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1. Introduction

ments in real populations make this assumption idealistic. In this paper, we study randomized two-
player linear games in a finite population in a succession of birth-death events according to a Moran pro-
cess and in the presence of symmetric mutation. Introducing identity measures under neutrality that
depend on the mutation rate and calculating these in the limit of a large population size by using the coa-
lescent process, we study the first-order effect of the means, variances and covariances of the payoffs on
average abundance in the stationary state under mutation and selection. This shows how the average
abundance of a strategy is driven not only by its mean payoffs but also by the variances and covariances
of its payoffs. In Prisoner’s Dilemmas with additive cost and benefit for cooperation, where constant pay-
offs always favor the abundance of defection, stochastic fluctuations in the payoffs can change the strat-
egy that is more abundant on average in the stationary state. The average abundance of cooperation is
increased if the variance of any payoff to cooperation against cooperation or defection, or their covari-
ance, is decreased, or if the variance of any payoff to defection against cooperation or defection, or their
covariance, is increased. This is also the case for a Prisoner’s Dilemma with independent payoffs that is
repeated a random number of times. As for the mutation rate, it comes into play in the coefficients of
the variances and covariances that determine average abundance. Increasing the mutation rate can
enhance or lessen the condition for a strategy to be more abundant on average than another.

© 2021 Elsevier Ltd. All rights reserved.

Deterministic dynamics ignore the fact that real populations are
finite. To take this into account, we may resort to stochastic pro-

Evolutionary game theory was an extension of classical game
theory by adding two concepts: a population of players and the
idea that a payoff is interpreted as biological fitness or reproduc-
tive rate (Maynard Smith and Price, 1973; Maynard Smith, 1982;
Hofbauer and Sigmund, 1988; Nowak, 2006). The standard model,
called the replicator equation, was formulated in an infinitely large
well-mixed population where any two individuals have the same
probability to interact (Taylor and Jonker, 1978; Hofbauer et al.,
1979; Zeeman et al., 1980). Evolutionary concepts such as evolu-
tionary stability (Maynard Smith and Price, 1973), continuous sta-
bility (Eshel, 1983) or convergence stability (Christiansen, 1991)
were first studied in this framework (see, e.g., Taylor, 1989;
Hofbauer and Sigmund, 1988).
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cesses such as continuous or discrete time Markov chains on finite
state spaces. In the absence of mutation, such a Markov chain has
fixation states that are absorbing. In a context of two-player linear
games with possible strategies C and D such as a Prisoner’s
Dilemma (PD) with C for cooperation and D for defection, selection
has been said to favor more the evolution of C than the evolution of
D if the fixation probability of C introduced as a single mutant is
greater than the fixation probability of D introduced as a single
mutant (Nowak et al., 2004; Imhof and Nowak, 2006). In the pres-
ence of symmetric mutation, the Markov chain is irreducible and,
as a result, it possesses a stationary state. In this case, selection
has been said to favor the abundance of C if the average frequency
of C in the stationary state is greater than the average frequency of
D (Antal et al,, 2009). Note that the favored strategy in models
without selection is the same as the one in models with mutation
if the mutation rate is small enough (Rousset and Billiard, 2000;
Rousset, 2003; Fudenberg and Imhof, 2006).
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Environmental conditions can change from one time to another
or from one place to another, and this can affect payoffs that indi-
viduals receive. Early studies on the effects of varying selection
coefficients between generations and varying offspring numbers
within generations in population genetics models for haploid as
well as diploid populations, large or small, include Gillespie
(1973), Gillespie (1974), Karlin and Levikson (1974), Karlin and
Liberman (1974), Frank and Slatkin (1990). In general, fixation
probabilities and/or stationary distributions depend not only on
the means of the fitness parameters, but also on their variances
that tend to diminish the effective fitness. More recent treatments
and extensions can be found in Starrfelt and Kokko (2012),
Schreiber (2015) or Rychtar and Taylor (2020).

Fudenberg and Harris (1992) considered a stochastic version of
the classical replicator equation for strategy frequencies obtained
by adding a random noise to the growth rate of every strategy. This
stochastic differential equation was investigated by Fudenberg and
Harris (1992) in the presence of an evolutionarily stable strategy.
See also Evans et al. (2015) and Schreiber (2012) for studies of
competing populations distributed over habitat patches where
environmental conditions fluctuate in time and space.

Recently, Li and Lessard (2020) considered Prisoner’s Dilemmas
with random payoffs to study the effect of temporal fluctuations on
evolutionary game dynamics. Assuming a finite population in dis-
crete time updated according to a Wright-Fisher process and ascer-
taining a diffusion approximation in the limit of a large population
with the intensity of selection proportional to the inverse of the
population size taken as unit of time, conditions on the means,
variances and covariances of the payoffs for selection to favor the
evolution of C with respect to fixation probabilities were deduced.
The main conclusion reached in that paper by focusing on a PD
game with independent payoffs and its repeated version with tit-
for-tat starting with C and always-defect as possible strategies
was that the conditions that favor the evolution of C (or tit-for-
tat in a repeated game) are lessened with an increase in the vari-
ances of the payoffs for D (or always-defect in a repeated game)
or a decrease in the variances of the payoffs for C (or tit-for-tat
in a repeated game).

In this paper, we study the effect of stochastic fluctuations in
two-player linear games in the presence of mutation. Payoffs are
assumed to fluctuate over time in a random manner to account
for environmental and ecological changes. The population is finite
and updated at each time step following a birth-death event
according to a Moran process, which keeps the population size
constant. The two strategies are represented by C and D, which
stand for cooperation and defection, respectively, in the special
case of a Prisoner’s Dilemma. We consider the average abundance
of C in the stationary state under symmetric mutation and deduce
conditions for weak selection to favor the abundance of C. The con-
ditions are examined in detail with regard to the mutation rate in
different scenarios and games.

The remainder of this paper is arranged as follows. In Section 2,
we state the assumptions and present the model. In Section 3, we
derive the average abundance of C in the stationary state under
symmetric mutation and weak selection. In Section 4, the first-
order effect of selection on average abundance is expressed in
terms of scaled means, variances and covariances of the payoffs
and identity measures under neutrality that depend on the muta-
tion rate in the limit of a large population. Thereafter, in Sections 5
and 6, we study in more detail the effects of selection and mutation
on average abundance of cooperation in a Prisoner’s Dilemma with
cost and benefit for cooperation that are additive in mean and
pointwise additive, respectively. In Section 7, we examine the case
of a Prisoner’s Dilemma with independent payoffs that is repeated
a random number of times. Our results are summarized and their
interpretations discussed in Section 8. The more technical calcula-
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tions are relegated to appendices, Appendix A for the conditional
expected change in frequency of C and Appendices B-G for the
identity measures based on the coalescent process for up to five
lineages in the limit of a large population.

2. Model

Consider a finite well-mixed population composed of N individ-
uals. Any individual can interact with any other individual. Here,
for simplicity, self-interaction is allowed. Each individual can adopt
one strategy among {C,D} : C for cooperation and D for defection
in the special case of a Prisoner’s Dilemma. Interactions occur in
pairs and the payoffs to the two strategies at any given time step
are given by the entries of the matrix

C D
Clm mn (1)
D\ns m

Here, we suppose that the payoffs are random variables whose first
and second moments are given in the form

Eln;) = o +0(9), (2a)
E[n?] = 625+ 0(9), (2b)
E[n,n)-] =06 +0(5), (20)

for i,j = 1,2,3,4 with i # j. We assume that there exists a constant
M in (0,1) such that |7;| <M almost surely for i =1,2,3,4. The
parameter § > 0, which corresponds to an intensity of selection,
measures the order of the first and second moments of the payoffs.
Note that this implies that the standard deviations are of larger
order. The parameters y;,6? and o;; = gj; for i,j=1,2,3,4 with
i # j correspond to scaled means, variances and covariances, respec-
tively. In addition, all higher-order moments of the payoffs are
assumed to be negligible compared to §, that is,

s
s[m,rv] =0(3) €)
i=1

as soon as ky +kj + k3 + ks > 3 for ky,k,, k3, ks > 0. Moreover, the
payoffs at a given time step are assumed to be independent of the
payoffs at all other time steps.

Following random pairwise interactions in the population, each
individual accumulates some payoff which is translated into repro-
ductive fitness. This fitness is given by a sum of two terms, a con-
stant value equal to 1 and an average payoff assuming a large
number of interactions. If the population is made up of Nx cooper-
ators and N — Nx defectors, then the reproductive fitnesses of C and
D are given by

fe@®) =1+ [xn, + (1 =x)m,] =1+P1(x), (4a)

Fo(®) =1+ [xn5 +(1=x)n,] =1+ Pa(x), (4b)

where P;(x) and P, (x) represent average payoffs to C and D, respec-
tively. As for the average reproductive fitness in the population, it
can be expressed as

F@X) =xfe(®x) + (1 =2)fp(*) =1+ xP1(X) + (1 - x)P2(x)]
=1+P(x), ©)]

where P(x) is an average payoff in the whole population.

