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Abstract We study conditions for weak selection to favor tit-for-tat (TFT) over AllD in a
repeated Prisoner’s Dilemma game played in a finite population subdivided into three sub-
populations under the assumption of cyclic dominance in asymmetric interactions. Assuming
parent-independent mutation and uniform migration, we show that TFT is more abundant that
AllD in the stationary state if the defection cost incurred by individuals in interaction with
dominant defecting individuals exceeds some threshold value. This threshold value decreases
as the number of repetitions of the game, the population size, or the mutation rate increases,
but increases as the migration rate increases. The same conclusions hold in the case of linear
dominance.

Keywords Evolution of cooperation · Cyclic dominance · Linear dominance ·
Prisoner’s Dilemma · Abundance in frequency

1 Introduction

Classical game theory is used to understand economic equilibrium states resulting from
strategic decisions of rational agents, individuals or firms, to optimize some expected payoffs
(see, e.g., Von Neumann and Morgenstern [51]; Fudenberg and Tirole [9]; Osborne and
Rubinstein [39]). The most important concept in game theory is that of a Nash equilibrium
in which no player has anything to gain by changing only its own strategy (Nash [28]).
In evolutionary game theory, this has been extended to a stronger concept known as an
evolutionarily stable strategy, which is such that once fixed in the population, no mutant
strategy can initially invade the population under the influence of natural selection (Maynard
Smith and Price [27]; Maynard Smith [26]; see, e.g., Hofbauer and Sigmund [14,15] for a
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review). A related concept is that of a convergence stable strategy (CSS), which is such that
a close-by resident strategy is invaded by a mutant strategy if and only if the mutant strategy
is closer to the CSS (Eshel [6]). Conditions for initial increase in the frequency of a mutant
strategy is then of prime interest. An underlying assumption is that strategies replicate at
rates according to expected payoffs. This leads to models of frequency-dependent dynamics
that make room for a trial-and-error learning process when mutant strategies are introduced
into a population one at a time.

The main theoretical framework in evolutionary game theory is the replicator equation
(Taylor and Jonker [50]; Hofbauer et al. [16]; Zeeman [52]). It is a differential equation
that describes the deterministic dynamics of strategy frequencies in a well-mixed, infinitely
large population. Suppose an infinite population in which each individual adopts one strategy
chosen in a finite set of strategies. The expected payoff to each strategy is given by a function
of the relative frequencies of all strategies in use in the population. This expected payoff is
interpreted as a rate of reproduction. Under the assumption of random pairwise interactions
among individuals, this expected payoff is a linear function with respect to the strategy
frequencies whose coefficients are the entries of some payoff matrix.

More precisely, consider a game with n possible strategies in an infinite population. Let
A = [ai, j ] be the n × n payoff matrix. The entry ai, j represents the payoff received by an
individual that adopts strategy i when it interacts with an individual that uses strategy j , for
i, j = 1, . . . , n. Let xi be the frequency of strategy i in the whole population, for i = 1, . . . , n.
Under the assumption of random pairwise interactions, the expected payoff to strategy i is

wi (x) =
N∑

j=1

ai, j x j ,

for i = 1, . . . , n, where x = (x1, . . . , xn). The replicator equation is then given by

dxi

dt
= xi (wi (x) − w(x)),

for i = 1, . . . , n, where w(x) = ∑N
i=1 xiwi (x) is the average payoff in the population. A

discrete-time version is described by the difference equation:

�xi = δxi (wi (x) − w(x))

1 + δw(x)
,

for i = 1, . . . , n and some scaling factor δ > 0 small enough. This equation is obtained
by taking the quantity 1 + δwi (x) whose mean is 1 + δw(x) as the reproductive success, or
fitness, of an individual using strategy i from one time step to the next, for i = 1, . . . , n.

Recent advances in evolutionary game theory take into account the fact that real popula-
tions are limited in size. In a finite population, whatever be the updating rule for the state of the
population from one time step to the next, the dynamics is described by a stochastic process
which is often a Markov chain. In the absence of mutation, a strategy is said to be favored by
selection if its fixation probability is higher than what it would be in the absence of selection
(Rousset and Billiard [42], Nowak et al. [32]). In the presence of symmetric mutation, a
strategy is favored by selection if its abundance in the stationary state is higher than what it
would be in the absence of selection (Antal et al. [1]). There is a connection between this
definition in the limit of a small mutation rate and fixation probabilities of single strategies in
the absence of mutation (Rousset and Billiard [42], Rousset [40], Fudenberg and Imhof [7]).

Two strategies in well-mixed and finite populations are considered in Nowak et al. [32],
Taylor et al. [48], and Antal et al. [1] under the assumption that one individual is replaced
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at a time as in a Moran model or a pairwise comparison process; in Lessard [20] and Imhof
[17] in the case where all individuals are replaced independently at a time as in a Wright-
Fisher model; and in Lessard and Ladret [24] and Lessard [21,23] in the case of individuals
replaced at a time according to a general exchangeable scheme extending the Cannings model.
Multiple strategies in the same context are studied in Antal et al. [2], Lessard and Lahaie
[25], and Tarnita et al. [44,47]. A connection between a game in groups of finite size chosen
at random in an infinite population and a game in a finite population is made in Hilbe [13].

Further advances in evolutionary game theory include extensions to populations that are
structured by geography or some other factors to take into account that real populations
are subdivided into groups, small or large, overlapping or not. For a population subdivided
into two subpopulations and any migration rates: see, e.g., Ladret and Lessard [19], and
for a large number of subpopulations with uniform or proportional dispersal of migrants
known as the island model, e.g., Rousset and Billiard [42], Ladret and Lessard [18], and
Lessard [22,23]. The case of isolation by distance with demes on a lattice and migration to
neighboring demes is considered in Rousset and Billiard [42] and Rousset [41]. Demes may
not always correspond to geographic locations. Often, individuals exhibit other phenotypic
traits, for instance, in addition to their behavioral strategies like size, height, or other aspects
of physical appearance. A particular setting is studied in Antal et al. [3]: every individual
from a finite population has a phenotype represented by an integer and can interact with
every individual that has the same phenotype. A different setting is considered in Tarnita et
al. [45]: a population of N individuals is distributed over M sets, each individual belonging to
exactly K sets, and pairwise interactions occur within each set. There is also the case of single
individuals arranged on a regular lattice and interacting with nearest neighbours (Nowak and
May [31], Hauert and Doebeli [12]), and more generally single individuals occupying the
vertices of a graph and interacting with the individuals to which they are connected by edges
(Ohtsuki and Nowak [35,36], Ohtsuki et al. [37,38], Taylor et al. [49]). See, e.g., Nowak et
al. [34], for a review of evolutionary dynamics in structured populations.

