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The emergence of cooperation in populations of selfish individuals is a fascinating topic that has inspired
much theoretical work. An important model to study cooperation is the phenotypic model, where
individuals are characterized by phenotypic properties that are visible to others. The phenotype of an
individual can be represented for instance by a vector x = (xq, ..., X,), where xq, ..., X, are integers.

'éey‘l""’f ds: ] . The population can be well mixed in the sense that everyone is equally likely to interact with everyone
p;’lgr:‘;g:eossgfé’eram" else, but the behavioral strategies of the individuals can depend on their distance in the phenotype space.

A cooperator can choose to help other individuals exhibiting the same phenotype and defects otherwise.
Cooperation is said to be favored by selection if it is more abundant than defection in the stationary state.
This means that the average frequency of cooperators in the stationary state strictly exceeds 1/2. Antal
et al. (2009c¢) found conditions that ensure that cooperation is more abundant than defection in a one-
dimensional (i.e. n = 1) and an infinite-dimensional (i.e. n = oo) phenotype space in the case of the
Prisoner’s Dilemma under weak selection. However, reality lies between these two limit cases. In this
paper, we derive the corresponding condition in the case of a phenotype space of any finite dimension.
This is done by applying a perturbation method to study a mutation-selection equilibrium under weak
selection. This condition is obtained in the limit of a large population size by using the ancestral process.
The best scenario for cooperation to be more likely to evolve is found to be a high population-scaled
phenotype mutation rate, a low population-scaled strategy mutation rate and a high phenotype space
dimension. The biological intuition is that a high population-scaled phenotype mutation rate reduces
the quantity of interactions between cooperators and defectors, while a high population-scaled strategy
mutation rate introduces newly mutated defectors that invade groups of cooperators. Finally it is easier
for cooperation to evolve in a phenotype space of higher dimension because it becomes more difficult for
a defector to migrate to a group of cooperators. The difference is significant fromn = 1ton = 2 and from
n = 2ton = 3, but becomes small as soonasn > 3.

Prisoner’s Dilemma
Abundance in frequency

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Evolutionary game theory is the study of frequency-dependent
selection (Maynard Smith, 1982; Maynard Smith and Price, 1973;
Hofbauer and Sigmund, 1988, 2003; Cressman, 2003; Nowak and
Sigmund, 2004; Nowak, 2006). The fitness of an individual is not
constant, since it depends on the payoff of the strategy used by the
individual in interaction with other individuals. It was originally
expressed in terms of the replicator equation in the case of pairwise
interactions in an infinite well-mixed population, which means
that any two individuals interact with the same probability (Taylor
and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980).
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Consider an evolutionary game with n possible strategies,
labeled by the integersi = 1, ..., n. The payoff matrixA = (a;;) is
anxnmatrix, whose entry g; j represents the payoff received by an
individual playing strategy i against an individual playing strategy
j. The frequency of strategy i is denoted by x;. Then the replicator
equation is given by

% = x (w0 — W),

where w;(X) and w(x) represent the expected payoff to strategy i
and the average payoff in the population, respectively, given by

N
w,~(x) = Z a; jX;
=1
and

N
W) = Y xiwi(x),
i=1
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withx = (x4, ..., X,). This fundamental equation can be extended
to spatial games in a graph-structured population, with every
individual occupying a vertex of the graph interacting with its
nearest neighbors (Ohtsuki and Nowak, 2006b), or in a group-
structured population with groups of interacting individuals
randomly chosen in an infinite population (Hilbe, 2011). It can be
extended also to games with multiple players in a finite or infinite
well-mixed population (Gokhale and Traulsen, 2010).

Infinitely large, well-mixed populations and deterministic
dynamics are idealizations. Real populations have a finite number
of individuals besides being not perfectly mixed. Linear games have
been considered in the context of finite populations. In the absence
of mutation, selection can favor or oppose a mutant strategy to
replace a resident strategy. This will be the case for instance
if the probability of fixation of the mutant is larger or smaller
than it would be under neutrality (Rousset and Billiard, 2000;
Nowak et al., 2004; Taylor et al., 2004; Lessard, 2005; Imhof and
Nowak, 2006; Ladret and Lessard, 2007, 2008). In the presence
of symmetric mutation, selection is said to favor a strategy if
this strategy is more abundant on average, that is, if its average
frequency in the stationary state strictly exceeds what it would be
under neutrality (Fudenberg and Imhof, 2006; Antal et al., 2009a,b;
Tarnita et al., 2009, 2011; Gokhale and Traulsen, 2011; Kroumi and
Lessard, 2014).

Spatial structures have been considered more recently for
games in finite populations. The spatial distribution of a population
allows interactions between individuals to depend on their
locations. In the traditional setting of spatial games, the individuals
are arranged on a regular lattice and interactions occur among
nearest neighbors (Nowak and May, 1992). A generalization of
this structure is the graph structure where individuals occupy
the vertices of a graph and the edges indicate who interacts
with whom (Lieberman et al., 2005; Ohtsuki and Nowak, 2006a,b;
Ohtsuki et al., 2006; Taylor et al., 2007a,b; Santos et al., 2008).

Another spatial structure is a population subdivided into two
subpopulations with any migration rates (Ladret and Lessard,
2007), or an island model with a large number of islands and
uniform or proportional dispersal (Rousset and Billiard, 2000;
Ladret and Lessard, 2008; Lessard, 2011a,b). The stepping stone
model (see, e.g., Rousset and Billiard, 2000; Rousset, 2006) is a spa-
tial model with local dispersal. Suppose a population subdivided
into d demes labeled by the integers 1, .. ., d, and a migration ma-
trix M = (m;;), where m;; is the proportion of offspring in deme i
that come from deme j. The stepping stone model corresponds to
the case where m;; = % ifj=i+1ori—1,and 0 otherwise, fori =
2,...,d—1.Fori=1,wehavem,;; = % ifj = 2 ord, and 0 other-
wise. Similarly, we have my j = % ifj = 1ord—1, and 0 otherwise.

The geometry of human populations is determined by associa-
tions that individuals have with various groups or sets. Each indi-
vidual may belong to many sets, for example, a student may study
several subjects and take different classes. A particular setting is
studied in Tarnita et al. (2009): a population of N individuals is dis-
tributed over M sets where each individual belongs exactly to K
sets. Interactions occur within each given set. For a review of evo-
lutionary dynamics in structured populations, see, e.g., Lehmann
and Rousset (2010, 2014) or Nowak et al. (2010).

The Prisoner’s Dilemma (Axelrod and Hamilton, 1981; Axel-
rod, 1984) is a simple game in which there is a tension between
individual interests and a common good. It has been studied in
economics, philosophy and machine learning. It is crucial for un-
derstanding human relations, evolution and morality. In the Pris-
oner’s Dilemma, there are two strategies, C and D, which refer to
cooperation and defection, respectively. The payoff matrix is given

by
>, (1)

~N X N
W w»n o

whereT > R > P > S. Here, R is the reward payoff that each
player receives if both cooperate, P is the punishment payoff that
each player receives if both defect, T is the temptation payoff that
a player receives if he alone defects and S is the sucker payoff that
a player receives if he alone cooperates. A simpler form of the Pris-
oner’s Dilemma is the additive model with a payoff matrix in the
form

C D

c b—c -—c
D( b 0 )’ (2)

where b > 0 is the benefit gained by the opponent of a cooperator
and ¢ > 0 is the cost incurred by a cooperator.

Individuals exhibit other phenotypic traits in addition to their
behavioral strategies as size, height, or other aspects of physical ap-
pearance, which supports the idea that behavioral strategy is trig-
gered by phenotypic similarity. This is known as the green-beard
effect which is based on the theory of the selfish gene (Hamilton,
1964a,b; Dawkins, 1976), according to which an individual pos-
sesses the gene that creates the incentive to be altruistic toward
individuals who also possess this gene. It appears when a gene
produces three phenotypic effects: a perceptible characteristic (the
hypothetical green beard), a recognition by other individuals of this
characteristic and a preferential treatment of those recognized. An
individual carrier of this gene recognizes the other porters of this
gene and behaves in a way altruistic toward them.

The effect of phenotypic similarity on the evolution of coop-
eration has been studied in the framework of an infinite struc-
tured population (see, e.g., Riolo et al, 2001; Axelrod et al,
2004; Traulsen and Claussen, 2004; Jansen and Van Baalen, 2006;
Traulsen and Nowak, 2007). Rousset and Roze (2007) and Lehmann
et al. (2009) consider an island model with an infinite number of
demes composed of N haploid individuals. There are two loci with
two alleles segregating at each locus. The first is the helping locus
with a helping allele or a cheating allele. The second is the match-
ing locus with a mutant recognition allele or a wild allele. There
are pairwise interactions within demes. An individual i adopts the
strategy cooperation against an individual j of the same deme if i
has the helping allele at the helping locus while i and j have the
same allele at the matching locus, otherwise i adopts the strategy
defection against j.