The updating of the population from one time step to the next
follows a Moran model with symmetric mutation. At each time
step, an individual is selected with a probability proportional to
its reproductive fitness, and this individual gives birth to an off-
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spring. This offspring is subject to mutation with probability u in
(0,1). In the case of mutation, the offspring adopts a strategy cho-
sen at random among C and D, that is, strategy C with probability
1/2 or strategy D with probability 1/2. In the case of no mutation,
the offspring adopts the strategy of its parent. On the other hand,
an individual is chosen at random in the population, that is, each
one with probability 1/N, and the individual chosen is replaced
by the offspring.

Let X be the frequency of C in the population at a given time
step. The state space of X is S={0,1/N,...,(N-1)/N,1}. To
describe the population state, we need only to know X, since then
the frequency of D is 1 — X. In the presence of mutation, the fre-
quency of C over all time steps is an aperiodic irreducible Markov
chain on a finite state space. Owing to the ergodic theorem, the
chain tends to an equilibrium state given by a unique stationary
probability distribution {IT°(x)},; where IT’(x) = P*(X =x) >0
and ¥, IT°(x) = 1. For a review of Markov chain theory, see, e.g.,
Karlin and Taylor (1975).

Denote by E° the expectation with respect to the stationary
probability distribution if the intensity of selection is 6 > 0. Define
the average abundance of C as

EX] = le‘[" (x). (6)
XeS
We say that weak selection favors the abundance of C if its average

abundance under weak enough selection exceeds what it would
be under neutrality, that is,

E[X] > E°[X] 7

for 5 > 0 small enough. Here, E°[X] represents the average abun-
dance of C under neutrality when 6 = 0.

In the remainder, we are interested in conditions for weak
selection to favor the abundance of C.

Bond

e under ic mutation and weak

3. Average
selection

Let AX = X' — X be the change in the frequency of C from one
time step to the next. This change can take only the values
—1/N,0,1/N, the first one when an individual C is replaced by an
offspring D, the last one when it is the other way around, and 0
otherwise. Let T"(x) and T*(x) be the probabilities of the first
two events when X = x, that is,

T’(x):IP‘X‘[AX:—%]:P"[szf%l)(:X]y (83)

T*(x):Pﬁ[AX:IlV] =IP‘[AX=11V|X=X]. (8b)

In the case of mutation, the offspring becomes C with probability
1/2 and D with probability 1/2 whatever the strategy of the parent
is. In the case of no mutation, the strategy of the offspring is the
same as the one of the parent, which depends on the fitnesses of
C and D given in (4b). To sum up, we have

o A0 ] u
T = (- o) 2% ©2)

Xfc(x) u
T*x:[l—uE[i +=[(1-%), 9b
® = |+ -l T2) o)
where E denotes an expectation with respect to the probability dis-
tribution of the payoffs. Accordingly, the conditional expected
change in the frequency of C is given by
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EYAX] = EIAXIX =) = 3 (T(0) - T ()

1 Fe) ol 1 u(i—20
= (0 -un e[ B ] + )

N 2
u(l-2x) o
=———+ (1 —u)x(1 -x)m(x) + o(9
on (1= wx( = x)m(x) +o(3),
(10)

where
m(x) = AX* + Bx* + Cx+ D (11)
with
A=201; +2013 +202 + 203 — 63 — 05 — 03 — 03 — 2014 — 2023, (12a)
B =203+ 0% + 307 + 3014 + 3023 — 2012 — 013 — 5024 — 4034, (12b)
C =404 +2034 — 05 —30% — 014 — O3 + [l — [y — U3 + [y, (12¢)
D=0} — 02+t — . (12d)

See appendix A for the calculations.
Multiplying both sides in (10) by IT°(x), and summing up over
all states in S, we get
E’[AX] = % 1-2EX]] +%(1 —wEX(1 = X)m(X)] + 0(3).
(13)

In the stationary state, the frequency of C in the population keeps a
constant expected value, that is,

E°[AX] = 0. (14)
Therefore, (13) yields

5 1, 6(1-u)_,
E°[X] :2+T[E X(1 = X)m(X)] + 0(3). (15)
Then, using
EX(1 - X)m(X)] = E°[X(1 — X)m(X)] + 0(9), (16)
we obtain the first-order approximation
E°[X] =%+WE°[X(1 —X)m(X)] + o(8) 17)

for the expected frequency of C in the stationary state under selec-
tion and mutation.

4. Effect of variances and covariances of payoffs on average
abundance

When § = 0, selection has no effect on the evolutionary out-
come. The stationary state will be established under the sole
effects of mutation and random drift. Moreover, mutation is neu-
tral since a mutant offspring has the same probability to adopt C
or D. Then these strategies have the same frequencies in the sta-
tionary state, that is,

E[X] :%4 as)

This intuitive result for 6 = 0 is confirmed by (15).
Owing to (17) and (18), and according to the definition in (7),
weak selection favors the abundance of C as long as

E°[X(1 - X)m(X)] > 0. (19)

In addition, increasing E°[X(1 — X)m(X)] increases the average abun-
dance of C, and consequently decreases the average abundance of D.
We get our first results by considering the partial derivatives of the
expected value in (19) with m(X) given by (11) with respect to the
variances and some covariances of the payoffs.
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Result 1. We have

W[E"[X(] —X)ym(X)] = —E° [x“(l —X)} <0, (20a)
W[EO[X(I — Xym(X)] = —E° [xz(l —X)ﬂ <0, (20b)
H%EEO[XG —X)ym(X)] = —F° [2x3(1 7X)2] <0. (20¢c)

Therefore, increasing the variance of any payoff to C, 62 or 63, or the
covariance between the payoffs to C against C and D, 712, increases
the average abundance of D and decreases the average abundance
of C. More uncertainty in the payoffs to C makes it more difficult
for selection to favor the abundance of C.

Result 2. Similarly, we have

iztﬁﬂ[xu —X)m(X)] = E° [x3(1 7X)2] >0, (21a)
—[E°[X(1 X)m(X)] = E° [x ] >0, (21b)
%[E“[X(] —Xym(X)] = E° [2x2(1 —X)’] >0. (21¢)

Then, increasing the variance of any payoff to D,¢% or 6%, or the
covariance between the payoffs to D against C and D, 034, increases
the average abundance of C and decreases the average abundance of
D. More uncertainty in the payoffs to D makes it easier for selection
to favor the abundance of C.

The effect of changes in the other covariances of the payoffs on
average abundance cannot be decided so easily, since we have

B%EEO[XU —X)m(X)] = E° [2x3<1 —X)( 7%)} (22a)
3%4 EX(1 - X)m(X)] = E° [2x<1 -X)? (x - %n (22b)
E)

W[E“[xa —X)m(X)] = E° [2xz(1 —X)? (x -
a%[s"[xu - X)m(X)] = E° [ZXZ(I - X)? (x -

} , (220)

} (22d)

which can be a priori negative or positive.
Now let us introduce the identity measures
¢n=POS() = - =S(1,)} (23)

forn=2,3,4,5. Here, I,.. ., I, designate n distinct individuals cho-
sen at random at the same time step in a neutral population at sta-
tionarity, and S(I) stands for the strategy used by individual I. These
identity measures come into play to derive an expression for the
expected value in (19). As a matter of fact, we have
E°X(1 - X)m(X)]
=DE°[X] +(C-D)E° [xz] +(B-O)E° [x’] +(A-B)E° [x“] —AE [x5]
=3+ (C-D)[§+3] +(B-O)[5+ 252
+(A-B) [% +GN1¢3+7ZI;I'21‘7N76] (24)

a5 10N 6,425N26, 1 15N6, +15N-14
A[Z LI s e 1N-14

=3ID+(C= D)y + (B~ )5 + (A~ B)hs — Ads] + O(N").

See Appendix B for a proof.
Then, condition (19) for weak selection to favor the abundance
of Cin a large population becomes

D +(C=D)dy + (B— ) + (A~ B)dy — Ags > 0.
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By using coalescent theory (see Appendices D-G for details), it can
be shown that the identity measures in the limit of a large popula-
tion can be expressed as

¢ = % (26a)
= 2(3 i go) ’ (260)
¢s = 4((269133))( (02; ?1) ’ (26d)

where 0 = limy_...uN/2 represents a mutation rate with N’/2 time
steps as unit of time as N — oo. Then, condition (25) takes the form

1
Faty =t~ et 553y % [2(0+1)(034 — 012)
+2(013 — Gaa+ (0+1)(03 — 03)+(0 +3) (05 — 07)] >0.  (27)
We are now in a position to state our next result.