An important question in evolutionary biology is the emergence of cooperative behaviors
by natural selection. To understand this biological phenomenon, a theoretical framework
widely used is the Prisoner’s Dilemma (Axelrod and Hamilton [5]): cooperation and defection
denoted by C and D, respectively, are considered as strategies, and the payoff matrix is given
by

(C D

C R S
D T P

)
,

where T > R > P > S. This is the case, for instance, when the payoff matrix is in the form:

( C D

C b − c −c
D b 0

)
,

where b > c > 0. The interpretation is that a donor pays a cost c for a recipient to get a
benefit b in a pairwise interaction. In this situation, it is always advantageous for a player to
defect since the payoff to a defector is larger than the payoff to a cooperator whatever be the
strategy of the opponent.

It has been proposed to extend the Prisonner’s Dilemma by allowing repetitions of the
game, which is known as the iterated Prisonner’s Dilemma. Simulations in this setting have
shown that a very successful strategy is tit-for-tat (TFT) (see Axelrod and Hamilton [5]),
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in which the player cooperates in the first round and then does whatever the opponent did
in the previous round. If the alternative strategy is always defect (AllD) and the number of
repetitions of the game between two individuals is fixed to m, then the payoff matrix becomes

( TFT AllD

TFT m(b − c) −c
AllD b 0

)
.

If m is large enough, then the payoff to TFT against TFT becomes larger than the payoff
to AllD against TFT. Therefore, if the frequency of TFT exceeds some threshold value and
pairwise interactions occur at random, then the expected payoff to TFT becomes larger than
the expected payoff to AllD. In a large population, however, TFT cannot evolve from any
initial frequency below that threshold value. This is not the case in a finite population because
of stochastic effects. In a population of fixed size N—under an updating Moran process, for
instance—weak selection favors a single TFT replacing AllD if (Nowak et al. [32])

m(b − c)(N − 2) − c(2N − 1) − b(N + 1) > 0.

In the presence of symmetric mutation, TFT is more abundant than AllD in the mutation–
selection balance if (Antal et al. [1])

m(b − c)(N − 2) − cN − bN > 0.

Both conditions are satisfied if m is large enough.
Many studies to understand the evolution of cooperation based on the Prisoner’s Dilemma

or its iterated form can be found in the literature (Axelrod [4]; Hamilton [10]; Nowak and
Sigmund [33]; Nowak [29]; Nowak [30]). In most studies, however, symmetric interactions
between individuals are assumed, which means that the payoffs depend only on the strategies
used by the individuals, which are undistinguishable otherwise.

Differences in strength or fighting ability, gender, age, size, etc. make asymmetric inter-
actions common in nature (see, e.g., Hammerstein [11]). Tao et al. [43] consider a case of
dominance hierarchy induced by differences in resource holding power. They study the evo-
lution of cooperation in the case of two infinite, isolated subpopulations with the assumption
that the individuals in one subpopulation dominate the individuals of the other in random
pairwise interactions. Moreover, they introduce the concept of a defection cost of inferior
individuals. If, for instance, the two subpopulations are represented by S1 and S2 with indi-
viduals in S1 dominating the individuals in S2, then a defector in S2 is assumed to incur a cost,
β > 0, when it interacts with a defector in S1. In the case of an iterated game, the defection
cost is added as many times as both individuals defect. It is shown that subdued cooperation
of individuals in S2 may induce a globally stable equilibrium exhibiting full cooperation in
both subpopulations when the defection cost β > 0 is large enough compared to the coop-
eration cost c, and the number of repetitons of the game m exceeds some threshold value.
Similar results are obtained in the case of three infinite subpopulations under the assump-
tion of linear dominance with Si -individuals dominating S j -individuals whenever j > i and
the assumption of cyclic dominance as described below. In this case, however, there is no
condition on the number of repetitions of the game.

In this paper, a model of cyclic dominance for three finite subpopulations reproducing
according to a Moran process and allowing for migration is considered. A mutation–selection
equilibrium in the case of weak selection is studied using a perturbation method as in Antal
et al. [3]. The population is subdivided into three subpopulations, represented by S1, S2, and
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S3. Each subpopulation is made of a finite number N of individuals. Each individual adopts
one of two strategies: TFT or always defect (AllD). Pairwise interactions between individuals
within as well as between subpopulations occur at random. A triangular dominance hierarchy
relationship is assumed: the individuals in S1 dominate the individuals in S2 which dominate
the individuals in S3 which in turn dominate the individuals in S1. The random pairwise
interactions determine the fitness of each individual given in the form f = 1 + δw, where
w is the expected payoff associated to the strategy used by the individual, and δ > 0 is
an intensity of selection. Time is discrete and at every time step, one offspring is produced
by an individual chosen with probability proportional to fitness. Selection is weak if the
intensity of selection is small enough, actually δ � 1

N , while neutrality corresponds to the
case δ = 0. The offspring produced inherits the strategy used by its parent unless there is
mutation, which occurs with probability u > 0. In this case, the offspring adopts one strategy
chosen at random among TFT and AllD. Therefore, mutation is parent independent. Finally,
the offspring replaces an individual chosen at random in the same subpopulation unless there
is migration, which occurs with probability v > 0. In this case, the individual replaced
is chosen at random in one of the two other subpopulations chosen at random. Therefore,
migration is uniform.

In the neutral case, the expected frequency of TFT at equilibrium is equal to 1/2. In this
paper, we are interested in the effect of weak selection on this equilibrium frequency. We
recall that weak selection will favor TFT if its abundance (expected frequency at equilibrium)
exceeds 1/2 (Antal et al. [2,3]). In Sect. 2, the details of the model are presented. In Sect.
3, the transition probabilities from one population state to the next are given. In Sect. 4, a
condition for weak selection to favor TFT is deduced by using a perturbation method as in
Antal et al. [3]. Calculations in terms of probabilities of identity by strategy in the stationary
state are done in Sect. 5. The results are discussed in Sect. 6. Finally, the same results under
the assumption of linear dominance are given in an appendix (Sect. 7).

2 Model of Cyclic Dominance for the Iterated Prisoner’s Dilemma
in Three Finite Subpopulations

Consider a population consisting of three subpopulations represented by S1, S2, and S3. Every
subpopulation is of the same finite size N . In pairwise interactions, in the context of an iterated
Prisoner’s Dilemma, each individual in the population adopts one of two strategies, namely
TFT (labeled 1) or AllD (labeled 2). Pairwise interactions are symmetric between individuals
in the same subpopulation but asymmetric between individuals in different subpopulations.
Cyclic dominance is assumed so that an individual in S1 dominates an individual in S2 which
dominates an individual in S3 which in turn dominates an individual in S1.

Assuming m rounds of the Prisoner’s Dilemma with a cost c > 0 incurred by a player
for cooperation but a benefit b > c provided to its opponent in each round of the game, the
payoff matrix for symmetric interactions in subpopulation S1, S2, or S3 with TFT and AllD
in this order as strategies is given by

A1,1 = A2,2 = A3,3 =
(

m(b − c) −c
b 0

)
.

In asymmetric interactions, there is also a cost β > 0 incurred by a player for defection
when the opponent is dominant and defects in the same round. The parameter β is called a
defection cost. Note that there is no defection cost when the opponent cooperates. Thus, the
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payoff matrix for individuals in S1, S2, or S3 in interaction with dominant individuals in S3,
S1, or S2, respectively, is

A1,3 = A2,1 = A3,2 =
(

m(b − c) −c − (m − 1)β

b − (m − 1)β −mβ

)
.

