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Abstract: In this paper, we deduce a condition for a strategy S1 to be more
abundant on average at equilibrium under weak selection than another strategy S2 in
a population structured into a finite number of colonies of fixed proportions as the
population size tends to infinity. It is assumed that one individual reproduces at a
time with some probability depending on the payoff received in pairwise interactions
within colonies and between colonies and that the offspring replaces one individual
chosen at random in the colony into which the offspring migrates. It is shown that an
expected weighted average equilibrium frequency of S1 under weak symmetric strategy
mutation between S1 and S2 is increased by weak selection if an expected weighted
payoff of S1 near neutrality exceeds the corresponding expected weighted payoff of
S2. The weights are given in terms of reproductive values of individuals in the
different colonies in the neutral model. This condition for S1 to be favoured by weak
selection is obtained from a strong migration limit of the genealogical process under
neutrality for a sample of individuals, which is proven using a two-time scale argument.
The condition is applied to games between individuals in colonies with linear or cyclic
dominance and between individuals belonging to groups represented by subsets of a
given set.
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1. Introduction

Population structure refers to consistent demographic differences among individuals as a function of
some other attribute, such as geographic location, age, size, gender or physiological state. Over the
last few years, structured population models have become a central modelling formalism in theoretical
biology and game dynamics, as well as being one of the most widely used.

An important question is the effect of migration on evolution. Nagylaki [1] studied the strong
migration limit in a geographically-structured population, which occurs when migration dominates all
other evolutionary forces in the limit of a large population, by means of a diffusion approximation.
He considers a finite number of demes represented by the integers 1, . . . , d. Deme i is composed of
Ni = Nαi diploid individuals considered at a single multi-allelic locus, for i = 1, . . . , d. Here, N
and αi denote the whole population size and the proportion of deme i in the whole population, for
i = 1, . . . , d, with

∑d
i=1 αi = 1. Time is discrete with non-overlapping generations, and the reproduction

scheme in each deme follows the Wright–Fisher model as a result of random mating. Following the
production of a very large number of offspring and selection among offspring, there is migration. The
probability that an individual in deme i comes from deme j is represented by m∗ij , for i, j = 1, . . . , d.
The backward migration matrix M∗ =

(
m∗ij
)

1≤i,j≤d is assumed to be constant and ergodic. Following
migration and mutation, there is random sampling within demes to restore the deme sizes. In the limit
of a large population size (N → ∞), the stochastic dynamics in this structured population is described
by a Wright–Fisher diffusion as in a well-mixed population with an effective population size Ne = αN

taken as the unit of time, where:

α =
( d∑

i=1

π2
i

αi

)−1

(1)

Here, (πi)1≤i≤d is the stationary distribution associated with the backward migration matrix M∗. Under
the same assumptions, but for a haploid population and in the absence of selection, Notohara [2]
showed that the genealogical process, known in this context as the structured coalescent (Herbots [3]),
is described in the limit of a large population size by the standard Kingman coalescent [4–6], which is
such that each pair of lineages coalesces backward in time at rate one independently of all others.

Diffusion approximations and genealogical processes are very important tools to address questions
related to the effect of selection on the evolution of strategies in game dynamics. Among these questions,
how cooperation can emerge and persist from interactions between individuals is of prime interest.
This question has attracted increasing attention from mathematical or theoretical biologists (Axelrod and
Hamilton [7], Szabò and Töke [8], Traulsen et al. [9], Santos and Pacheco [10], Hauert and Szabò [11],
Nowak [12,13], Nowak and Sigmund [14], Ohtsuki et al. [15], Szabò and Fáth [16]). In order to study
this question, a simple game named the prisoner’s dilemma has been considered. The simplest form of
this game has payoffs in additive form with the following parameters: a donor pays a cost c to a recipient
to get a benefit b, where b > c.

The first studies on the evolution of cooperation in structured populations assumed symmetric
interactions between all members of the population. This means that the payoffs depend only on the
strategies used by the interacting individuals (Hamilton [17,18], Trivers [19], Frank [20], Nowak and
Sigmund [21,22], Nowak [23], Traulsen and Nowak [24], Kroumi and Lessard [25]). Even in this
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case, interactions can form a complex system as in the set-structured population introduced in Tarnita
et al. [26]: every individual of the population belongs to exactly K sets among M sets, and a cooperator
cooperates only with individuals that belong to at least L of the K sets, and defects otherwise.

In living groups, repetitive interactions for access to limited resources or mating opportunities can
lead to the creation of a social order. A hierarchy dominance that may depend on differences in resource
holding power (Hammerstein [27], Wilson [28]) can be established so that individuals are dominant
over those below them and submissive to those above them. This motivates the study of asymmetric
interactions with a cost for not conforming to the established hierarchy in structured populations with
linear or cyclic dominance (Tao et al. [29], Kroumi and Lessard [30]).

In this paper, we consider a Moran-type model for games played in a population structured into d

colonies of different finite sizes. In pairwise interactions, the individuals can adopt one of two strategies,
S1 or S2. An individual from colony i interacts with an individual from colony j with probability qij

for i, j = 1, . . . , d, where
∑d

j=1 qij = 1 for i = 1, . . . , d. The expected payoff that an individual
receives determines the probability for this individual to produce an offspring. One offspring is produced
at a time, and following migration, this offspring replaces one individual locally chosen at random.
More precisely, if the offspring is produced in colony i and migrates to colony j with probability mij ,
then the offspring replaces an individual chosen at random in colony j, for i, j = 1, . . . , d. Finally, there
is mutation of the strategy used by each individual independently of all others with probability u from
one time step to the next, and when this occurs, the mutant strategy is chosen at random among S1 and
S2. We will find a condition for S1 to be more abundant on average than S2 at equilibrium in the limit of a
large population under weak selection and weak mutation. This result relies on the strong migration limit
of the genealogical process in the absence of selection, which is proven using a lemma for two-time scale
Markov chains due to Möhle [31]. The condition will be express in terms of expected weighted payoffs
using reproductive values as weights, which is an alternative to the use of structure coefficients (Nowak
et al. [32]) for games in structured populations. This will allow us to give an intuitive interpretation of
this condition.

The remainder of this paper is organized as follows. We present the details of the model in Section 2.
We use a two-time scale convergence result that is established in Appendix A to derive the limiting
genealogical process in a neutral structured population in Section 3. The equilibrium state under weak
selection is studied in Section 4. In Section 5, a condition for a weighted average equilibrium frequency
of S1 to increase as the selection intensity increases from zero is deduced. This condition is applied
to situations with linear or cyclic dominance hierarchy in Section 6 and to games in set-structured
populations in Section 7. The results are interpreted and discussed in Section 8.