Result 3. At least in a large population, increasing the covariance
between the payoffs to C and D against C, 0,3, or decreasing the
covariance between the payoffs to C and D against D, 0,4, increases
the average abundance of C and decreases the average abundance of
D. The covariance between the payoff to C against C and the payoff
to D against D, 614, as well as the covariance between the payoff to
C against D and the payoff to D against C, 6,3, have no effect on aver-
age abundance.

Note that Results 1 and 2 are valid for any finite population size
N > 2, while Result 3 is ascertained only for a large population
size.

5. Simplified Prisoner’s Dilemma

In this section, we assume that the payoffs have scaled means
given by

& 2-0 )

where ¢ and b represent expected cost and benefit for cooperation,
respectively, in a Prisoner’s Dilemma.

Note that in the absence of stochastic fluctuations, which holds
with constant payoffs, condition (27) for weak selection to favor
the abundance of C can never be satisfied. As a matter of fact, the
average abundance of D always exceeds the average abundance
of C. In the following subsections, we will study the effect of
stochastic fluctuations of the payoffs on the average abundance
of C in some extreme cases.

5.1.Case 1: 62 =03 =0%3=0and 05 =02 >0

This is an extreme case where the variance of the payoff to D
against D is larger than the variances of all the other payoffs. In this
case, condition (27) for weak selection to favor the abundance of C
is
o> _4(220+3) 3)

c” 0+3
Note that the critical ratio on the right-hand side of the above
inequality is increasing with respect to 0 (see Fig. 1).

As 0 — 0, the average abundance of C in the stationary state

exceeds the average abundance of D if

0? > 4c. (30)

(29)
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12 — Case 1
Case2

[ 10 20 30 40 50
mutation rate @

Fig. 1. Exact threshold value ¢? /¢ that ¢ /¢ must exceed in Cases 1 and 2 for weak
selection to favor the abundance of C as a function of the mutation rate 6. Strategy C
is most abundant in the  — 0 limit in Case 1 and in the 0 — oo limit in Case 2. For a
high mutation rate, both Cases 1 and 2 share the same threshold value given by
02 = 8¢C.

The same condition was obtained by Li and Lessard (2020) in Case 2
for a finite population that follows a Wright-Fisher model in the
absence of mutation. By using a diffusion approximation in the limit
of a large population size, it was shown that, if condition (30) is sat-
isfied, then selection favors the evolution of C more than the evolu-
tion of D. This means that the probability of ultimate fixation of C
introduced as a single mutant in an all D population is larger than
the corresponding probability for a single mutant D introduced in
an all C population. If this is the case, it is known that selection
favors the abundance of C in the presence of mutation in the limit
of a small mutation rate (Rousset and Billiard, 2000; Rousset,
2003; Fudenberg and Imhof, 2006). Note that Li and Lessard
(2020) obtained condition (30) under the assumption that ¢2 and
¢ are small enough.

On the other hand, as 0 — oo, the average abundance of C
exceeds the average abundance of D if

¢ > 8c. 31)

For an intermediate mutation rate, the variance ¢ must exceed
some value that increases from 4¢ and 8¢ as 6 goes from 0 to oo.

Let us summarize these findings.

Result 4. In Case 1, increasing the mutation rate 0 increases the
critical value that the ratio 62 /¢ must exceed to favor the abundance
of C. In other words, increasing the mutation rate strengthens the con-
dition for weak selection to favor the abundance of C.

52.Case 2: 62 =03=0%=0and 63 =02 >0

This is an extreme case where the variance of the payoff to D
against Cis larger than the variances of all the other payoffs. In this
case, condition (27) for weak selection to favor the abundance of C
is
o? _4(20+3)

7 e+1 62

Here, the critical ratio on the right-hand side of the above inequality
is decreasing with respect to 0 (see Fig. 1).

As 0 — 0, the average abundance of C exceeds the average abun-
dance of D if

a2 >12¢c. (33)
This is exactly the condition obtained by Li and Lessard (2020) in
Case 2 for weak selection to favor the evolution of C more than
the evolution of D in a large Wright-Fisher population in the

absence of mutation and under the assumption that ¢? is small
enough.
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On the other hand, as 6 — oo, the average abundance of C
exceeds the average abundance of D if

a2 > 8. (34)

For 0 < 0 < oo, the variance 62 must exceed some value that
decreases from 12 ¢ to 8 ¢ as 0 increases.

Result 5. In Case 2, increasing the mutation rate 0 decreases the
value that the ratio a2 /c must exceed to favor the abundance of C.
In other words, increasing the mutation rate lessens the condition
for weak selection to favor the abundance of C.

5.3. Case 3: 62 = 03 = 0,0% = 02 = 6% > 0 and 034 = po?

In this case, the variances of the payoffs to D against Cand D, 63
and o7, are significant and of the same order, while the other vari-
ances are negligible. Moreover, we suppose that the payoffs to D
against C and D are related by a correlation coefficient p,, = p.
Note that

Cov[z, N4 = E[N31,] — E[N3]E[N,] = 340 + 0(9). 35)

On the other hand, we have

Covins,n,) = p\/Var[m]Var[m] = p\/ (025 +0(9))
= pa2s +0(5). (36)

As a result, we must have 34 = pa?. Then, condition (27) for weak
selection to favor the abundance of C can be written as

220+3) .

2 2 _
T =l rproi2

(37)
for any —1 < p < 1. This means that the abundance of C can be
favored if the variance o2 is large enough. The threshold value ¢?
is a decreasing function of p and an increasing function of 0. It is
more favorable for the abundance of C to increase the correlation
between the payoffs to D against C and D and to decrease the muta-
tion rate.

We turn now our attention to three extreme cases of particular
interest (see Fig. 2). The first case is when the payoffs to D against C
and D are uncorrelated, that is, p = 0. In this case, we have

2(20+3)

2

ol ="""—17"C
. 0+2 7

which is increasing with respect to 6. In the limit of a high mutation

rate, that is, 6 — oo, we have 2 — 4¢c. On the other hand, in the

limit of a low mutation rate, that is, 0 — 0, we find 62 — 3¢c. The

(38)

20,

— p=-1
15 p=0
=1

0 1 2 3 4
mutation rate 6

Fig. 2. Exact threshold value ¢2/¢ that ¢?/c must exceed in Case 3 for weak
selection to favor the abundance of C as a function of the mutation rate ¢ for
different values of the correlation coefficient p. The worst scenario for the
abundance of C is when p = —1 and 0 — oo, where 62 — co. The best scenario for
the abundance of C is when p = 1 and any mutation rate, where 2 = 2¢.
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condition g2 > 3¢ was obtained by Li and Lessard (2020) in Case 3
for the evolution of C to be more favored than the evolution of D
in the absence of mutation under the assumption that ¢ and ¢
are small enough.

The second extreme case is when the payoffs to D against C and
D are in perfect direct correlation, that is, p = 1. Then we get

02 =2, 39)

which does not depend on the mutation rate 6.
The last case is when the payoffs to D against C and D are in
opposite direct correlation, that is, p = —1. In this case, we have

62 =2(20 +3)¢, (40)

which in an increasing function of the mutation rate 6. Note that ¢
diverges as 6 — oo, which means that a mutation rate that is high
enough opposes the abundance of C and favors the abundance of
D. Therefore, a smaller mutation rate is more favorable for the
abundance of C.

Let us summarize.

Result 6. In Case 3, decreasing the mutation rate 0 or increasing
the correlation coefficient p decreases the value that the ratio ¢2/c
must exceed to favor the abundance of C. In other words, a lower mu-
tation rate or a higher positive correlation coefficient between the pay-
offs to D against C and D is more favorable for the abundance of C.

54. Case 4: 62 = 03 = 0% = 0% = 02 and 634 = po?

Here, we assume that the variances of all the payoffs are of
the same order and far from being insignificant. Moreover, we
suppose that all the payoffs are uncorrelated but the payoffs to
D against C and D, which have a correlation coefficient given
by ps, = p. As in Case 3, this implies that g3, = pa?. Here, con-
dition (27) for weak selection to favor the abundance of C can be
written as

ot , 2(20+3).
—>0l="""
c ope+1)
for p > 0.1f p < 0, then condition (27) can never be satisfied and the
average abundance of C never exceeds the average abundance of D.
Note that o2 is a decreasing function of both 6 and p. Moreover,
we have 62 — oo as p — 0, which means that weak selection favors
the abundance of D if p is close enough to 0. This is true for any
mutation rate 6 > 0. On the other hand, if p =1, then
2 2(20+3)
% =Te¥1 ¢

(41)

(42)

with 62 — 6¢ as 0 — 0 and 62 — 4c as 0 — oco.