Note that the corresponding payoff matrix for the dominant individuals in S3, S1, or S2

in interaction with individuals in S1, S2, or S3, respectively, is the same as the payoff matrix
for symmetric interactions:

A3,1 = A1,2 = A2,3 =
(

m(b − c) −c
b 0

)
.

Pairwise interactions are assumed to occur at random in the whole population. Note that
an individual cannot interact with itself. The expected payoff to an individual according to
its strategy and the frequencies of the two strategies in the three subpopulations will affect
its fitness for reproduction by a small additive amount.

Let ni denote the number of individuals using TFT in subpopulation Si , for i = 1, 2, 3.
Then the state of the whole population is given by the vector n = (n1, n2, n3). The state of
the whole population can alternatively be described by the vector x = (x1, x2, x3), where

xi = ni

N

represents the frequency of TFT in subpopulation Si , for i = 1, 2, 3. Note that

x = 1

3
(x1 + x2 + x3)

is the frequency of TFT in the whole population.
Let w

(i)
1 and w

(i)
2 be the expected payoffs to TFT (strategy 1) and AllD (strategy 2),

respectively, in subpopulation Si , for i = 1, 2, 3. Assuming random pairwise interactions in
the whole population and recalling that an individual cannot interact with itself, an individual
in Si that plays TFT interacts with an individual in Si that plays TFT with probability ni −1

3N−1

and AllD with probability N−ni
3N−1 , for i = 1, 2, 3. On the other hand, the individual interacts

with an individual in S j that plays TFT with probability
n j

3N−1 and AllD with probability
N−n j
3N−1 , for j �= i . Using the payoff matrices for symmetric and asymmetric interactions, the
expected payoffs to TFT in the three subpopulations are found to be as follows:

w
(1)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3
(1 − x3)(m − 1)β

]
,

w
(2)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3
(1 − x1)(m − 1)β

]
,

w
(3)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3
(1 − x2)(m − 1)β

]
.
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For AllD, the corresponding expressions are given by

w
(1)
2 = 3N

3N − 1

[
xb − 1

3
(m − x3)β

]
,

w
(2)
2 = 3N

3N − 1

[
xb − 1

3
(m − x1)β

]
,

w
(3)
2 = 3N

3N − 1

[
xb − 1

3
(m − x2)β

]
.

With the convention that x4 = x1 and x5 = x2, the expected payoffs to TFT and AllD in
subpopulation Si can be expressed as

w
(i)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3
(1 − xi+2)(m − 1)β

]
(1)

and

w
(i)
2 = 3N

3N − 1

[
xb − 1

3
{m − xi+2}β

]
, (2)

respectively, for i = 1, 2, 3.
Time is discrete, and at each time step, an individual from the whole population is chosen

with probability proportional to its fitness to produce an offspring. The fitness of an individual
is assumed to be in the form:

f = 1 + δw,

where δ > 0 represents a strength of selection, and w is the expected payoff to the individual.
The neutral case discussed in Sect. 5 corresponds to δ = 0. Note that δ is assumed to be
sufficiently small so that all fitness values are positive.

The fitnesses of TFT and AllD in subpopulation Si are given by

f (i)
1 = 1 + δw

(i)
1 , f (i)

2 = 1 + δw
(i)
2 , (3)

respectively, for i = 1, 2, 3. The average fitness in the whole population is given by

f = 1 + δw, (4)

where

w = 1

3

( 3∑

i=1

xiw
(i)
1 +

3∑

i=1

(1 − xi )w
(i)
2

)
(5)

is the average payoff in the whole population.
The strategy adopted by the offspring produced is subject to mutation: with probability

1 − u < 1 it is necessarily the same as the parental strategy but with the complementary
probability u > 0 it is a strategy chosen at random among the two available strategies. Finally,
the offspring replaces an individual chosen at random either in the same subpopulation with
probability 1−v < 1 or in another subpopulation chosen at random with the complementary
probability v > 0.

3 Transition Probabilities

In this section, we calculate the probability of transition from one population state to the
next. Let n = (n1, n2, n3) be the current state of the population, and n′ be the population
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state after one time step. Given that one individual is replaced at a time in the whole population
and that this individual can be in one of the three subpopulations, the probability of transition
from n to n′, denoted by pn,n′ , is positive in seven cases: n + e1, n + e2, n + e3, n − e1,
n − e2, n − e3 and n, where e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

The probability of transition from n to n ± ei can be expressed as a sum of two terms:
the first corresponds to a transition in the case of mutation, which occurs with probability u;
and the second describes a transition under the effect of selection in the absence of mutation,
which occurs with probability 1 − u. More precisely, we have

pn,n±ei = upmut
n,n±ei

+ (1 − u)psel
n,n±ei

,

for i = 1, 2, 3, where pmut
n,n±ei

and psel
n,n±ei

designate conditional transition probabilities, given
mutation and given no mutation, respectively. Given mutation, a transition from n to n + ei

takes place if the offspring produced chooses strategy TFT, which occurs with probability
1/2, and replaces an individual that plays strategy AllD in subpopulation Si , wich occurs
with probability (1 − xi )/3, for i = 1, 2, 3. Then we have

pmut
n,n+ei

= 1 − xi

6
,

for i = 1, 2, 3. Similarly, the individual replaced is in subpopulation Si and plays strategy
TFT with probability xi/3, and therefore

pmut
n,n−ei

= xi

6
,

for i = 1, 2, 3. Note that the probability to stay in the same population state (n′ = n) is given
by

pn,n = 1 −
3∑

i=1

(
pn,n+ei + pn,n−ei

)
.

In the remainder of this section, we calculate the conditional transition probabilities given
no mutation. Under this condition, the transition from n to n + e1 takes place when a TFT
strategist from the whole population is selected to produce an offspring, and that this offspring
replaces an AllD strategist from subpopulation S1. A reproducing TFT strategist is selected
from subpopulation S1 with probability proportional to x1 f (1)

1 . Its offspring replaces an
individual in S1 with probability 1−v, and this individual is an AIID strategist with probability
1 − x1. On the other hand, with probability proportional to xi f (i)

1 , the offspring is produced
by a TFT strategist selected from subpopulation Si , for i = 2, 3. With probability v/2, this
offspring replaces an individual in S1, which is an AllD strategist with probability 1 − x1.
Then the conditional probability of this transition can be expressed as

psel
n,n+e1

= (1 − v)
x1 f (1)

1

3 f
(1 − x1) + v

2

{
x2 f (2)

1

3 f
(1 − x1) + x3 f (3)

1

3 f
(1 − x1)

}
.

Analogously we have

psel
n,n+e2

= (1 − v)
x2 f (2)

1

3 f
(1 − x2) + v

2

{
x1 f (1)

1

3 f
(1 − x2) + x3 f (3)

1

3 f
(1 − x2)

}
,
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psel
n,n+e3

= (1 − v)
x3 f (3)

1

3 f
(1 − x3) + v

2

{
x1 f (1)

1

3 f
(1 − x3) + x2 f (2)

1

3 f
(1 − x3)

}
.

