μ1 + 2μ2 − μ3 − 2μ4

]
− 1

10
σ 2
1 − 1

10
σ 2
2 − 2

15
σ12 + 1

15
σ 2
3 + 2

5
σ 2
4

+ 1

5
σ34 + 1

30
σ13 − 1

30
σ14 − 1

30
σ23 − 3

10
σ24 > 0, (38)
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1

3

[
2μ1 + μ2 − 2μ3 − μ4

]
− 2

5
σ 2
1 − 1

15
σ 2
2 − 1

5
σ12 + 1

10
σ 2
3 + 1

10
σ 2
4

+ 2

15
σ34 + 1

30
σ14 + 1

30
σ23 − 1

30
σ24 + 3

10
σ13 > 0 (39)

and

μ1 + μ2 − μ3 − μ4 − 1

2
σ 2
1 − 1

6
σ 2
2 − 1

3
σ12 + 1

6
σ 2
3 + 1

2
σ 2
4

+ 1

3
σ34 + 1

3
σ13 − 1

3
σ24 > 0, (40)

respectively. Note that (40) is also the condition for weak selection to favor the abundance of
C more than the abundance of D in the mutation–selection equilibrium in a large well-mixed
population for a low mutation rate [10].

5 Additive Prisoner’s Dilemma

In this section, we consider a two-player game with random payoffs η1, η2, η3 and η4 whose
scaled means determine a Prisoner’s Dilemma in the additive form(

μ1 μ2

μ3 μ4

)
=

(
μb − μc −μc

μb 0

)
, (41)

where μb > μc > 0. Here, μb and μc are scaled mean benefit and cost for cooperation. We
analyze below five special cases according to supplementary properties of the payoffs.

Note that, in the case of a deterministic Prisoner’s Dilemma (PD), where all the payoffs
are constant, cooperation can never be favored by weak selection. This can be changed by
introducing uncertainty in the payoffs. In the first two subsections, we compare the effect of
uncertainty in the payoff to D against C (Case 1) to the effect of uncertainty in the payoff
to D against D (Case 2). In the next subsection (Case 3), we study the effect of correlation
with special attention to extreme cases (ρ = 0,−1, 1). In the next subsection (Case 4), we
introduce uncertainty in the payoffs to C . In the last subsection (Case 5), we consider a PD
game with random benefit b and cost c.

5.1 Case 1:�2
1 = �2

2 = �2
3 = 0,�2

4 = �2

This is a situation where only the payoff to D against D has a positive variance. In this case,
condition (34) for weak selection to favor the evolution of cooperation, FC > N−1, can be
written as

σ 2 > σ 2∗N = 15N 3

(2N − 1)(3N 2 − 3N − 1)
μc, (42)

while condition (35) for weak selection to disfavor the evolution of defection, FD < N−1,
becomes

σ 2 > σ 2∗∗N = 30N 3

(N + 1)(3N 2 − 2)
μc. (43)

Finally, in accordance with (37), weak selection favors the evolution of cooperation more
than the evolution of defection, FC > FD , as long as

σ 2 > σ 2∗∗∗N = 4N

N − 1
μc. (44)



814 Dynamic Games and Applications (2021) 11:803–834

Fig. 1 Exact values of the thresholds σ 2∗N , σ 2∗∗N and σ 2∗∗∗N for the scaled variance σ 2 in Case 1 as functions

of the population size N when μc = 1. Note that σ 2∗N and σ 2∗∗∗N are decreasing while σ 2∗∗N is increasing.

Moreover, we have the inequalities σ 2∗∗N > σ 2∗∗∗N > σ 2∗N for N ≥ 3

Note that

d

dx

(
15x3

(2x − 1)
(
3x2 − 3x − 1

)
)

= −
5x2

(
9x − 1 − √

28
) (

9x − 1 + √
28

)

3 (2x − 1)2
(
3x2 − 3x − 1

)2 < 0,

(45a)

d

dx

(
30x3

(x + 1)
(
3x2 − 2

)
)

=
10x2

(
3x − 2 − √

22
) (

3x − 2 + √
22

)

(x + 1)2
(
3x2 − 2

)2 > 0, (45b)

d

dx

(
4x

x − 1

)
= − 4

(x − 1)2
< 0, (45c)

for x ≥ 3. Therefore, increasing the population size N decreases the thresholds σ 2∗N and
σ 2∗∗∗N , and increases the threshold σ 2∗∗N . Figure 1 illustrates this conclusion. This means that
the conditions for FC > N−1 and FC > FD become less stringent as N increases, while the
condition for FD < N−1 becomes more stringent.

Note also that

σ 2∗∗N − σ 2∗∗∗N = 2N (N − 2) (3N + 1) (3N − 2)

(N + 1) (N − 1)
(
3N 2 − 2

) μc > 0, (46a)

σ 2∗∗∗N − σ 2∗N = N (N − 2) (3N + 1) (3N − 2)

(N − 1) (2N − 1)
(
3N 2 − 3N − 1

)μc > 0, (46b)

σ 2∗N − μC = (N + 1) (3N + 1) (3N − 1)

(2N − 1)(3N 2 − 3N − 1)
μc > 0, (46c)

for N ≥ 3. In this case, we have the inequalities σ 2∗∗N > σ 2∗∗∗N > σ 2∗N > μc. As a result,
increasing the variance of the payoff to D against D will make it easier for weak selection
to fully favor the evolution of cooperation, FC > N−1 > FD .

