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Abstract
We consider interactions between players in groups of size d ≥ 2 with payoffs that not
only depend on the strategies used in the group but also fluctuate at random over time.
An individual can adopt either cooperation or defection as strategy and the population
is updated from one time step to the next by a birth-death event according to a Moran
model. Assuming recurrent symmetric mutation and payoffs to cooperators and defec-
tors according to the composition of the group whose expected values, variances, and
covariances are of the same small order, we derive a first-order approximation for the
average abundance of cooperation in the selection-mutation equilibrium. In general,
we show that increasing the variance of any payoff for defection or decreasing the vari-
ance of any payoff for cooperation increases the average abundance of cooperation.
As for the effect of the covariance between any payoff for cooperation and any payoff
for defection, we show that it depends on the number of cooperators in the group
associated with these payoffs. We study in particular the public goods game, the stag
hunt game, and the snowdrift game, all social dilemmas based on random benefit b
and random cost c for cooperation, which lead to correlated payoffs to cooperators
and defectors within groups. We show that a decrease in the scaled variance of b or c,
or an increase in their scaled covariance, makes it easier for weak selection to favor
the abundance of cooperation in the stag hunt game and the snowdrift game. The same
conclusion holds for the public goods game except that the variance of b has no effect
on the average abundance of C . Moreover, while the mutation rate has little effect on
which strategy is more abundant at equilibrium, the group size may change it at least
in the stag hunt game with a larger group size making it more difficult for cooperation
to be more abundant than defection under weak selection.
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1 Introduction

Evolutionary game theory assumes that the reproductive success of a strategy is not
constant but depends on the frequencies of the different strategies (Maynard Smith and
Price 1973; Maynard Smith 1982; Hofbauer and Sigmund 1988). This reproductive
success is a function of amean payoff that depends on interactions between individuals,
which in turn depend on the population state.

In continuous time, the mean payoff of a strategy has been defined as its growth
rate. Then, in an infinitely large well-mixed population, the deterministic dynam-
ics is described by the replicator equation (Taylor and Jonker 1978; Zeeman et al.
1980). Evolutionary concepts such as evolutionarily stability (Maynard Smith and
Price 1973), continuous stability (Eshel 1983) or convergence stability (Christiansen
1991) were first studied in this framework (see, e.g., Taylor 1989; Hofbauer and Sig-
mund 1988).

For evolutionary game dynamics in a finite population, we have to resort to stochas-
tic processes and probability concepts. Consider, for instance, awell-mixed population
of fixed size N ≥ 2 in discrete time, where each individual can use as strategy either
C for cooperation or D for defection in a Prisoner’s dilemma. With any update rule
from one time step to the next and in the absence of mutation, the population state
over time is described by a Markov chain that has two absorbing states corresponding
to an all cooperating population and an all defecting population. Let ρC (respectively,
ρD) be the probability that a single individual of type C (respectively, type D) among
N −1 individuals of type D (respectively, type C) generates a lineage forward in time
that will take over the whole population. Then, selection is said to favor the evolution
of C more than the evolution of D if ρC > ρD (Nowak et al. 2004; Imhof and Nowak
2006). In the presence of symmetric mutation, the Markov chain is irreducible and,
as a result, it possesses a stationary state called the mutation-selection equilibrium. If
the average frequency of C in this equilibrium is greater that the average frequency
of D, then selection is said to favor the abundance of C (Antal et al. 2009, see also
Kroumi and Lessard 2015a, b).

The above game dynamics were considered first under the assumption of random
pairwise interactions.Multi-player gameswere considered later on to take into account
interactions within groups of any fixed size d ≥ 2. Kurokawa and Ihara (2009), for
instance, studied the probability of ultimate fixation of a strategy given its initial
frequency in this framework in the absence of the mutation, and Gokhale and Traulsen
(2011) its average abundance in the presence of recurrent mutation. In particular, an
exact condition for weak selection to favor the abundance of a given strategy in a large
population were deduced in the case d = 3.
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In all the above mentioned studies, the payoffs were supposed deterministic. This
assumes a constant environment which is not generally the case in biological popula-
tions. Unknown risk of predation and variability in available resources, competition
capabilities as well as birth and death rates (May 1973; Kaplan et al. 1990; Lande et al.
2003) are among multiple factors that motivate taking into account random fluctua-
tions in evolutionary models. Indeed, such fluctuations have an effect on evolutionary
outcomes. Early studies on the effect of varying the selection coefficients between
generations and varying the offspring numbers within generations in haploid as well
as diploid population genetic models in the absence of mutation include Gillespie
(1973,1974), Karlin and Levikson (1974), Karlin and Liberman (1974) and Frank and
Slatkin (1990)). Extensions can be found in Starrfelt and Kokko (2012), Schreiber
(2015) or Rychtar and Taylor (2019). Moreover, the fixation probability for a given
type in a population whose size fluctuates dynamically was addressed in Lambert
(2006), Parsons and Quince (2007a, b) and Otto and Whitlock (1997), among oth-
ers, while Uecker and Hermisson (2011) studied a population with temporal variation
not only in its size but also in selection pressure. Competing populations distributed
over habitat patches where environmental conditions fluctuate in time and space were
considered too (Evans et al. 2015; Schreiber 2012).

In evolutionary games, the payoffs may change at random over time. A stochastic
version of the continuous-time replicator equation with a random noise added to the
growth rate of every strategy was considered in Fudenberg and Harris (1992). More
recently, the effect of stochastic changes in payoffs in two-player linear games in
discrete time were studied with particular attention to stochastic local stability of
fixation states and polymorphic equilibria in an infinite population (Zheng et al. 2017,
2018) and fixation probabilities of strategies in a finite population (Li and Lessard
2020; Kroumi et al. 2021).

In a previous paper (Kroumi and Lessard 2021), we have studied the effects of
randomness in payoffs on the average abundance of strategies under recurrentmutation
in two-player games. Assume a finite population in discrete time updated according
to a Moran model. The payoffs for cooperation and defection in Prisoner’s dilemmas,
repeated or not, fluctuate over time such that theirmeans, variances and covariances are
of the same small order while higher-order moments are insignificant. In the mutation-
selection equilibrium, we have shown that an increase in the variance of any payoff
received for defection against cooperation or defection, or in their covariance, or a
decrease in the variance of any payoff received for cooperation against cooperation
or defection, or in their covariance, increases the average abundance of cooperation.
Then, it is easier for weak selection to favor the abundance of cooperation. Moreover,
increasing the scaled mutation rate can lessen or enhance the effect. Multi-player
games were not considered and, therefore, the question of the effects of increasing the
number of players was left open.

In this paper, we extend our analysis of average abundance with random payoffs to
many-player games. Interactions occur within groups of any fixed size d ≥ 2 and the
payoffs received by cooperators and defectors are random variables that depend on
the group composition. We study the average abundance of C in the stationary state
of the mutation-selection equilibrium to derive conditions for weak selection to favor
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the abundance of C . These conditions are examined in detail to understand the effect
of the scaled mutation rate and the group size in different games and scenarios.

The remainder of this paper is organized as follows. In Sect. 2, we present the
model. In Sect. 3, we derive the average abundance of C in the stationary state under
symmetric mutation and weak selection. In Sect. 4, we examine in detail the particular
case of payoffs with additive mean scaled cost and benefit for cooperation. In the next
sections, we focus on three special social dilemmas, the public goods game in Sect. 5,
the stag hunt game in Sect. 6, and the snowdrift game in Sect. 7. We summarize the
conclusions and interpretations of our results in Sect. 8 with particular attention to
the effects of the group size.