In summary, the following conclusion can be drawn.

Result 7. In Case 4, increasing the mutation rate 0 or increasing the
correlation coefficient p decreases the value that the ratio 62 /¢ must
exceed to favor the abundance of C. In other words, a higher mutation
rate or a higher positive correlation coefficient is more favorable for
the abundance of C.

6. Additive Prisoner’s Dilemma

In this section, we assume that cooperation by an individual
incurs a random cost ¢ > 0 to the individual but provides a random
benefit b > c to the opponent. More precisely, the payoff matrix is
given by

&0 )

Moreover, we make the following assumptions:
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1. E[b] = p,d + 0(8) and E[c] = u.d + 0(9), so that the scaled means
of the payoffs #,,n,,15,7, are given by

My =y — Py Py = —He, Ug = [y, Py =0. (44)

2. E[bz] = 626+ 0(8),E[c?] = 626+ 0(8),E[bc] = Gpcd + 0(3), SO

that the scaled variances and covariances of the payoffs
15125 M3, 14 aT€

0% = 0} + 62 - 20y, (453)
a3 = a2, (45b)
03 =ai, (45¢)
03 =014 = 024 = 034 =0, (45d)
G2 = 62 — O, (45e)
13 = 0} — O, (45f)
033 = —Cpc. (45g)

Under these assumptions, condition (27) for weak selection to
favor the abundance of C is

Gpe — 62 > 241, (47)

Here, note that neither the mutation rate 0 nor the scaled variance
of the benefit 67 come into play in this condition. Only the scaled
variance of the cost c and its scaled covariance with b do. Note also
that condition (47) is the same as the one derived by Li and Lessard
(2020) for selection to favor the evolution of C more than the evo-
lution of D in a large Wright-Fisher population without mutation
and under the assumption that y., 62 and g} are of the same small
enough order. Let us summarize.

Result 8. In the case of an additive Prisoner’s Dilemma, decreasing
the level of uncertainty in the cost c or increasing its covariance with
the benefit b increases the average abundance of C irrespective of the
mutation rate.

7. d Prisoner’s Dil

We consider now the Prisoner’s Dilemma with independent
payoffs repeated a random number of times. The payoffs in a single
round are given by the entries of the matrix

(t3)

where T >R > P > Sand 2R > T + S. If the interacting players coop-
erate, then each one of them receives some reward R, while P is the
punishment payoff that each player receives if both defect. More-
over, if a cooperator interacts with a defector, then the former
receives a sucker payoff S and the latter a temptation payoff T.
We suppose that at each time step, any interaction between two
players is composed of n rounds, where n > 1 is a random variable
that is independent of R,S, T and P.

We assume two possible strategies: TFT for tit-for-tat and AllD
for always-defect (Axelrod and Hamilton, 1981; Axelrod, 1984). A
TFT-player cooperates in the first round and, in the next rounds,
adopts the strategy used by its partner in the previous round. An
AlID-player defects in all rounds. If they interact, two TFT-players
will cooperate all the time and then each one of them will receive
nR, while two AlID-players will defect all the time and then each
one of them will receive nP. If the interacting players are of differ-
ent types, the TFT-player will cooperate in the first round and
thereafter it will defect, while the AllID-player will defect all the
time. So, the TFT-player will receive S+ (n —1)P, while the AlID-
player will receive T + (n—1)P. The different payoffs are given
by the entries of the 2 x 2 matrix
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('71 n1)=<nR S+(n—1)P)A (49)
N3 Ny T+(n-1)P nP

Then, the scaled means, variances and covariances of these payoffs
are given by

M = pgE(n), (49a)
Hy = fis + ppE(n - 1), (49b)
Ky = pir + HpE(n = 1), (49¢)
My = PpE(n), (49d)
and

a% = g}E(n?), (50a)
o =at+a3E((n-17), (50b)
=02+ a,Z,E((n - 1)2), (50¢)
0% = g3E(n?), (50d)
012 =013=013=0, (50e)
2 = a3((n-17%), (50f)
024 = 034 = G3E(n(n - 1)). (50g)

Here, g, tis, 4y and p, (0%,02,6% and @3, respectively) are the
scaled means (variances, respectively) of the payoffs R,S, T and P,
respectively.

In this case, condition (27) for weak selection to favor the abun-
dance of C can be written as

0+3

u.ﬁu;—m—uﬁ(m—up)E(n—l)—mE(nz)aﬁ

0+1 5, 041 )
—mas+mar+cpap>0, (51)
where
_3(0+1) v B 0+3
c,,_THB)E((n 1))+E(n V4500130 (52)

In condition (51), the coefficients of ¢2 and ¢2 are negative, while
the coefficients of 62 and 62 are positive. Therefore, decreasing
the variance of the payoff to C against C or D, 62 or 62, or increasing
the variance of the payoff to D against C or D, 62 or g3, increases the
average abundance of TFT. Note that, in the limit of a low mutation
rate, that is,  — 0, condition (51) coincides with the condition
obtained by Li and Lessard (2020) for weak selection to favor more
the evolution of TFT than the evolution of AlID in the absence of
mutation.

7.1. Case E(n) =1

If E(n) = 1, then n = 1 with probability one, which means only
one round. Condition (51) for weak selection to favor the abun-
dance of TFT becomes

0+ 2 2 0+1 2 5
ﬂk+ﬂs_ﬂ1_ﬂp+2(20+3)(GP_”R)+2(29+3)(‘71_‘75)>0,

(53)

which is condition (27) in the case of independent payoffs. Since the
coefficient of g2 — 6% is decreasing and the coefficient of 6% — o2
increasing with respect to 0, increasing the mutation rate decreases
the weight of the former difference and increases the weight of the
latter in condition (53). Moreover, in the limit of a low mutation
rate, that is, 0 — 0, this condition becomes

uk+us—u7—u,,+%(—3a§—o'§+a§+3af,) >0, (54)
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while in the limit of a high mutation rate, that is, 0 — oo, it becomes
1

M+ Hs = pir = iy + 5 (—0% — 05 + 01 +03) > 0. (55)

Therefore, changing the mutation rate can change the strategy
between TFT and AlID that is more abundant on average.

Suppose, for instance, that the variances of all payoffs vanish,
which is the case if the payoffs are constant. The condition for
the average abundance of TFT to exceed the average abundance
of AlID reduces to simple risk dominance, that is,

Hy + Hs > B + (56)

irrespective of the mutation rate. This is the condition obtained by
Antal et al. (2009) in well-mixed populations with any mutation
rate. This is also the condition for weak selection to favor more
the evolution of TFT than the evolution of AlID in a large population
in the absence of mutation (Nowak et al., 2004).

7.2. Case E(n) > 1

In the case of a large number of rounds with E(n) > 1, so that
E(n?) > E(n), condition (51) for weak selection to favor the abun-
dance of TFT reduces to

o> 3?0;31)6'2?' 57)
In this case, only the variances of the payoffs to C against C and to D
against D come into play. In addition, increasing the mutation rate
lessens the condition for weak selection to favor the abundance of
TFT. For a low mutation rate, the condition becomes simply
02 > 0%, while for a high mutation rate, it becomes 62 > ¢3/3. If
0% =0, then weak selection favors the abundance of TFT as long
as 63> 0.

If the variances of all the payoffs vanish, then condition (51) can
be written as

K > Hp, (58)

which is always satisfied. Then, weak selection favors the abun-
dance of TFT. This is the conclusion reached by Nowak (2006) in
the case of a simplified Prisoner’s Dilemma with constant payoffs
that is repeated enough times.

8. Discussion

In this paper, we have studied a randomized two-player linear
game in a finite well-mixed population in the presence of weak
selection and symmetric recurrent mutation. The payoff matrix is
no more constant like in classical evolutionary game theory but
fluctuates in time due perhaps to random noise in the environ-
ment. We have shown that the average abundance of a strategy
in the stationary state is driven not only by the means of the pay-
offs but also by their variances and covariances.

With strategies C and D in equal frequencies in a large popula-
tion, the scaled mean payoff to Cis (u; + 4,)/2, where y; and p,
are the scaled means of the payoffs to C against C and D, respec-
tively. Similarly, the scaled mean payoff to D is the average of its
scaled mean payoffs which is given by (u; + i,)/2). These are
the scaled mean payoffs to C and D, respectively, if the opponent
is Cor D with the same probability 1/2. In the case of constant pay-
offs, the strategy that has the higher scaled mean payoff has the
higher average abundance in the stationary state (Antal et al.,
2009). Note that the mutation rate does not come into play in this
condition.