2. Model

We assume a population subdivided into d colonies represented by the integers 1, . . . , d. Each colony
is made of a finite number Ni of haploid individuals, for i = 1, . . . , d. Each individual in the population
adopts one of two strategies, S1 or S2. We assume pairwise interactions between individuals within each
colony and between individuals from different colonies. More precisely, an individual from colony i

interacts with an individual chosen at random from colony j with probability qij , for j = 1, . . . , d, with
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∑d
j=1 qij = 1, for i = 1, . . . , d. Then, the payoff that the individual from i receives is given by the entries

of the matrix:

Aij =

( S1 S2

S1 aij bij

S2 cij dij

)
(2)

according to the strategy adopted by the individual from i, corresponding to row S1 or S2, and the strategy
used by the individual from j, corresponding to column S1 or S2. The expected payoffs of strategies S1

and S2 played by individuals in colony i are denoted by ϕ1,i and ϕ2,i, respectively. It is assumed that
these expected payoffs translate into fertilities, or reproductive successes, in the form:

f1,i = 1 + s×ϕ1,i (3)

and:
f2,i = 1 + s×ϕ2,i (4)

respectively, where s > 0 represents the intensity of selection. It is assumed throughout the paper
that selection is weak, actually that the intensity of selection s is small compared to the inverse of the
population size N−1, where:

N = N1 + · · ·+ Nd (5)

The case s = 0 corresponds to neutrality.
Time is discrete. At each time step, an individual is chosen in the whole population with probability

proportional to its fertility to produce an offspring. This offspring inherits the strategy used by its parent.
If the parent is from colony i, then the offspring stays in colony i with probability mii or migrates to
colony j 6= i with probability mij , with

∑d
j=1 mij = 1, for i = 1, . . . , d. In both cases, the offspring

replaces an individual chosen at random in the same colony. It is assumed throughout that the forward
migration matrix M = (mij)1≤i,j≤d is irreducible and aperiodic, that is ergodic. In other words, there
exists some power of this migration matrix, Mk for some integer k ≥ 1, with all positive entries. Finally,
strategy mutation occurs with probability u for each individual independently of all others, so that the
strategy used by the individual at the next time step is chosen at random among S1 and S2 with probability
u and remains the same with the complementary probability 1− u.

3. Genealogical Process in the Neutral Model

In this section, we derive the genealogical process of a sample taken from the population structured
into d colonies under the neutral model in the limit of a large population size. Every individual of the
population has the same fertility, which is given by one.

Consider a sample of size n ≥ 2 at a given time step. Looking backward in time at the genealogy of
this sample, the distribution of the ancestors in the d colonies at any previous time step can be described
by a vector:

n = (n1, . . . , nd) (6)

where ni denotes the number of ancestors in colony i, for i = 1, . . . , d. Then:

|n| = n1 + · · ·+ nd (7)
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is the total number of ancestors.
Let n(τ) be the distribution of the ancestors τ ≥ 0 time steps back. Given an initial sample of n

individuals, this is a discrete-time Markov chain with state space:

En = {n = (n1, . . . , nd) : n1 + · · ·+ nd ≤ n} (8)

Let Πn,n′ be the transition probability from state n to state n′. A possible transition is from n to n−ei,
for i ∈ {1, . . . , d}, such that ni ≥ 1. Here, ei is a d-dimensional unit vector with the i-th component
equal to one and all other components equal to zero. This transition is obtained if one of the ni ancestors
in colony i produced an offspring who stayed in colony i and is one of the ni − 1 other ancestors in this
colony, or if one of the nj ancestors in colony j 6= i produced an offspring who migrated to colony i and
is one of the ni ancestors in this colony. All this occurs with probability:

Πn,n−ei =
ni

N
mii

(ni − 1)

Ni

+
∑
j 6=i

nj

N
mji

ni

Ni

=
(ni(ni − 1)

αi

mii +
∑
j 6=i

ninj

αi

mji

)
× 1

N2
(9)

Here, αi = Ni/N is the proportion of colony i in the whole population, for i = 1, . . . , d. Another
possible transition is from n to n − ei + ej , for i, j ∈ {1, . . . , d}, such that ni ≥ 1 and i 6= j. This
occurs if an individual in colony j other than the nj ancestors in this colony produced an offspring who
migrated to colony i and is one of the ni ancestors in this colony. The probability of this event is:

Πn,n−ei+ej =
(Nj − nj)

N
mji

ni

Ni

=
niαj

αi

mji ×
1

N
− ninj

αi

mji ×
1

N2
(10)

The last transition with positive probability is to stay in the same state, for which we have:

Πn,n = 1−
∑
i:ni≥1

Πn,n−ei −
∑
i 6=j
ni≥1

Πn,n−ei+ej

= 1−

(∑
i6=j:
ni≥1

niαj

αi

mji

)
× 1

N
−

( ∑
i:ni≥1

ni(ni − 1)

αi

mii

)
× 1

N2
(11)

From Equations (9)–(11), the transition matrix ΠN = (Πn,n′)n,n′∈En
can be decomposed into the

form:
ΠN = I +

A

N
+

B

N2
(12)

Here, I is an identity matrix of a size given by the number of elements in the state space En, and
A = (an,n′)n,n′∈En is an infinitesimal generator whose non-null entries are given by:

an,n′ =


niαj

αi
mji if n′ = n− ei + ej, for i 6= j and ni ≥ 1

−
∑

i 6=j:
ni≥1

niαj

αi
mji if n′ = n

(13)

Moreover, the non-null entries of B = (bn,n′)n,n′∈En are given by:

bn,n′ =


ni(ni−1)

αi
mii +

∑
j 6=i

ninj

αi
mji if n′ = n− ei, for i such that ni ≥ 1

−ninj

αi
mji if n′ = n− ei + ej, for i 6= j and ni ≥ 1

−
∑

i:ni≥1
ni(ni−1)

αi
mii if n′ = n

(14)
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Now, let Γk be the subset of all possible states with k ancestors, namely:

Γk = {n = (n1, . . . , nd) : |n| = n1 + · · ·+ nd = k} (15)

for k = 1, . . . , n. Note that the set En is the disjoint union of the subsets Γ1, Γ2, . . . ,Γn. With respect
to these subsets in this order, the matrices A and B whose non-null entries an,n′ and bn,n′ are given by
Equations (13) and (14), respectively, can be expressed in the block forms:

A =


A1 0 . . . 0

0 A2 . . . 0
...

... . . . ...
0 0 . . . An

 (16)

and:

B =


0 0 0 . . . 0 0

B2,1 B2,2 0 . . . 0 0

0 B3,2 B3,3 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . Bn,n−1 Bn,n

 (17)

Here, 0 denotes a zero matrix of any dimension.
The exponential matrix exp{mA} for every integer m ≥ 1 takes the block form:

exp{mA} =


exp{mA1} 0 . . . 0

0 exp{mA2} . . . 0
...

... . . . ...
0 0 . . . exp{mAn}

 (18)

Note that Ak is the infinitesimal generator of an irreducible Markov chain on a finite state space, which
is Γk, for k = 1, . . . , n. Consequently, the limit matrix:

Pk := lim
m→∞

exp{mAk} (19)

exists for k = 1, . . . , n, and so does:

P := lim
m→∞

exp{mA} =


P1 0 . . . 0

0 P2 . . . 0
...

... . . . ...
0 0 . . . Pn

 (20)

Note also that Pk is actually a rank one matrix with the stationary distribution associated with Ak in
every row, for k = 1, . . . , n. It remains to find this distribution.