2 Model

Consider a population of a fixed size N . Each individual can be of only one of two types
depending on the strategy used: C for cooperation or D for defection. Interactions
between individuals occur within groups of d players. A cooperator (respectively,
defector) receives a payoff ak (respectively, bk) when it interacts with k cooperators
and d−k−1 defectors. The payoffs at a given time step are described in the following
payoff array:

0 1 · · · d − 1
C a0 a1 · · · ad−1
D b0 b1 · · · bd−1

Here, we suppose that the payoffs are random variables less than 1 in absolute value
whose first and second moments are given by

E [ai ] = µC,iδ + o(δ), (1a)

E
[
aia j

]
= σCC,i jδ + o(δ), (1b)

E [bi ] = µD,iδ + o(δ), (1c)

E
[
bib j

]
= σDD,i jδ + o(δ), (1d)

E
[
aib j

]
= σCD,i jδ + o(δ), (1e)

for i, j = 0, 1, . . . , d − 1. The parameter δ ≥ 0, which corresponds to an intensity
of selection, measures the order of the first and second moments of the payoffs. The
parameters µS1,i and σS1S2,i j for i, j = 0, 1, . . . , d − 1 and S1, S2 = C or D cor-
respond to scaled means and covariances, respectively. In addition, all higher-order
moments of the payoffs are assumed to be negligible compared to δ, that is,

E

[
d−1∏

i=0

akii blii

]

= o(δ) (2)
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as soon as
∑d−1

i=0 (ki + li ) ≥ 3 for integers ki , li ≥ 0 for i = 0, 1, . . . , d − 1. Note
that the payoffs are assumed to vary from one time step to another but not from one
individual to another at the same time step. Similar assumptions have been considered
in population genetics models (see, e.g., Karlin and Levikson 1974 and Karlin and
Liberman 1974). Moreover, the payoffs at any given time step are assumed to be
independent of the payoffs at all other time steps.

At each time step, a large number of interactions occur within groups of size d
formed at random and independently in the population of size N . The reproductive
fitness of an individual is then defined as 1+P , where P is the average payoff received
by the individual. Therefore, when the frequency of C in the population at a given
time step is x = i/N , the reproductive fitnesses of a cooperator and a defector are
given by

fC (x) = 1+
d−1∑

k=0

(i−1
k

)( N−i
d−k−1

)

( N−1
d−k−1

) ak = 1+ PC (x), (3a)

fD(x) = 1+
d−1∑

k=0

(i
k

)(N−i−1
d−k−1

)

( N−1
d−k−1

) bk = 1+ PD(x), (3b)

respectively, where PC (x) and PD(x) are the average payoffs toC and D, respectively.
Note that fC (x) and fD(x) are positive since we have by assumption that |ak |, |bk | <
1 for k = 0, 1, . . . , d − 1. Moreover, if an individual is chosen with probability
proportional to its reproductive fitness, then this individual is of typeC with probability
x fC (x)/(x fC (x)+ (1− x) fD(x)) and of type D with the complementary probability
(1 − x) fD(x)/(x fC (x)+ (1 − x) fD(x)).

The update of the population from one time step to the next is done through a single
birth-death event according to a Moran model allowing for mutation (Moran 1958;
Ewens 2004). With probability proportional to its reproductive fitness, an individual is
chosen to produce an offspring. With probability 1 − u < 1, the offspring is an exact
copy of its parent and, therefore, uses the same strategy. With the complementary
probability u > 0, the offspring is a mutant, in which case its strategy is chosen at
random. More precisely, a mutant offspring adopts strategy C with probability 1/2
or strategy D with probability 1/2. In all cases, the offspring produced replaces an
individual that is chosen at random in the population to die, possibly the parent of the
offspring but not the offspring itself. This leads to the population state at the next time
step.

The state space for the frequency of C in the population at a given time step, rep-
resented by X , is S = {0, 1/N , . . . , (N − 1)/N , 1}. The frequency of C over all time
steps is an aperiodic irreducible Markov chain on a finite state space. Owing to the
ergodic theorem (see, e.g., Karlin and Taylor 1975), the chain tends to an equilibrium
state, called the selection-mutation equilibrium, given by a unique stationary proba-
bility distribution, represented by {$δ(x)}x∈S where $δ(x) = Pδ(X = x) > 0 and∑
x∈S

$δ(x) = 1.
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Let Eδ denote the expectation with respect to the stationary probability distribution
if the intensity of selection is δ ≥ 0. The average abundance of C is defined as

Eδ[X ] =
∑

x∈S
x$δ(x). (4)

We say that weak selection favors the abundance of C if its average abundance under
weak enough selection exceeds what it would be under neutrality, that is,

Eδ[X ] > E0[X ] = 1
2

(5)

for δ > 0 small enough. Here, E0[X ] represents the average abundance of C under
neutrality, which occurs when δ = 0.

3 Average abundance under symmetric mutation and weak selection

From one time step to the next, the frequency of C can increase by 1/N , decrease
by 1/N , or remain the same. Let us denote this change by %X = X ′ − X . We
have %X = −1/N when a D offspring replaces a C individual. Let T−(x) be the
conditional probability that %X = −1/N given that X = x . Then, we have

T−(x) = Pδ

[
%X = − 1

N
| X = x

]

=
[
(1 − u)E

[
(1 − x) fD(x)

x fC (x)+ (1 − x) fD(x)

]
+ u

2

]
x, (6)

where E denotes an expectation with respect to the probability distribution of the
payoffs. Similarly, %X = 1/N when a C offspring replaces a D individual, and the
conditional probability of this event given that X = x is

T+(x) = Pδ

[
%X = 1

N
| X = x

]

=
[
(1 − u)E

[
x fC (x)

x fC (x)+ (1 − x) fD(x)

]
+ u

2

]
(1 − x). (7)

Accordingly, the conditional expected change in the frequency of C is

Eδ
x [%X ] = Eδ [%X | X = x]

= 1
N

(
T+(x) − T−(x)

)

= u(1 − 2x)
2N

+ δ

N
(1 − u)x(1 − x)m(x)+ o(δ), (8)
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where

m(x) = E
[

fC (x) − fD(x)
x fC (x)+ (1 − x) fD(x)

]
. (9)

Multiplying both sides in (8) by $δ(x) and summing up over all states x in S lead to

Eδ [%X ] = u
2N

[
1 − 2Eδ[X ]

]
+ δ

N
(1 − u)Eδ [X(1 − X)m(X)]+ o(δ). (10)

In the stationary state, the frequency of C in the population keeps a constant expected
value, that is,

Eδ [%X ] = 0. (11)

Therefore, (10) yields

Eδ[X ] = 1
2
+ δ(1 − u)

u
Eδ [X(1 − X)m(X)]+ o(δ). (12)

Then, using

Eδ [X(1 − X)m(X)] = E0 [X(1 − X)m(X)]+ O(δ), (13)

we obtain the first-order approximation

Eδ[X ] ≈ 1
2
+ δ(1 − u)

u
E0 [X(1 − X)m(X)] (14)

for the expected frequency of C in the selection-mutation equilibrium. Returning to
(5), we get the condition

E0 [X(1 − X)m(X)] > 0 (15)

for weak selection to favor the abundance of C .
In the remainder of this paper, we assume a large population size, in which case we

have

m(x) =
d−1∑

k=0

(
d − 1
k

)
xk(1 − x)d−k−1 (µC,k − µD,k

)

+
d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
xk+l(1 − x)2d−k−l−2

×
[
x(σCD,kl − σCC,kl)+ (1 − x)(σDD,kl − σCD,kl)

]
. (16)

See Appendix A for details.
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Now, let us define

ψk
n = E0

[
Xk(1 − X)n−k

]
(17)

for k = 0, 1, . . . , n. This is the probability that among n individuals drawn at random
with replacement in a neutral population at equilibrium, that is, in the population at
the stationary probability distribution state when δ = 0, exactly k of them in particular
are of type C , while the other n − k individuals are of type D. Note that ψk

n = ψn−k
n

since mutation is symmetric.
In a neutral population in the limit of a large population size N with N 2/2 birth-

death events as unit of time, each pair of lineages coalesces backward in time at rate
1 independently of all others according to Kingman’s coalescent (Kingman 1982).
Besides, each lineage mutates at the scaled rate θ = limN→∞ Nu/2> 0 indepen-
dently of all others and independently of the coalescent process (see, e.g., Ewens
2004, p. 340). This scaled rate ensures that mutation events on ancestral lines occur
on the same time scale as coalescence events backward in time. Then, the expected
value in (17) in the limit of a large population size corresponds to a moment of a
Dirichlet distribution (Ewens 2004, p. 195). This leads to the following key lemma
(see Appendix B for a proof).