More recently Lehmann et al. (2009) considered a finite well-
mixed population according to a Wright-Fisher model. Like in
Rousset and Roze (2007), there are two loci, a strategy locus and
a matching locus. With two alleles at the matching locus, a wild
type and a mutant type, it is a model with a finite phenotype space,
actually two phenotypes.

Another setting is the one-dimensional or infinite-dimensional
phenotype space with a priori infinite possible states which was
studied by Antal et al. (2009c). Consider a population of N in-
dividuals which follows a Wright-Fisher model. In each genera-
tion, every individual produces the same large number of offspring.
The next generation of N individuals is sampled from this pool
of offspring. Consider a one-dimensional (respectively infinite-
dimensional) phenotype space: each individual has a phenotype
represented by an integer (respectively an infinite vector of in-
tegers) and adopts a strategy among the two strategies of the
Prisoner’s Dilemma, C and D. An individual inherits its parent’s
phenotype i with probability 1 — v, or one of the phenotypesi — 1
and i + 1 with the same probability v/2 (respectively with proba-
bility v an individual jumps to a new unique phenotype). Similarly
an individual inherits its parent’s strategy with probability 1 —u or
adopts a strategy chosen at random among {C, D} with probability
u. Cooperation is conditional on being of the same phenotype. In
other words, a C-player cooperates if the opponent is of the same
phenotype, and defects otherwise. On the other hand, a D-player
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always defects. Therefore, the payoffs are given by the entries of
the matrix (1). For one-dimensional and infinite-dimensional phe-
notype spaces described above, Antal et al. (2009c) derived con-
ditions for C to be more abundant than D under weak selection,
i.e. conditions for the average frequency of C in the stationary state
to strictly exceed 1/2. In the limit of a large population the condi-
tions are

R-P)(1++3)>T -5,
for a one-dimensional phenotype space, and
R>P

for an infinite-dimensional phenotype spaces. These conditions are
equivalent to a benefit-to-cost ratio satisfying

b 1+ 2
s il
RV
and

b

->1,

c

for one-dimensional and infinite-dimensional phenotype spaces,
respectively, in the case of the additive Prisoner’s Dilemma with
the payoff matrix (2).

However, reality lies between the two above limit cases, since a
phenotype describes the similarity between individuals in several
but finite characteristics (the phenotype is encoded by many
genes). In this paper, we study the general case of a phenotype
space of dimension n > 1. We use a perturbation method to study
a mutation-selection equilibrium under weak selection. We derive
a condition for C to be more abundant on average, and its large
population size limit, in terms of the payoffs of the game and some
identity measures. The analysis differs according to the dimension
n of the phenotype space. We discuss the effect of the dimension
of the phenotype space, as well as the effects of the phenotype and
strategy mutation rates.

The remainder of this paper is organized as follows. In Section 2,
the additive Prisoner’s Dilemma in a phenotype space of any finite
dimension n > 1 is presented. A condition for selection to favor
cooperation in the stationary state is derived in Section 3 and a
first-order approximation with respect to the intensity of selection
is given in Section 4. This approximation is expressed in terms of
identity measures under neutrality in Section 5. The effects of the
phenotype and strategy mutation rates in the cases of n = 2 and
n > 3 are studied in Sections 6 and 7, respectively. In Section 8, the
general form of the Prisoner’s Dilemma is considered. Finally, the
best scenario for the evolution of cooperation stemming from the
results is discussed and interpreted in Section 9.

2. Model

Consider a population consisting of N haploid individuals
numbered by the integers 1,...,N. Individual k exhibits a n-
dimensional phenotype represented by x(k) = (x;(k), ..., x,(k))
€ Z", where the ith component x;(k) is an integer fori =1, ...,n,
for k = 1,...,N. In pairwise interactions in the context of the
Prisoner’s Dilemma, individual k adopts strategy S(k) € {C, D},
where C and D refer to cooperation and defection, respectively, for
k=1,...,N.

The system evolves according to a Wright-Fisher process. There
are discrete, non-overlapping generations. Each individual of each
generation is produced independently of all others by a parent
chosen among the individuals of the previous generation with a
probability proportional to the fitness of that parent, which is a
function of the payoff that he receives (see below). An offspring
inherits the strategy of its parent with probability 1— u or adopts a

strategy chosen at random among the two available strategies with
probability u. Note that the model with a probability u; of adopting
the other strategy is equivalent to u = 2u;. Moreover, if the parent
is individual k, then the offspring inherits the phenotype x(k) with
probability 1 — v, adopts the phenotype x(k) + e; with probability
on» Or adopts the phenotype x(k) — e; with probability 5, for
1 =1,...,n Here, e, € Z" is a n-dimensional unit vector with
the ith component equal to 1 and all other components equal to 0.

Note that a phenotype mutation, which occurs with probability
v, corresponds to an increase or a decrease by 1 in one of the n
components of the phenotype. On the other hand, a strategy muta-
tion, which occurs with probability u, is parent-independent in the
sense that the outcome does not depend on the strategy of the par-
ent. Moreover, all mutation events are assumed to be independent.

Each individual engages in pairwise interactions with all
other individuals of the population in the same generation and
accumulates a total payoff. The result of an interaction between
two individuals of the same phenotype is characterized by the 2 x 2
payoff matrix given by (2). The result of an interaction between two
individuals of different phenotypes is a payoff 0 to each player.
This means that cooperators play a conditional strategy: they
cooperate with all the individuals who have the same phenotype,
and they defect with the others. Defectors always defect. The game
is assumed to be symmetric, which means that the benefit and cost
payoffs are the same for every player.

The total payoff of a player I is given by the sum of all the payoffs
that he receives, represented by a;. The fertility of I is then assumed
to be in the form

f=1+4+68xa, (3)

where § > 0 represents an intensity of selection. The neutral model
corresponds to § = 0. Note that § is assumed to be sufficiently
small so that all fertility values are positive.

For x € Z", let ny denote the number of players of phenotype
X, and my the total number of cooperators of phenotype x,
respectively. Then the state of the whole population is given by the
vector s = (n, m), where n and m are two vectors defined by

n=(nx:xezZ"
and
m= (my :X €Z").

Since self interaction is excluded, the total payoff of a cooperator
of phenotype X is given by

acx =b(my — 1) —c(nx — 1). (4)
Similarly, the total payoff of a defector of phenotype X is
apx = bmy. (5)

Note that N =} ,n ny. The corresponding fertilities are

fex =1+ 8acx (6)
and

fD,x =1+ aaD,x, (7)
respectively.

3. Condition for selection to favor cooperation

We say that selection favors cooperation if the expected
frequency of cooperators in the stationary state strictly exceeds
1/2 (Antal etal.,2009c). If this is ascertained at least for an intensity
of selection that is small enough, then we say that weak selection
favors cooperation.

Let X (s) denote the frequency of cooperators in the population
in state s. The frequency of cooperators changes over one
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generation by a quantity represented by AX(s). The expected value
of this change can be decomposed into two terms. A first term
accounts for the change due to selection in the absence of strategy
mutation, which occurs in an expected proportion 1 — u of the
population. A second term describes the change due to strategy
mutation (in which case selection has no effect), which occurs in
the complementary expected proportion u of the population. More
precisely, we have

]E[AX(S)] —(1- u)]E[AXse|(s)] + uJE[Axmm(s)], 8)

where s represents the current population state. Note that Eq. (8)
holds only under the assumption that strategy mutation, when it
occurs, does not depend on the parental type (for more details see
Allen and Tarnita (2014)). Moreover, the mutant strategy is chosen
at random among the two strategies (cooperation and defection),
the expected frequency of cooperators is 1/2 after mutation,
compared to X(s) before selection and mutation. Therefore, we
have

1
E[ MXnu(9)] = 5 = X(®).
This leads to

]E[AX(S)] =(1- u)]E[AXsel(s)] + u(% - X(s)). 9)

In the stationary state (for the existence of the stationary state
see Appendix A), the frequency of cooperators in the population,
denoted by X, keeps a constant expected value. Then the expected
change in the frequency of cooperators vanishes, that is

E[AX] = IE[IE[AX(S)]] —o0.

Taking expectation on both sides of Eq. (9) yields, after rearranging
terms,

1—u

E[X] = % + E[AXe], (10)

where
E[AX,u] = E[E[AX,a(9)]]

We conclude that E[X] > 1/2, which means that cooperation is
favored by selection, if the expected value of the change in the
frequency of cooperators due to selection only (in the absence of
strategy mutation) is positive in the stationary state, that is

E[AXe] > O. (11)

If this inequality is ascertained at least for § > 0 small enough,
then we say that cooperation is favored by weak selection.