Let (π1, . . . ,πd) be the stationary distribution associated with A1. By definition, this distribution
satisfies the equation:

(π1, . . . ,πd)A1 = (0, . . . , 0) (21)
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with:
π1 + · · ·+ πd = 1 (22)

Note that A1 = N(M∗ − I), where M∗ = (m∗ij)1≤i,j≤d is the backward migration matrix, whose entries
are given by:

m∗ij =


mjiNj

NNi
if i 6= j

1−
∑

l 6=i
mliNl

NNi
if i = j

(23)

This is obtained from Equation (13) in the case where n = ei for i = 1, . . . , d. The entry m∗ij is
the probability that an individual chosen at random in colony i comes from colony j one time step
back. Moreover,

(π1, . . . ,πd)M
∗ = (π1, . . . ,πd) (24)

which means that (π1, . . . ,πd) is the stationary distribution associated with the backward migration
matrix M∗. The stationary distribution associated with Ak, for k = 2, . . . , n, can be expressed with
respect to this distribution. For n = (n1, . . . , nd) ∈ Γk, we have:

πn =

(
|n|

n1, n2, . . . , nd

)
πn1

1 × · · · × π
nd
d (25)

where: (
|n|

n1, n2, . . . , nd

)
=

|n|!
n1!× n2!× · · · × nd!

(26)

The proof of Equation (25) is given in Appendix B.
By definition of the stationary distribution (πn)n∈Γk

, we have:

PkAk = 0 (27)

for k = 1, . . . , n, from which:

PA = AP =


P1A1 0 . . . 0

0 P2A2 . . . 0
...

... . . . ...
0 0 . . . PnAn

 = 0 (28)

Owing to Proposition 1 in Appendix A, we conclude that:

lim
N→∞

(ΠN)btN
2c = lim

N→∞

(
I +

A

N
+

B

N2

)btN2c
= P exp{tG} (29)

where G = PBP and btN2c denotes the floor value of tN2, which is defined as the greatest integer less
or equal to the real number tN2. Using the block forms of B and P given in Equations (17) and (20),
respectively, we have:

G =


0 0 0 . . . 0 0

P2B2,1P1 P2B2,2P2 0 . . . 0 0

0 P3B3,2P2 P3B3,3P3 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . PnBn,n−1Pn−1 PnBn,nPn

 (30)
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The non-null entries of G = (Gn,n′)n,n′∈En
are given by:

Gn,n′ =

πn′
∑

x,y∈Γk
πxbx,y if n′ ∈ Γk

πn′
∑

x∈Γk,y∈Γk−1
πxbx,y if n′ ∈ Γk−1

(31)

for n ∈ Γk for k = 2, . . . , n. We have:∑
x∈Γk,y∈Γk−1

πxbx,y =
∑

x1+···+xd=k

d∑
i=1

(
k

x1, . . . , xd

)
πx1

1 · · ·π
xd
d ×

xi(xi − 1)mii

αi

+
∑

x1+···+xd=k

∑
i 6=j

(
k

x1, . . . , xd

)
πx1

1 · · ·π
xd
d ×

xixjmji

αi

(32)

The first term on the right-hand side of Equation (32) is:

d∑
i=1

k(k − 1)mii

αi

π2
i

∑
x1+···+xd=k

xi≥2

(
k − 2

x1, . . . , xi − 2. . . . , xd

)
πx1

1 · · ·π
xi−2
i · · ·πxd

d

=
d∑

i=1

k(k − 1)mii

αi

π2
i (π1 + · · ·+ πd)

k−2

=
d∑

i=1

k(k − 1)mii

αi

π2
i (33)

while the second term is:∑
i 6=j

k(k − 1)mji

αi

πiπj

∑
x1+···+xd=k

xi≥1,xj≥1

(
k − 2

x1, . . . , xi − 1, . . . , xj − 1, . . . , xd

)
πx1

1 · · ·π
xi−1
i · · ·πxj−1

j · · ·πxd
d

=
∑
i 6=j

k(k − 1)mji

αi

πiπj(π1 + · · ·+ πd)
k−2

=
∑
i 6=j

k(k − 1)mji

αi

πiπj (34)

These expressions into Equation (32) give:∑
x∈Γk,y∈Γk−1

πxbx,y = k(k − 1)λ (35)

where:

λ =
d∑

i=1

mii

αi

π2
i +

∑
i 6=j

mji

αi

πiπj (36)

Finally, using the fact that: ∑
y∈Γk−1

bx,y +
∑
y∈Γk

bx,y = 0 (37)

the non-null entries of G given in Equation (32) take the form:

Gn,n′ =

−k(k − 1)πn′λ if n′ ∈ Γk

k(k − 1)πn′λ if n′ ∈ Γk−1

(38)
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for n ∈ Γk for k = 2, . . . , n. Note that Gn,n′ = 0 for n ∈ Γ1 and n′ ∈ En. In summary, we have the
following result in the limit of a large population size.

Theorem 1. The strong migration limit of the genealogical process in a structured population, taking
N2/(2λ) time steps as the unit of time as the population size N →∞, is given by:

lim
N→∞

(ΠN)b(2λ)
−1tN2c = P exp{tH} := Π(t) (39)

for t > 0, where H = (2λ)−1G = (hn,n′)n,n′∈En has non-null entries given by:

hn,n′ =

−
k(k−1)

2
πn′ if n′ ∈ Γk

k(k−1)
2
πn′ if n′ ∈ Γk−1

(40)

for n ∈ Γk, for k = 2, . . . , n.

Remark 1. Equation (39) means that, in the limit as N → ∞ for k = 2, . . . , n, the ancestors are in
state n ∈ Γk with probability πn as long as their number is k, while this number decreases by one at rate
k(k − 1)/2 per N2/(2λ) time steps, for k = 2, . . . , n. In other words, after a scaled time of exponential
distribution with parameter k(k − 1)/2, the number of ancestors jumps from k to k − 1, and these
ancestors are found in state n′, with probability πn′ for n′ ∈ Γk−1. Note that the number of ancestors is
described by the standard Kingman coalescent in a well-mixed population (see Kingman [4–6]).

Remark 2. The limiting process for the number of ancestors in the structured population of size N

corresponds to the limiting process for the Moran model (see Moran [33,34]) in a well-mixed population
of size Ne = N/

√
λ with N2

e

2
= N2

2λ
time steps as the unit of time as N → ∞, where λ is given in

Equation (36). The parameter λ is a measure of mixing, and Ne is an effective population size that takes
into account the population structure.

4. Equilibrium State

Suppose without loss of generality that the individuals in the population occupy ordered sites, such
that the sites of colony 1 come first, then the sites of colony 2 come second, and so on, up to the sites
of colony d. The state of the population at a given time step is represented by the N -dimensional vector
δ = (δ1, . . . , δN), where:

δl =

1 if S1 at site l

0 if S2 at site l
(41)

for l = 1, . . . , N . With qij being the probability for an individual from colony i to interact with an
individual chosen at random from colony j, for i, j = 1, . . . , d, and assuming that an individual can
interact with itself, the expected payoffs of strategies S1 and S2 in colony i for i = 1, . . . , d are given by:

ϕ1,i =
d∑

j=1

qij(aijxj + bij(1− xj)) (42)
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and:

ϕ2,i =
d∑

j=1

qij(cijxj + dij(1− xj)) (43)

respectively, where:

xj =
kj
Nj

=
1

Nj

N1+···+Nj∑
l=N1+···+Nj−1+1

δl (44)

is the frequency of S1 in colony j, for j = 1, . . . , d (with the convention that N0 = −N1).
An offspring is produced according to the corresponding fertilities f1,i and f2,i given in Equations (3)

and (4). This offspring migrates from colony i to colony j with probability mij and replaces an individual
chosen at random in colony j, for j = 1, . . . , d. Moreover, the strategy of each individual mutates into
a strategy chosen at random among S1 and S2 with probability u, and this occurs independently for all
individuals. Then, the conditional expected value of the new state of the population takes the form:

E[δ′|δ] = (1− u)R(s)δ +
u

2
u (45)

where u is an all-ones N -dimensional vector, while:

R(s) = (rij(s)Uij)1≤i,j≤d + I−D(r(s)) (46)

where D(r(s)) is a diagonal matrix with the vector:

r(s) = (ri(s)ui)1≤i≤d (47)

on the main diagonal. Here, Uij denotes an all-ones Ni ×Nj-matrix and ui an all-ones Ni-dimensional
vector. Moreover,

rij(s) =
f1,jmji

NfNi

(48)

is the probability for a given individual in colony i to be replaced by an offspring produced by an
individual playing S1 in colony j, if there is any, while:

ri(s) =
d∑

j=1

Njf jmji

NfNi

(49)

is the total probability for a given individual in colony i to be replaced by an offspring.
Note that:

f j = xjf1,j + (1− xj)f2,j = 1 + s×ϕj (50)

and:

f =
d∑

j=1

αj (xjf1,j + (1− xj)f2,j) = 1 + s×ϕ (51)

are the average fertilities in colony j and in the whole population, respectively, where:

ϕj = xjϕ1,j + (1− xj)ϕ2,j (52)
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and:

ϕ =
d∑

j=1

αj (xjϕ1,j + (1− xj)ϕ2,j) (53)

are the corresponding average expected payoffs. Therefore,

rij(s) = rij(0) + srij(0)(ϕ1,j −ϕ) + o(s) (54)

and:

ri(s) = ri(0) + s

d∑
j=1

Njmji

NNi

(ϕj −ϕ) + o(s) (55)

with:
rij(0) =

mji

NNi

(56)

and:

ri(0) =
d∑

j=1

Njmji

NNi

(57)

Note that the stochastic matrix:

R(0) = (rij(0)Uij)1≤i,j≤d + I−D(r(0)) (58)

has a stationary distribution given by:

v(0)T =

(
π1

N1

uT
1 , . . . ,

πd

Nd

uT
d

)
(59)

with T for transpose, where (π1, . . . ,πd) is the stationary distribution of the backward migration matrix
M∗ defined in Equation (23). Moreover,

R(s) = R(0) + s
dR

ds
(0) + o(s) (60)

and:

r(s) = r(0) + s
dr

ds
(0) + o(s) (61)

where o(s) stands here for a matrix or a vector whose entries or components are functions little-o with
respect to s as s→ 0.

At equilibrium, we have:

E[δ′] = E[E[δ′|δ]] = (1− u)E[R(s)δ] +
u

2
u = E[δ] (62)

The scalar product with v(0) yields:

〈v(0),E[δ]〉 = (1− u)〈v(0),E[R(s)δ]〉+
u

2
(63)
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Note that this equilibrium equation in the neutral case (s = 0 with E0 denoting expectation under this
condition) gives:

〈v(0),E0[δ]〉 = (1− u)〈v(0),R(0)E0[δ]〉+
u

2

= (1− u)〈v(0)R(0),E0[δ]〉+
u

2

= (1− u)〈v(0),E0[δ]〉+
u

2
(64)

from which:

〈v(0),E0[δ]〉 =
1

2
(65)

Under weak selection, it follows from Equations (60) and (63) that:

〈v(0),E[δ]〉 = (1− u)

(
〈v(0),R(0)E[δ]〉+ s〈v(0),E[

dR

ds
(0)δ]〉

)
+

u

2
+ o(s)

= (1− u)

(
〈v(0)R(0),E[δ]〉+ s〈v(0),E[

dR

ds
(0)δ]〉

)
+

u

2
+ o(s)

= (1− u)

(
〈v(0),E[δ]〉+ s〈v(0),E[

dR

ds
(0)δ]〉

)
+

u

2
+ o(s) (66)

This equation gives an approximation in the case of weak selection, that is for s > 0 small enough.

5. Condition for Weak Selection to Favour a Strategy over Another

In this section, we will prove the main result below.

Theorem 2. Strategy S1 is favoured by weak selection in the strong migration limit of a structured
population with payoff matrices given by (2) for strategies S1 and S2 under weak mutation, in the sense
that S1 is more abundant than S2 in expected weighted average equilibrium frequency for a weak enough
intensity of selection, if:

d∑
i,j,k=1

πi
αj

αi

mjiqjk (ajk + bjk − cjk − djk) > 0 (67)

with αi being the proportion of individuals in colony i, mji the probability that an offspring migrates
from colony j to colony i, πi the stationary proportion of ancestors of an individual that are in colony i

in the neutral model and qjk the probability for an individual in colony j to interact with an individual
in colony k.

Proof. The equilibrium Equation (66) implies that:

〈v(0),E[δ]〉 =
1

2
+

s(1− u)

u
〈v(0),E[

dR

ds
(0)δ]〉+

o(s)

u

=
1

2
+

s(1− u)

u
〈v(0),E0[

dR

ds
(0)δ]〉+

o(s)

u
(68)
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Note that:

〈v(0),E[δ]〉 =
d∑

i=1

πiE [xi] (69)

is a weighted expected frequency of strategy S1 at equilibrium. If the intensity of selection s > 0 is small
enough, then:

〈v(0),E[δ]〉 > 〈v(0),E0[δ]〉 =
1

2
(70)

if:
〈v(0),E0[

dR

ds
(0)δ]〉 > 0 (71)

This is a condition for weak selection to favour S1 in the sense that strategy S1 is more abundant in
weighted average frequency at equilibrium than strategy S2. If the inequality is reversed, then weak
selection favours S2 in the same sense.

With the assumptions of the model, the vector v(0) takes the expression given in Equation (59) and:

dR

ds
(0) =

(
mji

NNi

(ϕ1,j −ϕ)Uij

)
1≤i,j≤d

− I

(
ui

d∑
j=1

Njmji

NNi

(ϕj −ϕ)

)
1≤i≤d

(72)

where ϕj and ϕ are given in Equations (52) and (53), respectively. Therefore, we have:

〈v(0),E0[
dR

ds
(0)δ]〉 =

d∑
i,j=1

πi
Njmji

NNi

E0 [ϕ1,jxj(1− xi)−ϕ2,jxi(1− xj)]

+
d∑

i,j=1

πi
Njmji

NNi

E0 [xiϕ]−
d∑

i,j=1

πi
Njmji

NNi

E0 [xjϕ] (73)

Moreover, Equation (24) entails that:
d∑

i,j=1

πi
Njmji

NNi

E0 [xjϕ] =
d∑

j=1

(
d∑

i=1

πi
Njmji

NNi

)
E0 [xjϕ]

=
d∑

j=1

(
d∑

i=1

πj
Nimij

NNj

)
E0 [xjϕ]

=
d∑

i,j=1

πi
Njmji

NNi

E0 [xiϕ] (74)

with the last equality obtained by permuting the indices i and j. Therefore, the condition for weak
selection to favour S1 becomes:

d∑
i,j=1

πi
Njmji

NNi

E0 [ϕ1,jxj(1− xi)−ϕ2,jxi(1− xj)] > 0 (75)

Using the expressions given in Equations (42) and (43) for the expected payoffs of S1 and S2 in colony
j, we find that:

E0 [ϕ1,jxj(1− xi)−ϕ2,j(1− xj)xi] =
d∑

k=1

qjk× (76)

(aj,kE0[xkxj(1− xi)] + bj,kE0[(1− xk)xj(1− xi)]− cj,kE0[xk(1− xj)xi]− dj,kE0[(1− xk)(1− xj)xi])
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In the neutral model, a permutation of strategies S1 and S2 does not change the expected value of a
product of their equilibrium frequencies. Consequently, we have:

E0[xkxj(1− xi)] = E0[(1− xk)(1− xj)xi] (77)

and:

E0[(1− xk)xj(1− xi)] = E0[xk(1− xj)xi] (78)

Moreover, in the strong migration limit with N2/(2λ) time steps as the unit of time as N → ∞ and
under weak mutation, so that θ = uN2/(2λ) remains constant, the above expected values are all equal
to the probability that exactly two given individuals out of three, irrespective of the colonies that they
are in, use the same strategy (see Appendix C). Ignoring common positive factors and writing Nj/Ni as
αj/αi, we get the condition given in Equation (67) for weak selection to favour S1, which completes the
proof.