Lemma 1 In a large population, we have the approximation

ψk
n ≈

∏k
i=1(θ + i − 1)

∏n−k
j=1(θ + j − 1)

∏n
l=1(2θ + l − 1)

(18)

for k = 0, 1, . . . , n, where θ = limN→∞ Nu/2 is a scaled mutation rate.

Note that we have the approximation

ψk
n =

{
θ(k−1)!(n−k−1)!

2(n−1)! if k = 1, 2, . . . , n − 1,
1
2 − θ

2Hn−1 if k = 0, n,
(19)

when θ is small and terms of order o(θ) are neglected, and the approximation

ψk
n ≈ 1

2n
(20)

for k = 0, 1, . . . , n when θ is large and terms of order O(θ−1) are neglected. Here,
Hk =

∑k
i=1 1/i denotes the k-th harmonic number (Conway and Guy 1995).

Using (16) and (17), the expected value on the left-hand side of (15) can be expressed
as

E0 [X(1 − X)m(X)] =
d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1

(
µC,k − µD,k

)
+

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
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×
[
−ψk+l+2

2d+1
(
σCC,kl − σCD,kl

)
+ ψk+l+1

2d+1
(
σDD,kl − σCD,kl

)]
.

(21)

In this expression, the coefficient of σCC,kl is always negative, while the coefficient of
σDD,kl is always positive, for k, l = 0, 1, . . . , d−1. As for the effect of a change in any
covariance between a payoff to C and a payoff to D, σCD,kl , on average abundance,
it depends on the sign of ψk+l+2

2d+1 − ψk+l+1
2d+1 , for k, l = 0, 1, . . . , d − 1. Owing to the

above lemma, we have the approximation

ψk+l+2
2d+1 − ψk+l+1

2d+1 ≈
(k + l + 1 − d)

∏k+l+2
i=1 (θ + i − 1)

∏2d−k−l−1
j=1 (θ + j − 1)

∏2d+1
l=1 (2θ + l − 1)

(22)

if the population size is large enough. This approximation is positive if k+ l > d − 1,
negative if k + l < d − 1, and null if k + l = d − 1.

Therefore, the following conclusion ensues.

Result 1 In a largepopulationunderweak selection, decreasingany covarianceσCC,kl
between two payoffs to C, or increasing any covariance σDD,kl between two payoffs
to D, increases the average abundance of C. In other words, less uncertainty in
the payoffs to C or more uncertainty in the payoffs to D makes it easier for weak
selection to favor the abundance of C. Moreover, increasing any covariance σCD,kl
between a payoff to C and a payoff to D for k + l > d − 1, or decreasing it for
k+l < d−1, increases the average abundance of C, while increasing it or decreasing
it for k + l = d − 1 has no effect on the average abundance of C.

Note that, if the population size is large enough and all the payoffs are constant,
so that all the covariances vanish, then condition (15) for weak selection to favor the
abundance of C reduces to

d−1∑

k=0

(
d − 1
k

)
((θ + k + 1)((θ + d − k)

(
µC,k − µD,k

)
> 0, (23)

where ( is the Gamma function (see, e.g., Andrews et al. 1999, chapter 1). This
generalizes a result of Gokhale and Traulsen (2011) for d = 3.

4 Additive scaledmean cost and benefit

In this section, we focus on a particular case where the scaled mean payoffs to C and
D are given by

µC,k =
k

d − 1
µb − µc, (24a)

µD,k =
k

d − 1
µb, (24b)
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respectively, for k = 0, 1, . . . , d − 1. This corresponds to a public goods game where
a cooperator pays a mean scaled cost µc, while the scaled mean benefit of cooperation
µb is distributed equally among the other d − 1 members of the group. Note that,
often in a public goods game, the benefit is obtained by multiplying the cost by some
interest rate (see, e.g., Archetti and Scheuring 2012, and references therein).

Under deterministic payoffs, that is, σS1S2,kl = 0 for all S1, S2 = C, D and
k = 0, 1, . . . , d − 1, weak selection never favors the abundance of C since then
the espression (21) reduces to the first summation given by

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1

(
µC,k − µD,k

)
= −µc

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1 = −µcψ

1
2 , (25)

which cannot be positive. Here, we have used the identity

n∑

k=0

(
n
k

)
ψ

k+ j
n+i =

n∑

k=0

(
n
k

)
E0
[
Xk+ j (1 − X)n+i−k− j

]

= E0

[

X j (1 − X)i− j
n∑

k=0

(
n
k

)
Xk (1 − X)n−k

]

= E0
[
X j (1 − X)i− j

]
= ψ

j
i (26)

for 0 ≤ j ≤ i .
In the remainder of this section, we will show that introducing uncertainty in the

payoffs to D can make it possible for weak selection to favor the abundance of C .

4.1 Case 1

In this subsection, we suppose that all the covariances between any two payoffs to C
and all the covariances between any payoff to C and any payoff to D are insignificant,
that is, σCC,kl = 0 and σCD,kl = 0 for k, l = 0, 1, . . . , d − 1. Moreover, we suppose
that all the covariances between any two payoffs to D are insignificant except one.
More precisely, we assume σDD,kl = 0 for (k, l) *= (k0, k0) and σDD,k0k0 = σ 2 > 0
for a certain integer k0 between 0 and d − 1.

In this case, the second summation in (21) reduces to σ 2(d−1
k0

)2
ψ

2k0+1
2d+1 . Then, using

the expression of the first summation given in (25), condition (15) for weak selection
to favor the abundance of C takes the form

σ 2

µc
>

(
σ 2

µc

)∗
≡ ψ1

2
(d−1
k0

)2
ψ

2k0+1
2d+1

. (27)

See Fig. 1 for graphics of this threshold value in a large population with respect to
the scaled mutation rate θ for d = 2, 3, 4, 5 and k0 = 0, 1, . . . , d − 1 using the
approximation that is given in Lemma 1.
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Using the approximation in (19) when θ is small, we get in this case

(
σ 2

µc

)∗
≈

(2k0 + 1)
( 2d
2k0+1

)

(d−1
k0

)2 . (28)

For any d ≥ 2, the value of this threshold is an increasing function of k0 since we have

(2(k0+1)+1)( 2d
2(k0+1)+1)

( d−1
k0+1)

2

(2k0+1)( 2d
2k0+1)

(d−1
k0
)
2

= (k0 + 1)(2d − 2k0 − 1)
(2k0 + 1)(d − k0 − 1)

= 2k0d − 2k20 − 3k0 + 2d − 1

2k0d − 2k20 − 3k0 + d − 1
> 1.

(29)

We conclude that the best scenario for the abundance of C to be favored by weak
selection is when k0 = 0, in which case the threshold value is minimum at 2d, while
the worst scenario is when k0 = d−1, with the threshold value reaching its maximum
2d(2d − 1). Note that the threshold value tends to ∞ as d → ∞. Therefore, if the
group size d is large enough and the scaledmutation rate θ low enough, weak selection
cannot favor the abundance of C .