Let us summarize these findings.
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Fig. 2 Relationships between σ 2∗N , σ 2∗∗N , σ 2∗∗∗N and FC , FD in Cases 1 and 3. The regions where FC and

FD are larger or smaller than N−1, and where FC is larger or smaller than FD , are given according to the
position of σ 2 with respect to the threshold values σ 2∗N , σ 2∗∗∗N and σ 2∗∗N

Conclusion in Case 1

– If σ 2 < σ 2∗N , then FC < N−1 < FD .
– If σ 2∗N < σ 2 < σ 2∗∗∗N , then N−1 < FC < FD .
– If σ 2∗∗∗N < σ 2 < σ 2∗∗N , then N−1 < FD < FC .
– If σ 2∗∗N < σ 2, then FD < N−1 < FC .

This is valid for a population of any finite size N ≥ 3. Note that it is impossible for weak
selection to disfavor the evolution of both cooperation and defection, that is, FC < N−1 and
FD < N−1 are not compatible.

This conclusion is illustrated in Fig. 2. In the limit of a large population size, we have

σ 2∗ = lim
N→∞ σ 2∗N = 5

2
μc, (47a)

σ 2∗∗ = lim
N→∞ σ 2∗∗N = 10μc, (47b)

σ 2∗∗∗ = lim
N→∞ σ 2∗∗∗N = 4μc. (47c)

5.2 Case 2:�2
1 = �2

2 = �2
4 = 0,�2

3 = �2

This is a situation where only the payoff to D against C has a positive variance. In this
case and in accordance with condition (34), (35) and (37), the conditions for FC > N−1,
FD < N−1 and FC > FD can be written as

σ 2 > σ 2∗N , σ 2 > σ 2∗∗N , σ 2 > σ 2∗∗∗N , (48)

respectively, where

σ 2∗N = 15N 3

(N 2 + 1)(N + 1)
μc, (49a)

σ 2∗∗N = 30N 3

(N + 1)(3N 2 − 2)
μc, (49b)

σ 2∗∗∗N = 12N

N + 1
μc. (49c)
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Fig. 3 Exact values of the thresholds σ 2∗N , σ 2∗∗N and σ 2∗∗∗N for the scaled variance σ 2 in Case 2 as functions

of the population size N when μc = 1. Note that σ 2∗N , σ 2∗∗N and σ 2∗∗∗N are increasing. Moreover, we have

the inequalities σ 2∗N > σ 2∗∗∗N > σ 2∗∗N > 1 for N ≥ 3

Note that

d

dx

(
15x3(

x2 + 1
)
(x + 1)

)
= 15x2

(
x2 + 2x + 3

)
(
x2 + 1

)2
(x + 1)2

> 0, (50a)

d

dx

(
30x3

(x + 1)
(
3x2 − 2

)
)

=
10x2

(
3x − 2 − √

22
) (

3x − 2 + √
22

)

(x + 1)2
(
3x2 − 2

)2 > 0, (50b)

d

dx

(
12x

x + 1

)
= 12

(x + 1)2
> 0, (50c)

for x ≥ 3. Therefore, increasing the population size N increases the thresholds σ 2∗N , σ 2∗∗N
and σ 2∗∗∗N . Figure 3 illustrates this conclusion. This means that the conditions for weak
selection to favor the evolution of cooperation, disfavor the evolution of defection, and favor
the evolution of cooperation more than the evolution of defection become more stringent as
N increases. The best scenario for the evolution of cooperation in any sense is a population
of small size.

By a simple comparison, we find that

σ 2∗N − σ 2∗∗∗N = 3N (N + 2) (N − 2)

(N + 1)
(
N 2 + 1

) μc > 0, (51a)

σ 2∗∗∗N − σ 2∗∗N = 6N (N + 2) (N − 2)

(N + 1)
(
3N 2 − 2

) μc > 0, (51b)

σ 2∗∗N − μC = (3N + 1) (N (9N − 4) + 2)

(N + 1)
(
3N 2 − 2

) μc > 0, (51c)

for N ≥ 3. Therefore, we have σ 2∗N > σ 2∗∗∗N > σ 2∗∗N > μc for N ≥ 3. As a result, we can
draw the following conclusion as illustrated in Fig. 4.
Conclusion in Case 2



Dynamic Games and Applications (2021) 11:803–834 817

Fig. 4 Relationships between σ 2∗N , σ 2∗∗N , σ 2∗∗∗N and FC , FD in Case 2. The regions where FC and FD are

larger or smaller than N−1, and where FC is larger or smaller than FD , are given according to the position of
σ 2 with respect to the threshold values σ 2∗∗N , σ 2∗∗∗N and σ 2∗N

– If σ 2 < σ 2∗∗N , then FC < N−1 < FD .
– If σ 2∗∗N < σ 2 < σ 2∗∗∗N , then FC < FD < N−1.
– If σ 2∗∗∗N < σ 2 < σ 2∗N , then FD < FC < N−1.
– If σ 2∗N < σ 2, then FD < N−1 < FC .

This is valid for any population size N ≥ 3. Note that it is impossible for weak selection to
favor the evolution of both cooperation and defection, that is, FC > N−1 and FD > N−1

are not compatible.
Comparing the probabilities of ultimate fixation of a single C and a single D in Cases 1

and 2 for a population size N yields

Fcase1
C − Fcase2

C = δ
(N − 1) (N − 2)

6N 2 σ 2 + o(δ), (52a)

Fcase1
D − Fcase2

D = o(δ). (52b)

Therefore, it is more favorable for the evolution of cooperation to increase the variance of
the payoff to D against D, σ 2

4 , than the variance of the payoff to D against C , σ 2
3 .