6. Application to Cooperation with Dominance Hierarchy

Dominance hierarchy in animals is a form of social structure in which a linear or nearly linear ranking
exists, with each animal dominant over those below it and submissive to those above it in the hierarchy.
In this section, we study the evolution of cooperation in two cases of dominance hierarchy. The first case
is linear dominance, which involves global interactions. Colonies form a complete graph. An individual
from any colony i can interact with an individual from any colony j (qij > 0 for i, j = 1, . . . , d).
The second case is cyclic dominance, which assumes only local interactions. Colonies are distributed
over a one-dimensional cycle with each colony connected to the two nearest-neighbour colonies. An
individual from colony i can interact only with an individual from the same colony or from the two
nearest-neighbour colonies (qij > 0 only if i = j, j − 1 or j + 1 for i, j = 1, . . . , d with the convention
that 0 stands for d and d+ 1 for 1). In both cases, the condition for weak selection to favour cooperation
is deduced from Theorem 2 for any irreducible and aperiodic migration matrix. This condition is
developed further under the assumptions of random interactions and uniform migration in the case of
linear dominance and under the assumptions of random interactions and local symmetric migration in
the case of cyclic dominance.

6.1. Linear Dominance

Assume that individuals from colony i are better competitors than individuals from colony j, for
i, j = 1, . . . , d, such that i < j. Under this assumption, there are two types of interactions: symmetric
interactions, which occur between individuals in the same colony, and asymmetric interactions, which
occur between individuals in different colonies (see, e.g., Krebs and Davies [35] and Walters and
Seyfarth [36]). In the context of the repeated prisoner’s dilemma, two strategies are available: tit-for-tat
(TFT) and always defect (AllD) (see, e.g., Axelrod [37] and Axelrod and Hamilton [7]). Let R ≥ 1 be
the number of rounds of the game, b > 0 be the benefit of an individual if its opponent cooperates and
c > 0 be the cost that a cooperator incurs, with b > c.
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The payoff matrix for symmetric interactions within colony i is:

Aii =

( TFT AllD

TFT R(b− c) −c
AllD b 0

)
(79)

for i = 1, . . . , d. In asymmetric interactions, a defector from colony i incurs a defection cost β when in
interaction with a defector from colony j < i (Tao et al. [29]; Kroumi and Lessard [30]). Therefore, the
payoff matrix is Aij = Aii for i < j, but:

Aij =

( TFT AllD

TFT R(b− c) −c− (R− 1)β

AllD b− (R− 1)β −Rβ

)
(80)

for j < i. Note that the case R = 1 corresponds to the standard additive prisoner’s dilemma for
symmetric, as well as asymmetric interactions. The payoffs as defined in Equation (2) satisfy:

ajk + bjk − cjk − djk =

R(b− c)− b− c if 1 ≤ j ≤ k ≤ d

R(b + β− c)− b− c if 1 ≤ k < j ≤ d
(81)

Then, the condition given in Equation (67) for TFT to be favoured under weak selection and mutation
becomes:

(R(b− c)− b− c)
d∑

i,j=1

πi
αj

αi

mji +
Rβ

d

d∑
i,j=1

j−1∑
k=1

πi
αj

αi

mjiqjk > 0 (82)

This condition can be written into the equivalent form:

R >
b + c

b− c + aLβ
(83)

where:

aL =

∑d
i,j=1

∑j−1
k=1 πi

αj

αi
mjiqjk∑d

i,j=1 πi
αj

αi
mji

(84)

In the case of random interactions (qjk = 1/d) and colonies of the same size (αi = 1/d) with uniform
migration (mji = 1−m if i = j and m/(d− 1) otherwise), so that πi = 1/d for i = 1, . . . , d, we have
aL = (d − 1)/(2d). Figure 1 shows the migration and interaction graphs in this case. Moreover, the
above condition takes the form:

R >
d(b + c)

d(b− c) + d−1
2
β

(85)

This extends a result found in Kroumi and Lessard [30] in the particular case where d = 3.
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Figure 1. Examples with linear dominance. The individuals of the population are distributed
over d colonies. From left to right: d = 3; d = 4; d = 5; d = 6. Colonies are represented by
full circles. Interactions and migration are possible between colonies connected by dashed
edges. The interaction and migration graphs are both complete graphs.

6.2. Cyclic Dominance

Cyclic dominance is inspired from the rock-paper-scissors game (Linhart [38]). Rock is wrapped
by paper; paper is cut by scissors; and scissors are crushed by rock. This simple game is popular
among children and adults to decide on trivial disputes that have no obvious winner. In the case of
cyclic dominance with d ≥ 3 colonies, we assume interactions only between individuals in adjacent
colonies contrary to the case of linear dominance where there were interactions between individuals
in all colonies. More precisely, we assume that an individual from colony i can interact only with an
individual from colony i−1, i or i + 1, for i = 2, . . . , d−1. An individual from colony 1 can interact only
with an individual from the same colony or from colony 2 or d, while an individual from colony d can
interact only with an individual from colony 1, d− 1 or d. We assume also that individuals from colony
i dominate individuals from colony i + 1, for i = 1, . . . , d− 1, and individuals from colony d dominate
individuals from colony 1. As in the case of linear dominance, there are symmetric interactions and
asymmetric interactions. Symmetric interactions within colony i = 1, . . . , d result in the payoff matrix:

Aii =

( TFT AllD

TFT R(b− c) −c
AllD b 0

)
(86)

The payoffs of individuals in colony i in asymmetric interaction with dominated individuals from colony
i + 1 (or 1 if i = d) are given by the same matrix as for symmetric interactions, that is:

Ai,i+1 = Ad,1 = Ai,i (87)

for i = 1, . . . , d− 1. However, if an individual in colony i is in asymmetric interaction with a dominant
individual in colony i− 1 (or d of i = 1), then the payoff matrix is:

Ai,i−1 = A1,d =

( TFT AllD

TFT R(b− c) −c− (R− 1)β

AllD b− (R− 1)β −Rβ

)
(88)

for i = 2, . . . , d.
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In this case, the condition given in Equation (67) for TFT to be favoured under weak selection and
mutation takes the form:

(R(b− c)− b− c)
d∑

i,j=1

πi
αj

αi

mji + Rβ

d∑
i,j=1

πi
αj

αi

mjiqj,j−1 > 0 (89)