On the other hand, using the approximation in (20) in the case where θ is large, we
have

(
σ 2

µc

)∗
≈ 22d−1

(d−1
k0

)2 , (30)

which reaches its maximum when k0 = 0 or d − 1, and its minimum when k0 =
(d − 1)/2 if d is odd, or when k0 = d/2 − 1 or k0 = d/2 if d is even. Note that, as
d → ∞, the threshold value tends to ∞, in which case weak selection cannot favor
the abundance of C .

4.2 Case 2

We suppose now that all the covariances between any two payoffs to C and all the
covariances between any payoff to C and any payoff to D are insignificant, that is,
σCC,kl = σCD,kl = 0 for k, l = 0, 1, . . . , d − 1. Moreover, we suppose that all the
covariances between any two payoffs to D are of the same positive order, that is,
σDD,kl = σ 2 > 0 for k, l = 0, 1, . . . , d − 1. This is the case, for instance, when all
payoffs to D are perfectly positively correlated.

In this case, the second summation in (21) takes the form

σ 2
d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
ψk+l+1
2d+1 = σ 2ψ1

3 . (31)

123



   27 Page 12 of 31 D. Kroumi, S. Lessard

Fig. 1 Curves of the threshold value (σ 2/µc)
∗ that σ 2/µc must exceed for weak selection to favor the

abundance of C for d = 2, 3, 4, 5 and k0 = 0, 1, . . . , d − 1 with respect to the scaled mutation rate θ in
a large population. Under a low scaled mutation rate, the best scenario for the abundance of C is when
k0 = 0, while the worst scenario is when k0 = d − 1. Under a high scaled mutation rate, the worst scenario
is when k0 = 0 or d − 1, and the best scenario when k0 = (d − 1)/2 if d is odd, or k0 = d/2 − 1 or
k0 = d/2 if d is even. Note that the scaled mutation rate can increase or decrease the threshold depending
on k0. Increasing the group size d increases the threshold value (σ 2/µc)

∗, which makes it more difficult
for weak selection to favor the abundance of C (color figure online)

Here, we have used the identity

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
ψ

k+l+ j
2d+i

=
d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
E0
[
Xk+l+ j (1 − X)2d+i−k−l− j

]

= E0

[

X j (1 − X)i+2− j
( d−1∑

k=0

(
d − 1
k

)
Xk (1 − X)d−1−k

)2
]

= E0
[
X j (1 − X)i+2− j

]
= ψ

j
i+2 (32)

for 0 ≤ j ≤ i + 2. Inserting the expressions (25) and (31) in (14) and using Lemma
1, the first-order approximation of the average abundance of C becomes

Eδ[X ] ≈ 1
2
+ δN

8(2θ + 1)

(
σ 2 − 2µc

)
. (33)
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Accordingly, condition (15) for weak selection to favor the abundance of C can be
written as

σ 2

µc
> 2 . (34)

This condition does not depend on θ nor on d. If it is satisfied, then weak selection
favors the abundance of C for any scaled mutation rate θ > 0 and any group size
d ≥ 2.

It is clear from (33) that increasing the scaledmutation ratewill decrease the average
abundance of C if σ 2 > 2µc, and increase it if σ 2 < 2µc. On the other hand, the
group size d has no effect on the average abundance of C .

5 Public goods game

In this section and the next two ones, we are interested in classical social dilemmas
where cooperation incurs a random cost c but provides a random benefit b in groups
of size d. For instance, we could have b = rc for some interest rate r as in Archetti
and Scheuring (2012) but with random r and c. Moreover, we assume that

E[b] = µbδ + o(δ), (35a)

E[c] = µcδ + o(δ), (35b)

E[b2] = σ 2
b δ + o(δ), (35c)

E[c2] = σ 2
c δ + o(δ), (35d)

E[bc] = σbcδ + o(δ) (35e)

and

E
[
bi c j

]
= o(δ), (36)

for any non-negative integers i and j such that i + j ≥ 3.
We consider first a linear public goods game in which the benefit of cooperation b

by an individual at a cost c is distributed equally among the d − 1 other individuals
in the same group and all effects of cooperation are additive (Hamburger 1973; Fox
and Guyer 1978). In this case, the payoffs to C and D for an individual in interaction
with k cooperators and d − k − 1 defectors are

ak =
k

d − 1
b − c, (37a)

bk =
k

d − 1
b, (37b)
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whose scaled means are given by

µC,k =
k

d − 1
µb − µc, (38a)

µD,k =
k

d − 1
µb, (38b)

and scaled variances and covariances by

σCC,kl =
kl

(d − 1)2
σ 2
b + σ 2

c − k + l
d − 1

σbc, (39a)

σCD,kl =
kl

(d − 1)2
σ 2
b − k

d − 1
σbc, (39b)

σDD,kl =
kl

(d − 1)2
σ 2
b , (39c)

for k, l = 0, 1, . . . , d − 1. Then, the first summation in (21) is the same as in (25). On
the other hand, using the identity l

d−1

(d−1
l

)
=
(d−2
l−1

)
, we obtain

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
l

d − 1
ψk+l+i
2d+1

=
d−1∑

k=0

d−1∑

l=1

(
d − 1
k

)(
d − 2
l − 1

)
E0
[
Xk+l+i (1 − X)2d+1−k−l−i

]

= E0



Xi+1(1 − X)3−i
d−1∑

k=0

(
d − 1
k

)
Xk (1 − X)d−1−k

d−2∑

l=0

(
d − 2
l

)
Xl (1 − X)d−2−l





= E0
[
Xi+1(1 − X)3−i

]
= ψ i+1

4 (40)

for i = 0, 1, 2, 3. Then, the second summation in (21) can be written as

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)[(
l

d − 1
ψk+l+2
2d+1 + k

d − 1
ψk+l+1
2d+1

)
σbc − ψk+l+2

2d+1 σ 2
c

]

=
(
ψ2
4 + ψ3

4

)
σbc − ψ2

3σ 2
c

= ψ2
3

(
σbc − σ 2

c

)
. (41)

In the last passage, we have used the identity

ψ i
n + ψ i+1

n = ψ i
n−1. (42)
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Inserting (25) and (41) in (14) and using Lemma 1, the first-order approximation of
the average abundance of C is given by

Eδ[X ] ≈ 1
2
+ δN

8(2θ + 1)

(
σbc − σ 2

c − 2µc

)
. (43)

Result 2 For the public goods game in a large population, decreasing the variance of
the cooperation cost c, σ 2

c , or increasing the covariance between the cost c and the
benefit b, σbc, increases the average abundance of C. Neither the scaled mutation rate
θ nor the group size d has any effect on the condition for weak selection to favor the
abundance of C given by

σbc − σ 2
c > 2µc. (44)

Note that increasing the scaled mutation rate will decrease the average abundance of
C if σbc − σ 2

c > 2µc, and increase it if σbc − σ 2
c < 2µc. Therefore, increasing the

scaled mutation rate will increase or decrease the average abundance of C without
changing the strategy whose abundance is favored by weak selection. If b and c are
uncorrelated, that is, σbc = 0, then weak selection cannot favor the abundance of C .

6 Stag hunt game

In a multi-player stag hunt game, an individual in a group of size d receives a benefit
b only if all the individuals in the group cooperate, each one at a cost c (Skyrms 2004;
Pacheco et al. 2009). Then, the payoffs toC are givenbyak = −c if k = 0, 1, · · · , d−2
and ad−1 = b−c, while the payoffs to D are bl = 0 for l = 0, 1, . . . , d−1. In this case,
the scaled means of the payoffs to C or D according to the numbers of cooperating
partners in the same group are given by

µC,k =
{−µc if k < d − 1,
µb − µc if k = d − 1,

(45)

and µD,l = 0, and the scaled variances and covariances by

σCC,kl =






σ 2
c if k < d − 1 and l < d − 1,

σ 2
c − σbc if k = d − 1 and l < d − 1 or k < d − 1 and l = d − 1,

σ 2
c − 2σbc + σ 2

b if k = l = d − 1,

(46)

and σCD,kl = σDD,kl = 0, for k, l = 0, 1, . . . , d − 1.