Finally, in the limit of a large population size, we have

σ 2∗ = lim
N→∞ σ 2∗N = 15μc, (53a)

σ 2∗∗ = lim
N→∞ σ 2∗∗N = 10μc, (53b)

σ 2∗∗∗ = lim
N→∞ σ 2∗∗∗N = 12μc. (53c)

5.3 Case 3:�2
1 = �2

2 = 0,�2
3 = �2

4 = �2 > 0,�34 = ��2

This is a situation where only the variances of the payoffs to D against C and D are positive
and exhibit a correlation coefficient ρ. In accordance with (34), (35) and (37), the conditions

σ 2 > σ 2∗N , σ 2 > σ 2∗∗N , σ 2 > σ 2∗∗∗N , (54)

entail FC > N−1, FD < N−1 and FC > FD , respectively, under weak selection. Here, we
have

σ 2∗N = 15N 3

(N + 1)
(
3N 2 − 2

)
ρ + 7N 3 − 8N 2 + 2N + 2

μc, (55a)
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σ 2∗∗N = 15N 3

(N + 1)
(
2

(
N 2 + 1

)
ρ + 3N 2 − 2

)μc, (55b)

σ 2∗∗∗N = 6N

(N + 1)ρ + 2N − 1
μc. (55c)

Note that increasing ρ decreases these thresholds for any fixed population size N ≥ 2. This
means that the conditions for FC > N−1, FD < N−1 and FC > FD become less stringent
as ρ increases. This plays in favor of the evolution of cooperation and in disfavor of the
evolution of defection.

In addition, we have

σ 2∗∗N (ρ) − σ 2∗∗∗N (ρ) ≥ σ 2∗∗N (−1) − σ 2∗∗∗N (1) = N 2(13N − 2) + 8N + 8

(N + 1) (N + 2) (N − 2)
μc > 0,

(56a)

σ 2∗∗∗N (ρ) − σ 2∗N (ρ) ≥ σ 2∗∗∗N (−1) − σ 2∗N (1) = 9N 2

(N − 2) (2N − 1)
μc > 0, (56b)

σ 2∗N (ρ) − μc ≥ σ 2∗N (−1) − μc = (N + 1)
(
11N 2 − 4

)
(N − 2)

(
4N 2 − 3N − 2

)μc > 0, (56c)

for any N ≥ 3. Here, we have used the fact the σ∗N , σ∗∗N and σ∗∗N are decreasing as
functions of ρ. This yields

σ 2∗∗N > σ 2∗∗∗N > σ 2∗N > μc, (57)

for N ≥ 3 and ρ ∈ [−1, 1]. Therefore, the conclusion in Case 1 and Figs. 1 and 2 are still
valid in Case 3, but with the new threshold values.

In the limit of a large population size, we have

σ 2∗ = lim
N→∞ σ 2∗N = 15

3ρ + 7
μc, (58a)

σ 2∗∗ = lim
N→∞ σ 2∗∗N = 15

2ρ + 3
μc, (58b)

σ 2∗∗∗ = lim
N→∞ σ 2∗∗∗N = 6

ρ + 2
μc. (58c)

Comparing the probabilities of ultimate fixation of a single C and a single D in Cases 1
and 3 for a large population yields

Fcase3
C − Fcase1

C = δ
3ρ + 1

30
σ 2 + o(δ), (59a)

Fcase3
D − Fcase1

D = −δ
4ρ + 3

30
σ 2 + o(δ). (59b)

If the correlation coefficient between the payoff to D against C and the payoff to D against
D satisfies the inequality ρ > −1/3, then the fixation probability of C in Case 3 exceeds the
fixation probability of C in Case 1, that is, Fcase3

C > Fcase1
C , and the fixation probability of D

in Case 1 exceeds the fixation probability of D in Case 3, that is, Fcase3
D < Fcase1

D . Combining
these results with the facts that Fcase1

C > Fcase2
C and Fcase1

D ≈ Fcase2
D (see Eq. (52)), it is more

favorable for the evolution of cooperation in any sense to increase both variances σ 2
3 and σ 2

4
than only one of these. This is the case, for instance, when the payoffs to D against C and D
are uncorrelated, that is, ρ = 0, or in perfect positive correlation, that is, ρ = 1.
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Suppose now that the payoffs η3 and η4 are in perfect negative correlation, that is, ρ = −1.
In this case, we have Fcase1

C > Fcase3
C > Fcase2

C and Fcase1
D ≈ Fcase2

D < Fcase3
D . Then, Case 1

is the best scenario for the evolution of cooperation in any sense. The worst scenario for the
evolution of cooperation is Case 2, while the best scenario for the evolution of defection is
Case 3.