In the case of random payoffs, the scaled mean payoff is no
more sufficient to determine the more abundant strategy on aver-
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age and we have to resort to an extended scaled mean payoff. For C
in a large population, it is defined as
Bty

2

—ﬁ [(0+3)0% + (0 +1)03 +2(0 + 1)012 + (024 — 013)],
(59)

where 6%, 03 and g;; are the scaled variances and covariance of the
payoffs to C against C and D, respectively, while g, is the scaled
covariance of the payoffs to C and D against D and 3 is the scaled
covariance of the payoffs to C and D against C. Similarly, the
extended scaled mean payoff to D in a large population is

Hs+ ly

2
[0+ 1)6% + (0 +3)03 +2(0 + 1)034 + (013 — G24)].
(60)

We have shown (see (27)) that the strategy that has the higher
extended scaled mean payoff has the higher average abundance in
the stationary state. This result shows the effect of any variance
or covariance of payoffs on the difference between average abun-
dances. Note that the scaled covariance of the payoffs to C against
Cand D against D, 644, as well as the scaled covariance of the payoffs
to C against D and to D against C, 623, do not have any effect on this
difference (Result 3). The intuitive reason is that, by symmetry, each
of these covariances must have the same effect on the average
abundances of C and D.

The above extended scaled mean payoffs to Cand D show thatan
increase in the scaled variance of any payoff to D, 3 or 6%, or in their
scaled covariance, 634, should increase the average abundance of C.
We have shown that this should be true for any fixed population size
(Result 2). This scenario makes it easier for selection to favor the
abundance of C. Similarly, an increase in the scaled variance of any
payoffto C, a% or n%, or in their scaled covariance, ¢;,, should reduce
the average abundance of C, and this scenario makes it more difficult
for selection to favor the abundance of C. Again, this conclusion is
valid for any finite population size N > 2 (Result 1).

These results agree with the fact that conditions for selection to
favor the evolution of cooperation, favor more the evolution of
cooperation than the evolution of defection, and disfavor the evo-
lution of defection, all with respect to fixation probability in the
absence of mutation, are lessened with an increase in the variances
of the payoffs for defection and a decrease in the variances of the
payoffs for cooperation (Li and Lessard, 2020). They agree also with
the fact that the evolution of cooperation tends to be favored by
selection in a large population with respect to the concepts of
stochastic local stability (SLS) and stochastic evolutionary stability
(SES) applied to Prisoner’s Dilemmas with random payoffs (Zheng
etal., 2017; Zheng et al., 2018) if the coefficients of variation of the
payoffs are smaller for cooperation than for defection (Li et al.,
2020). Moreover, all these conclusions are in agreement with the
generally negative effect of the variance in fitness on the evolution
of an allele in population genetics models in the absence of muta-
tion (Gillespie, 1973; Gillespie, 1974; Karlin and Levikson, 1974;
Karlin and Liberman, 1974; Frank and Slatkin, 1990; Starrfelt and
Kokko, 2012; Schreiber, 2015; Rychtar and Taylor, 2020).

Returning to the extended scaled mean payoff of D in the pres-
ence of mutation, the weight of g2 given by 6 + 3 is higher than the
weight of 63 given by 0 + 1, where 0 is the mutation rate. As a con-
sequence, an increase in the variance of the payoff to D against D
(Case 1 in Section 5) is more favorable for the abundance of C than
an increase in the variance of the payoff to D against C (Case 2 in
Section 5). This difference vanishes in the limit of a high mutation

T 420+3)
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rate. Moreover, increasing the mutation rate increases the average
abundance of Cin Case 1 but decreases it in Case 2 as illustrated in
Fig. 1. In the limit of a low mutation rate, the condition for weak
selection to favor the abundance of C is 62 > 4c in Case 2 and
02 > 12¢ in Case 1. In the limit of a high mutation rate, the condi-
tion is the same in both cases, and given by 62 > 8¢.

In Case 3 of Section 5, we have shown that an increase in both
the variances of the payoffs to D against C and to D against D, while
the other payoffs are kept constant, is more favorable for the abun-
dance of C than an increase in only one of them. Moreover, intro-
ducing a scaled correlation coefficient p between these payoffs,
weak selection favors the abundance of C as long as 6% > 62, where
o? is increasing with respect to 0 and decreasing with respect to p.
The best scenario for the abundance of Cis a correlation coefficient
p =1 and a mutation rate 6 — 0, in which case 62 = 2, while the
worst scenario is a correlation coefficient p = —1 and a mutation
rate 0 — oo, in which case the average abundance of C can never
exceed the average abundance of D as illustrated in Fig. 2.

In Case 4 of Section 5, where all the variances are equal, we have
shown that increasing the scaled correlation coefficient p between
the payoffs to D against C and to D against D can change the strat-
egy that is more abundant on average. For nonpositive p, the abun-
dance of C can never be favored by weak selection. However, for
positive p, it is possible for weak selection to favor the abundance
of Cas long as 62 > ¢2, where the threshold value 2 is reduced by
an increase in the mutation rate 6 or in the correlation coefficient
p, which plays in favor of the abundance of C.

More generally, an increase in the mutation rate ¢ plays in favor
of the abundance of C if

0% —30% + 2034 + 4654 > 0% —30% + 207 + 40713 (61)

This is the condition for the difference between the extended scaled
mean payoffs to C and D given in (59) and (60), respectively, to be
strictly increasing with respect to 6. The left-hand side and the
right-hand side of (61) are the coefficients that quantify the effect
of increasing the mutation rate on the fitnesses of D and C, respec-
tively. Increasing the mutation rate will increase the quantity of
interactions between individuals of different types, C against D,
and decrease the quantity of interactions between individuals of
the same type, C against C and D against D. In a population of defec-
tors, increasing 0 will introduce type C. This will decrease the
weight of the variance of the payoff to D against D, g3, increase
the weight of the variance of the payoff to D against C, g3, and then
increase the weight of their covariance, gs4. Also, this increases the
weight of the covariance between the payoffs to C and D against
D, 024. In a population of cooperators, increasing 6 will introduce
type D. This will increase the weight of the variance of the payoff
to C against C, 02, decrease the weight of the variance of the payoff
to C against D, 63, and then increase the weight of their covariance,
a1,. Moreover, this increases the weight of the covariance between
the payoffs to C and D against C, 6,3. The strategy that has the lower
effect will have an increasing abundance with respect to the muta-
tion rate.

In the case of a Prisoner’s Dilemma with additive random cost ¢
and benefit b for cooperation represented by C, weak selection
favors the abundance of C if oy — 62 > 2. as shown in Section 6.
Here, p. is the scaled expected cost, 62 is the scaled variance of the
cost, and oy, is the scaled covariance between the benefit and the
cost. The mutation rate has no effect on the abundance of C. How-
ever, an increase in 2 will increase the abundance of defection
represented by D, since a large fluctuation in the cost will lessen
the fitness of C. This disadvantage can be reduced and even coun-
teracted by an increase in the covariance oy.. If the benefit and the
cost are uncorrelated, weak selection favors the abundance of D.
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In the case of a Prisoner’s Dilemma with independent payoffs
repeated a random number of times, players can choose to cooper-
ate in the first round and then adopt direct reciprocity, TFT, or to
defect all the time, AlID. We have confirmed that an increase in
the variance of any payoff to D against C or D or a decrease in
the variance of any payoff to C against C or D will enhance the aver-
age abundance of TFT, and therefore promote cooperation. Increas-
ing the mutation rate will decrease the weight of g2 — 03 and
increase the weight of 62 — 2 in the condition for weak selection
to favor the abundance of TFT. If the game is played a very large
number of rounds, then o > 5:%; 0% guarantees that weak selec-
tion favors the abundance of C. Increasing the mutation rate will
lessen this condition. Note that, in this case, the scaled means as
well as the other scaled variances have an insignificant effect on
the average abundance of TFT.

Funding

D. Kroumi is funded by Deanship of Scientific Research (DSR) at
King Fahd University of Petroleum and Minerals, Grant No.
SR181014. S. Lessard is supported in part by NSERC of Canada,
Grant No. 8833.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

D. Kroumi would like to acknowledge the support provided by
the Deanship of Scientific Research (DSR) at King Fahd University
of Petroleum and Minerals (KFUPM) for funding this work through
project No. SR181014. S. Lessard is supported in part by NSERC of
Canada, Grant No. 8833.