123



   27 Page 16 of 31 D. Kroumi, S. Lessard

In this case, by using the identity (26) and the fact that ψk
n = ψn−k

n , the first
summation in (21) becomes

ψd
d+1µb −

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1µc = ψ1

d+1µb − ψ1
2µc. (47)

Similarly, using the identities (26) and (32), the second summation in (21) takes the
form

− ψ2d
2d+1σ

2
b −

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
ψk+l+2
2d+1 σ 2

c + 2
d−1∑

k=0

(
d − 1
k

)
ψd+k+1
2d+1 σbc

= −ψ2d
2d+1σ

2
b − ψ2

3σ 2
c + 2ψd+1

d+2σbc = −ψ1
2d+1σ

2
b − ψ1

3σ 2
c + 2ψ1

d+2σbc. (48)

Inserting (47) and (48) in (14), the average abundance of C up to the first-order with
respect to δ can be approximated as

Eδ[X ] ≈ 1
2
+ δN

2θ

(
ψ1
d+1µb − ψ1

2µc − ψ1
2d+1σ

2
b − ψ1

3σ 2
c + 2ψ1

d+2σbc

)
. (49)

As a result, condition (15) for weak selection to favor the abundance of C can be
reduced to

ψ1
d+1µb − ψ1

2µc − ψ1
2d+1σ

2
b − ψ1

3σ 2
c + 2ψ1

d+2σbc > 0. (50)

This allows us to state our next result.

Result 3 For the stag hunt game in a large population, decreasing the variance of the
cost c, σ 2

c , or the variance of the benefit b, σ 2
b , or increasing their covariance, σbc,

increases the average abundance of C for any scaled mutation rate θ > 0 and any
group size d ≥ 2.

The next point of interest is the effect of the group size d on the condition for
weak selection to favor the abundance of C . Note that ψ1

n is decreasing as a function
of n. Then, increasing the group size d decreases the weights of µb, σbc, and σ 2

b on
the average abundance of C , while the weights of µc and σ 2

c remain the same. Using
ln(1 − x) ≤ −x for 0 ≤ x < 1, we obtain

n∏

j=1

(
θ + j − 1
2θ + j − 1

)
= exp






n∑

j=1

ln
(
1 − θ

2θ + j − 1

)



≤ exp




−
n∑

j=1

θ

2θ + j − 1




 , (51)
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from which

lim
n→∞

n∏

i=1

(
θ + i
2θ + i

)
= 0, (52)

for any scaled mutation rate θ > 0. On the other hand, using lemma 1, we have

0 ≤ ψk
n ≈

∏k
i=1(θ + i − 1)

∏n−k
j=1(θ + j − 1)

∏n
l=1(2θ + l − 1)

≤ (θ + k − 1)k

(2θ + n − k)k

n−k∏

j=1

(
θ + j − 1
2θ + j − 1

)

(53)

for k = 0, 1, . . . , n. In particular, for a group size d large enough, we have
ψ1
d+1,ψ

1
2d+1,ψ

1
d+2 ≈ 0, and the approximation for the average abundance of C

given by (49) becomes

Eδ[X ] ≈ 1
2

− δN
8(2θ + 1)

(
2µc + σ 2

c

)
. (54)

This is always less than 1/2 for any scaled mutation rate θ > 0. This means that weak
selection cannot favor the abundance of C in this case. Note that increasing the scaled
mutation rate will increase the abundance of C without changing the strategy whose
abundance is favored, which can only be strategy D.

Result 4 Increasing the group size d in the stag hunt game in a large population makes
it more difficult for weak selection to favor the abundance of C. If the group size is
large enough, weak selection can only favor the abundance of D. This is true for any
scaled mutation rate θ > 0.

As for the effect of the scaled mutation rate on condition (50) in a large population,
it is easy to see from lemma 1 that the coefficients of µb, σ 2

b and σbc are decreasing
with respect to θ for any d ≥ 2. In the limit of a low scaledmutation rate, this condition
takes the form

1
d
µb − µc − 1

2d
σ 2
b − 1

2
σ 2
c + 2

d + 1
σbc > 0, (55)

while it reduces to

1
2d−1µb − 2µc − 1

22d−1 σ 2
b − σ 2

c + 1
2d

σbc > 0 (56)

in the limit of a high scaled mutation rate. Note that with interactions in large groups,
that is, as d → ∞, conditions (55) and (56) are never satisfied, which means that weak
selection cannot favor the abundance of C .
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7 Snowdrift game

In a multi-player snowdrift game, the cost of a collective effort represented by c is
distributed equally among the cooperators in the same group, while everyone in the
group receives a benefit b if there is at least one cooperator in the group (Zheng et al.
2007; Souza et al. 2009; Santos and Pacheco 2011). In this case, the payoffs to C are
ak = b − c/(k + 1) for k = 0, 1, . . . , d − 1, while the payoffs to D are bl = b for
l = 1, 2, . . . , d − 1, and b0 = 0. Note that the cost for each cooperator is a non-linear
decreasing function with respect to the number of cooperators in the group.

In this case, the scaled means, variances and covariances of the payoffs to an
individual of type C and D according to the numbers of cooperating partners in the
same group are given by

µC,k = µb − µc

k + 1
, (57a)

µD,k = µb1{k *=0}, (57b)

σCC,kl = σ 2
b −

(
1

k + 1
+ 1

l + 1

)
σbc +

σ 2
c

(k + 1)(l + 1)
, (57c)

σDD,kl = σ 2
b 1{k *=0,l *=0}, (57d)

σCD,kl =
(

σ 2
b − σbc

k + 1

)
1{l *=0}, (57e)

for k, l = 0, 1, . . . , d − 1. Here, 1A is the indicator of an event A defined by

1A =
{
1 if the event A is true,
0 if the event A is false.

(58)

Then, we have

µC,k − µD,k = µb1{k=0} − µc

k + 1
, (59a)

σCC,kl − σCD,kl =
(

σ 2
b − σbc

k + 1

)
1{l=0} +

σ 2
c

(k + 1)(l + 1)
− σbc

l + 1
, (59b)

σDD,kl − σCD,kl = −σ 2
b 1{k=0,l *=0} +

σbc

k + 1
1{l *=0}. (59c)

Inserting these values in the expression (21) and substituting it in (14), the average
abundance of C can be approximated as

Eδ[X ] ≈ 1
2
+ δN

θ

(
Mbµb + Mcµc + Mbbσ

2
b + Mbcσbc + Mccσ

2
c

)
, (60)

where

Mb = ψ1
d+1, (61a)
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Mc = −
d−1∑

k=0

(d−1
k

)

k + 1
ψk+1
d+1 = − 1

d

d−1∑

k=0

(
d

k + 1

)
ψk+1
d+1

= − 1
d

(
d∑

k′=0

(
d
k′

)
ψk′
d+1 − ψ0

d+1

)

= − 1
d

(
ψ0
1 − ψ0

d+1

)
, (61b)

Mbb = −
d−1∑

l=1

(
d − 1
l

)
ψ l+1
2d+1 −

d−1∑

k=0

(
d − 1
k

)
ψk+2
2d+1

= ψ1
2d+1 − ψ1

d+2 − ψ2
d+2 = ψ1

2d+1 − ψ1
d+1, (61c)

