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Abstract. Theoretical one-locus multiallele sex-determination models are 
found to admit even sex ratio equilibrium surfaces besides the equilibria for 
corresponding one-locus multiallele viability models: Both types of  equilibria 
can be defined in terms of a single spectral radius function, the former corre- 
sponding to level surfaces and the latter to critical points. The stable equilibria 
in the corresponding viability models are associated with the local maxima, 
and the equilibrium structures for the sex-determination models can be fully 
described. Several optimality properties of  the even-sex-ratio equilibrium 
surfaces can be deduced. 
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I. Introduction 

Sex-determination governed at an autosomal locus with probabilities of  being 
male or female depending on zygote genotype was first given a theoretical 
formulation by Shaw (1958). A one-locus two-allele model was studied by Eshel 
(1975). Variant models (e.g. Nur, 1974; Uyenoyama and Bengtsson, 1979) allowing 
for maternal (or paternal) genotype control on brood sex ratio led to similar 
qualitative conclusions in favor of  an equal representation of the sexes in panmic- 
tic populations. Eshel and Feldman (1982) considered generalizations to multi- 
allele cases. Two classes of  equilibria were pointed out: symmetric equilibrium 
states exhibiting the same allele frequencies in the male and female populations, 
and even-sex-ratio equilibria associated with an equal representation of males 
and females. These authors dealt with conditions for the initial increase of  a 
mutant  allele introduced at a symmetric equilibrium state. 

In this paper, we present an analysis circumscribing the existence and stability 
nature of  both types of  equilibria. Section 2 reviews the formulation of the 
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one-locus multiallele sex-determination model and sets forth the recurrence 
equations. It is observed that a symmetric equilibrium state coincides with an 
equilibrium for a one-sex one-locus multiallele viability model while even-sex- 
ratio equilibria correspond to a level surface of a spectral radius functional. In 
order to fully describe the equilibrium structure for the sex-determination model, 
we introduce a characterization delineating the existence and stability of  equilibria 
in the viability model in terms of the spectral radius functional (Sect. 3 with 
proofs of  the main results in Section 4). Various optimality properties of  the 
even-sex-ratio equilibrium surfaces are deduced (Sect. 5). Global convergence is 
ascertained in the case of  sex-determination based on heterozygosity versus 
homozygosity (Sect. 6). 

For further results and extensions to several variant models, we refer to Karlin 
and Lessard (1983, in press). 

2. A multiallele sex-determination model 

2. I. Formulat ion  o f  the model  

Consider a bisexual infinite population with r possible alleles A~, A 2 , . . . ,  A r at 
an autosomal locus responsible for sex determination. We denote the frequency 
of genotype AiAj  in the female population by 2p0 when i ~ j  and by p,  when 
i =j.  The corresponding frequency of allele Ai is pi = ~ = t  p~j. The quantities 2qu , 
q,, and q~ are defined analogously with respect to the male population. We assume 
discrete generations, random mating, Mendelian segregation, and equal fertility 
for all mating types. Let m~j be the probability for an AiAj  individual to be a 
male, and concomitantly 1 - mij that of  being a female. Clearly, 0 <~ m~j = mj~ ~< 1. 
We refer to M =  [[moll~,j_, as the sex-determinat ion coefficient matrix.  The case 
0 < mo. < I may reflect the effects of  modifier genes coupled to prenatal and /o r  
neonatal interactions. Where m~j = 1 or 0, the sex phenotype is determined such 
that the collection of  all genotypes AiAj  partition into two groups, ~4M and ~4p, 
where every individual of  type sCM and My is unambiguously male and female, 
respectively. We refer to this situation as dichotomous  (or exact) genotypic sex- 
determination.  