4. Effect of selection on expected change in cooperator
frequency

Given a population state s = (n, m), the expected change in the
frequency of cooperators due to selection before strategy mutation
in offspring is given by the expression

]E[Axsel(s)] = IlV(Z Mywc x — mx)- (12)

X€ZN

Here, wc x is the fitness of a cooperator of phenotype x, namely the
expected number of offspring of a cooperator whose phenotype is
x, for x € Z". Using the fertilities defined in Egs. (6) and (7), we
have

NfC,x )
> (myfc.y + (ny — my)fD.v)

yezh

(13)

wcx =

As a matter of fact, every individual in the current generation is
chosen to be the parent of an offspring in the next generation with
probability given by its fertility relative to the total fertility. This
is repeated independently N times. Note that the total fertility is
given by

Z (myfc,y + (ny — my)fD,Y)

yezn
=N+8b—c))_ myny—1). (14)
yezn

A first-order approximation with respect to the intensity of selec-
tion § yields the following expression for the expected number of
offspring of a cooperator whose phenotype is x:

wex =1+ a[b(mx — 1) —clng—1) — le 3 my(ny — 1)]
yezn
+0(8). (15)
Therefore, Eq. (12) becomes
E[AXa(®)] = %[b Y melmg =1 —c Y my(ng — 1)

xezn Xxezn

_b;‘ 3 momy(ny — 1)] +0(3). (16)

X,yezn

Taking expectation on both sides of the above equation gives
a first-order approximation with respect to § for the expected
change in frequency of cooperators under weak selection given by

]E[Axsel] = %I:b Z Eo (mx(mx — 1)) —C Z Eo(mx(nx — 1))

Xezn Xezn

— b—c Z ]Eo(mxmy(ny - 1))} + 0(8). (17)

N X,yezn
Here, Ey denotes expectation in the stationary state under neutral-
ity (6 = 0).

5. Condition for weak selection to favor cooperation in terms
of identity measures

For an event A, let us introduce the indicator variable

1
]1A={0

In a population with individuals exhibiting phenotype x(k) and
playing strategy S(k), fork = 1, ..., N, the number of individuals
of phenotype x, given by ny, and the number of cooperators of
phenotype x, given by my, can be expressed as

N
ny = Z T ix(k)=x}
k=1

and

if the event A is true,
if the event A is false.

My = ) Tix@k=xL{sw=Cc)-
k=1

Moreover, we have:

N N
Z My = Z Z Lixgo=x}L{s(ky=c} = Z Lisao=c)>
k=1

xeZn xeZM k=1

N
Z m,z‘ = Z Z Lix=x()=x) L(s(k)=s()=C}

xezZn xeZM k,j=1
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N
= Z Lixto=x() Listo=s()=c}»

k,j=1
N
Z MMy = Z Z Lix=x)1{xG)=y} L{s(k)=5(j)=C}
X, yezn X,yeZ" k,j=1
N
= Z Listy=sg)=c)>
kj=1
N
Z Myl = Z Z Lixy=x()=x) Lis=c}
xeZn XeZM k,j=1
N
= Z Lixo=x()} L{sty=}>
kj=1
N
Z MxMyly = Z Z Lix=x}L{s(k)=s()=C} L (x()=x())=y}-
X, yezZn X, yeZ" k,j,I=1

Using the fact that the two strategies C and D are interchangeable
in the neutral model (§ = 0), we have the following equalities:

1
Eo[Lsy=c)] = EIEO[]l(S(k)=C) + Lisg=p}] = 1/2,

1
Eo[1(s@=sg)=c}] = EEO[]I{S(k)=S(j))] =Yn/2,

Eo[1x=xG)}] = Zn,
1

Eo[ 2 pxo=x( Listo=s()=c)] = 5 Eol[Lxto=x() Listo=sn] = &n/2,

Eo[1x@=xn Lisi=s)=c}] = 5]Eo[1{x<k>=x<m11(so)=su)}] = h,/2.

Here, the integers k, j and | designate three distinct individuals
chosen at random in the population in the stationary state, while
Yn» Zn, &n and h, are identity measures defined as follows:

Yn = Po[k and j have the same strategy],
zn = Pp[k and j have the same phenotype],
gn = Po[k and j have the same strategy and the same phenotype],
h, = Po[j and I have the same strategy while k and j
have the same phenotype].

The notation Py is used for probability under neutrality. In terms of
these identity measures, we have:

]Eo[z mx] =N/2,

xeZn
N NNN-1)
]EOI:Zn m,z(] = 2 + Tgm
X€EZ
N NWN-1)
]EO[ Z mxmy] = E + Tyna
X,yeZn
N NN-1
]EO[Z; mxnx] = E + %Zn,
X€EZ
N NWN-1)
]EO[ Z mxmyny] = E + T(yrx +z, +gn)
X,yezZ
N(N—-1(N -2
ETTE

Hence, following (11) and (17), a condition for weak selection to
favor cooperation is

(V=2 —hn) +81—2)b

~((N=2)@ —h) +2:—ga)c > 0. (18)

This condition is equivalent to

b B (19)
C

where the threshold benefit-to-cost ratio B, is a function of the
identity measures z,, g, and h,,, besides the population size N, given
by
_ (N—=2)(zn —hn) + 20 — g

(N—2)(gn—hp) + 8 —2zn
This expression is valid for any population size N > 3.

Bn

(20)

Remark 5.1. In the case of a population size N = 2, condition (18)
for weak selection to favor cooperation never holds with the payoff
matrix (2) for the additive Prisoner’s Dilemma, since the payoff b
that a defector receives against a cooperator is always greater than
the payoff —c that a cooperator receives against a defector.

We consider the limiting case of a large population size and
low mutation rates so that the population-scaled strategy mutation
rate 4 = Nu and the population-scaled phenotype mutation rate
v = Nv remain constant as N — oo0. In this limiting case, the
threshold ratio (20) becomes

—h
po=2"00, (21)
&n — hn
Now, we use the expressions (see Appendix B)
=1 ( ! ) (22a)
=\ ) a
n 1 2u+1
L e (—) G ( ) , 22b
éa 4v{ "\2v + G 2v ( )
n(3+2u /1 1+2u
b= gl olm) te(5)
" Sv[ T+p "\2v +Gn 2v
342 342
_ uB+2w "( + u)] (220)
T+ w1 +2u) 2v

These expressions are given in terms of G, the Laplace transform of
the Modified Bessel function of power n. This transform is defined
as

o0 n
Go(X) = / (10(0)) e (1499 g (23)
0
Here, I, denotes the Modified Bessel function of index 0 given by
the expansion

=1

= (5) (24)

=0

By substituting the expressions (22a), (22b) and (22c) for z,, g, and
hy, respectively, the threshold ratio (21) takes the form

Ba
_a+ 207°G,(%) + 1G+ 200G (H2) = (1 4+ ) (1 + 200G, (142

C_a+ 2006 (%) + 1@ +200G (22) + 1+ (1 + 206G (52)

25)

Note that G, (x) is a decreasing function on (0, 4+00), since e~ "(1+X)@
is decreasing on (0, +o00) as a function of x for every o €
(0, +00). Therefore, the difference between the numerator and the
denominator in (25) is given by

2014200 + u)(cn(%) - c;n(1 ervz“)) > 0.
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This means that the threshold ratio B, strictly exceeds 1, for
any population-scaled strategy mutation rate 4 > 0 and any
population-scaled phenotype mutation rate v > 0 in the limit of a
large population size (N — 00).

In the remainder of the paper, we are interested in the best
scenario for the evolution of cooperation. More precisely, we look
for the values of u and v that minimize the threshold ratio S,.

The case of a one-dimensional phenotype space (n = 1) is stud-
ied in Antal et al. (2009c). It is shown that the best scenario for the
evolution of cooperation under the additive Prisoner’s Dilemma
stems from a high population-scaled phenotype mutation rate
(v — o00) and a low population-scaled strategy mutation rate
(uw — 0) with a threshold ratio 8; = 1+ %

For a phenotype space of dimension n > 2 studied here, the
analysis is different from the case n = 1 and differs according to
two cases: the case where G, (x) has an infinite right-hand limit at
0, which holds for a phenotype space of dimension n = 2, and the
case where G, (x) has a finite right-hand limit at 0, which holds for
a phenotype space of dimension n > 3.