Mcc = −
d−1∑

k=0

d−1∑

l=1

(d−1
l

)

l + 1

(d−1
k

)

k + 1
ψk+l+2
2d+1 = − 1

d2

d−1∑

k=0

d−1∑

l=1

(
d

l + 1

)(
d

k + 1

)
ψk+l+2
2d+1

= − 1
d2

(
d∑

k′=0

d∑

l ′=0

(
d
k′

)(
d
l ′

)
ψk′+l ′
2d+1 − 2

d∑

k′=0

(
d
k′

)
ψk′
2d+1 + ψ0

2d+1

)

= − 1
d2

(
ψ0
1 − 2ψ0

d+1 + ψ0
2d+1

)
, (61d)

Mbc =
d−1∑

k=0

(d−1
k

)

k + 1
ψk+2
2d+1 +

d−1∑

k,l=0

(d−1
l

)(d−1
k

)

l + 1
ψk+l+2
2d+1 +

d−1∑

k=0

d−1∑

l=1

(d−1
l

)(d−1
k

)

k + 1
ψk+l+1
2d+1

= 1
d




d−1∑

k=0

(
d

k + 1

)
ψk+2
2d+1 +

d−1∑

k,l=0

(
d

l + 1

)(
d − 1
k

)
ψk+l+2
2d+1

+
d−1∑

k=0

d−1∑

l=1

(
d − 1
l

)(
d

k + 1

)
ψk+l+1
2d+1

]

= 1
d

[
d∑

k′=1

(
d
k′

)
ψk′+1
2d+1 +

d∑

l ′=1

(
d
l ′

)
ψ l ′+1
d+2 +

d∑

k′=1

(
d
k′

)(
ψk′
d+2 − ψk′

2d+1

)]

= 1
d

[
ψ1
d+1 − ψ1

2d+1 + ψ1
2 − ψ1

d+2 + ψ0
2 − ψ0

d+1 − (ψ0
d+2 − ψ0

2d+1)
]

= 1
d

(
ψ0
1 − 2ψ0

d+1 + ψ1
d+1 + ψ0

2d+1 − ψ1
2d+1

)
. (61e)

In the calculation of these different coefficients, we have used
(d−1

k

)
/(k+1) =

( d
k+1

)
/d

and the identities (26) and (32). Note that Mbb < 0, Mcc < 0 and Mbc > 0, from
which we can state the following result.

Result 5 For the snowdrift game in a large population, decreasing the variance of
the cost c, σ 2

c , or the variance of the benefit b, σ
2
b , or increasing their covariance, σbc,

increases the average abundance of C for any scaled mutation rate θ > 0 and any
group size d ≥ 2.
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Note that the condition for weak selection to favor the abundance of C can be
written as

ψ1
d+1µb +

1
d

(
ψ0
1 − 2ψ0

d+1 + ψ1
d+1 + ψ0

2d+1 − ψ1
2d+1

)
σbc

− 1
d

(
ψ0
1 − ψ0

d+1

)
µc −

(
ψ1
d+1 − ψ1

2d+1

)
σ 2
b − 1

d2

(
ψ0
1 − 2ψ0

d+1 + ψ0
2d+1

)
σ 2
c > 0.

(62)

7.1 Large group size

Another interesting point in the snowdrift game is the effect of the group size on the
average abundance of C . Assuming a large population and using (52) and (53), we
deduce that Mb,Mbb,Mcc ≈ o

(
d−1), while

Mc ≈ − 1
2d

+ o
(
d−1

)
, (63a)

Mbc ≈ 1
2d

+ o
(
d−1

)
. (63b)

Inserting these expressions in (60), the average abundance of C can be approximated
as

Eδ[X ] ≈ 1
2
+ δN

4dθ
(σbc − µc) . (64)

We conclude that weak selection favors the abundance of C as long as σbc > µc.
Note that, in this case, increasing the scaled mutation rate does not change whether or
not the average abundance of C exceeds the average abundance of D. We summarize
these findings.

Result 6 In the case of interactions in large groups in the snowdrift game in a large
population, weak selection favors the abundance of C as long as σbc > µc. This is
true for any scaled mutation rate θ > 0.

7.2 Low scaledmutation rate

In this section and the next one, we study the effect of the scaled mutation rate in a
large population on the average abundance of C for any group size d ≥ 2. Suppose
first a low scaled mutation rate θ . Using (19), the different coefficients in (61) can be
approximated as

Mb ≈ θ

2d
+ o(θ), (65a)

Mc ≈ − θ

2d
Hd + o(θ), (65b)
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Mbb ≈ − θ

4d
+ o(θ), (65c)

Mcc ≈ − θ

2d2
[2Hd − H2d ]+ o(θ), (65d)

Mbc ≈ θ

2d

[
2Hd − H2d +

1
2d

]
+ o(θ). (65e)

Inserting these approximations in (60), the average abundance of C can be expressed
as

Eδ[X ] ≈ 1
2
+ δN

4d

[

µb − Hdµc − σ 2
c
2

− 2Hd − H2d
d

σ 2
b +

(
2Hd − H2d + 1

2d

)
σbc

]

.

(66)

This means that weak selection favors the abundance of C as long as

µb − Hdµc − σ 2
c

2
− 2Hd − H2d

d
σ 2
b +

(
2Hd − H2d +

1
2d

)
σbc > 0. (67)

In the case of a large group size d, the above condition reduces σbc > µc owing to the
approximation Hd ≈ ln d.

7.3 High scaledmutation rate

In the case of a high scaled mutation rate θ so that we have the approximation (20),
the different coefficients in (60) can be expressed as

Mb ≈ 1
2d+1 , (68a)

Mc ≈ − 1
d

(
1
2

− 1
2d+1

)
, (68b)

Mbb ≈ 1
22d+1 − 1

2d+1 , (68c)

Mcc ≈ − 1
d2

[
1
2

− 1
2d

+ 1
22d+1

]
, (68d)

Mbc ≈ 1
d

(
1
2

− 1
2d+1

)
. (68e)

Then, the condition for weak selection to favor the abundance of C becomes

1
2d+1µb − 1

d

(
1
2

− 1
2d+1

)
µc −

(
1

2d+1 − 1
22d+1

)
σ 2
b
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− 1
d2

[
1
2

− 1
2d

+ 1
22d+1

]
σ 2
c + 1

d

(
1
2

− 1
2d+1

)
σbc > 0, (69)

which reduces again to σbc > µc in the case of a large group size d.

8 Discussion

The average abundance of a strategy in a finite population under selection and recurrent
mutation is connected to probabilities of fixation in the absence of mutation that were
used to define conditions for selection to favor the evolution of a strategy (Nowak
et al. 2004). In the limit of a low mutation rate, a strategy is more abundant on average
than another if, in the absence of mutation, the probability of ultimate fixation of the
first when represented only once is larger than the corresponding probability of the
second. This was shown in Fudenberg and Imhof (2006) and has become an important
property for a strategy to be favored by selection (see, e.g., Antal et al. 2009; Gokhale
and Traulsen 2011).

In this paper, we have studied the average abundance ofC in the mutation-selection
equilibrium of a finite well-mixed population, where interactions between cooperators
represented byC and defectors represented by D occur in randomgroups of size d ≥ 2.
We have supposed random payoffs from one time step to the next in a discrete-time
Moran model to reflect stochastic fluctuations in the environment. In the presence of
recurrent mutation, we have shown that the average abundance of C depends not only
on the means of the payoffs but also on their second moments. This generalizes a
previous study (Kroumi and Lessard 2021) in the case of pairwise interactions.