Under the above assumptions, the genotype frequencies over two successive 
generations obey the recursion relations 

q~ _ mii(piqj + Pjqi) 

2w 
(2.1) 

pb = (1 - mo)(p~q j +PJq~), i , j  = 1, . . . ,  r 
2(1 - w) 

where w=~[ j=~  mop~qj is the proportion of males, the sex-ratio, in the total 
population for the given allelic frequency state. It will be convenient for later 
purposes to employ the Schur product operation of two vectors x_ = (x~, x2, �9 �9 �9 Xr) 

and _y = (Yl, Y:, �9 �9 �9 Y,) symbolized by _x o y = (x~y~, x2y2, �9 �9 �9 xry,), and the inner 
product denoted by (_x, y ) =  ~=~ x~y,. Further, if M is any matrix, the representa- 
tion _x o M stands for the matrix product D_~M where D_~ designates the diagonal 
matrix with entries x~, x 2 , . . . ,  Xr down the main diagonal. In this notation, the 
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above system can be converted into the following recurrence equations for the 
allelic frequency vectors p = (Pl, P 2 , . . . ,  P,) and q = (ql, q2, . . . ,  qr): 

p o Mq +q o Mp 
q , =  - 

2w 
(2.2) 

p o ( U - M ) q + q o ( U - M ) p  p_+q_-poMq-qoMp_ 
p !  - _ - -  

2(1 - w) 2(1 - w) 
r r 

where w = (p, Mq)=Y~i= 1 p~(M_q)~ =Y.~,j=l m~jplqj and U denotes the matrix with 
all unit entr~es. 

The transformation equations (2.2) represent an important case of the dynami- 
cal system describing the allele frequency changes for a two-sex one-locus multi- 
allele viability model. Formally the sex-determination model where an offspring 
of genotype A~Aj is male (female) with probability m U ((I - m~)) is equivalent to 
a sex differentiated viability model with viability matrices M =  I[m011 and F =  
II1-mu[ I = U - M  for males and females, respectively (see, e.g. Karlin, 1978). 
The fact that M and F = U - M  are generated from a single matrix M allows a 
more tractable analysis of the system at hand. 

2.2. Identification of the equilibria 

An equilibrium of the sex-determination model consists of a pair of frequency 
vectors {_p, _q} having p'=_p and q '=  _q in (2.2) and therefore satisfying 

p +q -2wq  
p = -  , i . e . ( 1 - 2 w ) q = ( 1 - 2 w ) p  (2.3) 
- 2 ( 1  - w )  - - 

where w = (p, Mq_). Two kinds of equilibria can be distinguished (Eshel and 
Feldman, 1982): symmetric equilibria exhibiting identical allelic frequencies in 
the male and female populations (i.e. with p = q), and even-sex-ratio equilibrium 
states (i.e. with (p, Mq)= �89 that is, with an e~iual representation of males and 
females in the population. A symmetric equilibrium {/3,/3} (abbreviated by _fi) 
verifies 

-P (p, M_fi)' (2.4) 

while an even-sex-ratio equilibrium state {_/3, _~} is characterized by the relation 

t~ =/~ o M 4 + 4 ~ M/~. (2.5) 

Note that the relation (2.5) entails an even-sex-ratio: summing over all coordinates, 
we have l=2(/~,Mt~) and therefore ~=( /~ ,M~)=�89 However, the property 
(_fi, M_~)= �89 alone is not sufficient to ensure equilfbrium. 

Equation (2.5) can be viewed in the following manner. For each p in A (i.e. 
r 

P = ( P l , . . - ,  Pr) with Pi ~> 0 and }~i=l Pi = 1), we form the matrix 

B(p) = DpM + DMp (2.6) 

(Dp the diagonal matrix with the components of p down the main diagonal). 
-If _p is in A ~ the interior of the simplex of frer vectors A (i.e. if p is a 

positive frequency vector in A), and M is a positive matrix, then B(p) is a positive 
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matrix and the Perron-Frobenius theory (see, e.g. Gantmacher,  1959; Lancaster, 
1969) affirms that the eigenvalue of largest magnitude for B(_p) is real and positive 
admitting a unique (apart from a multiplicative factor) positive right eigenvector. 
We denote by p(_p) the spectral radius of B(p), that is, the eigenvalue of largest 
magnitude of B(p) and normalize the associated positive right-eigenvector _y = 
(yb . . . ,Yr)  to satisfy )~=~y i= l .  Then y=y(p )  and p(_p) vary continuously 
(actually analytically) as a function of/~, p - in  A ~ The principal eigenvalue- 
eigenvector identity is 