5.4 Case 4:�2
1 = �2

2 = �2
3 = �2

4 = �2 > 0,�34 = ��2

Here, we assume that the payoffs have the same positive variance σ 2. Moreover, they are all
uncorrelated except η3 and η4 whose correlation coefficient is ρ. Then, in accordance with
condition (34), weak selection favors the evolution of cooperation, FC > N−1, as long as

σ 2 > σ 2∗N = 15N 3

(3N 2 − 2)(N + 1)ρ + (N − 2)(4N 2 − 3N − 2)
μc. (60)

Note that condition (35) for FD < N−1 is violated for all ρ ∈ [−1, 1] as soon as N ≥ 13,
which means that weak selection can only favor the evolution of defection in this case. On
the other hand, for N < 13, weak selection disfavors the evolution of defection if

σ 2 > σ 2∗∗N = 15N 3

2(N 2 + 1)(N + 1)ρ − (N − 2)(4N 2 − 3N − 2)
μc. (61)

Finally, condition (37) for FC > FD takes the form

σ 2 > σ 2∗∗∗N = 6N

(N + 1)ρ
μc, (62)

but only if ρ > 0. If ρ ≤ 0, condition (37) can never be satisfied. In this case, σ 2∗∗∗N does not
exist and the evolution of defection is always favored more than the evolution of cooperation.
This is the case when the payoffs to D against C and D have a perfect negative correlation,
that is, ρ = −1, or are uncorrelated, that is, ρ = 0.

Note that in the limit of a large population size, we have

σ 2∗ = lim
N→∞ σ 2∗N = 15

3ρ + 4
μc, (63a)

σ 2∗∗∗ = lim
N→∞ σ 2∗∗∗N = 6

ρ
μc. (63b)

5.5 Case 5:�1 = b− c,�2 = −c, �3 = b,�4 = 0

This is a situation where a cooperator incurs a random cost c while its opponent receives a
random benefit b. Here, we assume b > c > 0 with E [b] = μbδ+o(δ), E [c] = μcδ+o(δ),
E

[
b2

] = σ 2
b δ + o(δ), E

[
c2

] = σ 2
c δ + o(δ) and E [bc] = σbcδ + o(δ), so that the scaled

variances and covariances of the payoffs are given by

σ 2
1 = σ 2

b + σ 2
c − 2σbc, (64a)

σ 2
2 = σ 2

c , (64b)

σ 2
3 = σ 2

b , (64c)

σ 2
4 = σ14 = σ24 = σ34 = 0, (64d)

σ12 = σ 2
c − σbc, (64e)
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σ13 = σ 2
b − σbc, (64f)

σ23 = −σbc. (64g)

In this case, conditions (34), (35) and (37), for FC > N−1, FD < N−1 and FC > FD ,
respectively, become

σbc − σ 2
c > σ 2∗N , σbc − σ 2

c > σ 2∗∗N , σbc − σ 2
c > σ 2∗∗∗N , (65)

respectively, where

σ 2∗N = 3N

N + 1
μc, (66a)

σ 2∗∗N = 3N

2N − 1
μc, (66b)

σ 2∗∗∗N = 2μc. (66c)

Note that σ 2
b does not come into play in the conditions given in (65).

Decreasing the variance of the cost c or increasing its covariance with the benefit b will
increase the fixation probability ofC and decrease the fixation probability of D, whichmakes
it easier for weak selection to fully favor the evolution of cooperation. Comparing the above
thresholds, we get σ 2∗N > σ 2∗∗∗N > σ 2∗∗N for N ≥ 3.

These findings are summarized as follows.
Conclusion in Case 5

• If σ 2∗∗N > σbc − σ 2
c , then FC < N−1 < FD .

• If σ 2∗∗∗N > σbc − σ 2
c > σ 2∗∗N , then FC < FD < N−1.

• If σ 2∗N > σbc − σ 2
c > σ 2∗∗∗N , then FD < FC < N−1.

• If σbc − σ 2
c > σ 2∗N , then FD < N−1 < FC .

This is valid for any population size N ≥ 3. It is impossible for weak selection to favor the
evolution of both cooperation and defection, that is, FC > N−1 and FD > N−1.

In the limit of a large population size, we have

σ 2∗ = lim
N→∞ σ 2∗N = 3μc, (67a)

σ 2∗∗ = lim
N→∞ σ 2∗∗N = 3

2
μc, (67b)

σ 2∗∗∗ = lim
N→∞ σ 2∗∗∗N = 2μc. (67c)

6 Repeated Prisoner’s Dilemma

In this section, we consider a Prisoner’s Dilemma with random payoffs that is repeated a
random number of rounds n ≥ 1. The payoffs in each round of pairwise interactions are
given by the entries of the game matrix

(C D

C R S
D T P

)
, (68)

and these entries have scaled means satisfying the inequalities μT > μR > μP > μS and
2μR > μT +μS . We suppose that the number of rounds n is independent of the payoffs. An
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individual can use a strategy among two possible strategies: T FT for Tit-for-Tat and AllD
for Always-Defect. A T FT -player cooperates in the first round and thereafter it adopts the
strategy of its opponent in the previous round. An AllD-player defects in all rounds. In such a
case, two interacting T FT -players will cooperate all the time and then each one will receive
nR. Similarly, two AllD-players will defect all the time and then each one will receive nP .
Finally, if a T FT -player interacts with an AllD-player, the T FT -player will cooperate in the
first round, and thereafter it will defect, while the AllD-player will defect all the time, so that
the T FT -player will receive S+(n−1)P , while the AllD-player will receive T +(n−1)P .
Therefore, the game matrix for this repeated Prisoner’s Dilemma with these two strategies is(

η1 η2
η3 η4

)
=

(
nR S + (n − 1)P

T + (n − 1)P nP

)
. (69)

The scaled means, variances and covariances of these payoffs take the forms

μ1 = μRE(n), (70a)

μ2 = μS + μP E(n − 1), (70b)

μ3 = μT + μP E(n − 1), (70c)

μ4 = μP E(n), (70d)

and

σ 2
1 = σ 2

RE(n2), (71a)