In addition to the expected scaled means, variances and covariances of the payoffs,
the condition for weak selection to favor the abundance of C is obtained in terms of
identity measures. These are probabilities for a random sample of n individuals in a
neutral population at equilibrium to contain exactly k cooperators, ψk

n , for 0 ≤ k ≤ n.
In a large population, they correspond to moments of the Dirichlet distribution with
scaled mutation rate θ ≈ Nu/2, where N is the population size and u the probability
of mutation from one time step to the next. Their expressions have been deduced in
appendix B using a coalescent approach developed in Griffiths and Lessard (2005).

When the payoffs are deterministic, we have shown that weak selection favors the
abundance of C if

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1µC,k >

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1µD,k . (70)

Here,µC,k andµD,k are the scaledmeans of the payoffs toC and D in interaction with
k cooperators and d − k − 1 defectors, respectively. This analytical result generalizes
the condition obtained by Gokhale and Traulsen (2011) for d = 3. Our result is valid
for any group size d ≥ 2 and any scaled mutation rate θ > 0 in the limit of a large
population size. Note that the scaled mutation rate does not come into play in this
condition for d = 2. For d ≥ 3, the scaled mutation rate can enhance or lessen the
condition for a strategy to be more abundant on average than the other. In the limit of
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a low scaled mutation rate, weak selection favors the abundance of C if

d−1∑

k=0

µC,k >

d−1∑

k=0

µD,k . (71)

This is exactly the condition obtained byKurokawa and Ihara (2009) forweak selection
to favor the evolution of C more than the evolution of D in the absence of mutation
in a large population.

In the case of random fluctuations in the payoffs, we have shown that the average
abundance of C exceeds the average abundance of D if

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1µC,k −

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
ψk+l+2
2d+1

(
σCC,kl − σCD,kl

)
(72)

exceeds

d−1∑

k=0

(
d − 1
k

)
ψk+1
d+1µD,k −

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
ψk+l+1
2d+1

(
σDD,kl − σCD,kl

)
,

(73)

where σXY ,kl is the scaled covariance of the payoff to X in interaction with k coop-
erators and d − k − 1 defectors and the payoff to Y in interaction with l cooperators
and d − l − 1 defectors, for X ,Y = C, D. Moreover, we have shown that a decrease
in the scaled covariance between any two payoffs to C , or an increase in the scaled
covariance between any two payoffs to D, will increase the average abundance of
C . Note that, at least in a large population, an increase in σCD,kl will increase the
average abundance of C if k + l > d − 1, and decrease the average abundance of C
if k + l < d − 1. Moreover, if k + l = d − 1, then σCD,kl does not have any effect on
the average abundance of C . These results are in agreement with previous studies on
the effect of variability on the evolution of a trait based on fixation probability (Gille-
spie 1974; Rychtar and Taylor 2019), Li and Lessard 2020), stochastic evolutionary
stability (SES) and stochastic convergence stability (SCS) (Zheng et al. 2017, 2018),
as well as stability concepts in a stochastic replicator equation (Imhof 2005).

We have applied our results to different scenarios in the case of additive scaled
mean cost and benefit for cooperation. With deterministic payoffs, weak selection
favors the abundance of D for any scaled mutation rate and any group size d ≥ 2. We
have shown that introducing uncertainty in the payoffs to D will increase the average
abundance of C and make it possible for weak selection to favor the abundance of C .
This may be the case even if uncertainty is introduced in only one of the payoffs to
D, e.g., the payoff bk0 when D is in interaction with k0 cooperators and d − k0 − 1
defectors (Case 1 in Section 4). In this case, we have shown that the abundance of C
is favored by weak selection if σ 2/µc > (σ 2/µc)

∗, where σ 2 is the scaled variance
of bk0 while all the other variances and covariances are insignificant. Nevertheless,
the threshold (σ 2/µc)

∗ is increasing to infinity as d increases to infinity for a scaled
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mutation rate that is low enough or high enough, so that it is not possible for weak
selection to favor the abundance of C if interactions occur in large enough groups.
In the second scenario, where we suppose that the covariances of any two payoffs to
D are of the same magnitude given by σ 2 (Case 2 in Section 4), we have shown that
weak selection favors the abundance of C in a large population if σ 2/µc > 2. This
condition does not depend neither on the scaled mutation rate nor on the group size.
This means that it is possible for weak selection to favor the abundance of C even if
interactions occur in large groups, which makes a difference from Case 1.

Next point of interest is the abundance of C in classical social dilemmas with
random cost c and random benefit b for cooperation in multi-player games. In the
case of the public goods game, we have shown that the abundance of C is favored by
weak selection if

σbc − σ 2
c > 2µc. (74)

Here, µc is the scaled expected cost, σ 2
c the scaled variance of the cost, and σbc the

scaled covariance between the benefit b and the cost c. In addition, we have shown
that a decrease in σ 2

c , or an increase in σbc, will increase the average abundance of C .
The above condition does not depend neither on the scaled mutation rate nor on the
group size. Note, however, that an increase in the scaled mutation rate can increase or
decrease the average abundance of C .

The stag hunt game is when cooperation implies a cost c to receive a benefit b if
all individuals cooperate. In such a case, we have shown that a decrease in the scaled
variance of the cost c or the benefit b, or an increase in their scaled covariance, will
increase the average abundance of C . Increasing the group size d will reduce the
weights of σbc and σ 2

b compared to the weight of σ 2
b . This makes it more difficult for

weak selection to favor the abundance of C . With interactions in large groups, weak
selection will never favor the abundance of C , which is true for any scaled mutation
rate. This is a consequence of the fact that a cooperator will receive the benefit if all
its partners cooperate, which will occur rarely if d is large.

The snowdrift game is when the cost is distributed equally between all cooperators
in the group. In such a scenario, all the conclusions obtained in the stag hunt game
are still valid except the effect of increasing the group size. In the snowdrift game,
increasing the group size d will reduce the weights of σ 2

b and σ 2
c compared to the

weight of σbc. In the case of interactions in large groups, weak selection favors the
abundance of C as long as σbc > µc for any mutation rate. This condition does not
depend neither on the scaled mutation rate θ nor on d. An increase in d or in θ will
decrease (respectively, increase) the abundance of C if σbc > µc (respectively, if
σbc < µc).
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9 Appendix A: Conditional expected frequency change

For i/N = x , we have

(i−1
k

)(N−i
n−k

)

(N−1
n

) =
(
n
k

)
(i − 1) × · · · × (i − k) × (N − i) × · · · × (N − i − n + k + 1)

(N − 1) × · · · × (N − n)

=
(
n
k

)
(x − 1

N ) × · · · × (x − k
N ) × (1 − x) × · · · × (1 − x − n−k−1

N )

(1 − 1
N ) × · · · × (1 − n

N )

=
(
n
k

)
xk(1 − x)n−k + O(N−1). (75)

Therefore, in the limit of a large population size N , the average payoffs to C and D
in (3) can be written as

PC (x) =
d−1∑

k=0

(
d − 1
k

)
xk(1 − x)d−k−1ak, (76a)

PD(x) =
d−1∑

k=0

(
d − 1
k

)
xk(1 − x)d−k−1bk . (76b)

Using (1), the first two moments of the average payoff to C in (3) when the frequency
of C is x are given by

E
[
PC (x)

]
= δ

d−1∑

k=0

(
d − 1
k

)
xk(1 − x)d−k−1µC,k + o(δ), (77a)

E
[
P2
C (x)

]
= δ

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
xk+l(1 − x)2d−k−l−2σCC,kl + o(δ), (77b)

and similarly the first two moments of PD(x) by

E
[
PD(x)

]
= δ

d−1∑

k=0

(
d − 1
k

)
xk(1 − x)d−k−1µD,k + o(δ), (78a)

E
[
P2
D(x)

]
= δ

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
xk+l(1 − x)2d−k−l−2σDD,kl + o(δ). (78b)

Moreover, we have

E
[
PC (x)PD(x)

]
=δ

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)
xk+l(1−x)2d−k−l−2σCD,kl+o(δ). (79)
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We are interested in

E
[

fC (x) − fD(x)
x fC (x)+ (1 − x) fD(x)

]
= E

[
PC (x) − PD(x)

1+ P̄(x)

]
, (80)

where P̄(x) = x PC (x) + (1 − x)PD(x) is the average payoff in the population. We
expand the last expression by the delta-method (Lynch and Walsh 1998; Rice and
Papadopoulos 2009), which gives

E
[
Y
Z

]
= E[Y ]

E[Z ] +
∞∑

k=1

(−1)k
E[Y ] - k Z . + - Y , k Z .