B(_p)_y(_p) = p(_p)_y(_p). (2.7) 

Comparing with the equilibrium relation (2.5), we note that an even-sex-ratio 
equilibrium state represented by {_fi, _~}, both _~ and _ ~ interior to A, exists if and 
only if p(/~)= 1 and then the corresponding y(fi) is ~. These conditions can be 
extended by continuity allowing fi and _~ on the same face of A. 

In order to fully describe the equilibrium structure for the sex-determination 
model (2.2), we will make appeal to a characterization of the symmetric equilibria 
defined by (2.4) based on the spectral function p(p). Since such equilibria 
correspond to the equilibria for standard one-sex one-locus multiallele viability 
models (cf. Sect. 3), we will develop conditions for the existence and stability of an 
equilibrium in those models in terms of p(_p). 

3. A characterization for equilibrium and stability in one-locus 
multiallele viability models 

3.1. A review of classical results 

The transformation on the allelic frequency vectors p = (Pl, �9 �9 �9 Pr) for a classical 
one-locus multiallele viability model with M = II m0-11 as a viability matrix is 

poMp 
Tp_= w(p) (3.1) 

where w(p_)= (p, Mp)=~[j=, mop~p j. In this model, random mating and Men- 
delian segregation are assumed and the quantity m 0 is interpreted as the relative 
number of A~Aj zygotes that survive to contribute to the next generation. (See, 
e.g. Kingman, 1961a, b; Crow and Kimura, 1970; Nagylaki, 1977; Karlin, 1978; 
Ewens, 1979.) 

To avoid unimportant technical details we assume henceforth unless stated 
otherwise that M = II m011 satisfies the following genericy conditions: 

(a) 0 < m  0 < l  for a l l i a n d j ,  
(b) every principal submatrix of M is nonsingular, 
(c) for any set of indices il < i2 <" �9 �9 < ik, the solution of 

k 

Y. m~,,~ x~ = l f o r / z = l , 2 , . . . , k  

has (3.2) 
k 

mio,i~xv % 1 for all io ~ iu. 
v = l  
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Recall the following facts (see loc. cit.). 
A polymorphic equilibrium p * =  ( p * , . . . ,  p*) (i.e. with p* > 0 for all i) for 

the system (3.1) exists if and only if 

~ rn~xj = 1, i = 1, 2 , . . . ,  r admits a positive solution, (3.3) 
j - - I  

r 
and then p* = x~/Y.j=~ xj. This polymorphic equilibrium is locally stable if any of 
the following conditions holds: 

(i) The eigenvalues of M, A1(M)~ > A2(M)~>' ' ' />  Ar(M), satisfy 

A,(M) > 0 > A2(M) 1>" �9 �9 Ar(M). (3.4) 

(ii) The mean fitness function w ( p ) =  (p, Mp)  achieves a strict maximum at 
p* with respect to the simplex of frequency vectors A. (3.5) 

(These conditions are necessary and sufficient if M is nonsingular.) An important 
fact in the one-locus multiallele viability model is that a locally stable polymorphic 
equilibrium is globally stable relative to all initial polymorphic states. More 
precisely, the mean fitness w(p)  monotonically increases until an equilibrium is 
reached. 