6. Bidimensional phenotype space (n = 2)

In this section, we study the best scenario for the evolution of
cooperation in the case of a phenotype space of dimensionn = 2.
First note that the Modified Bessel function of index 0 given by (24)
satisfies

()" =

NI | 1 x\2!
ZZ 2 (=12 (5)
00 21’) X\ 2
=2 () (26)

This expansion and the identity

0

aq2l+1

lead to

G (x) =

0 2
f (zo(r)) =200t 11
i *® Zle—2(1-+—x)‘l.’d_r
2 2'<t')2

o 2 (1)) Gs)

= ﬁk(l lx) 27)

Here, K denotes the Legendre complete elliptic integral of the first
kind (Erdélyi et al., 1981) given by the series expansion

o8

I=

K(x) =

for |x| < 1. We are interested in the threshold benefit-to-cost ratio
(25) in the case where v — 00. We note that K (x) has an infinite
left-hand limit at 1, that is

lim K(x) =

x—>1"

so that G, (x) has an infinite right-hand limit at 0, that is
lim G,(x) = 400

x—>0t

Actually the asymptotic behavior of K (x) as x — 1~ (Erdélyi et al.,
1981) is described by

K(x) = 4log( ) +o(1), (29)

4
/1 — x?
where 0(1) is a function of x, which has the following limit

lim o(1) =0.

x—=>1"

From Eq. (27), this leads to

a 2v 2v
c(3) = s )
2v w(a+2v) \a+2v

4 4(a+2v)

= —log ——= 1
- og T +4av +0(1)
_ N 1
- log(f(l +22 4o ))) +o(1)
2logv
= + o(logv), (30)

asv — oo forany a > 0. Here, o(log v) is a function of v such that
1
lim 2008Y) _
v—oo logv
Therefore, Eq. (25) for n = 2 takes the form

B2

((1 +2u)% + puB 42w — (14 (1 + 2,;,))2 log v + o(log v)
a (—(1 +200) + 03+ 20) + (14 (1 + 20) ) 2log v + o(log v)
=1+0(1), 31)

where o(1) is a non negative function of v that tendsto0 as v —
oo. This means that the value of the threshold benefit-to-cost ratio
B> in the limit v — oo equals 1. Therefore, in the case of the
additive Prisoner’s Dilemma in a 2-dimensional phenotype space,
cooperation is favored by weak selection as v — oo whenever the
benefit b from cooperation is larger than its cost c, thatis b > c.
Conversely, using the expansion of K given by (28), we obtain

S )
K(X)—5+T+O(X ), (32)

as x — 0. Then we have

G(a) v 2v2+(2)
=—— — 4o0(vY),
\2p a a?

asv — 0, for any a > 0. This entails that

B, = w +0(1), (33)
414 pv

as v — 0. Then the threshold benefit-to-cost ratio S, diverges as

% for small v. Consequently, a small scaled-population

rate of phenotype mutation opposes cooperators to evolve in a

two-dimensional phenotype space.

Figs. 1 and 2 illustrate the effects of the population-scaled
mutation rates v and u for phenotype and strategy, respectively,
on the threshold benefit-to-cost ratio B, given by (25) in the case
of phenotype space of dimension n = 2 in the limit of a large
population size. These figures show that the threshold ratio 8,
is decreasing as a function of v and increasing as a function of
. This means that the condition for cooperation to be favored is
less stringent if v is larger. Moreover, for intermediate values of
0 < v < 00, this condition is less stringent for smaller values of w.
Note that the threshold ratio 8, — 1asv — oo, while 8, - o©
asv — 0.
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Fig. 1. Exact threshold benefit-to-cost ratio 8, in the N — oo limit as a function
of the population-scaled strategy mutation rate 4 = Nu for different values of the
population-scaled phenotype mutation rate v = Nv. Cooperation is most favored
in the v — oo limit, where 8, — 1.
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25|
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-
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Fig. 2. Exact threshold benefit-to-cost ratio 8, in the N — oo limit as a function
of the population-scaled phenotype mutation rate v = Nv for different values of
the population-scaled strategy mutation rate 4 = Nu. The worst scenario for the
evolution of cooperation is when v — 0, where 8, — oo.

7. Phenotype space of dimension n > 3

The Modified Bessel function I () has an asymptotic behavior
as T — oo (Watson, 1944) given by

T

\/Zm:’

which entails that

Io(r) ~

(Io(z)"e™ ~

1
(W2mT)n ’

This guarantees that f0°° (In(t))"e " dr exists forn > 3.Hence, the
dominated convergence theorem ensures that

[o¢]
lim G,(x) =/ (Io(z))"e " dr,
x—>0t 0

since

lim (Ip())"e "0 = (Ip())"e™™
x—0Tt

and
[(Io(2)"e ™ 0| < (Ip(z))"e ™™,

for all ¢ > 0. Then, G, (x) has a right-hand limit at 0 given by

Ga(07) = /m(lo(f))"e_"’df-
0

As v — 0o, we have

1 142
lim Gz(—) = lim Gz( + “)
V—00 2v V—00 2v
342
= lim Gz( + 2 ) = G, (0, (34)
V=00 2v

and therefore,
Jim_
a4+ 212Gy (0F) + (3 4+ 2p)Gn (07) — (14 ) (1 + 21)G,(01)

T (14 2)Ga(01) + L3+ 21)Gn(01) + (1 + ) (1 + 21)Gn(0F)
-1 (35)

Then, with the payoff matrix (2) for the additive Prisoner’s
Dilemma with b > c, the expected frequency of cooperators in the
stationary state under weak selection strictly exceeds 1/2, which
means that cooperation is more abundant then defection.

Now we study the effect of a small population-scaled phenotype
mutation rate on the threshold benefit-to-cost ratio 8,. First, from
Eq. (24) we have the asymptotic expansion

2
o(®) =1+ % +o(®), (36)

ast — 0. Then using this expansion in (23) gives the asymptotic
expansion

a 2v o 2vo no_.
6r(5y) = ((5y 7)) € "o
2v 2v+a g 2v+a
2v g nv?o?
= 1 o(v? )e‘"”d
2v+af0(+a2 +00?) o
_ v 4?

2
—E—E‘i‘o(‘))’

asv — 0, for any a > 0. This yields the asymptotic expression

By = (1+21)3+2u)
" 41+ w)v
(+2p) G+2)

as v — 0. Then the ratio g, diverges as Aty Asv — 0,

which means that a scaled-population phenotype mutation rate
that is small enough opposes evolution of cooperation. To see
the effect of the scaled-population strategy mutation rate on the
ratio B,, note that % is an increasing function of u.
Therefore, a smaller scaled-population strategy mutation rate is
more favorable for cooperation to evolve. Note that the dimension
of the phenotype space n has no effect on the first term of (37), but
it has an effect on the second term which is of order o(1).

The same qualitative conclusions hold for a phenotype space
of dimension n > 3 as for the case n = 2. As a function of
the population-scaled phenotype mutation rate v, the threshold
benefit-to-cost ratio 3, is decreasing. However, the threshold ratio
B is increasing with respect to the population-scaled strategy
mutation rate u.

o(1), (37)

8. General case

In this section, we study the case of the general Prisoner’s
Dilemma. More precisely, an interaction between two individuals
of the same phenotype is characterized by the 2 x 2 payoff matrix
given by (1). The result of an interaction between two individuals
of different phenotypes is a payoff P to each player. A similar
reasoning to the one given in Sections 4 and 5 yields as condition
for weak selection to favor cooperation

MiR 4+ M,S + MsP + MyT > 0, (38)
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Here, 1, is the identity measure defined by

=P [k, j and [ have the same strategy while k and j

have the same phenotype],

where k, j and [ are three individuals chosen at random without
replacement in the stationary state under neutrality. Condition
(38) is valid for any population size N > 2 and any dimension
n > 1 for the phenotype space. In the limit of a large population,
this condition becomes

R—=8)gn+ S —P)zy > R—S—T+P)ny
+ (S +T — 2P)h,. (39)

Now, by using the expression (see Appendix B)

n(2+u 1 14+2u
= sl uo(a) v (57)
& 8v{1+u "\2v + 2 2v

_ uGB+2w <3+2u)}
A+ +2m) "\ 2v ’

and the expressions (22a), (22b), (22c) for z,, g, and h,, condition
(39) can be written in the form

o,R+S >T+0,P, (41)

where
(1426 () + G+ 206G (52))

1+ )1 +20)(Ga(5) — Ga(152))

Here, o, is a structure coefficient (Tarnita et al., 2009), which does
not depend on the entries of the payoff matrix. Alternatively, o,
can be expressed as

_ Bt

ﬂn - 1'
Thus, if the critical benefit-to-cost ratio 8, is known, we can
immediately obtain o, and vice versa.

Now, we are interested in the condition to favor cooperation in
the v — oo limit in the general case. The fact that lim,—, o 8, =
1 and relation (43) guaranty that lim,_,. 0, = oc. Then, the
condition for weak selection to favor cooperation takes the simple
form

R>P, (44)

as v — oo, for any population-scaled mutation rate . > 0. This
condition is valid for a phenotype space of any dimension n > 2.
The condition means that weak selection favors the strategy with
the higher payoff against itself. This condition is the well-known
condition for Pareto dominance to prevail over risk dominance in
coordination games (Harsanyi and Selten, 1988). In this case, the
diagonal entries of the payoff matrix are more important than the
off-diagonal entries for determining the best strategy.