Still given no mutation, the transition from n to n − ei occurs if an AIID strategist from the
whole population is selected to produce an offspring, and that this offspring replaces a TFT
strategist from subpopulation Si , for i = 1, 2, 3. Proceeding as previously, the transition
probabilities are found to be

psel
n,n−e1

= (1 − v)
(1 − x1) f (1)

2

3 f
x1 + v

2

{
(1 − x2) f (2)

2

3 f
x1 + (1 − x3) f (3)

2

3 f
x1

}
,

psel
n,n−e2

= (1 − v)
(1 − x2) f (2)

2

3 f
x2 + v

2

{
(1 − x1) f (1)

2

3 f
x2 + (1 − x3) f (3)

2

3 f
x2

}
,

psel
n,n−e3

= (1 − v)
(1 − x3) f (3)

2

3 f
x3 + v

2

{
(1 − x1) f (1)

2

3 f
x3 + (1 − x2) f (2)

2

3 f
x3

}
.

Finally, the conditional probability to stay in the same state (n′ = n) is given by

psel
n,n = 1 −

3∑

i=1

(
psel

n,n+ei
+ psel

n,n−ei

)
.

Note that the conditional probability of all transitions with an increase of 1 in the total number
of TFT strategists and the conditional probability of all transitions with a decrease of 1 in
this number, given no mutation, are given by

psel+ (n) =
3∑

i=1

psel
n,n+ei

= (1 − v)

3∑

i=1

xi f (i)
1

3 f
(1 − xi ) + v

2

3∑

i �= j=1

xi f (i)
1

3 f
(1 − x j ) (6)

and

psel− (n) =
3∑

i=1

psel
n,n−ei

= (1 − v)

3∑

i=1

(1 − xi ) f (i)
2

3 f
xi + v

2

3∑

i �= j=1

(1 − xi ) f (i)
2

3 f
x j , (7)

respectively, where i �= j means two different integers. The second summation in these
equations is over i, j = 1, 2, 3 such that i �= j .

4 Condition for Weak Selection to Favor Cooperation

Selection is said to favor TFT over AllD if the expected frequency of TFT strictly exceeds
1/2 in the stationary state (Antal et al. [2,3]). The frequency of TFT in the whole population,
represented by X , changes over one time step under selection and mutation by a quantity
represented by �X tot . Like the transition probabilities for the population states, the expected
value of this total change can be expressed as a sum of two components. The first component
corresponds to the expected change in the case of mutation, which occurs with probability
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u and which does not depend on selection. The second component describes the expected
change in the case of no mutation, which occurs with probability 1 − u and which depends
on selection. More precisely, we have

Eδ [�X tot|X] = uEδ [�Xmut|X] + (1 − u)Eδ [�Xsel|X] , (8)

where X = (X1, X2, X3) represents the current population state, and �X tot is the total
change in the frequency of TFT over one time step, while �Xmut and �Xsel denote the
conditional changes, given mutation and given no mutation, respectively. In the stationary
state, the expected frequency of strategy TFT is constant. Hence, the total expected change
vanishes. Conditioning on the current population state, this entails

0 = Eδ

[
�X tot

]
= Eδ

(
Eδ

[
�X tot|X

])
= uEδ

[
�Xmut

]
+ (1 − u)Eδ

[
�Xsel

]
. (9)

Given a population state X = (X1, X2, X3) and mutation of the offspring produced, this
offspring chooses TFT as strategy with probability 1/2 whatever be the strategy of its parent.
On the other hand, the individual replaced is a TFT strategist with probability

X = X1 + X2 + X3

3
.

Therefore,

Eδ

[
�Xmut|X

]
= 1

3N

(
1

2
− X

)
,

from which

Eδ

[
�Xmut

]
= 1

3N

(
1

2
− Eδ(X)

)
.

Then the expected frequency of TFT at stationarity is given by

Eδ[X ] = 1

2
− 3NEδ

[
�Xmut

]
= 1

2
+ 3N (1 − u)

u
Eδ[�Xsel]. (10)

We conclude that TFT is favored by selection if the expected change in the frequency of TFT
under selection but without mutation is positive in the stationary state, that is,

Eδ[�Xsel] > 0. (11)

Given a population state X = x = n/N and no mutation, the change in the frequency of TFT
is 1

3N with probability psel+ (n), − 1
3N with probability psel− (n), and 0 otherwise. Therefore, the

conditional expected change is

Eδ[�Xsel|X = x] = 1

3N

(
psel+ (n) − psel− (n)

)
. (12)

Using Eqs. (6) and (7), we find that

Eδ[�Xsel|X = x] = 1 − v

9N

3∑

i=1

xi (1 − xi )

(
f (i)
1

f
− f (i)

2

f

)

+ v

18N

3∑

i �= j=1

xi (1 − x j )

(
f (i)
1

f
− f ( j)

2

f

)
.
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Expressing the fitnesses of the two strategies in the three subpopulations in terms of expected
payoffs as in (3) and developing with respect to the intensity of selection δ yield the first-order
approximation:

Eδ[�Xsel|X = x] = (1 − v)δ

9N

3∑

i=1

xi (1 − xi )
(
w

(i)
1 − w

(i)
2

)

+ vδ

18N

3∑

i �= j=1

xi (1 − x j )
(
w

(i)
1 − w

( j)
2

)
+ o(δ). (13)

Using Eqs. (1) and (2), the difference between the expected payoff to a TFT strategist in
subpopulation Si and the expected payoff to an AIID strategist in subpopulation S j is given
by

w
(i)
1 − w

( j)
2 = 3N

3N − 1

×
{
(m − 1)x(b − c) −

[ m

3N
(b − c) + c

]
+ 1

3
(m − x j+2)β − 1

3
(m − 1)(1 − xi+2)β

}
,

for i, j = 1, 2, 3. Plugging this expression in Eq. (13) leads to

Eδ[�Xsel|X = x] = δ(m − 1)

3(3N − 1)

⎧
⎨

⎩(1 − v)

3∑

i=1

xi (1 − xi )x+v

2

3∑

i �= j=1

xi (1 − x j )x

⎫
⎬

⎭ (b − c)

− δ

3(3N − 1)

⎧
⎨

⎩(1 − v)

3∑

i=1

xi (1 − xi ) + v

2

3∑

i �= j=1

xi (1 − x j )

⎫
⎬

⎭

[ m

3N
(b − c) + c

]

+ δ

9(3N − 1)

{
(1 − v)

3∑

i=1

xi (1 − xi )(m − xi+2)

+ v

2

3∑

i �= j=1

xi (1 − x j )(m − x j+2)

− (1 − v)

3∑

i=1

xi (1 − xi )(m − 1)(1 − xi+2)

− v

2

3∑

i �= j=1

xi (1 − x j )(m − 1)(1 − xi+2)
}
β + o(δ).