Appendix A. Conditional expected frequency change

For the first two moments of P;(x), we have
E[Py(X)] = Efxn, + (1= X)) = [Xpty + (1 = X)14,]6 + 0(3) (62)
and
E[Pi(0)] = E[xn, + (1 - 0m,)?]
= E[x?n2 + 2x(1 —xpmyn, + (1 - x°n3]

= [xzzﬁ +2x(1 - x)a1, + (1 —x)za§]6+o(é). (63)
Similarly, the first two moments of P,(x) are given by
EP2(%)] = (x5 + (1 — X) 1) 6 + 0(3), (64a)
E[Pg(x)} = [xza'§ +2X(1 = X)03 + (1 — x)zaﬁ} 5+0(3). (64b)

Finally, we have
E[P1(x)P2(x)] = E[(x1; + (1 = X)1,) (x5 + (1 = X)11,)]
=XE[11115] + X(1 = 0E[ 14 + 1,113)
+(1- X)ZE[ﬂzm]
= [Xszlz +X(1=X)(01a + 023) + (1 *’020'24}5
+0(5). (65)

Since |#;| < M almost surely for i = 1,2, 3,4, we have
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[P(X)| = [xP1(x) + (1 —=x)Py(x)| <M < 1 (66)
almost surely for all x in [0, 1]. Then, by using Taylor’ theorem, we
obtain

1 - P2(x)
———=1-P(x)+ s 67
rw Y ey o

where ¢ is a random variable that depends on P(x) and is such that
0 < ¢ < P(x) or P(x) < ¢ < 0. Multiplying the above expression by
P;(x) — P,(x) and taking the expected value, we get

Pi(x) — Py(x) B P’(x)
E|———=——=| =E|(P: —P 1-P .
1170 } [( 1(X) z(X))( (%) + 1+ey
(68)
If P(x) > 0, we have 1 < 1+ ¢ <1+ P(x), which leads to
1
|m\ <L (69)
If P(x) <0, then 0 < 1+P(x) < 1+ ¢ < 1, from which
1 1 1 1
—| <= << 70
’Hf} 1+P(x)| 1-Px)| 1-M (70)

since [P(x)| < M < 1. Combining these inequalities, we get

1 1
(1+:)2<sup{1,m}_& 1)

where K is a finite constant. Then, we have

(P (X)-Po(x)P2 ()] Py ()P, (x)niﬂgx)]
‘E[‘ a+? | SE[I (1+?

_ (72)
S KE[|P1(x) = Py(%)[|P* (x)]].
On the other hand, by using condition (3), we have
E[|P1(x) = P2(x)|[P*(%)|] = 0(3). (73)
We deduce that
E [7“’ 1) a ’fgﬁ”’z (x)] —0(5). (74)
Moreover, by using Egs. 62,63,64b,65, we have
E[(P1(x) = P2(%)) (1 — P(x))] = E[P1(x)] — E[P2(x)]
—xE[Pi()]
+(2x = DE[P1(x)P(x)]
+(1 = XE[P3)]
=m(x)é + 0(d), (75)

where m(x) = my(x) + my(x) with m;(x) being a sum of effects of
the first moments given by

(%) = X(fy = b = s + Hha) + Mo — sy (76)
and m;(x) a sum of effects of the second moments given by

my(X) = X3[2013 42013 + 2024 + 2034 — 0% — 03 — 65 — 05 — 2014 — 2023
+X2[203 + 63 + 305 + 3014 + 3023 — 2013 — G13 — 5024 — 4034]
+X[4024 + 2034 — 03 — 303 — 014 — 03] + 03 — O2a.

a7

Finally, inserting (74) and (75) into (68), we have
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Py(x) — Po(x)

E 14P() ] =m(x)d + 0(9).

Appendix B. Identity measures

Let ¢, be the probability that n distinct individuals chosen at
random in the population at stationarity under recurrent mutation
in the absence of selection are either all C or all D. Then we have

NS

+[E°[(1—X)<1—X—Ilv)---<1—X—%)], (79)

where the first term on the right-hand side is for the case of all C
individuals and the second term for the case of all D individuals.
Since mutation is symmetric, we actually have

o) -3

On the other hand, we find
E[e] = EXX-}]+4EX

(81)
= %452 +ﬁ;

B[] = PxE-HE-]+3E00] - 2P
= 30 +3Gh+) - (82)
= g+ e,

Ex] = ERE-PHE-FE -] +FE] - e X + SEX]
= 1o+ 5 (s e+ ) BG4 D+ ®3)
_ 1¢ +SNZ¢3+7N9+7N75
274 28

and
Epe] = ExE-DE-HE-DE -]+ 0[]
-BE[C] + 26 X] - HE°X)
= 3os ¥ (bt onoa + ) — 2 (bea + iy +5F) B9

50 (1 1) _12
G +) -

_ 1¢ +IUN’¢‘+25NZ¢3+ISN¢Z+15N—14

29s N .

Appendix C. Limiting coalescent process

Consider a sample of n > 2 individuals chosen at random at a
given time step in a population of size N at stationarity under
recurrent mutation in the absence of selection. Without loss of
generality, assume that the N individuals occupy N sites, one per
site. At each time step, one individual at random produces an off-
spring, and this offspring replaces the individual located at a site
chosen at random. For n individuals sampled at a given time step,
we have two possibilities for their ancestors one time step back: a
sample of size n — 1 if a coalescence event occurred or a sample of
size n if it did not. A transition from a sample size n to a sample size
n — 1 occurs if one of the n sampled individuals happens to be the
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offspring produced one time step back by one of the n — 1 others.
This has probability
n n-1 nn-1)

Pnn-1 =N X N - N

The complementary probability
nn-1
Pun= 1Py =101 (®6)

gives the probability to stay with a sample of size n.

Now, let t&(I1,...,Ix) be the number of time steps back before
the first coalescence of two lineages among the k lineages of indi-
viduals I,...,I, and t§'(I,...,I) the supplementary number of
time steps back before the first coalescence of two lineages among
the k — 1 remaining lineages, and so on up to t,%,(h, ..., Ix) the sup-
plementary number of time steps back before the coalescence of
the last 2 remaining lineages. These times are independent random
variables. Moreover, note that

PO{th(I1,...,I) > t} = P°{nocoalescence eventoccurs before t
+1 time steps back} (87)

= (Pu)t = (1 - K’#D)!

for 2 <1< k and any integer t > 0. Rescaling time by taking N?/2
time steps as the unit of time, we have

P“{W >tf= Pt ) > %)

(1) o

-1
N2

for 7 > 0. Here, |x| denotes the greatest integer less or equal to the
real number x. Since

[on°]
lim (1 - %) —e® 89)
for any real number b > 0, we get

nmp"{t"'(’;&#’*)m} =exp{—'('+1)r} (90)

N—oo

for T > 0. Accordingly, as N — oo, the time ty(I,...,I;) divided by
N?/2 converges in distribution to a continuous random variable
whose density is given by

50 =15V e {15} oY

for T > 0. This is exactly the density of the time before the first coa-
lescence event from a sample of size | in Kingman’'s coalescent
(Kingman, 1982). Moreover, defining 6 = limy_...uN/2 as mutation
rate, the number of mutations on a branch of the coalescent tree
whose length is T as N — oo follows a Poisson probability distribu-
tion of parameter 07 (see, e.g., Kroumi and Lessard, 2015, for a proof
in an analogous situation for a Wright-Fisher model).

Appendix D. Identity measure ¢,

Let y(t2) be the probability that two individuals chosen at ran-
dom, I and I, use the same strategy, C or D, given that their lin-
eages coalesce at time back 7, > 0. In the case of mutation on at
least one of the branches of length 7, from I; and I; back to the
most recent common ancestor M, the strategies used by I, and I,
are the same with probability 1/2, while in the case of no mutation,
these strategies are necessarily the same. Therefore, we have
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1+e20m
—
Note that this probability depends on the total length of the
branches connecting I, to I, given by 27,. Moreover, this probability
leads to

b= [ y@aein =5 [T +e e,

1+0
T 14207 ©3)

y(T2) = (1 —e7272) x %+ e — (92)

Appendix E. Identity measure ¢,

Let y(73,7,) be the probability that three individuals chosen at
random, I1,]; and I3, use the same strategy given that the lineages
of two of them, say I; and I, without loss of generality, coalesce
first at time back 73 > 0, and the two remaining lineages coalesce
after an additional time back 7, > 0.

Let S(I) denote the strategy, C or D, used by I and M, be the most
recent common ancestor (MRCA) of I and I>. To compute y(7s3, T)
taking into account the mutation process, we consider two cases
depending on the strategy used by M; compared to the strategy
used by I5.