With any number of alleles represented, an equilibrium /3 = (/3~,...,/3r) of 
(3.1) solves the system of equations 

r 

( M/3)i = Y. rnu/3 j = w(/3) = (/3, Mfi),  i E I~ (3.6) 
j = l  

the equations applying for those indices l~ where/3i > 0. The equilibrium/3 is 
internally stable provided the principal submatrix of M restricted to the indices 
where pi > 0 satisfies (3.4). External  stability of a boundary equilibrium prevails 
by definition if any new allele introduced in small frequency is ultimately elimi- 
nated. External stability is assured if 

(M/3)k < w(/3) for all k where/3k = 0. (3.7) 

It should be emphasized that when M is generic in the sense of (3.2), only a 
finite number of equilibria can exist and the above sufficient conditions for 
internal and external stability of/3 are actually necessary and sufficient for local 
stability of _~, or equivalently, for strict local maximality of w(p) at _fi with respect 
to A. Therefore a unique stable equilibrium (interior or on the boundary of A) 
corresponds to a strict global maximum of w(_p) in A. Note also that the polymor- 
phic equilibria of (3.1) are exactly the critical points of w(p)  relative to A. 

Some of the conclusions of the next sections will make appeal to the number 
of stable equilibria that can coexist in the one-locus multiallele viability model 
when a new allele is introduced into an equilibrium system. In this respect, we 
recall the following result (Karlin, 1978, Theorem 3.2): if an equilibrium of (3.1) 
on the boundary of /t with exactly r -  1 positive components (i.e. with exactly 
one allele not represented) is internally stable, then there exists at most one 
alternative equilibrium that can be locally stable relative to A ; if the boundary 
equilibrium is externally unstable, then there exists one and only one stable 
equilibrium in A. 
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3.2. Some preliminary results 

The gradient map T'(_fi) at an equilibrium _~ of (3.1) (i.e. the local linear approxima- 
tion to T at/3) is 

~oM/3 /3oM~ 2(M/3,~:) 
T'(~)ff= w(fi) + w(/~) [w(~)] ? -~~ M_~ (3.8) 

r 

where ~:=(scb. . . ,  ~r) satisfies Ej=~ ~-=0 and is such that /~+e_~eA for e > 0  
small enough. For a polymorphic equilibrium p*, we have _Mp* = w(p*)u where 
_u is the vector displaying all unit components (cf. (3.6)) and the gradient map 
T'(_p*) acting on ~ = {if: (~:, _u) = 0} reduces to 

p * o M  1 
T'(p*)  = I +" - -  B(p*) (3.9) 

w(p_*) w(p_*) 

with the definition (2.6) for B(p*). Actually, using the notation 

_x_ (xb . . . , xr) _ ( x,, . . . ,  x~) (3.10) 
(Yl, . . . ,Yr) \Yl _y 

and introducing the matrix 

we have, for every _p �9 A, 

e M ( p ) =  o M, (3.11) 
Mp 

B(p_) = DMp +p ~ M = DMp[I + M(p)]. (3.12) 

Recall the following facts from matrix theory (see, e.g. Gantmacher, 1959; 
Lancaster, 1969). If M is a symmetric matrix and D is a diagonal matrix with 
all positive diagonal elements, then DM, MD, and D1/2MD 1/2 share the same 
eigenvalues which are real since D~/2MD ~/2 is a symmetric matrix. Moreover, 
the matrix D M =  d o M where d = ( d b . . . ,  dr) is the vector of  the diagonal 
elements of  D acts as a symmetric matrix with respect to the modified inner 
product 

((x, y)) = <_~ > _ ,  y = ,=i, x,Y~d," (3.13) 

Indeed we have 

(( DM_x, y)) = ( M_x, y) = (x, My)  = ((_x, DM_y)). (3.14) 

We say that D M  is symmetrizable. In such a case, there exists a complete set of 
eigenvectors orthonormal with respect to the inner product (3.13). 