Taking the expected value in the stationary state and developing with respect to the intensity
of selection yield,

(3N − 1)Eδ[�Xsel] = δ

3

{(
M1 − mM2

3N

)
(b − c) − M2c + M3β

}
+ o(δ), (14)
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where

M1 = (m − 1)

⎧
⎨

⎩(1 − v)

3∑

i=1

E0 [xi (1 − xi )x] + v

2

3∑

i �= j=1

E0
[
xi (1 − x j )x

]
⎫
⎬

⎭ , (15)

M2 = (1 − v)

3∑

i=1

E0 [xi (1 − xi )] + v

2

3∑

i �= j=1

E0
[
xi (1 − x j )

]
, (16)

M3 = (1 − v)

3

3∑

i=1

E0[xi (1 − xi )(m − xi+2)]

+ v

6

3∑

i �= j=1

E0[xi (1 − x j )(m − x j+2)]

− (m − 1)

3

{
(1 − v)

3∑

i=1

E0[xi (1 − xi )(1 − xi+2)]

+ v

2

3∑

i �= j=1

E0[xi (1 − x j )(1 − xi+2)]
}
. (17)

Here, E0 denotes expectation in the stationary state under neutrality (δ = 0). Let us introduce
the following probabilities of identity by strategy in the stationary state under neutrality:

φ2,1 = P0[2 individuals in the same subpopulation have the same strategy],
φ2,2 = P0[2 individuals in 2 different subpopulations have the same strategy],
φ3,1 = P0[3 individuals in the same subpopulation have the same strategy],
φ3,2 = P0[3 individuals in 2 different subpopulations have the same strategy],
φ3,3 = P0[3 individuals in 3 different subpopulations have the same strategy].

In these probabilities, the individuals and the subpopulations are chosen at random. In the
case of φ3,2, two individuals are chosen at random in one subpopulation chosen at random,
and one individual is chosen at random in one of the two other subpopulations chosen at
random. Using these probabilities, the above quantities take the following expressions (see
Sect. 5 for details):

M1 = (m − 1)(1 − v)
N − 1

2N 2

[
1 − φ2,1 + (N − 2)(φ2,1 − φ3,1) + 2N (φ2,2 − φ3,2)

]

+ v(m − 1)

2N

[
1 − φ2,1 + 2(N − 1)(φ2,2 − φ3,2) + N (φ2,1 − φ3,3)

]
, (18)

M2 = (1 − v)
3(N − 1)

2N
(1 − φ2,1) + 3v

2
(1 − φ2,2), (19)

M3 = N − 1

2N
(1 − v)

[
1 − φ2,1 + (m − 2)(φ2,2 − φ3,2)

]

+ v

2

(2N − 1

2N
(1 − φ2,2) + N − 1

2N
[φ3,2 − φ2,1 + (m − 1)(φ2,2 − φ3,2)]

+ m − 2

2
(φ2,2 − φ3,3)

)
. (20)
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Then a sufficient condition for TFT to be favored by weak selection (δ > 0 small enough) is
that (

M1 − mM2

3N

)
(b − c) − M2c + M3β > 0. (21)

In the limit of a large subpopulation size (N → ∞), we have

lim
N→∞ M1 = (m − 1)

{
(1 − v)

2
[φ2,1 + 2φ2,2 − φ3,1 − 2φ3,2]

+ v

2
[φ2,1 + 2φ2,2 − 2φ3,2 − φ3,3]

}
,

lim
N→∞ M2 = 3

2

[
1 − φ2,1 + v(φ2,1 − φ2,2)

]
,

lim
N→∞ M3 = 1 − v

2

[
1 − φ2,1 + (m − 2)(φ2,2 − φ3,2)

]

+ v

2

(
1 − φ2,2 + φ3,2 − φ2,1 + (m − 1)(φ2,2 − φ3,2) + (m − 2)(φ2,2 − φ3,3)

2

)
,

where φ2,1 = φ2,2 = 1
2 and φ3,1 = φ3,2 = φ3,3 = 1

4 . Therefore, we have

lim
N→∞ M1 = 3

8
(m − 1), lim

N→∞ M2 = 3

4
, lim

N→∞ M3 = m

8
.

In this case, the sufficient condition (21) for weak selection to favor TFT becomes

β > β∗ = 3(b + c)

m
− 3(b − c). (22)

Note that this condition does not depend on the migration parameter v. When m = 1, which
corresponds to the case of the Prisonner’s Dilemma played only once, the condition reduces
to

β > 6c. (23)

As the number of repetitions of the game increases, the condition becomes less stringent
since β∗ decreases as m increases. If β = 0, then TFT is more abundant than AllD in the
stationary state under weak selection when

m >
b + c

b − c
= 1 + 2c

b − c
.

5 Calculations in the Stationary State under Neutrality

In this section, we consider the neutral case, that is, the case where all players have the
same fitness equal to 1.We suppose that the population has reached its stationary state under
the effects of mutation and migration. By symmetry, the frequencies of TFT in the three
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subpopulations satisfy

E0[xi ] = E0[x1],
E0[x2

i ] = E0[x2
1 ],

E0[x3
i ] = E0[x3

1 ],
E0[xi x j ] = E0[x1x2],
E0[x2

i x j ] = E0[x2
1 x2],

for i, j = 1, 2, 3 with i �= j . Using these equalities and recalling that x = (x1 + x2 + x3)/3,
the quantities in Eqs. (15), (16), and (17) can be expressed as

M1 = (1 − v)(m − 1)
(
E0[x2

1 ] + 2E0[x1x2] − E0[x3
1 ] − 2E0[x2

1 x2]
)

+ v(m − 1)
(
E0[x2

1 ] − 2E0[x2
1 x2] + 2E0[x1x2] − E0[x1x2x3]

)
,

M2 = 3(1 − v)
(
E0[x1] − E0[x2

1 ]
)

+ 3v
(
E0[x1] − E0[x1x2]

)
,

M3 = (1 − v)
(

mE0[x1] − m E0[x2
1 ] − E0[x1x2] + E0[x2

1 x2]
)

+ v

2

(
2mE0[x1] − (2m + 1)E0[x1x2] − E0[x2

1 ] + E0[x2
1 x2] + E0[x1x2x3]

)

− (1 − v)(m − 1)
(
E0[x1] + E0[x2

1 ] − E0[x1x2] + E0[x2
1 x2]

)

− v

2
(m − 1)

(
2E0[x1] − 4E0[x1x2] + E0[x2

1 x2] + E0[x1x2x3]
)
.

It remains to calculate the expected values E0[x1], E0[x2
1 ], E0[x3

1 ], E0[x1x2], E0[x2
1 x2], and

E0[x1x2x3].