σ 2
2 = σ 2

S + σ 2
P E

(
(n − 1)2

) + 2σSP E(n − 1), (71b)

σ 2
3 = σ 2

T + σ 2
P E

(
(n − 1)2

) + 2σT P E(n − 1), (71c)

σ 2
4 = σ 2

P E(n2), (71d)

σ12 = σRS E(n) + σRP E (n(n − 1)) , (71e)

σ13 = σRT E(n) + σRP E (n(n − 1)) , (71f)

σ14 = σRP E(n2), (71g)

σ23 = σ 2
P E

(
(n − 1)2

) + σST + σSP E(n − 1) + σT P E(n − 1), (71h)

σ24 = σ 2
P E (n(n − 1)) + σSP E(n), (71i)

σ34 = σ 2
P E (n(n − 1)) + σT P E(n), (71j)

where σ 2
R , σ

2
S , σ

2
T , σ

2
P stand for the scaled variances of R, S, T , P , and σRS , σRT , σRP , σST ,

σSP , σT P for their scaled covariances.
Inserting the above expressions in conditions (38) and (39), we conclude that weak selec-

tion favors the evolution of T FT in a large population, that is, FT FT > N−1, if

1

3

[
μR + 2μS − μT − 2μP

]
+ 1

3
(μR − μP )E(n − 1) − 1

10
σ 2
RE(n2)

− 1

10
σ 2
S − 2

15
σRS E(n) + 1

15
σ 2
T + αPσ 2

P + 1

10
σT P E(3n − 1) + 1

30
σRT E(n)

− 1

30
σRP E (n(4n − 3)) − 1

30
σST − 1

30
σSP E (16n − 7) > 0, (72)

and disfavors the evolution of AllD, that is, FAllD < N−1, if

1

3

[
2μR + μS − 2μT − μP

]
+ 2

3
(μR − μP )E(n − 1) − 2

5
σ 2
RE(n2) − 1

15
σ 2
S
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− 1

5
σRS E(n) + 1

10
σ 2
T + βPσ 2

P + 1

30
σT P E(11n − 7) + 1

10
σRT E(n)

+ 1

30
σRP E (n(4n − 3)) + 1

30
σST − 1

30
σSP E (4n − 3) > 0, (73)

where

αP = 7

30
E

(
(n − 1)2

) + 7

10
E (n − 1) + 2

5
> 0 (74)

and

βP = 4

15
E

(
(n − 1)2

) + 3

10
E (n − 1) + 1

10
> 0. (75)

Note that, in conditions (72) and (73), the coefficients of σ 2
T , σ

2
P , σRT and σT P are positive.

Therefore, an increase in the variance of any payoff to D against C or D, σ 2
T or σ 2

P , their
covariance σT P , or the covariance between the payoff to C against C and the payoff to
D against C , σRT , will increase the probability of ultimate fixation of a single T FT and
decrease the probability of ultimate fixation of a single AllD, which promotes the evolution
of cooperation in the population. In the same conditions (72) and (73), the coefficients of
σ 2
R , σ

2
S , σRS and σSP are negative. Therefore, an increase in the variance of any payoff to C

against C or D, σ 2
1 or σ 2

2 , their covariance σ12, or the covariance between the payoff to C
against C and the payoff to D against D, σ24, will increase the fixation probability of AllD
and decrease the fixation probability of T FT , which opposes the evolution of cooperation.
These conclusions extend Results 1 and 2 of Section 4 for a one-round game to a game with
a random number of rounds.

Moreover, substituting the above expressions in condition (40) leads to the conclusion
that weak selection favors the evolution of T FT more than the evolution of AllD in a large
population, that is, FT FT > FAllD , if

μR + μS − μT − μP + (μR − μP )E(n − 1) − 1

2
σ 2
RE(n2)

− 1

6
σ 2
S − 1

3
σRS E(n) + 1

6
σ 2
T + 1

2
σ 2
P E(n2) + 1

3
σT P E(2n − 1)

+ 1

3
σRT E(n) − 1

3
σSP E(2n − 1) > 0. (76)

A first observation is that an increase in any term among {σ 2
T , σ 2

P , σRT , σT P } or a decrease
in any term among {σ 2

R, σ 2
S , σRS, σSP } will make it easier for weak selection to favor the

evolution of T FT more than the evolution of AllD, which confirms the above conclusions.
A second observation from (72) and (73) is that an increase in the covariance between the
payoff to C against C and the payoff to D against D, σRP , or an increase in the covariance
between the payoff to C against D and the payoff to D against C , σST , decreases both
the fixation probabilities of T FT and AllD with the same rate. However, neither σRP nor
σST has an effect on the condition for FT FT > FAllD , since they do not come into play in
condition (76). This extends Result 3 for a one-round game to a game with a random number
of rounds.

Note that, for independent payoffs R, S, T , P , conditions (72), (73) and (76) reduce to
conditions obtained by Li and Lessard [15] in the case of a large Wright–Fisher population.

Suppose now a very large number of rounds so that E(n2) >> E(n). Under this assump-
tion, conditions (72), (73) and (76), for FT FT > N−1, FAllD < N−1 and FT FT > FAllD ,
respectively, reduce to

7

30
σ 2
P − 1

10
σ 2
R − 2

15
σRP > 0, (77a)



Dynamic Games and Applications (2021) 11:803–834 823

4

15
σ 2
P − 2

5
σ 2
R + 2

15
σRP > 0, (77b)

σ 2
P − σ 2

R > 0. (77c)

Note that the first condition is the least stringent one while the third condition is the most
stringent one. If σ 2

R = 0, then weak selection favors the evolution of T FT in any sense as
long as σ 2

P > 0.
If all the variances vanish, then the conditions to have FT FT > N−1, FAllD < N−1 and

FT FT > FAllD are the same, given by

μR > μP , (78)

which is always satisfied by assumption. In this case, weak selection always favors the
evolution of T FT in any sense. This extends a conclusion of Nowak [18] in the case of a
large number of rounds.