When p is interior to A (i.e. p �9 A~ the matrix M ( p )  of (3.11) is symmetrizable 
and positive. It is easy to check that 

M ( p ) p = p  and _u(_p)M(p)=_u(p) (3.15) 

i.e. one is an eigenvalue of M(p)  with positive right eigenvector p and left 
eigenvector u(_p) = M p. (In the case where p = p* is a polymorphism, then _u(p) = 
w(p*)_u where _u displays all unit components.) Actually one must be a simple 
eigenvalue equal to the spectral radius of M ( p )  owing to the Perron-Frobenius 
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theory for positive matrices. Moreover, since _u(p) is a left eigenvector, we have 

(M(p)r _u(_p))= (~, _u(_p)M(_p))= (~, u(_p)), (3.16) 

and therefore (M(p)~, _u(_p))= 0 if (~, _u(p))= 0. Finally the other eigenvalues of 
M(_p) (apart from one) are real and strictly less than one in magnitude. It 
immediately follows that, for p c  A ~ the matrix I +M(_p) is invertible with all 
positive eigenvalues and so is the matrix DMp[I+M(p_)]= B(p_). Let us sum- 
marize. 

Lemma 3.1. For p ~ d ~ the symmetrizable (cf. (3.14)) matrix M(p )  = [p/ Mp_]oM 
has a simple eigenvalue one with right eigenvector p which strictly dt~ninates all other 
eigenvalues in absolute value. Moreover, M(p)  transforms the linear manifold 
~ ( p )  -~ {~: (_~, _u(p))= 0} into itself. 

Corollary 3.1. The mappings I + M(p)  and I -  M(p_) for p ~ d ~ are invertible on 
~ (p )  onto itself. 

Corollary 3.2. I f  p c A ~ then the symmetrizable matrix B(p_) = DMp[I + M(p)]  is 
invertible and all eigenvalues of B(p) are positive. 

Finally we record the following lemma. 

Lemma 3.2. A frequency vector p* c A ~ is a polymorphic equilibrium of (3.1) if and 
only if 

B(_p*)_p* = A'p*, andthenA*=2w(p*)=2(p* ,Mp*) .  (3.17) 

Moreover the polymorphic equilibrium p* is locally stable if and only if the eigenvalues 
orB(p*) restricted to ~ = {~: (s c, u) = 0} are strictly less than w(p*) (or equivalently 
by Lemma 3.1 the eigenva[ues of M(p*)  restricted to .~ are strictly negative). 

Proof of Lemma 3.2: For p*6 A ~ we have 

B(p*)p* = DMv.[I + M(_p*)~_p* = 2_p* o iV/p*. (3.18) 

Therefore B(_p*)_p*=h*_p* if and only if M_p*=(h*/2)_u, and then w(_p*)= 
(p*, M_p*)= (h*/2)(p*, y ) = h * / 2 ,  i.e. _p* is a polymorphic equilibrium of (3.1) 
(cf. (3.6)). A necessary and sufficient condition for local stability of p* is that the 
gradient matrix at p* relative to 5f (cf. (3.9)) exhibits all eigenvalues strictly less 
than one in magnitude as stated in Lemma 3.2. 

3.3. A characterization of the equilibria based on a spectral radius functional 

Recall that p(_p)= p(B(p_)) denotes the spectral radius (the magnitude of the 
eigenvalue of largest magnitude) of B(p) = DMp +p ~ M for p in A. When _p E A ~ 
then B(p) is positive and p(p) is defined by (2.7). For p on the boundary of A, 
let l~ the set of indices corresponding to the positive components of p and 
B~ the (positive) principal submatrix of B(p) restricted to these in(tices. 
The rows of B(_p) corresponding to the zero components of p reduce to the rows 
of the diagonal matrix DMp. Therefore the eigenvalues of B(p-) are the eigenvalues 
of B~ and the quantities (Mp)~ for all i where p~ = 0. I)enoting the spectral 
r ad iuso f  B~ by pO(p)= p(BO-(p)), we have 

p(p) = max {pO(_p), (M_p)i for all i ~ l~ (3.19) 
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Observe that if 

pO(_p) > (Mp)i for all i ~ l~ (3.20) 

then the principal right eigenvector _q of B(p)  in A is such that l~ l~ (i.e. 
q and p are on the same face of A) and the positive components of q form the 
principal right eigenvector of B~ for the corresponding subsystem. 