Let the N individuals in subpopulation Si be denoted by I (i)
1 , . . . , I (i)

N , for i = 1, 2, 3.
The strategy of each individual is represented by an indicator variable, namely,

χ
(i)
l =

{
1 if I (i)

l is a TFT strategist,

0 if I (i)
l is an AIID strategist,

for l = 1, . . . , N and i = 1, 2, 3. Then the frequency of TFT in subpopulation S1 can be
expressed as

x1 = 1

N

N∑

l=1

χ
(1)
l . (24)

Similarly, the square and the cube of this frequency can be written as

x2
1 = 1

N 2

N∑

l,l ′=1

χ
(1)
l χ

(1)

l ′ ,

x3
1 = 1

N 3

N∑

l,l ′,l ′′=1

χ
(1)
l χ

(1)

l ′ χ
(1)

l ′′ ,
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respectively. Since the square and the cube of an indicator variable are the same indicator
variable and an expectation is a linear operator, we have

E0[x2
1 ] = 1

N 2

N∑

l=1

E0

[
χ

(1)
l

]
+ 1

N 2

N∑

l �=l ′=1

E0

[
χ

(1)
l χ

(1)

l ′
]
,

E0[x3
1 ] = 1

N 3

N∑

l=1

E0

[
χ

(1)
l

]
+ 3

N 3

N∑

l �=l ′=1

E0

[
χ

(1)
l χ

(1)

l ′
]

+ 1

N 3

N∑

l �=l ′ �=l ′′=1

E0

[
χ

(1)
l χ

(1)

l ′ χ
(1)

l ′′
]
,

where l �= l ′ means two different integers in {1, 2, . . . , N }, and l �= l ′ �= l ′′ stands for three
different integers in {1, 2, . . . , N }. Using the symmetry of the two strategies in the neutral
model and the notation for the probabilities introduced in the previous section, we get the
following equalities:

E0

[
χ

(1)
l

]
= 1

2
E0

[
χ

(1)
l +

(
1 − χ

(1)
l

) ]
= 1

2
,

E0

[
χ1

l χ
(1)

l ′
]

= 1

2
E0

[
χ

(1)
l χ

(1)

l ′ +
(

1 − χ
(1)
l

) (
1 − χ

(1)

l ′
) ]

= 1

2
φ2,1,

E0

[
χ

(1)
l χ

(1)

l ′ χ
(1)

l ′′
]

= 1

2
E0

[
χ

(1)
l χ

(1)

l ′ χ
(1)

l ′′ +
(

1 − χ
(1)
l

) (
1 − χ

(1)

l ′
) (

1 − χ
(1)

l ′′
) ]

= 1

2
φ3,1,

for three different integers l, l ′, l ′′ in {1, 2, . . . , N }. Therefore, we have

E0[x2
1 ] = 1

2N
+ (N − 1)

2N
φ2,1, (25)

E0[x3
1 ] = 1

2N 2 + 3(N − 1)

2N 2 φ2,1 + (N − 1)(N − 2)

2N 2 φ3,1. (26)

Similarly, we find that

E0[x1x2] = 1

N 2

N∑

l,l ′=1

E0

[
χ

(1)
l χ

(2)

l ′
]

= 1

2
φ2,2 (27)

and

E0[x2
1 x2] = 1

N 3

N∑

l,l ′,l ′′=1

E0

[
χ

(1)
l χ

(1)

l ′ χ
(2)

l ′′
]

= 1

N 3

N∑

l,l ′′=1

E0

[
χ

(1)
l χ

(2)

l ′′
]

+ 1

N 3

N∑

l �=l ′=1

N∑

l ′′=1

E0

[
χ

(1)
l χ

(1)

l ′ χ
(2)

l ′′
]

= 1

2N
φ2,2 + N − 1

2N
φ3,2,

where

φ2,2 = E0

[
χ

(1)
l χ

(2)

l ′′ +
(

1 − χ
(1)
l

) (
1 − χ

(2)

l ′′
) ]

,

φ3,2 = E0

[
χ

(1)
l χ

(1)

l ′ χ
(2)

l ′′ +
(

1 − χ
(1)
l

) (
1 − χ

(1)

l ′
) (

1 − χ
(2)

l ′′
) ]

,
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for three integers l, l ′, l ′′ in {1, 2, . . . , N } such that l �= l ′. Finally, we have the following
equation:

E0[x1x2x3] = 1

N 3

N∑

l,l ′,l ′′=1

E0

[
χ1

l χ2
l ′χ

3
l ′′

]
(28)

= 1

2N 3

N∑

l,l ′,l ′′=1

E0

[
χ1

l χ2
l ′χ

3
l ′′ + (

1 − χ1
l

) (
1 − χ2

l ′
) (

1 − χ3
l ′′

) ]
(29)

= φ3,3

2
, (30)

where
φ3,3 = E0

[
χ

(1)
l χ2

l ′χ
3
l ′′ +

(
1 − χ

(1)
l

) (
1 − χ2

l ′
) (

1 − χ3
l ′′

) ]
,

for three integers l, l ′, l ′′ in {1, 2, . . . , N }.
The above expressions for the expected values lead to the expressions for the quantities

M1, M2, and M3 in Eqs. (18), (19) and (20) in terms of

φk,n = P0[k individuals in n subpopulations have the same strategy],
for k = 2, 3 and n = 1, 2, 3, where individuals and subpopulations are chosen at random
without replacement. What remains is the calculation of these probabilities.

Consider first two individuals chosen at random without replacement in the same subpop-
ulation. Looking one time step back, there are four possibilities for the lineages of the two
individuals. The first possibility is that one of the individuals is the offspring of the other,
which occurs with the probability:

p1 = 2 × 1

3N
× 1

N
× (1 − v) = 2(1 − v)

3N 2 .

The second is that one of the individuals is the offspring of an individual chosen at random in
the same subpopulation as the other individual, but different from this individual. This event
has the probability:

p2 = 2 × N − 1

3N
× 1

N
× (1 − v) = 2(N − 1)(1 − v)

3N 2 .

The third is that one of the individuals is the offspring of an individual chosen at random
in a subpopulation different from the subpopulation of the other individual, which has the
probability:

p3 = 2 × 2N

3N
× v

2
× 1

N
= 2Nv

3N 2 .

The last possibility is that none of two individuals is an offspring of an individual in the
population one time step back. The probability of this event is given by

p3 = 1 − (p1 + p2 + p4) = 1 − 2

3N
.

Then, conditioning on the event affecting the lineages of the two individuals one time step
back, we arrive at the equation:

φ2,1 = p1

[
(1 − u) + u

2

]
+ p2

[
(1 − u)y + u

2

]
+ p3

[
(1 − u)φ2,2 + u

2

]
+ p4φ2,1.
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This yields
φ2,1 = a1 + a2φ2,2, (31)

where

a1 =
u
2 (p1 + p2 + p3) + (1 − u)p1

1 − (1 − u)p2 − p4
= uN + 2(1 − u)(1 − v)

2N − 2(N − 1)(1 − u)(1 − v)
,

a2 = (1 − u)p3

1 − (1 − u)p2 − p4
= 2(1 − u)Nv

2N − 2(N − 1)(1 − u)(1 − v)
.