7 Simulations and Robustness

In order to check our theoretical predictions, we ran simulations for Cases 1 and 2 of Section 5
with scaled mean benefit and cost μb = 2 and μc = 1, respectively, and a magnitude of
selection δ = 0.02. In these cases, the fixation probabilities FC and FD are, to a first-order
approximation with respect to the magnitude of selection, linear functions of the scaled
variance σ 2 and their values can be estimated by repeating the evolution of the population
with an update according to a Moran model. Using 106 repetitions for each value of σ 2 in a
uniform probability distribution and least squares to find the best linear fits for FC and FD

(see Figs. 9 and 10 in “Appendix C” for details), the threshold values σ 2∗N , σ 2∗∗N and σ 2∗∗∗N
that the scaled variance σ 2 must exceed to have FC > N−1, FD < N−1 and FC > FD ,
respectively, for a population size N going from 2 to 20 have been obtained (see Figs. 5, 6).
These results are in agreement with our theoretical predictions illustrated in Figs. 1 and 2.

Moreover, we also ran simulations with an update according to a Wright–Fisher model
to check the robustness of our results (see Figs. 7 and 8, and 11 and 12 in “Appendix C” for
more details). These simulation results are similar to the previous ones.

As for a Fermi model in pairwise comparisons (see, e.g., Wu et al. [29] and references
therein), let T+

i be the probability that a defector is selected to update its strategy and that it
imitates the strategy of a cooperator. Using Taylor’s theorem, this probability is given by

T+
i = E

[
i

N

(
1 − i

N

)
1

1 + ePD(x)−PC (x)

]

= i

N

(
1 − i

N

)
× E

[
1

2
+ PC (x) − PD(x)

4
− F (3)(ξ)

3! (PC (x) − PD(x))3
]

, (79)

where F(x) = 1/(1 + ex ) and ξ is a random variable that depends on PC (x) − PD(x)
such that ξ ∈ (0, PC (x) − PD(x)) if PC (x) − PD(x) > 0 or ξ ∈ (PC (x) − PD(x), 0) if
PC (x) − PD(x) < 0. Note that

∣∣∣F (3)(x)
∣∣∣ =

∣∣∣∣∣−
ex

(−4ex + e2x + 1
)

(1 + ex )4

∣∣∣∣∣ ≤ 4

1 + ex
≤ 4, (80)
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Fig. 5 Simulation results under a Moran model in Case 1 with δ = 0.02, μb = 2 and μc = 1. The dots
represent the threshold values σ 2∗N , σ 2∗∗N and σ 2∗∗∗N for the scaled variance σ 2 obtained from the best linear
fits of the fixation probabilities FC and FD (see Fig. 9 in “Appendix C” for more details). The curves represent
the corresponding theoretical values as in Fig. 1

Fig. 6 Simulation results under a Moran model in Case 2 with δ = 0.02, μb = 2 and μc = 1. The dots
represent the threshold values σ 2∗N , σ 2∗∗N and σ 2∗∗∗N for the scaled variance σ 2 obtained from the best linear
fits of the fixation probabilities FC and FD (see Fig. 10 in “Appendix C” formore details). The curves represent
the corresponding theoretical values as in Fig. 2

which leads to∣∣∣∣∣E
[
F (3)(ξ)

3! (PC (x) − PD(x))3
]∣∣∣∣∣ ≤ E

[∣∣∣∣∣
F (3)(ξ)

3! (PC (x) − PD(x))3
∣∣∣∣∣
]

≤ 4

3! E
[|PC (x) − PD(x)|3] = o(δ). (81)

Inserting (81) in (79), we get

T+
i = i

2N

(
1 − i

N

)
×

[
1 + E [PC (x) − PD(x)]

2

]
+ o(δ). (82)
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Fig. 7 Simulation results under a Wright–Fisher model in Case 1 with δ = 0.02, μb = 2 and μc = 1. The
dots represent the threshold values σ 2∗N , σ 2∗∗N and σ 2∗∗∗N for the scaled variance σ 2 obtained from the best
linear fits of the fixation probabilities FC and FD (see Fig. 11 in “Appendix C” for more details). The results
are very similar to those obtained under a Moran model shown in Fig. 5

Fig. 8 Simulation results under a Wright–Fisher model in Case 2 with δ = 0.02, μb = 2 and μc = 1. The
dots represent the threshold values σ 2∗N , σ 2∗∗N and σ 2∗∗∗N for the scaled variance σ 2 obtained from the best
linear fits of the fixation probabilities FC and FD (see Fig. 12 in “Appendix C” for more details). The results
are very similar to those obtained under a Moran model shown in Fig. 6

This means that the second moments do not come into play in the first-order approxima-
tion of T+

i , and by symmetry the second moments do not come into play in the first-order
approximation of T−

i as well. Therefore, in this model, the first-order approximation of the
fixation probability of C does not depend on the second moments of the different payoffs η j

for j = 1, 2, 3, 4.