E[Z ]k+1 (81)

for two random variables Y and Z with

- k Z .= E
[
(Z − E[Z ])k

]
(82)

and

- Y , k Z .= E
[
(Y − E[Y ]) (Z − E[Z ])k

]
(83)

for k ≥ 1. For Y = PC (x) − PD(x) and Z = 1+ P̄(x), using the facts that

- PC (x) − PD(x),
k
(1+ P̄(x)) .=- PC (x) − PD(x),

k
P̄(x) .= o(δ) (84)

for k ≥ 2 and

E[PC (x) − PD(x)] - k
(1+ P̄(x)) .= E[PC (x) − PD(x)] - k

P̄(x) .= o(δ)
(85)

for k ≥ 1, we obtain

E
[
PC (x) − PD(x)

1+ P̄(x)

]
= E[PC (x) − PD(x)]

1+ E[P̄(x)] − - PC (x) − PD(x),
1 P̄(x) .

(1+ E[P̄(x)])2 + o(δ).

(86)

Note that

- PC (x) − PD(x),
1
P̄(x) . = E

[
(PC (x) − PD(x)) P̄(x)

]
+ E [PC (x) − PD(x)] E

[
P̄(x)

]

= E
[
(PC (x) − PD(x)) P̄(x)

]
+ o(δ), (87)
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and
(
1+ E[P̄(x)]

)2 = 1+ O(δ), so that

E
[
PC (x) − PD(x)

1+ P̄(x)

]
= E[PC (x)] − E[PD(x)] − E

[
(PC (x) − PD(x)) P̄(x)

]
+ o(δ)

= E[PC (x)] − E[PD(x)] − xE[P2
1 (x)] + (2x − 1)E[PC (x)PD(x)]

+ (1 − x)E[P2
2 (x)] + o(δ)

= m(x)δ + o(δ), (88)

where

m(x) =
d−1∑

k=0

(
d − 1
k

)
xk(1 − x)d−k−1 (µC,k − µD,k

)
+

d−1∑

k,l=0

(
d − 1
k

)(
d − 1
l

)

× xk+l (1 − x)2d−k−l−2
[

− xσCC,kl + (1 − x)σDD,kl + ((x − (1 − x))σCD,kl

]
.

(89)

10 Appendix B: Moments of the Dirichlet distribution

The ancestry of a random sample of n individuals is described backward in time
by a coalescent tree with every pair of lines at any given time back coalescing at
rate 1 independently of all the others (Kingman 1982). Moreover, mutations occur
independently on each lines of the coalescent tree according to a Poisson process of
intensity θ > 0. When there is mutation, the mutant type is 1 or 2 with probability 1/2
for each type independently of the parental type. A line is said to be ancestral to the
sample as long as no mutation has occurred on it. We are interested in the probability
distribution of the sample configuration, more precisely the probability for k labeled
individuals to be of type 1 and the n − k others to be of type 2, denoted by ψk

n , for
0 ≤ k ≤ n.

In order to determine the sample probability distribution,wewill extend an approach
used in Griffiths and Lessard (2005) to show the Ewens sampling formula (Ewens
1972) in the case where the mutant type is always a novel type. See also Hoppe (1984)
and Joyce and Tavaré (1987) for related approaches based on urn models and cycles
in permutations.

Note first that the number of ancestral lines of a sample of n individuals is a
death process backward in time, where ancestral lines are lost by either mutation or
coalescence. This death process was studied in Griffiths (1980) and Tavaré (1984),
and the events in this death process called defining events in Ewens (1990).

Label the n sampled individuals and list them in the order in which their ancestral
lines are lost backward in time, following either a mutation or a coalescence. In the
case of coalescence, one of the two lines involved is chosen at random to be the one
that is lost, the other one being the continuing line. There are n! different orders.

123



   27 Page 28 of 31 D. Kroumi, S. Lessard

Let us first consider the probability for the n sampled individuals in a given order
to be all of type 1. Note that this event occurs if and only if all ancestral lines lost by
mutation lead to type 1. Now let us look at the probability of each defining event.When
i ancestral lines remain, the total rate of mutation is iθ and the total rate of coalescence
is i(i−1)/2, while the rate ofmutation leading to type 1 on any particular ancestral line
is θ/2 and the rate of coalescence involving any particular ancestral line and leading
to its loss is (i − 1)/2. Therefore, the probability that a particular ancestral line is the
next one lost and that it is lost by mutation leading to type 1 is (θ/2)/[(iθ+ i(i−1)/2]
for i ≥ 1. Similarly, the probability that a particular ancestral line is the next one lost
and that it is lost by coalescence is [(i − 1)/2]/[(iθ + i(i − 1)/2] for i ≥ 1. Summing
these probabilities, multiplying the sums for i = n, n − 1, . . . , 1, and considering all
possible orders, we get

ψ0
n = n!

n∏

i=1

(
θ/2+ (i − 1)/2
iθ + i(i − 1)/2

)
=

∏n
i=1(θ + i − 1)∏n
i=1(2θ + i − 1)

(90)

as probability for the n sampled individuals to be of type 1.
Now let us look at the general case of k labeled individuals of type 1 and n − k

of type 2. When i ancestral lines of individuals of type 1 and j ancestral lines of
individuals of type 2 remain, the total rate of mutation is (i + j)θ and the total rate of
coalescence is (i+ j)(i+ j −1)/2, while any particular ancestral line of an individual
is lost by mutation to the type of the individual, whose rate is θ/2, or by coalescence
with ancestral lines of individuals of the same type, whose rate is (i − 1)/2 for type
1 and ( j − 1)/2 for type 2. Considering i and j decreasing from k and n − k to 0 or
1 with i + j = n, n − 1, . . . , 1, we get

ψk
n = n!

∏k
i=1(θ/2+ (i − 1)/2)

∏n−k
j=1(θ/2+ ( j − 1)/2)

∏n
l=1(lθ + l(l − 1)/2)

=
∏k

i=1(θ + i − 1)
∏n−k

j=1(θ + j − 1)
∏n

l=1(2θ + l − 1)

= ((2θ)
((2θ + n)

(
((θ + k)((θ + n − k)

((θ)2

)
(91)

as probability for k labeled individuals to be of type 1 and the n − k others to be of
type 2 in a random sample of size n. Here, we use ((β +1) = β((β) for β > 0. Note
that ψk

n = ψk
n−k .

Applying the same approach as above for K types with rate of mutation to type k
given by αk/2 > 0 for k = 1, . . . , K with α1 + · · · + αK = α, the probability for
nk labeled individuals to be of type k for k = 1, . . . , K in a random sample of size
n = n1 + · · · + nK is given by

ψn1,...,nK
n =

∏K
k=1

∏nk
ik=1(αk + ik − 1)

∏n
i=1(α + i − 1)
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= ((α)

((α + n)

K∏

k=1

((αk + nk)
((αk)

. (92)

These are the moments of the Dirichlet distribution (see, e.g., Balakrishnan and Nev-
zorov 2003).
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