Now for two individuals chosen at random from two different subpopulations, the events
described above have the probabilities given by

q1 = 2 × 1

3N
× 1

N
× v

2
= v

3N 2 ,

q2 = 2 × N − 1

3N
× 1

N
× v

2
= (N − 1)v

3N 2 ,

q3 = 2
[ N

3N
× 1

N
× v

2
+ N

3N
× 1

N
× (1 − v)

]
= N (2 − v)

3N 2 ,

q4 = 1 − (q1 + q2 + q3) = 1 − 2

3N
,

respectively. Therefore

φ2,2 = q1

[
(1 − u) + u

2

]
+ q2

[
(1 − u)φ2,1 + u

2

]
+ q3

[
(1 − u)φ2,2 + u

2

]
+ q4φ2,2,

from which
φ2,2 = b1 + b2φ2,1, (32)

where

b1 =
u
2 (q1 + q2 + q3) + (1 − u)q1

1 − (1 − u)q3 − q4
= uN + (1 − u)v

2uN + vN (1 − u)
,

b2 = (1 − u)q2

1 − (1 − u)q3 − q4
= (1 − u)(N − 1)v

2uN + vN (1 − u)
.

From Eqs. (31) and (32), we arrive at the solution:

φ2,1 = a1 + a2b1

1 − a2b2

= [uN + 2(1 − u)(1 − v)] [2u + v(1 − u)] + 2(1 − u)v[uN + v(1 − u)]
[2u + v(1 − u)][2N − 2(N − 1)(1 − u)(1 − v)] − 2(N − 1)v2(1 − u)2 , (33)

φ2,2 = b1 + b2a1

1 − a2b2

= 2uN + 2v(1 − u) − (N − 1)(u − u2)(2 − 3v)

[2u + v(1 − u)][2N − 2(N − 1)(1 − u)(1 − v)] − 2(N − 1)v2(1 − u)2 . (34)

Similarly, for three individuals chosen at random without replacement in the same sub-
population from one time step to the previous one, one of the individuals can be an offspring,
and then it can be an offspring of anyone of the two others, or an offspring of an individual
in the same subpopulation but different from the two others, or an offspring of an individual
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in a different subpopulation. Otherwise, none of the individuals is an offspring. These events
have probabilities given by

r1 = 6 × 1

3N
× (1 − v) × 1

N
= 2(1 − v)

N 2 ,

r2 = 3 × N − 2

3N
× (1 − v) × 3

3N
= (N − 2)(1 − v)

N 2 ,

r3 = 3 × 2N

3N
× v

2
× 1

N
= Nv

N 2 ,

r4 = 1 − 1

N
= N − 1

N
,

respectively. Conditioning on these events, we find that

φ3,1 = r1

[
(1−u)+ u

2

]
φ2,1 +r2

[
(1−u)φ3,1 + u

2
φ2,1

]
+r3

[
(1−u)φ3,2 + u

2
φ2,1

]
+r4φ3,1.

Then we have
φ3,1 = c1φ2,1 + c2φ3,2, (35)

where

c1 =
u
2 (r1 + r2 + r3) + (1 − u)r1

1 − r2 − r4 + ur2
=

Nu
2 + 2(1 − u)(1 − v)

N − (1 − u)(N − 2)(1 − v)
,

c2 = (1 − u)r3

1 − r2 − r4 + ur2
= (1 − u)Nv

N − (1 − u)(N − 2)(1 − v)
.

Proceeding in the same way for two individuals in the same subpopulation and one in
another population, we find that

φ3,2 = d1φ2,1 + d2φ2,2 + d3φ3,1 + d4φ3,3, (36)

where

d1 =
Nu
2 + (1 − u)v

3N − (1 − u)(2 − v)( 3N
2 − 1)

,

d2 = Nu + (1 − u)(2 − v)

3N − (1 − u)(2 − v)( 3N
2 − 1)

,

d3 = (1 − u)(N − 2)v

6N − (1 − u)(2 − v)(3N − 2)
,

d4 = (1 − u)Nv

3N − (1 − u)(2 − v)( 3N
2 − 1)

.

Finally, for three individuals in three subpopulations, we have

φ3,3 = e1φ2,2 + e2φ3,2, (37)

where

e1 = (1 − u)v + uN
2

N
[
1 − (1 − u)(1 − v)

] ,

e2 = (1 − u)(N − 1)v

N
[
1 − (1 − u)(1 − v)

] .
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From Eqs. (35), (36), and (37), we conclude that

φ3,2 = (d1 + d3c1)φ2,1 + (d2 + d4e1)φ2,2

1 − d3c2 − d4e2
,

φ3,1 = c1φ2,1 + c2
(d1 + d3c1)φ2,1 + (d2 + d4e1)φ2,2

1 − d3c2 − d4e2
,

φ3,3 = e1φ2,2 + e2
(d1 + d3c1)φ2,1 + (d2 + d4e1)φ2,2

1 − d3c2 − d4e2
.

In the limit of a large subpopulation size, we have

lim
N→∞ φ2,1 = lim

N→∞
2u2 N + 3uNv(1 − u)

4u2 N + 6uNv(1 − u)
= 1

2
,

lim
N→∞ φ2,2 = lim

N→∞
2uN − N (u − u2)(2 − 3v)

4u2 N + 6uNv(1 − u)
= 1

2
.

We have also

lim
N→∞ φ3,1 = lim

N→∞ φ3,2 = lim
N→∞ φ3,3 = 1

4
.

This means that the strategies of different individuals in the population at stationarity in the
limit of a large subpopulation size are chosen independently at random. This is expected
since this situation corresponds to a strong mutation limit.

6 Discussion

We have considered the repeated Prisoner’s Dilemma with TFT and AllD as strategies played
by individuals in a population made of three subpopulations of the same finite size N , updated
by single birth–death events according to a Moran model with mutation, migration, and selec-
tion determined by expected payoffs, under the assumption of symmetric interactions between
individuals within each subpopulation but asymmetric interactions between individuals in
different subpopulations according to a cyclic dominance hierarchy scheme. Besides a coop-
eration cost c for a benefit b > c to the opponent in each round of the Prisoner’s Dilemma,
there is a defection cost β incurred by a defecting individual when the opponent is dominant
and defecting.

In the limit of a large population size and with only one round of the game, we have
shown that TFT is more abundant than AllD in the stationary state under weak selection if
β > 6c. The condition becomes less stringent as the number of rounds increases (see 22)
and is always satisfied as soon as

m >
3(b + c)

3(b − c) + β
.