8 Discussion

In this paper, we have extended the study of Li and Lessard [15] on the effect of random
fluctuations in payoffs for two strategies in linear games in a finite population. We have
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considered an update at each discrete time step according to a Moran model instead of a
Wright–Fisher model, which has allowed us to calculate a first-order approximation for the
probability of ultimate fixation of a single C , FC , or a single D, FD , with respect to the
magnitude of selection for any population size N ≥ 2. This has led to exact conditions
for weak selection to favor the evolution of C , FC > N−1, disfavor the evolution of D,
FD < N−1, and to favor the evolution of C more than the evolution of D, FC > FD , in
terms of the scaled means, variances and covariances of the payoffs.

We have shown that an increase in the scaled variance of any payoff to D, σ 2
3 or σ 2

4 , their
scaled covariance σ34, or the scaled covariance between the payoff to C against C and the
payoff to D against D, σ13, increases FC and decreases FD (Result 1), which makes it easier
for weak selection to favor the evolution of C in all senses. Analogously, an increase in the
scaled variance of any payoff to C against C or D, σ 2

1 and σ 2
2 , their scaled covariance σ12, or

the scaled covariance between the payoff to C against D and the payoff to D against D, σ24,
decreases FC and increases FD (Result 2). This scenario makes it more difficult for weak
selection to favor the evolution of C in all senses. These conclusions have been supported
by simulations not only for a Moran model but also for a Wright–Fisher model (Section 7),
and this suggests that they are robust.

Note that the scaled covariances σ14 and σ23 are not present in the condition for FC > FD .
The reason is that each term has an equal effect on FC and FD (Result 3). More precisely,
an increase in the scaled covariance of the payoffs to C against C and to D against D, σ14,
or the payoffs to C against D and to D against C , σ23, reduces both fixation probabilities at
the same rate.

These conclusions are in agreement with the results obtained by Kroumi and Lessard
[10] in the case of a large well-mixed population in the presence of symmetric mutation. In
the stationary state and under weak selection, they have shown that a decrease in any term
among {σ 2

1 , σ 2
2 , σ12, σ24} or an increase in any term among {σ 2

3 , σ 2
4 , σ13, σ34} will increase

the average abundance of C . Moreover, neither σ14 nor σ23 comes into play in the condition
forweak selection to favor the abundance ofC more than the abundance of D for anymutation
rate. Under a low mutation rate, the condition for weak selection to favor the abundance of C
is exactly the condition to have FC > FD under weak selection in the absence of mutation.
This condition can be written as

3∑
i=0

Γi ai >

3∑
i=0

Γi b3−i , (83)

where Γi = 1, for i = 0, 1, 2, 3, are the coefficients described in Tarnita et al. [26] in the
case of pairwise interactions and in Wu et al. [30] in the case of interactions in groups of
players, while ai and bi are the payoffs given in (32). Note that the coefficients Γi depend
on the population structure and the update rule. They do not depend on the game matrix.
They quantify the degree by which individuals of the same type are more likely to meet
than individuals of different types. Note also that Li and Lessard [15] have reached a similar
conclusion for a very large population that reproduces according to a Wright–Fisher model.
However, their conclusion is limited to the case of independent payoffs in a very large
population.

In the first-order approximation of FC , the weight of σ 2
4 is higher than the weight of

σ 2
3 , while they are the same in the first-order approximation of FD . As a consequence, an

increase in the scaled variance of the payoff to D against D (Case 1) increases FC more than
an increase in the scaled variance of the payoff to D against C (Case 2). The scaled variance
has lower threshold values for FC > N−1 and FC > FD in Case 1 than in Case 2, while
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they are the same in both cases for FD < N−1. Note that in Case 1, it is impossible for weak
selection to favor the evolution of C and D, while all the other scenarios are possible. In
Case 2, it is impossible for weak selection to disfavor the evolution of C and D, while all the
other scenarios are possible.

Finally, an increase in σ 2
4 = σ 2

3 = σ 2 when σ 2
1 = σ 2

2 = 0 (Case 3) increases FC and
decreases FD more than an increase in only one of them for any population size N ≥ 3 and
any correlation coefficient between the payoffs to D againstC and D that satisfies ρ > −1/3.
This holds in the particular cases of perfect positive correlation (ρ = 1) and no correlation
(ρ = 0). Note that increasing the correlation coefficient ρ increases FC and decreases FD ,
which makes it easier for weak selection to fully favor the evolution of C in the sense that
FC > N−1 > FD . When σ 2

1 = σ 2
2 = σ 2 (Case 4), this is possible under more stringent

conditions, that is, N < 13 and ρ > 0.
For a Prisoner’s Dilemma with additive random cost c and random benefit b (Case 5), we

have shown that the conditions for FC > N−1, FD < N−1 and FC > FD areσbc−σ 2
c > σ 2∗N ,

σbc − σ 2
c > σ 2∗∗N and σbc − σ 2

c > σ 2∗∗∗N , respectively. Note that the thresholds σ 2∗N , σ 2∗∗N
and σ 2∗∗∗N depend on the population size andμC , the scaled mean cost. Increasing the scaled
variance of the cost c, σ 2

c , or its scaled covariance with the benefit b, σbc, increases FC and
decreases FD . In the case of no correlation between the cost and benefit, that is, σbc = 0,
weak selection fully favors the evolution of D in the sense that FC < N−1 < FD .