This can be written as:
R >

b + c

b− c + aCβ
(90)

where:

aC =

∑d
i,j=1 πi

αj

αi
mjiqj,j−1∑d

i,j=1 πi
αj

αi
mji

(91)

In the case of random interactions between individuals belonging to the same colony and the two
adjacent colonies (qj,j−1 = qj,j = qj,j+1 = 1/3 for j = 1, . . . , d with the convention that 0 stands for d
and d+ 1 for 1) with colonies of the same size (αi = 1/d) and symmetric local migration (mji = 1−m

if i = j, m/2 if i = j − 1 or j + 1, and zero otherwise), so that πi = 1/d for i = 1, . . . , d, we have
aC = 1/3. The migration and interaction graphs in this case are illustrated in Figure 2. In this case, the
above condition takes the form:

R >
b + c

b− c + β
3

(92)

This condition in the case of cyclic dominance is the same as the condition given in Equation (85) in the
case of linear dominance for d = 3, in agreement with Kroumi and Lessard [30]. This result conforms
nicely with intuition, because for d = 3, the regular cycle is identical to the complete graph. However, it
is more stringent than the condition given in Equation (85) as soon as d > 3 (see Figure 3).

Figure 2. Examples with cyclic dominance. The individuals of the population are distributed
over d colonies on a circle. From left to right: d = 3; d = 4; d = 5; d = 6. Colonies are
represented by full circles. Interactions and migration are possible only between colonies
connected by dashed edges. The interaction and migration graphs are regular cycles.



Games 2015, 6 335

Figure 3. Exact threshold value that R must exceed for cooperation to be favoured by weak
selection under linear dominance and cyclic dominance in the N →∞ limit as a function of
the number d of colonies, for b = 2, c = 1 and β = 1. The threshold value is the same for
d = 3, since the complete graph coincides with the cyclic graph in this case. However, while
this value remains constant in the case of cyclic dominance as d increases, it decreases in the
case of linear dominance, making cooperation more favourable.

7. Application to Games in Set-Structured Populations

Tarnita et al. [26] consider a population composed of N individuals and M sets. They assume
that each individual belongs exactly to K sets, which corresponds to a phenotype. Interactions occur
only between individuals within the same sets (individuals interact as many times as the number of
sets to which they both belong). With M sets numbered 1, . . . ,M , every individual l is represented by a
M -dimensional vector xl = (xl,i)1≤i≤M . Here, xl,i = 1 if individual l belongs to set i and zero otherwise,
for i = 1, . . . ,M , with exactly K components equal to one and M − K components equal to zero.
The individuals represented by the same vector x belong to the same colony represented by this vector.
Here, there are d =

(
M
K

)
colonies. We assume that an offspring inherits the K sets of his parent

represented by x with probability mx,x and chooses K sets represented by y with probability mx,y.
These are phenotype mutation probabilities. The number of interactions between two individuals
represented by y = (yi)1≤i≤M and z = (zi)1≤i≤M , respectively, is given by:

〈y, z〉 =
M∑
i=1

yizi (93)

Therefore,

qy,z =
〈y, z〉αz∑
x〈y,x〉αx

(94)
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where αx is the proportion of colony x. Two strategies are in use, represented by S1 and S2. The payoff
matrix for i in y against j in z is denoted by Ay,z.

Suppose that phenotype mutation occurs at random, so that mx,y = 1/d for every couple of
phenotypes (x,y). Then, the backward matrix takes the form:

m∗x,y =


αy

dNαx
if x 6= y

1− 1−αx

dNαx
if x = y

(95)

The stationary distribution of this matrix is given by:

πx =
α2
x∑

y α
2
y

(96)

Therefore, the condition given in Equation (67) for S1 to be favoured by weak selection becomes:∑
y,z

αyqy,z(ay,z + by,z − cy,z − dy,z) > 0 (97)

Written in the form: ∑
y,z

αyqy,z(ay,z + by,z) >
∑
y,z

αyqy,z(cy,z + dy,z) (98)

the condition means that the expected payoff of S1 exceeds the expected payoff of S2 when the expected
frequencies of S1 and S2 are equal among the individuals of the same phenotype for every phenotype.

Suppose now that an S1-individual uses strategy S1 with an opponent only if the two individuals
belong to at least L common sets, where 1 ≤ L ≤ K is a fixed constant, and uses S2 otherwise. On the
other hand, an S2-individual always uses strategy S2. In this case, the payoff matrix for an individual in
colony x against an individual in colony y takes the form:

Ax,y =

(S1 S2

S1 R S

S2 T P

)
(99)

if 〈x,y〉 ≥ L, and:

Ax,y =

(S1 S2

S1 P P

S2 P P

)
(100)

if 1 ≤ 〈x,y〉 ≤ L−1 (note that the meaning of R is different here from the previous section). Moreover,
we have:

ax,y + bx,y − cx,y − dx,y =

R + S − T − P if 〈x,y〉 ≥ L

0 otherwise
(101)

In this case, the condition given in Equation (67) for S1 to be favoured by weak selection reduces to:

(R + S − T − P )
∑
x,y

∑
z:〈y,z〉≥L

πx
αy

αx

my,xqy,z > 0 (102)
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which is the same as:
R + S > T + P (103)

This condition, known as risk dominance in a coordination game (Harsanyi and
Selten [39]), does not depend on the population structure.

8. Discussion

Our main result (Theorem 2) for S1 to be favoured by weak selection over S2 in a structured population
under weak strategy mutation in the limit of a large population with payoffs in pairwise interactions
depending on the locations of the players is given by Equation (67), which can be written in the form:

d∑
i,j,k=1

πi
αj

αi

mjiqjk

(
aj,k + bj,k

2

)
>

d∑
i,j,k=1

πi
αj

αi

mjiqjk

(
cj,k + dj,k

2

)
(104)

Here, πi is the limiting proportion of time back that a single lineage spends in colony i in the absence of
selection, for i = 1, . . . , d. It represents the expected contribution of colony i to the whole population in
the long run forward in time, called its reproductive value, under the neutral model. With αi representing
the proportion of colony i and mij the probability for an offspring from colony i to migrate to colony
j for i, j = 1, . . . , d, the quantity πimij/αi represents an expected relative reproductive value of an
offspring produced by an individual in colony i. On the other hand, every individual interacts with
an S1-individual and with an S2-individual with the same probability 1/2 in a neutral population at
equilibrium, since then, the probability that any given individual uses strategy S1 or S2 is equal to the
probability that the most recent mutant ancestor of this individual used strategy S1 or S2, which is 1/2

in each case from the assumptions on strategy mutation. We have the same approximate probability
1/2 in an equilibrium population under weak selection. With αj being the probability that an individual
chosen at random in the whole population belongs to colony j and qjk, the probability for an individual
from colony j to interact with an individual from colony k, for i, j, k = 1, . . . , d, the left-hand side of
Equation (104) can be interpreted as the expected payoff of S1 weighted by relative reproductive values
of offspring in an equilibrium population near neutrality. The right-hand side of Equation (104) has a
similar interpretation for S2, and the inequality guarantees that S1 is more abundant on average than S2

at equilibrium near neutrality if individuals are weighted by their relative reproductive values.
This interpretation is very intuitive. It is an alternative to the use of structure coefficients (Nowak

et al. [32]) for games in structured populations. Moreover, this interpretation suggests an effective
payoff matrix (Lessard [40]):

Ã =
d∑

i,j,k=1

πi
αjmji

αi

qjkAjk (105)

where Ajk is the payoff matrix for an individual from colony j in interaction with an individual from
colony k. This means that the game in the structured population is equivalent to a game in a well-mixed
population with this matrix as the payoff matrix.