The first case corresponds to S(I;) = S(Mi),S(l2) = S(M;) and
S(I3) = S(M,). These are independent events and, owing to the pre-
vious subsection, their probabilities are (1 +e-%%3)/2,(1 4 e%3)/2
and (1 + e~%2%+%)) /2, respectively, since the branches connecting
I;,I; and I5 to M,, represented by I;M,,I,M, and IsM;, respectively,
do not overlap and have total lengths 73,73 and 73 + 275, respec-
tively. Therefore, we have

14+e05\2 14 e 00u+w)
2 ) x 2 :

As for the second case, it corresponds to S(I;) # S(M;),S(I;) # S(M;)
and S(I3) # S(M1). These events are independent and their probabil-
ities are given by (1 —e3)/2,(1—e)/2 and (1 — e"?%+%))/2,
respectively. The whole probability is

P°{first case} = < (94)

(95)

1—e03\2 1_e0Ru+n)
2 ) X 2 :

P%{second case} = (

Combining the above two equations, the probability thatI;,I; and I5

use the same strategy is

¥(13,Ty) = 1€ “(erz»rz) (1ﬂz“3)2 4 1=e “(2211-111 (142”?3)2
— %(1 42t +29’2”(12"3))A

(96)

Multiplying this probability by the densities of the coalescence
times and integrating over all possible values yield

3= Jo Jo ¥(T3,72)f2(T2)f 3(T2)dT2dT3
%fox IODC (1 420t +Ze—zoqrzﬂg))e—qsrnf;)drzdrz

3 2 1 1 (97)
1 [(zmumu R T=hy 5}

240
2(1+20)

Appendix F. Identity measure ¢,

Let y(74, 73, T2) be the probability of the event A, that four indi-
viduals chosen at random, I;,,I5 and I, use the same strategy
given that the first two lineages to coalesce do it at time back 74,
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the next two at time back 7,4 + 73, and the last two at time back
T4 + T3 + T2. We look at two possible scenarios for the coalescent
process (see Fig. 3).

F.1. Scenario 1

In scenario 1, the lineages of I; and I, coalesce first, the lineages
of I; and M;, the MRCA of I; and I, coalesce second, and finally the
lineages of I, and M,, the MRCA of I; and M;, coalesce last (see
Fig. 3 (a)). Note that the branches I1M;,LM;,M;M,,I3M,, and
I,M, do not overlap and have total lengths 74,74,73,7T4 + 73 and
T4 + T3 + 275, respectively. We consider four possible cases for A4
to occur depending on the strategies used by M, and M, compared
to the strategy used by I,.

The first case corresponds to S(M;) = S(M,) and S(M,) = S(Is)
with S(I;) = S(M1),S(I,) = S(M;) and S(I3) = S(M,). This case occurs
with probability

%Xue”(;—smx#xugﬂxw (98)
In the second case, we have S(M;) = S(Mz) and S(Mz) # S(Is) with
S(I) # S(Mh),S(I2) # S(M1) and S(I3) # S(M2). All these events
simultaneously occur with probability

3 e W) | 1eta | 1o | 1_ef(atT)
Lie ¥ o e e x el 1ty 1o . (99)

As for the third case, we consider S(M;) # S(M,) and S(M>) # S(I4)
with S(I;) = S(M1),S(I,) = S(M;) and S(I5) # S(M,), whose total
probability is

Lottt et d)  tie t  Lie i de i) (100)
Finally, the last case corresponds to S(M;) # S(M,) and S(M) = S(I4)
with S(I;) # S(M4),S(I2) # S(M;) and S(I5) = S(M,), whose total
probability is

1-e % 14e(arT725) )
2 2

1-ef 1oty 14e"(fat73)
x =G x 16— 3 . (101)

Summing the probabilities in the above equations, we find
@202t +T3+72) 4 3p-20(Ta+T3+T2) | Dp-20(Ta+Ts) | o-20T | ]

P°(A4|scenariol) = 3

(102)

F.2. Scenario 2

In scenario 2, the lineages of I; and I, coalesce first, the lineages
of I3 and I, coalesce second, and finally the lineages of M, the
MRCA of I; and I, and M,, the MRCA of I3 and I,, coalesce last
(see Fig. 3 (b)). In this scenario, the non-overlapping branches
1My, LMy, MM,,M,I3, and M,l,; have total lengths given by
T4, Ta, T3 + 2T2, T4 + T3 and T4 + T3, respectively. This time, the four
cases considered in scenario 1 have probabilities given by
14 e 0m+2n) 1 4elt+n) 1 qpetu  1yeltu 1 4e0T+n)

X X X X

2 2 2 2 7 (1059
14 e tm+2) o 1 —ez”m'm N 1 +; s « 1 +Ze b « 1 —92‘"“"3) (103b)
1- 8’2“3*2‘1) 1= e;’“a'm 1 +§’”’4 1 +§’”‘° 1- 2*2‘”“'13‘1 (103¢)
1- e*‘z"“*zm « 1 +e’2”<““” « 1 +;""< o 1 +Ze"’“ « 1 +e*2“”<"3' . (103d)
Summing the above probabilities, we get
PO (A, |scenario2) = a2 ’E’Z"(ZT“;’) re 2000atTs) 4o MMa 41
(104)

F.3. Final calculation

Scenario 1 occurs with probability
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(a) Scenario 1

Journal of Theoretical Biology 513 (2021) 110569

A I I3 Iy

(b) Scenario 2

Fig. 3. Coalescence events of four lineages backward in time. We have two scenarios depending on the second coalescence event.

()G "7

while scenario 2 occurs with probability 1/3. Therefore, we have

(105)

Y(T4,73,T2) = ; x P°(A4 |scenariol) + % x P%(A4 |scenario2),
(106)
from which we find
Y(Ta, T3, Ta)l = g [2e- 00T+ 203420) | ] Qp-02r4+ 213420 | 5 0(2ta+253)
04ty +213) 4 3p-207, +3]_
(107)

Multiplying this probability by the densities of the coalescence
times and integrating over all possible values give

Sa=Jo Jo Jo Y(Ta,T3,T2)f (Ta, T3,72)dT2dT3dT4
% fom foec fom [26’0(4’“2’3*2’2) + 10e-0Rta+273+2%3)
+ 5 02uut2m) g 0dTt2n) | 3020y 3]o-(ut3Ti+n) iy, dradr,

el 2 10

5

(2)G) ()

2)\1/\1 1

TEN/A\ /3 3 (109)
2)\2/\2

In this scenario, we have seven non-overlapping branches given by

1My, LMy, MM, I3M,,M,M3,1,M5 and IsM3 whose total lengths

are Ts,Ts, Ta, Ts + Ta, T3, Ts + T4 + T3 and Ts + T4 + T3 + 2T, Tespec-

tively. We have eight cases to consider for As to occur depending

on the strategies used by M;,M, and M; compared to the strategy

used by Is.

The first case corresponds to S(M;) = S(M-),S(M,) = S(M3) and
S(Is) = S(Ms) with S(I4) = S(Ms),S(I3) = S(M2),S(I2) = S(M:) and
S(I1) = S(My). This occurs with probability
14+e 0t 1 4e 0t 1 4o 0Tstaitsi20) 1 4 @ 0(Ts+Tatts)

2 2 2 2
1+ e+t (1 407\ 2
e (Y

1 3 1]

“2|@016)2013)20+ 1) T 20+ 1)20+3)20+6) (204 6)(20+3)  (40+6)(20+3) 3(20+6) 16

(0+2)(6+3)
T220+3)20+ 1)

Appendix G. Identity measure ¢

Let y(Ts, 74,73, T2) be the probability of the event As that five
individuals chosen at random, I, I, I3,14 and Is, use the same strat-
egy given that their lineages coalesce two at a time at times back
Ts,Ts + Ta, Ts + Ta+ T3 and Ts + T4 + T3 + T,. Let M;,M, and M;
be the most recent common ancestors associated to the first, sec-
ond and third coalescence events, respectively, backward in time.
For the coalescent process, we have five different scenarios to con-
sider (see Fig. 4).