As the population-scaled phenotype mutation rate tends to 0,
the structure coefficient tends to 1 that is lim,_, 00, = 1, owing

(40)

On = (42)

(43)

On

to relation (43) and the fact that lim,_,¢ 8, = o00. Then, condition
(41) for weak selection to favor cooperation becomes

R+S>T+P,

as v — 0. This condition is valid for any population-scaled muta-
tionrate u > 0and for any phenotype space dimensionn > 2.This
is the well-known condition for risk dominance in a coordination
game (Harsanyi and Selten, 1988). Here, the situation is equivalent
to a well-mixed population and then the structure of the pheno-
type space has no effect on the favored strategy.

9. Discussion

We have derived conditions that favor the evolution of
cooperation in a phenotype space of any finite dimension n > 2.
Consider a population of N individuals labeled by the integers
1,...,N. Each individual has a phenotype represented by a
n-dimensional vector with integer components. Moreover, each
individual adopts one of two strategies, cooperation and defection.
Generations are discrete and non overlapping. The phenotype
mutation rate is v. If the phenotype of the parent k is x(k), then the
phenotype of an offspring of k is x(k) — e;, x(k) or x(k) + e; with
probability 5., 1 — v or 5, respectively, fori = 1, ..., n. Here,
e; denotes the n-dimensional vector with 1 in the ith component
and 0 elsewhere. We assume also that an offspring inherits the
strategy of its parent with probability 1 — u and chooses a strategy
at random among cooperation and defection with probability u.
Every individual interacts with all the other individuals in the
same generation to accumulate a total payoff, which affects its
contribution to the next generation by a small additive amount
proportional to some intensity of selection, called its fertility. A
cooperator receives a payoff R or S against a cooperator or a
defector, respectively, while a defector receives a payoff T or P,
respectively, against the corresponding players. It is assumed that
T > R > P > S, which corresponds to the Prisoner’s Dilemma.
Moreover, cooperation is played only against an individual of the
same phenotype.

We have shown that weak selection favors cooperation in the
sense that it is more abundant on average in the stationary state, if
arelation in the form

MR + M3S + M3P + MyT > 0 (45)

holds. This condition is given in terms of the payoffs R, S, T, P
weighted by some coefficients M; fori = 1, 2, 3, 4. These depend
only on identity measures under neutrality besides the population
size N > 2.

In the limit of a large population, the condition for cooperation
to be more abundant on average in the stationary state under weak
selection becomes

R=S)g+ (S —P)zy > R—S —T + P)nn
+(S+T — 2P)hy, (46)

where z,, g,, h, and 7, are identity measures under neutrality
derived in Appendix B. These identity measures are similar to the
ones that arise in studies of social behavior (Hamilton, 1964a,b).
The first three correspond to the traditional genetic measures F, ¢
and y, respectively, used in Rousset and Roze (2007) and Lehmann
et al. (2009). The above condition can be written in the form

onR+S >0,P+T, (47)

where o, called a structure coefficient (Tarnita et al., 2009),
depends on the population-scaled phenotype mutation rate v =
Nv and the population-scaled strategy mutation rate 4 = Nu, but
does not depend on the payoffs. This parameter o, quantifies the
degree to which individuals using the same strategy are more or
less likely to interact than individuals using different strategies.



68 D. Kroumi, S. Lessard / Theoretical Population Biology 102 (2015) 60-75

In the limit of a low population-scaled phenotype mutation rate
(v — 0), we have shown that the structure coefficient o, tends
to 1 for n > 2. Then the condition that favors the evolution of
cooperation becomes

R+S>T+P.

This is the well-known condition for risk dominance in a coordina-
tion game (Harsanyi and Selten, 1988), which is a typical condition
for two player games in non-structured populations.

However, in the limit of a large population-scaled phenotype
mutation rate (v — 00), we have shown that the structure coeffi-
cient o, tends to oo for n > 2. In this case, the condition for weak
selection to favor the evolution of cooperation takes the form

R>P.

This means that weak selection favors the strategy with the higher
payoff against itself. The intuitive reason is that in the limit v — oo
phenotypic identity entails strategic identity, which means that
individuals with the same phenotype use the same strategy. For
n = 2, the expression (30) for the Laplace transform of the Modi-
fied Bessel function of power 2 in the identity measures (22a) and
(22b) leads to

21 1
_ 2oy (logvy,

4]
b4V v
2logv log v
g2= g +0( g )9
AV v

while the expression (34) in the identity measures (22a) and (22b)
leads to

1
Z, = lG,,(O+) + o(—),
2v v

8= 2 Gi0") +o(2),
2v v

for n > 3. These expressions imply that lim,_, » z,/g, = 1, which
conveys the idea that phenotypic identity entails strategic identity. In
this case, the population is subdivided into homogeneous groups,
that is, groups of cooperators and groups of defectors. Then the
strategy with the higher payoff against itself is favored.

In the case of the additive Prisoner’s Dilemma with a phenotype
space of any finite dimension, condition (47) is equivalent to a
benefit-to-cost ratio b/c strictly exceeding some threshold value

B, given by
Zn — hy

b
E>'Bn_gn_hn'

There is a relation between the structure coefficient and the
threshold benefit-to-cost ratio given by
g, = t1

op—1
We have derived in Sections 6 and 7 the best scenario in favor
of the evolution of cooperation. This scenario is determined by
the values of the population-scaled strategy mutation rate x and
phenotype mutation rate v which minimize g,, forn > 2. For a
one-dimensional phenotype space (n = 1), Antal et al. (2009c)
showed that the best scenario was given by v = Nv > 1 AND
u = Nu < 1.In this case, the threshold value for the benefit-to-
cost ratio is

(48)

2
=14 —.
B 7
In this paper, we have shown that, for a phenotype space of
dimension n > 2, the best scenario is given by v = Nv > 1.In
this case, the threshold value is

B = 1.
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Fig. 3. Exact threshold benefit-to-cost ratio B, in the N — oo limit with v = 1
and p = 1 as a function of the dimension n of the phenotype space. The ratio 8, is
a decreasing function in n. Cooperation is most favored in the n — oo limit, where
=2.75.
00

3.0

25

2.0

1.5

ratio B,

1.0

0.5

0.0

0 5 10 15 20
n

Fig. 4. Exact threshold benefit-to-cost ratio 8, in the N — oo limit with v = 100
and p = 1 as a function of the dimension n of the phenotype space. The ratio 8, is
a decreasing function in n. Cooperation is most favored in the n — oo limit, where
B & 1.015.

This condition corresponds to the best scenario in Antal et al.
(2009c) for n = oo. In particular, this condition implies that weak
selection favors cooperation whenever the benefit b from cooper-
ation is larger than the cost c.

In general, the threshold value 8, that the benefit-to-cost ratio
must exceed for weak selection to favor cooperation is a decreasing
function with respect to the dimension n of the phenotype space
for any population-scaled phenotype mutation rate v and any
population-scaled strategy mutation rate w. This is illustrated
in Figs. 3 and 4. This suggests that a higher dimension of the
phenotype space is more favorable to the evolution of cooperation.
Fig. 3 shows the threshold ratio 3, as a function of the phenotype
space dimension for 4 = 1and v = 1. Fig. 4 shows the threshold
ratio B, in the case of a scaled-population phenotype mutation rate
v=100> 1.

The biological intuition behind our results is that a high pheno-
type mutation rate reduces the number of interactions between co-
operators and defectors because, in this case, groups are generally
small and made of cooperators only or of defectors only, in which
case the evolutionary process favors the strategy which has the
higher payoff against itself, which is cooperation. On the contrary,
a low phenotype mutation rate increases the occurrence of inter-
actions between cooperators and defectors in large groups made
of cooperators and defectors, in which selection opposes the evo-
lution of cooperation (Antal et al., 2009c).

By contrast a low strategy mutation rate favors the evolution
of cooperation. As a matter of fact the main effect of strategy
mutation is to introduce mutant defectors which invade groups
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of cooperators, and to introduce mutant cooperators which do not
invade groups of defectors. The effect is stronger when the strategy
mutation rate is higher.