This result has been obtained for a structured population reproducing according to a Moran model
with one individual replaced at a time in the strong migration limit as the population size N tends
to infinity. We have shown (Theorem 1) that the genealogical process in the neutral model, which is
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described by the transition matrix in Equation (12) from one time step to the previous one, where A and
B are given in Section 3, tends to the standard Kingman coalescent (Kingman [6]) for the number of
ancestors if N2/(2λ) time steps are taken as the unit of time where λ is given by Equation (36), while
the ancestors are distributed independently among the colonies according to the stationary distribution
(πi)1≤i≤d. The proof (Appendix A) relies on a two-time scale argument and uses a lemma due to
Möhle [31]. A similar result was proven in a different way in Notohara [2] in the case of a subdivided
population that reproduces according to a Wright–Fisher model.

Our main result has been applied to the situation of dominance hierarchy with d colonies in decreasing
order of dominance in the case of linear dominance and in counter-clockwise order of dominance in the
case of cyclic dominance. Individuals in a given colony can interact with individuals in all other colonies
in the case of linear dominance, but only with individuals in the same colony or in the two adjacent
colonies in the case of cyclic dominance. Considering the strategies TFT and AllD in a repeated additive
prisoner’s dilemma and a cost for defection against a dominant defector, it has been shown that linear
dominance is more favourable than cyclic dominance for increasing the expected frequency of TFT at
equilibrium as soon as d > 3. This has been obtained under the assumptions of colonies of the same size
with uniform or symmetric migration and random interactions.

Another application concerns the set-structured population as introduced in Tarnita et al. [26],
but with colonies of fixed relative sizes and reproduction according to a Moran model instead of a
Wright–Fisher model. With uniform mutation from one subset of sets to another of the same size,
which defines the phenotype of an individual, the condition for S1 to be favoured by weak selection is
that, for an individual chosen at random in the whole population, the expected payoff of S1 exceeds the
expected payoff of S2 near neutrality. With strategy S1 actually used only if the number of common
sets to which the two players belong exceeds some threshold, it has been shown that the condition for
S1 to be favoured by weak selection reduces to a condition known as risk dominance (Harsanyi and
Selten [39]) as in a well-mixed population. Note that the same result was obtained in Tarnita
et al. [26] in the case of a high rate of phenotype mutation, which corresponds to strong migration
from one phenotype to another.

9. Conclusions

Conditions for a strategy to be more abundant on average at equilibrium than another strategy in
a structured population under weak selection and weak strategy mutation but strong migration can be
expressed in terms of reproductive values in the neutral model on the basis of a two-time scale argument.
This can be applied, for instance, to two-player games in populations with set structure or dominance
hierarchy. In the case of dominance hierarchy, it has been shown that the condition for TFT to be more
abundant on average than AllD in a repeated additive prisoner’s dilemma with a given cost for defection
against a dominant defector is generally less stringent with linear dominance than with cyclic dominance.
In the case of set structure with strong migration from one set to another, it has been shown that the
condition for a strategy to be more abundant on average than another corresponds to risk dominance.
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Appendix

A. Convergence Result

For every square n× n matrix A = (aij)1≤i,j≤n, define:

‖A‖ := max
1≤i≤n

(
n∑

j=1

|aij|

)
(A1)

and:

exp {A} :=
∞∑
k=0

Ak

k!
(A2)

Note that, for any square n× n matrices A and B,

‖AB‖ ≤ ‖A‖‖B‖ (A3)

Moreover,
exp {A + B} = exp {A} exp {B} (A4)

if AB = BA. Finally, I and 0 denote the identity matrix and the zero matrix, respectively.

Proposition 1. Let (cN)N≥1 be a sequence of positive real numbers with limN→∞ cN = 0. Let A and
B be square matrices of size n, such that ‖exp{A}‖ = 1 and P := limm→∞ exp{mA} exists with
AP = PA = 0. Then, we have:

lim
N→∞

(
I + cNA + c2

NB
)btc−2

N c = P exp{tG} (A5)

for every real number t > 0, where G = PBP.

Proof. Since cN → 0 as N →∞, there exists an integer N0 ≥ 1, such that cN < 1 and:

cN‖A + cNB‖ < 1 (A6)

for every integer N ≥ N0. Then:(
I + cNA + c2

NB
)btc−2

N c = exp
{
btc−2

N c log
(
I + cNA + c2

NB
)}

(A7)

where:

log
(
I + cNA + c2

NB
)

=
∞∑
l=1

(−1)l+1clN (A + cNB)l

l
(A8)
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For more details on the logarithm of a matrix, see, e.g., Culver [41] or Higham [42]. Therefore,

(
I + cNA + c2

NB
)btc−2

N c = exp
{
cNbtc−2

N c(A + cNB)
}
× exp

{
−c2

Nbtc−2
N c(A + cNB)2

2

}
× exp

{
c2
Nbtc−2

N cEN

}
(A9)

where:

EN =
∞∑
l=3

(−1)l+1cl−2
N (A + cNB)l

l
(A10)

For the third term on the right-hand side of Equation (A9), we have:

‖EN‖ ≤
∞∑
l=3

cl−2
N ‖A + cNB‖l

l
≤

∞∑
l=1

clN‖A + cNB‖l+2

≤ cN‖A + cNB‖3

1− cN‖A + cNB‖
→ 0 (A11)

as N →∞. Consequently,
lim

N→∞
EN = 0 (A12)

From this and the fact that c2
Nbtc−2

N c → t as N →∞, we have:

lim
N→∞

exp
{
c2
Nbtc−2

N cEN

}
= I (A13)

On the other hand,

lim
N→∞

exp

{
−c2

Nbtc−2
N c

2
(A + cNB)2

}
= exp

{
− t

2
A2

}
(A14)

Finally, note that:

exp{A + cNB} = exp{A}+ cNDN (A15)

where:

DN = D + cNRN (A16)

with:

D =
∞∑
l=1

1

l!

∑
m1+m2=l−1

Am1BAm2 (A17)

and:

RN =
∞∑
l=2

1

l!

l∑
k=2

ck−2
N

∑
m1+···+mk+1=l−k

Am1BAm2B · · ·AmkBAmk+1 (A18)
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Here, the summation is over all non-negative integers m1, . . . ,mk+1, which sum up to l − k. Moreover,

∥∥∥RN

∥∥∥ ≤ ∞∑
l=2

1

l!

l∑
k=2

ck−2
N

∑
m1+···+mk+1=l−k

‖Am1BAm2B · · ·AmkBAmk+1‖

≤
∞∑
l=2

1

l!

l∑
k=2

ck−2
N

∑
m1+···+mk+1=l−k

‖A‖m1+···+mk+1‖B‖k

≤
∞∑
l=2

1

l!

l∑
k=2

ck−2
N

(
l

k

)
‖A‖l−k‖B‖k

≤
∞∑
l=2

(‖A‖+ ‖B‖)l

l!