Note that the condition (22) in the limit of a large population size never depends on the
migration rate. Moreover, as shown in the next section, this condition does not change
with linear dominance. This is to be compared with the conditions for TFT to be glob-
ally asymptotically stable in an infinite population in the absence of migration in the
case m ≥ 2, which are β > 3c with cyclic dominance and β > 3c/2 but for m >

max{(b + 2c − β)/(b − c), (2b + c)/(2b − 2c)} with linear dominance (Tao et al. [43]).
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Fig. 1 Threshold value that β

must exceed for TFT to be more
abundant than AllD in the
stationary state under weak
selection as a function of N and v

for m = 1, b = 2, c = 1, u = 0.1

Note also that the condition (22) in the limit of a large population size can be written in
the form (Tarnita et al. [46]):

σ R + S > T + σ P,

where σ = 1 represents a population structure coefficient and

R = m(b − c), S = −c − (m − 1)β

3
, T = b − (m − 1)β

3
, P = −mβ

3
,

represent payoffs. Therefore, the situation is equivalent to a model in a well-mixed population
with a payoff matrix

Ã = Ai,1 + Ai,2 + Ai,3

3
=

(
m(b − c) −c − (m−1)

3 β

b − (m−1)
3 β −m

3 β

)
,

which can be called an effective game matrix (Lessard [22]). This is not the case, however,
for a fixed finite population size (that is, N < ∞), since M3 in (21) is not a linear function
of m, while σ may depend on N and u, the mutation rate per birth event, but not on R, S, T ,
and P .

In the case of a low mutation rate, the assumption of weak selection could be relaxed at
least in the limit of a large population size, since then conditions for a strategy to be more
abundant in a well-mixed population (Fudenberg et al. [8]) can be applied using the effective
game matrix.

The effects of the subpopulation size N along with the migration and mutation rates per
birth event, v and u, on the general condition (21) for TFT to be more abundant than AllD in the
stationary state under weak selection are illustrated in Figs. 1 and 2. For m = 1, b = 2, c = 1,
the threshold value that the defection cost β must exceed increases as N or u decreases, for
v = 0.1; or as v increases, for u = 0.1. This suggests that the evolution of cooperation in
the case of dominance hierarchy is made easier if the population size or the mutation rate is
larger or if the migration rate is smaller.

7 Appendix: Model of Linear Dominance

In this section, we consider m rounds of the Prisoner’s Dilemma played between individuals
chosen at random in three subpopulations of the same finite size N represented by S1, S2,
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Fig. 2 Threshold value that β

must exceed for TFT to be more
abundant than AllD in the
stationary state under weak
selection as a function of N and u
for m = 1, b = 2, c = 1, v = 0.1

and S3 under the assumption of linear hierarchy: an individual in S1 dominates an individual
in S2 and in S3, while an individual in S2 dominates an individual in S3. With respect to the
strategies TFT and AllD, the payoff matrices Ai, j for an individual in Si in interaction with
an individual in S j , for i, j = 1, 2, 3, are given by

A1,1 = A2,2 = A3,3 = A1,2 = A1,3 = A2,3 =
(

m(b − c) −c
b 0

)
,

A2,1 = A3,1 = A3,2 =
(

m(b − c) −c − (m − 1)β

b − (m − 1)β −mβ

)
.

The expected payoffs w
(i)
1 and w

(i)
2 to TFT and AllD, respectively, in subpopulation Si , for

i = 1, 2, 3, are then given by

w
(1)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c

]
,

w
(2)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3
(1 − x1)(m − 1)β

]
,

w
(3)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3
(2 − x1 − x2)(m − 1)β

]
,

w
(1)
2 = 3N

3N − 1
xb,

w
(2)
2 = 3N

3N − 1

[
xb − 1

3
(m − x1)β

]
,

w
(3)
2 = 3N

3N − 1

[
xb − 1

3
(m − x1)β − 1

3
(m − x2)β

]
.

These expected payoffs can be expressed in the form:

w
(i)
1 = 3N

3N − 1

[
mx(b − c) − m(b − c)

3N
− (1 − x)c − 1

3

∑

l<i

(1 − xl)(m − 1)β

]
, (38)



Dyn Games Appl

and

w
(i)
2 = 3N

3N − 1

[
xb − 1

3

∑

l<i

(m − xl)β

]
, (39)

for i = 1, 2, 3. This yields differences in the form:

w
(i)
1 − w

( j)
2 = 3N

3N − 1

{
(m − 1)x(b − c) −

[
m

3N
(b − c) + c

]

+1

3

∑

l< j

(m − xl)β − 1

3

∑

l<i

(1 − xl)(m − 1)β

}
,

for i, j = 1, 2, 3.
Plugging these expressions into (13) for the conditional expected change in frequency of

TFT in the whole population given an intensity of selection δ > 0 and no mutation, which
remains valid under linear hierarchy, leads to

Eδ[�Xsel|X = x] = δ(m − 1)

3(3N − 1)

{
(1 − v)

3∑

i=1

xi (1 − xi )x + v

2

3∑

i �= j=1

xi (1 − x j )x

}
(b − c)

− δ

3(3N − 1)

{
(1 − v)

3∑

i=1

xi (1 − xi ) + v

2

3∑

i �= j=1

xi (1 − x j )

}[
m

3N
(b − c) + c

]

+ δ

9(3N − 1)

{
(1 − v)

∑

1≤l<i≤3

xi (1 − xi )(m − xl)

+v

2

∑

1≤l< j≤3

3∑

i=1
i �= j

xi (1 − x j )(m − xl) − (1 − v)
∑

1≤l<i≤3

xi (1 − xi )(m − 1)(1 − xl)

−v

2

∑

1≤l<i≤3

3∑

j=1
j �=i

xi (1 − x j )(m − 1)(1 − xl)

}
β + o(δ).

Taking the expected value in the stationary state gives

(3N − 1)Eδ[�Xsel] = δ

3

{(
M ′

1 − mM ′
2

3N

)
(b − c) − M ′

2c + M ′
3β

}
+ o(δ), (40)

where

M ′
1 = (m − 1)

{
(1 − v)

3∑

i=1

E0 [xi (1 − xi )x] + v

2

3∑

i �= j=1

E0[xi (1 − x j )x]
}
,

M ′
2 = (1 − v)

3∑

i=1

E0[xi (1 − xi )] + v

2

3∑

i �= j=1

E0[xi (1 − x j )],

M ′
3 = (1 − v)

3

∑

1≤l<i≤3

E0[xi (1 − xi )(m − xl)] + v

6

∑

1≤l< j≤3

3∑

i=1
i �= j

E0[xi (1 − x j )(m − xl)]

− (m − 1)

3
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×
{
(1 − v)

∑

1≤l<i≤3

E0[xi (1 − xi )(1 − xl)] + v

2

∑

1≤l<i≤3

3∑

j=1
j �=i

E0[xi (1 − x j )(1 − xl)]
}
.

Comparing with (15), (16), and (17), we note that M ′
1 = M1 and M ′

2 = M2. Moreover, using
the symmetry of the model in the neutral case, we obtain that

M ′
3 = M3 = (1 − v)E0[x1(1 − x1)(m − x2)]

+ v

2

{
E0[x1(1 − x2)(m − x1)] + E0[x1(1 − x2)(m − x3)]

}

− (1 − v)(m − 1)E0[x1(1 − x1)(1 − x2)]

− v

2

{
E0[x1(1 − x2)

2] + E0[x1(1 − x2)(1 − x3)]
}
.

Therefore, the sufficient condition (21) for weak selection to favor TFT in the case of
cyclic hierarchy is valid as well in the case of linear hierarchy.
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