Finally the effect of the dimension n of the phenotype space
can be understood from the observation that if there is a group
of cooperators with a given phenotype and there exists a defector
in a group with an adjacent phenotype, then the probability of
migration of this defector to the group of cooperators (given by
v/(2n)), and therefore the probability of invasion of the group of
cooperators by defectors, is a decreasing function with respect to
the dimension n. As a result, it is easier for cooperation to evolve in
a phenotype space of higher dimension because it becomes more
difficult for a defector to migrate to a group of cooperators. The
difference is significant fromn = 1ton = 2 and fromn = 2
ton = 3, but becomes small as soon as n > 3. There might be
a link between this phenomenon and the properties of symmetric
random walks, which arerecurrent forn = 1orn = 2 but transient
for n > 3 (Norris, 1997).
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Appendix A. Existence of stationary state

In this section, we consider the neutral case when all players
have the same fertility. Let X, = (Xt(l), ..., Xt (N )), where X; (k)

is the phenotype of individual k for k = 1, ..., N, in generation
t > 0. The Markov chain X, for t > 0 is irreducible on the state
space (Z"N. This can be seen from two observations. First, the
diagonal

A={(X,...,X):Xx€Z"}

can be reached with positive probability in one generation from
any state x € (Z™"N by considering the scenario where all individ-
uals in the next generation have the same parent. Conversely, any
state x can be reached from some state on the diagonal A in finitely
many generations. This is a consequence of the fact that from a phe-
notype X, the phenotype x--e; or x—e; can be reached in one gener-
ation with a positive probability 2—"n for any integeri € {1, ..., n}.
Then the phenotype x + le; can be reached in |I| generations for
any integer | € Z, where |l| is the absolute value of I. Secondly,
anyy € A can be reached from any x € A in finitely many genera-
tions, by making all coordinates of X, move in the same direction in
each generation. But X, for t > 0 cannot be positive recurrent be-
cause the process rapidly reaches a cluster and this cluster diffuses
collectively through the phenotype space (Z")" (see Antal et al.,
2009c). For this reason we focus on differences in the phenotype
space. Let us consider the associated Markov chain

D, = (XD = XN, ..., XN = 1) = Xc(V)),

for t > 0. This chain gives the differences between the phenotypes
of individuals 1, ..., N — 1 and the phenotype of individual N. We
are now interested in the transition probabilities of this Markov
chain. Let

.l= {_en—ly"'v _elvoye]v ""en—llv

where e; € Z" is a n-dimensional unit vector with 1 in the ith
component, and 0 elsewhere, fori = 1,...,n — 1,and 0 is a n-
dimensional zero vector. Let |o| be the norm of o € J defined by
1ifo = +e;forsomei =1,...,n—1,and 0 if o = 0. Assume
that oy € Jdescribes how the phenotype of individual k is obtained
from the phenotype of its parent. If o, = 0, then the phenotype of

k is the same as its parent’s phenotype, which occurs with prob-
ability 1 — v. If oy = e; (0x = —e; respectively), then the phe-
notype of k is obtained by increasing (decreasing respectively) by
1 the ith component of its parent’s phenotype, which occurs with

probability . For d = (d(l), .., d(N — 1)) e ()" and
b= (b(l), ...,b(N — 1)) € (Z")N-1, the transition probability
P(g, h) = ]P(QH_] = I_)lgt = d_)

is given by

N=1 4. _
P(d,b) = Z l_[ #{I: d() _Nb(k) + 0y}

x (1= louh (1 = ) + o). (49)

Here, #{I : d(I) = b(k)+ o0} is the number of choices for the parent
of individual k given that the phenotype of k is obtained from the
phenotype of its parent with a o, change. The probability of this o,

change is ((1 —lokD(1 —v) + |‘7k|%>'

Lemma A.1. Let {Y; : t > 0} be an irreducible Markov chain on a
countable state space E with transition matrix Q. Assume that there
exist Xy € E and p > 0 such that

Q(x,x0) >p, forallx+# x,. (50)
Then {Y; : t > 0} is positive recurrent.

Proof. Let Y, = x, and define Ty, as the time of the first return of
Y, to xg, that is

Ty, = inf{t > 1:Y, = x0}.
Note first that we have the inequality

P(T > t|¥o = %) < 1= p' ", (51)
for t > 1. As a matter of fact, we have
P(Y; # Xo, . .., Yt 7 Xo|Yo = Xo)

= Z P(Y, = ye, Y1 = Yee1s - -+

Z P(Yi—1 =Yt-1,-.-,

V1 Yt—17X0 Ye#Xo
X (Ye = ye|Ye-1 = Ye-1)
= Z P(Ye—1 =Yt-1,.--,

Y1seYt—1#X0
x (1 =P(Y = xolYe—1 = yi-1))

<@ —P)P(Yl FXo, ..., Y1 F Xo‘yo =X0),

owingto (50). The inequality (51) follows by recurrence. Now using
the fact that

{TXQ = w} = tD]{TXO Z t}7

Y1 = y1lYo = xo)

Y1 = y1lYo = Xo)

Y1 = y1lYo = x0)P

we obtain
IP’(TXO = oo|Yo - xo) = lim IP(TXO > t‘Yo - xo)
—> 00

lim(1—-p)~!'=0.
t—00

IA

Therefore, the state x is recurrent. Turn now to the expected value
of T,,. We have

Yo =X0] = ZP(T"O > t}Y(] =Xo)

t=1

E[T,
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= t—1 1
<Y a-p== <o
= P

We conclude that x, is positive recurrent. Since the chain is
irreducible, it is positive recurrent, which completes the proof. O

PropositionA.1. f N > 2 and v € [0, 1], then the associated
Markov chain D, for t > 0 is positive recurrent.

Proof. Note first that D, for t > 0 is irreducible on the state space
(Z"N~1 since X, for t > 0 is irreducible on the state space (Z")".
Fix a starting state d € (Z")V~!. Note that the event {D, = 0}
contains the union of the disjoint events I'; fori = 1, ..., N, where
I is the scenario when all individuals in generation 1 have the ith
individual in generation 0 as their common parent, which occurs
with probability (%)N . Moreover, they may all stay at the location
of their common parent, with probability (1 — v)", or all move to
the same direction with probability (%)N (there are 2n possible
directions). Hence,

N
P(d, 0) > Y P(I)
i=1
B N1 =N+ 2n( )N _(a—w N
- Z NN ~ NN-1 (2nN)N-1

i=1

=p(v,n,N) > 0.

By the previous lemma, we conclude that the chain is positive
recurrent, and the proof is complete. O

Appendix B. Identity measures under neutrality

In this section, we derive the different identity measures yy, z,,
gn, h, and 7, in the stationary state under neutrality (§ = 0) in
the limit of a large population (N — o0). We assume that the
strategy mutation rate uy and the phenotype mutation rate vy
depend on the population size N such as limy_, oo Ny = u and
limy—, 0o Nuy = v, where u and v are two positive constants. More
precisely, we suppose that uy = % and vy = 3.
B.1. Ancestral process

The calculations in this section are based on properties of the
ancestral process in the limit of a large population size which are
well known in coalescent theory since Kingman (1982).

o Let ty(k, j) denote the time back to the most recent common
ancestor (MRCA) in number of generations for two individuals
kandj chosen at random in the same generation in a population
of size N. The rescaled coalescence time taking N generations as
unit of time ty (k, j) /N converges in distribution to a continuous
random variable t(k, j) as N — oo, whose density function is
given by

filt)y=e™",

fort > 0.

(52)

Proof. The lineages of two individuals coalesce in each gener-
ation with probability 1/N. Then, we have

ot ) > €) = (1- )’

for any integer t > 1. Therefore,

(D -1 1)

(33)

for any real number ¢ > 0. Here |.] denotes the integer part
function. In the limit of a large population size, we get

ty(k,j X 1\ INz]
lim IPO( wkJ) >r)= lim (l——) =e 7,
N N

N—oo N—oo

for any real numberz > 0. O

Similarly, let t,f,z’) (k,j, 1) be the first coalescence time of two

lineages in number of generations back among the lineages of
three individuals k, j and I chosen at random in the same gener-

ation, and t,f,z)(k, Jj, D) be the supplementary time for the coales-
cence of the two remaining lineages. The rescaled coalescence
i gf‘j ’l), t’S’Z)x’j ‘I)) taking N generations as unit of
time converges in distribution to a continuous random vector
(1(3) k,j, D, T@k,j, l)), whose joint density function is given

by
f2(137 TZ) = 39—(3T3+T2)’

forr3, o, > 0.

time vector

(54)

Proof. The probability of no coalescence event in one genera-
tion back among the ancestral lines of k, j and I is (1 - %) (1 -

%) The probability that two lines coalesce is %(l - ﬁ) The
remaining two lines coalesce later on with probability 1/N in
each generation backward in time. Then, the probability that

the first coalescence event occurs at time back t,f,3) (k,j, ) >
[N73] in number of generations and the second at time back

t,f,z) (k,j, ) > |[Nt2] in number of generations is

3

[ 0= -3

for any real numbers 73, 7, > 0. Now using the limit

. (t,i” (k,j, ) ¢t (k,j, 1) )
0 >10
N N

a IN7]
lim (1 +—+ o(N“)) = e,
N—o00 N
we obtain
3) : ) :
lim ]P(](tN (ks]s l) 73 tN (k’.]’ ’) > TZ) — e—(3r3+rz)
N—>o00 ’ N ’

for any real numbers 73,7, > 0. O

Now, let S,’," (respectively L’;’ ) be the number of strategy muta-
tions (respectively the number of phenotype mutations) on an
ancestral line of length [Nt ] in number of generations, which
corresponds to a length t with N generations as unit of time.
Then, SY (respectively L) converges in distribution to a Poisson
variable of parameter ut (respectively vr)as N — oo. More-
over, this variable is independent of the number of mutations
on other disjoint ancestral lines.