We have extended our analysis to a general Prisoner’s Dilemma that is repeated a random
number of rounds n. In this case, we have shown that an increase in the scaled variances
of the payoffs to D against C and D, σ 2

T and σ 2
P , their covariance σT P or the covariance

between the payoffs to C and D against C , σRT , makes it easier for weak selection to favor
the evolution of T FT against AllD in all senses. Conversely, an increase in the variances
of the payoffs to C against C and D, σ 2

R and σ 2
S , their covariance σRS or the covariance

between the payoffs to C and D against D, σSP , makes it more difficult for weak selection to
favor the evolution of T FT in all senses. In addition, an increase in σRP (respectively, σST )
decreases FT FT and FAllD but does not play any role in the condition for FT FT > FAllD .
If the mean number of rounds is large enough, only the variances of the payoff to C against
C and the payoff to D against D, or their covariance, come into play in the conditions for
FT FT > N−1, FAllD < N−1 and FT FT > FAllD . If σ 2

P is large enough or σ 2
P is small

enough, then weak selection fully favors the evolution of T FT .
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9 Appendix A: A First-Order Approximation

Note that |ηi | < M , for i = 1, 2, 3, 4, which yields |P̄(x)| ≤ M < 1 for any x in [0, 1].
Using Taylor’s theorem, we obtain

1

1 + P̄(x)
= 1 − P̄(x) + P̄2(x) + P̄3(x)

(1 + ξ)3
, (84)
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where ξ is a random variable that depends on P̄(x) such that ξ ∈ (0, P̄(x)) if P̄(x) > 0 or
ξ ∈ (P̄(x), 0) if P̄(x) < 0. This leads to

E

[
1 + PC (x)

1 + P̄(x)

]
= E

[
(1 + PC (x))

(
1 − P̄(x) + P̄2(x) + P̄3(x)

(1 + ξ)3

)]

= E
[
(1 + PC (x))

(
1 − P̄(x) + P̄2(x)

) ]
+ E

[
(1 + PC (x))P̄3(x)

(1 + ξ)3

]
.

(85)

If P̄(x) > 0, we have 1 ≤ 1 + ξ ≤ 1 + P̄(x), which leads to∣∣∣∣ 1

1 + ξ

∣∣∣∣ ≤ 1. (86)

If P̄(x) < 0, we have 0 < 1 + P̄(x) ≤ 1 + ξ ≤ 1, which leads to∣∣∣∣ 1

1 + ξ

∣∣∣∣ ≤
∣∣∣∣ 1

1 + P̄(x)

∣∣∣∣ ≤ 1

1 − |P̄(x)| ≤ 1

1 − M
, (87)

since |P̄(x)| ≤ M < 1. Combining these inequalities, we get

1

(1 + ξ)3
≤ sup

{
1,

1

(1 − M)3

}
= K , (88)

where K is a finite constant. Then, we have∣∣∣∣E
[

(1 + PC (x))P̄3(x)

(1 + ξ)3

]∣∣∣∣ ≤ E

[ |1 + PC (x)||P̄3(x)|
(1 + ξ)3

]

≤ K E
[|1 + PC (x)||P̄3(x)|] .

(89)

On the other hand, by using condition (3), we have

E
[|1 + PC (x)||P̄3(x)|] = o(δ). (90)

We conclude that

E

[
(1 + PC (x))P̄3(x)

(1 + ξ)3

]
= o(δ). (91)

10 Appendix B: Calculation of Summations

Using the elementary arithmetic identities

n∑
i=1

i4 = n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
, (92a)

n∑
i=1

i3 = n2(n + 1)2

4
, (92b)

n∑
i=1

i2 = n(n + 1)(2n + 1)

6
, (92c)
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n∑
i=1

i = n(n + 1)

2
, (92d)

we get

N−1∑
i=1

(N − i)m
( i

N

)

= A3

N−1∑
i=1

(N − i)
i3

N 3 + A2

N−1∑
i=1

(N − i)
i2

N 2 + A1

N−1∑
i=1

(N − i)
i

N

+ A0

N−1∑
i=1

(N − i)

= A3
(N 2 − 1)(3N 2 − 2)

60N 2 + A2
N 2 − 1

12
+ A1

N 2 − 1

6
+ A0

N (N − 1)

2

= N 2 − 1

2

[
3N 2 − 2

30N 2 A3 + A2 + 2A1

6
+ N

N + 1
A0

]
(93)

and

N−1∑
i=1

m
( i

N

)

= A3

N−1∑
i=1

i3

N 3 + A2

N−1∑
i=1

i2

N 2 + A1

N−1∑
i=1

i

N
+ A0

N−1∑
i=1

1

= A3
N 2(N − 1)2

4N 3 + A2
N (N − 1)(2N − 1)

6N 2 + A1
N (N − 1)

2N
+ A0(N − 1)

= (N − 1)

[
N − 1

4N
A3 + 2N − 1

6N
A2 + A1

2
+ A0

]
. (94)

11 Appendix C: Simulation Data

This appendix contains the simulation data in Cases 1 and 2 under aMoranmodel (Figs. 9, 10)
and a Wright–Fisher model (Figs. 11, 12). For a population size going from 2 to 20 and
parameter values δ = 0.02, μb = 2 and μc = 1, the fixation probabilities FC and FD are
calculated from 106 repeated runs for each value of the scaled variance σ 2 in a uniform
probability distribution.
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Fig. 9 Simulation data under a Moran model in Case 1
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Fig. 10 Simulation data under a Moran model in Case 2
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Fig. 11 Simulation data under a Wright–Fisher model in Case 1
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Fig. 12 Simulation data under a Wright–Fisher model in Case 2
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