≤ exp{‖A‖+ ‖B‖} <∞ (A19)

Note that
(
l
k

)
represents the number of ways l − k indistinguishable balls can be put into k + 1

distinguishable cells. Furthermore, a lemma proved in Möhle [31] guarantees that:

lim
N→∞

(exp{A}+ cNDN)bc
−1
N c = P exp{Q} (A20)

where:
P = lim

N→∞
(exp{A})m = lim

N→∞
exp{mA} (A21)

and:
Q = lim

N→∞
PDNP = PDP (A22)

Therefore,

lim
N→∞

exp
{
cNbtc−2

N c(A + cNB)
}

= lim
N→∞

(exp {A + cNB})cN btc
−2
N c

= lim
N→∞

(
(exp{A}+ cNDN)bc

−1
N c
)bc−1

N c
−1cN btc−2

N c

= (P exp{Q})t

= P exp{tQ} (A23)

since bc−1
N c−1cNbtc−2

N c → t as N →∞. The last equality comes from the fact that:

P exp{Q} = P

(
∞∑
k=0

Qk

k!

)
= P +

∞∑
k=1

PDkP

k!
=

(
∞∑
k=0

Qk

k!

)
P = exp{Q}P (A24)

This ascertains the equality for every t > 0 that is an integer, then a rational number and, finally, a real
number by continuity. Using Equations (A13), (A14) and (A23), the limit in Equation (A9) as N →∞
gives:

lim
N→∞

(
I + cNA + c2

NB
)btc−2

N c = P exp{tQ} exp

{
− t

2
A2

}
(A25)
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On the other hand, the condition PA = AP = 0 ensures the equalities:

Q = PDP =
∞∑
l=1

1

l!

∑
m1+m2=l−1

PAm1BAm2P

= PBP +
∞∑
l=2

1

l!

∑
m1+m2=l−1

PAm1BAm2P

= PBP = G (A26)

and:

P exp

{
−tA2

2

}
= P

(
∞∑
k=0

(−1)kA2k

2kk!

)
= P +

∞∑
k=1

(−1)kPA2k

2kk!
= P (A27)

Using these equalities in Equation (A25) yields:

lim
N→∞

(
I + cNA + c2

NB
)btc−2

N c = P exp{tG} exp

{
−tA2

2

}
= exp{tG}P exp

{
−tA2

2

}
= exp{tG}P
= P exp{tG} (A28)

This completes the proof.

B. Stationary Distribution Associated with Ak

In order to show that:

πn =

(
|n|

n1, n2, . . . , nd

)
πn1

1 × · · · × π
nd
d (B1)

for n ∈ Γk, is the stationary distribution associated with Ak = (an,n′)n,n′∈Γk
for k ≥ 2, we have to check

that: ∑
n∈Γk

πnan,n′ = 0 with
∑
n∈Γk

πn = 1 (B2)

for n′ ∈ Γk. First note that, owing to the expression in Equation (13) for the non-null entries of Ak, we
have an,n′ 6= 0 if n′ = n− ei + ej for i 6= j and ni ≥ 1. In this case, we have:

πn′ =

(
|n|

n1, . . . , ni − 1, . . . , nj + 1, . . . , nd

)
πn1

1 × · · · × π
ni−1
i × · · · × πnj+1

j × · · · × πnd
d

=

(
|n|

n1, . . . , nd

)
× ni

nj + 1
πn1

1 × · · · × π
nd
d ×

πj

πi

= πn ×
niπj

(nj + 1)πi

(B3)
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Therefore, for n′ ∈ Γk, we obtain:∑
n∈Γk

πnan,n′ =
∑
n6=n′

πnan,n′ + πn′an′,n′

=
∑

j:n′
j
≥1

i6=j

(n′i + 1)αj

αi

mji × πn′ ×
n′jπi

(n′i + 1)πj

+ πn′an′,n′

=
∑

j:n′j≥1

n′jπn′

πj

∑
i 6=j

αj

αi

mjiπi + πn′an′,n′ (B4)

On the other hand, by definition of the stationary distribution (π1, . . . ,πd) associated with A1,
we have:

d∑
i=1

πiaei,ej = 0 (B5)

for j = 1, . . . , d. This entails that: ∑
i 6=j

πi
αjmji

αi

=
∑
i 6=j

πj
αimij

αj

(B6)

for j = 1, . . . , d. Plugging this into Equation (B4) yields:

∑
n∈Γk

πnan,n′ =

 ∑
j:n′j≥1

∑
i 6=j

n′jαimij

αj

πn′ + πn′an′,n′

= −an′,n′πn′ + πn′an′,n′ = 0 (B7)

This establishes the first equation in Equation (B2). It suffices to use the generalized binomial theorem
to get: ∑

n∈Γk

πn =
∑

n:|n|=k

(
|n|

n1, . . . , nd

)
πn1

1 × · · · × π
nd
d

= (π1 + · · ·+ πd)
k = 1 (B8)

which is the second equation in Equation (B2).

C. Probability of Identical Strategies

With N2/(2λ) time steps as the unit of time, let the scaled mutation rate defined by:

θ =
uN2

2λ
(C1)

be constant as N →∞. We consider two probabilities:

φ2 = P0 {I and J have the same strategy} (C2)

and

φ3 = P0 {I, J and K have the same strategy} (C3)
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where I , J and K are three individuals in the population chosen at random at the same time step and
P0 is the probability at equilibrium under neutrality (s = 0). Let t(2)

N (I, J) be the number of time steps
back before the coalescence of the lineages of two individuals, I and J , chosen at random at the same
time step. Similarly, let t(3)

N (I, J,K) be the number of time steps back before the first coalescence of two
lineages among the lineages of three individuals, I , J and K, chosen at random at the same time step,
and t

(2)
N (I, J,K) be the supplementary number of time steps before the coalescence of the two remaining

lineages. From the limiting genealogical process described in Theorem 1, the scaled coalescence time
2λt

(3)
N (I,J)

N2 and the vector of rescaled coalescence times
(

2λt
(3)
N (I,J,K)

N2 ,
2λt

(2)
N (I,J,K)

N2

)
converge in distribution

to a continuous random variable τ(k, j) and a continuous random vector
(
τ(3)(I, J,K), τ(2)(I, J,K)

)
,

respectively, as N →∞, whose densities are given by:

f2(τ) = e−τ (C4)

and:

f3(τ3, τ2) = 3e−(3τ3+τ2) (C5)

respectively, for τ, τ2, τ3 > 0. As in Kroumi and Lessard [25], by conditioning on these coalescence
times, we find:

φ2 =

∫ ∞
0

(
1 + e−θτ

2

)
e−τdτ =

θ+ 1

2θ+ 1
(C6)

and:

φ3 =

∫ ∞
0

∫ ∞
0

(
1 + e−2θτ3 + 2e−2θ(τ2+τ3)

4

)
3e−(τ2+3τ3)dτ2dτ3 =

θ+ 2

2(2θ+ 1)
(C7)

Then, by symmetry, we have:

E0[xkxjxi] = φ3/2, E0[xkxj] = φ2/2, E0[xk] = 1/2 (C8)

for i, j, k = 1, . . . , d. Therefore, we obtain:

E0[xkxj(1− xi)] = E0[xk(1− xj)xi] =
φ2 − φ3

2
=

θ

4(2θ+ 1)
(C9)

and:

E0[(1− xk)xj(1− xi)] = E0[(1− xk)(1− xj)xi] =
1− 2φ2 + φ3

2
=

θ

4(2θ+ 1)
(C10)

for i, j, k = 1, . . . , d.
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