Proof. LetSY be the number of strategy mutations on an ances-
tral line of length 7 backward in time, taking N generations as
unit of time. Then, we have

11>’0(s§v - L) - (LNL”>u},(1 — uy) NI

Here, (LNL”) is the number of combinations of L generations
among |Nt| along the ancestral line of length 7, while uk, is
the probability of strategy mutation in all those generations and
(1 — uy)WN7I-L the probability of no strategy mutation in all the
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other generations. This is the probability mass function of a bi-
nomial distribution with parameters [Nt ] and uy. In the limit
of a large number of generations as unit of time, we get

[Nt]\ , u' [Nt] INT| —L+1
Uy = — X X oo X ———
L L! N N
L.L
u-t
=0t o(1),
since %’J =t 4+ 0(1) as N — oo. Here, 0(1) is a function of N
such that

lim o(1) = 0.
N—oo

Using the last result and the following limit

INt]—-L
(1 — uy) et = (1 - %) =e " 4+ o(1),
we obtain
L
; N _ 1y _ ,—uT (ut)
Jim Po(S; =1) =e ST

for any real number 7 > 0. This is the probability mass function
of a Poisson distribution with parameter ut. O

B.2. Phenotypic similarity

First let us focus on the probability that two distinct individuals,
k and j, chosen at random in the same generation of the population
in the stationary state, have the same phenotype given that the
time of coalescence of their lineages backward in time 7 (k, j) in
number of N generations as N — oo equals T > 0. Let A(k, j) be
the number of phenotype mutations on the ancestral lines of k and j
back to their most recent common ancestor (MRCA). Then we have

vt

Po(kf) =L| | Tk ) =) = e

; (55)
for t > 0. This is the probability mass function for a Poisson
distribution with parameter 2vz.

Let h; be the number of increases in the ith component of the
phenotype (the number of changes X — X + e;) on the ancestral
lines of k and j back to the MRCA and b; be the number of decreases
in this component (the number of changes x — x — e;), for
i = 1,...,n. Then, the difference between the phenotypes of
individuals k and j is given by
x(k) — x() = (hy — by, ..., hy — by).

Therefore, the two individuals have the same phenotype (x(k) =
x(j)) if and only if h; = b;, fori = 1, ..., n. Then, the total number
of phenotype mutations is

n
L= Z(h,- +b) =2L,
i=1

where

i=1

On the other hand, given an even number of phenotype mutations,
the conditional probability that k and j have the same phenotype
is

P, (x(k) = x(j) ’A(k, )= 2L’)

21/ 1\
=05h1;n (hl,hh...,hn,hn)(ﬁ) ’ (56)

hy+-+hp=L"

where (,11 hy ZL hn h") gives the number of choices for the positions of

the increases and decreases among the 2L’ phenotype mutations,
and % is the probability that a given phenotype mutation is of
a given type among 2n types, n types of increase and n types of
decrease.

Let &, () be the probability that two individuals k and j have the
same phenotype in the neutral model at stationarity given that the
time of coalescence of their lineages backward in time in number
of N generationsas N — oo is t(k, j) = t > 0. More precisely, we
define

(7 = Po (x(0) =X() |7k, ) = 7).

Lemma B.1. We have the expression

00 1 o

—2vt VT
BO=e) ()2 x -+~ x (h,,!)Z(T) > B7)

L'=00<hq,....hn
hy+--+hn=L"

for every integer n > 1.
Proof. Conditioning on the number of phenotype mutations on the
ancestral lines of k and j, we have

o0
£a(r) = Y Po(x(0) =XG)|A (k) =21 (k) =)

L'=0

x]Po(A(k,j) = 2L/‘r(k,j) = r).
Now using (55) and (56), we obtain

e 2l 1\ . v

—) e

GO=) ) (hl,hl,...,h,,,hn)(Zn) Q!

'=00<hq,....hn
> 1

hy+-+hn=L
—2vT
=)

L'=0 0<hq,....hn
hy+-thp=L'

vT\2
(h1!>2x---x(hn!)2(7> '

This completes the proof. O

Lemma B.2. In terms of the Modified Bessel function of index 0, we
have the recurrence formula

6@ = e (o) ("), (58)

for every integer n > 2.

Proof. From (57) and (24), we have

= 1

VT i *
e Eq (1) = Z Z ()2 x -+ x (hy")? (7)

L=0 0<hy,....hn
hy+-+hp=L

00 L n
=2 (h,,lz)z (%)Zh

L=0 hp=0
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1 VT \ 20—hy)
* < Z_: (h1)2 x -+ x (hy_1")? (7)

> 1 VT \2(—hn)
PO (hl!)2x---x(h,,_1!)2<?)

L=hy 0<hy,...hy_q
h+-thy_ g =L—hn

- i (h:!)2 (%)Mn
co 1

vt 2l
DD (h1)? x - x (h,_{")? (T)

I’=00<hq,...hp_q
hy+-thy_q=L'

()Y ¥ :

= lg\ —

n /=0 0<hq,.shy_q (h1!)2 X e X (hn—l!)2
hy+-+hp_1=L

X(vr(n—l) 1 )21-'

n n—1
v (n— 2 n—1
=e2 : l)I(,(—vt)é‘,,_1( r).
n n

Multiplying by e 2" gives the stated result. O

Proposition B.1. In terms of the Modified Bessel function of index 0,
we have

En(r) =e 2" (10(2%1»", (59)

for every integer n > 1.

Proof. We will show the result by recurrence. First, for n = 1, the
expression (58) reduces to

&)

fi() =e vty =e T Y o,

which holds owing to (57). Now, suppose that (58) holds for some
integer n > 1. Then, owing to Lemma B.2, we have

2vt 2v n
= H (36 ()
En+l(r) 0 n+ 17 sn n+ 17

n
2v 1)3—2""%11 [0(2_1) ! 1:)
+1 nn+1l
2 n+1
=e_2”(10( Y T)) ,
n+1

which means that (58) holds for n+1. This completes the proof. O

B.3. Identity measure y,

We are interested in the calculation of the probability y, that
two individuals k and j, chosen at random in the population in the
stationary state under neutrality, have the same strategy. In the
continuous time limit as N — oo, the conditional probability that
k and j have the same strategy, given that the coalescence time back
to their most recent common ancestor (MRCA) is equal to t > 0,
takes the form

ya(®) = Po(S(K) =SG)| (k. j) = 7)
14 e 217

1
=M 4 _(1—e )= —— 60
e+ o —em™) 2 (60)

As a matter of fact, k and j have the same strategy if there is no
strategy mutation on their ancestral lines back to the MRCA, which
occurs with probability e=2#7. If there is at least one mutation,
which occurs with the complementary probability 1 — e~2#%, then
at least one of the two individuals has a random strategy, which
is the same as the strategy of the other individual with probability
1/2. Let us now calculate the probability y, in the limit of a large
population, by conditioning on the coalescence time 7 (k, j) of kand
j. We obtain

yn =Po(S(0) =50))
= / Po(S(K) = SG)| (k. j) = 7 )fi (D)de
0
= [ wonw. (61)
0

Then, by using the expression (52) for f; () and the expression (60)
for y,(t), we obtain

% 1 4 e 2 1
Yn = / e o etdr= (62)
A 2 1+2u

B.4. Identity measure z,

Let k and j be two different individuals from the population
in the stationary state under neutrality. Similarly to the previous
subsection, by conditioning on the coalescence time t(k,j) of
individuals k and j, we obtain
20 = Po(x(K) = x0))

[o.¢]
- f Po(x(k) = x0)| (k. )) = 7 )i (D)de
0

=f &n(Df1()dr.
0
Now, by using (59) and (52), we have

n 1
7= _c,,(_). (63)
2v 2v

Here, G, denotes the function defined by the following expression

G (x) = f oo(lo(o))ne'”(”")"da.
0

B.5. Identity measure g,

In this subsection, we are interested in the calculation of the
probability g,, which denotes the probability that two individuals
k and j, randomly chosen in the population in the stationary
state under neutrality, have the same phenotype and the same
strategy. Similarly to the previous subsections, by conditioning on
the coalescence time 7 (k, j) of k and j, we have

& = Po(X(0) = X(), () = S())
= [ Bu(x0 =x63.500 =50|e(.) = )facord. (6
0

Note that strategy mutations and phenotype mutations on any
ancestral line occur independently. Therefore, we obtain

Po(S00 = 50), %) = X)| (k. ) = 7)
= Po(5() = 50)|r(k, ) = 7) x Po(x(W) = x()|e (k) = 7)
= £(T) X Yn(2).
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Then, the expression (64) becomes

g = fo (D (D)de. (65)

Substituting the expressions (52), (59) and (60) for f;(7), £,(tr) and
ya(7), respectively, gives

o0 1 + e—Zy.r
&n =/ sn(f)e 'd
0

- %{Gn(i)%n(z“ﬁl)}- 6)

B.6. Identity measure h,,

In this subsection, we study the probability h, that three
individuals k, j and [, chosen at random under neutrality, are such
that k and j have the same phenotype, while j and [ have the same
strategy, that is

by = Po (%00 = X(), SG) = SO).