G.1. Scenario 1
In scenario 1, the lineages coalesce in the following order back-

ward in time: I and I>,M; and I5,M and I4,M; and Is (see Fig. 4
(a)). This scenario occurs with probability

https://reader.elsevier.com/reader/sd/pii/S00225193203042407...FB880153ABCB18FA79FE4055B5CF03017BE88396F8B8D40047A99C4B4E2F

(108)

Similarly, the case S(M;) = S(M2),S(Mz) # S(M3) and S(Is) # S(M3s)
with S(la) # S(Ms), S(Is) = S(M>),5(I2) =S(M1) and S(I1) = S(M)
has probability
1 + e’”fd ‘l — e*/}[] 1 _ e*i}(t;+r4+r3-212) 1 _ e*11(15+u+r3)
2 2 2 2
1 4 e-Oes+ta) (1 +eflhs>2
o — )

2 2
the case S(M;)#S(M,),S(M;) #S(Ms;) and S(Is) = S(M;) with

S(la) = S(Ms),S(I3) # S(M2),S(I2) = S(Mh) and S(l) = S(My)
probability
1—e 0t 1 —e0m 1 4 e 0ts+Ta+t3+2m) 1 4 o-0(ts+1a+73)
2 2 2 2
1 — e 0s+ta) /1 4 @075\ 2
T2 ( 2 ) ’
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(a) Scenario 1

(¢) Scenario 3

I I Iy I

(€) Scenario ¢

5
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(d) Scenario 4

Fig. 4. Coalescence events of five lineages backward in time. We have five scenarios depending on the second and third coalescence events.

the case S(Mi)# S(M2),S(M2) =S(Ms) and S(Is) = S(Ms) with
S(Is) = S(M3),S(I3) = S(M2), S(I2) # S(M1) and S(Ih) # S(My)

probability
1—e " 14e 0% 14 e 0Hatni2n) | 4 g0t
2 2 2 2
14 e 0+t ] g0t ?
T2 ( 2 ) ’

the case S(M;)=S(My),S(M,) #S(Ms) and S(Is) =S(Ms) with
S(Is) = S(Ms), S(Is) # S(M2), S(I2) # S(M1) and  S(h) #S(M1)

probability
1+e 1 —e s 14 e 0Huinidn) | 4 e 0T uin)
2 2 2 2
1— e 0+t 1 _ g 0%\ 2
T2 ( 2 ) ’

the case S(M;) #S(M,),S(M,) #S(Ms) and S(Is) #S(Ms) with
S(la) # S(Ms),S(I3) = S(M2),S(I2) #S(My) ~ and  S(I1) # S(Mh)

probability
1_e %1 _ 0t | _ e 0s+uattsi2n) | _ o-0lts+Tatts)
2 2 2 2
14 e 0s+m) (1 — g0\ 2
2 ( 2 ) ’

the case S(Mi)#S(Ms),S(Mz)=S(Ms) and S(Is) # S(Ms) with
S(Ia) # S(Ms),S(I3) # S(M2), S(I2) = S(M1) and  S(I) =S(M1)
probability

https://reader.elsevier.com/reader/sd/pii/S00225193203042407...FB880153ABCB18FA79FE4055B5CF03017BE88396F8B8D40047A99C4B4E2F

1—e 0t ] 4e 0t 1 e 0lTsttaitsi2n) | _ p-0(ts+atts)
2 2 2 2
1— e s+t (1 4072
T2 ( 2 ) :

the case S(Mi)=S(M.),S(M2) =S(Ms) and S(Is) # S(Ms) with
S(la) # S(M3),S(I5) # S(M2),S(I;) # S(My) ~ and  S(I1) # S(Mh)
probability

14+e0 1 40T ] — e 0Ts+TatTa42) | _ o=0(ts+14+73)
2 2 2 2
1 — e0s+10) (1 _ e”"5>2
X —— .

2 2

Summing all these probabilities, the probability that five individu-
als chosen at random have the same strategy under the first sce-
nario of the coalescent process is

P°(As | scenariol)
= [2e 20T 20045 4T g 2o 2T HT) 4 fo- 2T HTubTriTy) (110)
e 2RTTT) 32T +TatT) 4 p-2W(Es i) 4 o 20%s 4 ],

G.2. Scenario 2

In scenario 2, the lineages coalesce in the following order back-
ward in time: I, and I>,M; and 5,1, and Is, M, and Mj3 (see Fig. 4
(b)). This scenario occurs with probability

2021-01-27 21:12
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m,l )

5\ /4\ /3 6

2)\2/\2
In this scenario, the seven non-overlapping branches
1M1, LMy, MiM>,IsM>,M>M3,1sM3 and IsM; have total lengths
T5,T5,Ta, Ts + T4, T3 + 272, Ts + Ta + T3 and Ts 4+ Ta + T3,
respectively.

Considering all cases for the strategies used by M;, M, and M3
compared to the strategy used by Is and proceeding as in scenario
1, we find

P°(As | scenario2)
= s [2e 2T | G2t uiTiin) | e 202t 2t T) (112)
e 20T TT) g o205 iTatTs) 4 Do 20(TsiT) 4 @207 4 1],

G.3. Scenario 3

In scenario 3, the lineages coalesce in the following order back-
ward in time: I, and I5,I4 and Is,M; and I3, M, and M3 (see Fig. 4
(c)). This scenario occurs with probability

(Z)G)(;) 1 (113)

()GG)
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P°(As | scenariod)
= e 1420 Ge20( 140 4 Qe 202rs ) (116)
2020054t 0) 4 @-2002Ts ) 4 @-20(T ) 4 02005 4 ],

G.5. Scenario 5

Finally, in scenario 5, the order of the coalescence events back-
ward in time is: I; and I, I3 and I, M; and M,,Is and M (see Fig. 4
(e)). This scenario has probability

(GG an)

5\/4\/3 6
2)\2/\2
In this scenario, the lengths of the non-overlapping branches
1My, LMy, MM3,I3M,,I,M>,M;M;  and  IsM;  are  Ts,Ts, T3+

T4, Ts + T4, Ts + Ta, T3 and Ts + T4 + T3 + 27T, respectively.
Proceeding as previously, we find

P°(As | scenario5)

= # [28720(215+13+2u+1z) + 4e7217(15+1;+14+1z) + 22720(215+1;+r‘+11) (‘] 18)
420t 3Ty e-2025+Te) 4 e-20(Ts ) 4 @200 4 ),

G.6. Final calculation

Using the law of total probability, we have

¥(Ts,Ta,T3,T2) = § x P°(As |scenariol) + { x P°(As |scenario2) + 1 x P°(As|scenario3)

+1 x P°(As | scenariod) + L x P°(As | scenario5)

119)

:55[86728(215+214+I;+12)+‘loele?(Z‘[5+‘[4+Tg+’r1)+30e72{i(’[5+‘u+’r3+t1) + 4e-2002t5+2T4+13)
5 202 +0tTs) 4 50 20(FsTatTs) 4 Qp-20(TsHTy) 4 3p20254T) 4 Go-20ts 4 6.

In this scenario, the seven non-overlapping branches
1My, LMy, M1M3,15M3,M>M3,1sM, and IsM, have total lengths
Ts,Ts5, T3 + T4, Ts + T4 + T3, T3 + 2T2,T5 + Ta and Ts + T4,
respectively.

Proceeding as in scenarios 1 and 2, we find

P°(As | scenario3)
_ 1175 [28720(21'5*»13#»‘!4‘*11) 4 BT | De-202Ts+512u) (114)
20 20T+ T3 4T) | @ 20275+T) 4 @ 20(Ts+Ta) 4 @ 2Ts 4 1]

G.4. Scenario 4

In scenario 4, the order of the coalescence events backward in
time is: I; and I, I; and I, M, and Is, M; and M (see Fig. 4 (d)). This
scenario has probability

()G)G) s s

5\/4\/3\ 6
2)\2/)\2
In this scenario, the lengths of the non-overlapping branches
LMy, LMy, M1M3,I5M;,I4M>, MoM3 - and  IsMs  are  Ts5,7s5,27,+

T3 + T4, Ts + Ta, Ts + Ta, T3 and Ts + T4 + T3, respectively.
Proceedings as previously, we find

Finally, multiplying by the joint densities of the coalescence times
given by

[(T5,T4,T3,T2) = f2(T2)f3(T3)f 4(Ta)f 5(Ts5) = 180e~ (107 +673%5%2)
for 75, 3,74, Ts > 0 and integrating over all possible values yield
b= [T [ v e adudaddes

180 [ o e e
= 8e 4t11T) 4 10e 44T
ol L]

+30e 205+ +4e~202ts 20 4 S )

+'158720[!5+[¢+‘{;) +9872I7W5rm)+35720(2‘!5v“]+6371l7¥5 +6]
180 8

(107546744375 +73) _180 R
e dndrydn, = gg [(40+10)(40+6)(20+3)(20+1)

10
a0+ 10)20 + 6)20 +3)20 + 1)

30 4
T 20710)20+6)20+3)20+ 1) T (40+ 10)(40 + 6)(20 + 3)

5 . 15
40+ 10)20+6)(20+3) T 20+ 10)20+6)20+3)
9 . 3 .6 6

20+10)20+6)3 ' (40+10)(20+6)3  (20+10)6x3  10x 6 x 3]

C(0+3)(0+9)
T420+3)20+ 1)

*

T

(121)
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