By conditioning on the first coalescence event in the continuous
time limit, we obtain

hy = %(hﬁ," +H? 4 hﬁ?’), (67)
where

D = P, (x(k) = x(), S() = S(l)‘k and j coalesce ﬁrst),

h® =Py (x(k) = x(), SG) = 5(1)L' and [ coalesce ﬁrst),

h®) =Py (x(k) =x(),S() = S(l)|k and [ coalesce ﬁrst).

If k and j coalesce first, then they coalesce at time back 7 (k, j) = 13
and they coalesce later on with [ at time back 7(j, ) = 73 + 1. In
this case, we have

Po(x(0) =x0), SG) = SO|r(k, ) = 73, 7G, ) = 73 + 75
= Po(x(0 = x0)| (k. )) = )

x IPO(S(i) - S(l)‘r(j, D =15+ rz)
= £1(13) X Yn(13 + 12).

Therefore, by conditioning on (z3(k, j, I), t2(k, j, 1)) = (3, 72), we
obtain

o0 o0
hY = / f f2(73, 12)€n(13)yn (73 + T2)dT3dT;.
o Jo

Similarly, if j and I coalesce first, then they coalesce at time back

7(j,[) = 73 and they coalesce later on with k at time back
t(k,j) = 13 + 1. If, however k and [ coalesce first, then we
obtain 7(k,j) = t(j,I) = 713 + T12. Therefore, conditioning on

(13(k7 j’ l)’ TZ(k9j7 l)) = (13, TZ) giVeS
00 poo
hr(12) = f f fo(73, 12)6n (13 + T2)yn(T3)dT3dT2,
0 0

o0 o0
hY = f f f2(13, 12)€n (13 + 12)yn(73 + T2)dT3dT,.
o Jo

Now using (54), (59), (60), we obtain

00 00 1+ e—2u(t2+13)
hﬁl) = ‘/0‘ (/0 36_(313+12)$n(‘t3) 72 de)d‘E3

3 [o¢]
= 5/(; ";::1(T3)(€_3T3 +

e—<3+2u>r3) drs
14+2u

3n 3 1 342u
= — Gy — G
4v[ n(2v)+1+2u "( 2v )]
(e o] T4
th) = f &n(Ta) (/ (3, 1 — T3)}’n(T3)dT3>dT4
0 0

00 T4 1 e—'Zurg
— / £,(14) ([ 3e—(2T3+74) %dﬁ)dr“

f En(T. T ue—(3+2u)r4)dr4

2 1 3 1 3+2
= *“m(—)—cn(—)——cn( o)
1+u 2v 2v 1+u 2v
and

he = / &n(Ta)yn(Ta) (/ fo(t3, 74 — T3)df3)df4
0 0

o0 1 —2/T4 T4
= / §n(Ta) Ire ™" ez (/ 3e‘(2’3+’4)dt3)dr4
0 0

3 o
=7 f &n(T4) (e_“‘ 4o @uiDrn _ o3t e_(3+2“)’4)dr4

= alole) a5 ~a(z) -5}
Finally, the identity measure given in (67) can be expressed as
=gl rr ) a5

I ACERD) Gn<3 + ZIL)}_
(14 w)(1+2u) 2v

e ™ e 31 _

(68)

B.7. Identity measure n,

First, we are interested in the probability, denoted by y, (73, 73),
that three individuals k, j and [, randomly chosen in the population
in the stationary state under neutrality, have the same strategy,
given that two of them coalesce first at time back r3 > 0 and
coalesce later on with the third at time back 7 + 73 > 0 in
the continuous time limit. Without loss of generality, we suppose
that k and j coalesce first. The individuals k, j and [ have the same
strategy in two cases. In the first case, the most recent common
ancestor of k and j, say m, does not have the same strategy as I,

which occurs with probability 1= 0 This is 1 /2 times the
probability of at least one mutation event on the ancestral lines
of m and [ back to their most recent common ancestor. In this
case, there must be mutation events on the ancestral line of k
and on the ancestral line of j back to their most recent common
ancestor, which occurs with probability (1 — e™#%)2, Moreover,
following the last mutation event on each of the two lines, the
strategy chosen in both cases must be that of I, which occurs
with probability 1/4. In the second case, the most recent common
ancestor of k and j, say m, has the same strategy as I, which occurs

with probability 1+¢“22"™) 1 this case, the individuals k and j
have the same strategy as [ if k and m (j and m respectively) have

the same strategy, which occurs with probability &= (1422
respectively). Then, we obtain

1 — e HQ0+m) 1 _ e=HT3\2
()
14 e H#@ntm) 1 4 e hT3\2

2 ( 2 )

1
= (14720 4 2e72uCarmy), (69)

(13, 12) =
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Now, let 1, be the probability that three individuals k, j and [,
chosen at random in the population in the stationary state under
neutrality, have the same strategy and k and j have the same
phenotype, that is

= Po(x(K) = x0), () = SG) = 5D).

As previously, we condition on the first coalescence event in the
continuous time limit. If k and j coalesce first, which occurs with
probability 1/3, then they coalesce at time back 7 (k,j) = t3 and
they coalesce later on with [ at time back 7(j, [) = 73 + t,. In this
case, we have

Po(x(0 =X0), () = 5G) = SO|e (k) = 13, 7G, 1) = 75 + 72)
= Po(x(0) =x0)|c(k ) =53, 7G, ) =75 + 72)

X Bo(S(0) = SG) = SOt (k) =73, 76, ) =75 + )

= &£n(13) X yn(13, T2).

However, if j and I (k and [ respectively) coalesce first, which occurs
with probability 1/3, then they coalesce at time back t(j,[) = 3
(z(k, D 73 respectively) and they coalesce later on with k (j
respectively) at time back 7(k,j) = 13 + &2 (v(k,j) = 13 + 12
respectively). Then, we have

Po(x(0 =X0), () = 5G) = SO|e (G, D = 73, Tk, ) = 73 + 72)
= Po(x(0 =x()[rG.) =75, Tk ) =75 + 72)
xPo(S0) =SO) = SOG.D =, 7k ) =12+ )
= &(13 + 12) X Yn(73, T2)
and
Po(x(0 = XD, ) = 5G) = SO|r(k D = 75, 7)) = 75 +72)
= Po(x(0) =x() [tk D = 73, Tk, ) = 75 + )
xPo(S00) = 5G) = SO|e (k. D = 73, 7)) = 75 +72)
= &n(t3 + 72) X Yn(13, T2).

Now, conditioning on (t3(k, j, I), 72 (k, j, D)) = (73, 72) gives

1
m =3 (0" +2n). (70)
where

D =P, (x(k) =x(),S¢) =S (l)‘k and j coalesce ﬁrst)
= A A fo(ts, TZ)Sn(T3)yn(r3, 17,)d73dT,

and

77,(.2) =P (x(k) =x(),SG) =S (l)‘k and j do not coalesce ﬁrst)
[o¢] [o.¢]
= f f fa(t3, 2)8n (73 + T2)Yn (73, T2)dT3dT,.
o Jo

Substituting the expressions (54), (59) and (69) for f,(7), &,(t) and
Yn(73, T2) respectively, gives

=) 00 1 e—21T3 2e—2u(rz+r3)
7"(1]) — / (f 3e—(3t3+!2)§n(-[3) + + dr2>dr3
0

0 4
3z 3+2u_
= /En(ta) e+ T (3+2“)”)dta
3n 3 342 342
- e+ T3
8v 2v 14+ 2u 2v

and

n? = / &n(Ta) (/ f2(z3, T4 — 13)yn(t3, T4 — r3)dr3>dr4
1 —2/T3 2 —2/T4
= f &n(ta) (/ 3e~ (@t te +ae dl’3>d1’4

4
=2 [ e

—e3u _ 3 +2M —(3+2u)f4)d.c4
14+u

2 142
= +“Gn( )+ZG(—+ )
16v | 1 + u 2v 2v
342 342 3
) al))
14+ u 2v 2v
Plugging these expressions in Eq. (70) yields

2 1 1+2
= o +“G( )+2c(ﬂ)
Sv |1+ u 2v 2v

n@+2uw) c <3+2u)}
A+ )1+ 2p) 2v ’

e 4 2~ (1+2W)a

(71)
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