We now state the main results of this section. 

Theorem 3.1. Let p(p)  be the spectral radius of  B(p)  = DMp + p o M for p_ in A where 
M satisfies the genericy conditions (3.2). Let p* be a frequency vector interior to A, 
i.e. with all positive components. 

(i) p* is a polymorphic equilibrium for the viability model M (i.e. the transforma- 
tion (3.1)) if and only if p* is a critical point of  the function p(p), i.e. the derivative 
of  p(p_) in every direction at p* relative to A is zero. 

(ii) p* is a locally stable polymorphic equilibrium for M if and only if p(p)  
achieves a strict local maximum with respect to A at p*. 

For boundary equilibrium points, the above result is complemented by the 
following. 

Theorem 3.2. Suppose the conditions of  Theorem 3.1 are in force. 
(i) An equilibrium fi for the viability model M (interior or on the boundary of  

A) is locally stable if and only if p(fi) is a strict local maximum of  p(p_) with respect 
to A. 

(ii) Moreover, the local maxima of  p(p_) in A are twice the local maxima of  
( p_, Mp_ ) and are achieved at the same points. A local maximum within A is actually 
a global and unique maximum over all A. 

4. Proofs of the theorems of section 3 

4.1. Proof of  Theorem 3.1 

We first develop some preliminaries. Let p* ~ A ~ Choose an arbitrary direction 
r 

"q =071, ~72,-.., T/r) in A ~ that is, T/ satis]'ying (T/, u )=~ i= l  T/i =0,  and s small 
enough to keep p(s)= _p*+ s~7 in A -~ The Perron-Frobenius theory for positive 
matrices affirms that the spectral radius p(s)=p(p_(s)) of B(p_(s))= 
DMp(s)+p(s) o M is a simple eigenvalue of B(p_(s)) analytic in s and that the 
components of q(s), the unique right eigenvector in A ~ of B(p(s))  corresponding 
to p(s), are alsoanalytic functions of s. We display these quantities by the relation 

B(p_ (s))q_ (s) = p(s)q( s) 

We use hereafter the notation 

dp(s) (dpl(s) ,  dp,(s)] 
g ( s ) -  d ~ - - \  ds " ' "  ds / 

where p(s) = p(p(s)).  

d2e(s)  
((s)= ds ~ 

= (dq,(s), dqr(s)) 
and _q(s) \ ds " ' "  ds ] 

d2_q(s) 
and ~( s ) -  ds2 , 

which we abbreviate to g, q, fi and / / a t  s = O. 

(4.1) 

(4.2) 



On the optimal sex-ratio 23 

Since <_p(s), u) = (_q(s), _u> = 1 where u is the vector of  all unit components,  
we have 

(_p(s), _u) = ( f i ( s ) ,  _u) = (q_'(s), u )  = (~ ( s ) ,  _u) = O. (4.3)  

Observe that, for p �9 A ~ and every vector ~, we have 

~_B(p) = ~o M_p +[_~o p ] M  = [M_p] o _~ + M[_po _~]. (4.4) 

Choosing ~=_z= q / p  in the notat ion (3.10) where _q is the leading right 
eigenvector o f -B (p )  in A ~ we get 

zB(_p) = p(_p)_z. (4.5) 

Indeed,  _zB(_p) = [M_p] o [_q/el + Mq  = [u_ / p] o [-q o M p  + p o Mq_ ] = [u-~p_] o B(p_ )-q = 
p(_p)z. Furthermore,  we have 

[u] B(-q)=p(p_)u_ (4.6) 
since 

F ' l  u u B ( q ) = [ M q ] o  p - + M  q . . . .  [ p o M q + q o M p ]  
- - -q L -  - q _ l  -q - - 

u 
= = o  B(p)-q=p(p)u-. 

q 

Now differentiating the equation (4.1) with respect to s produces 

B(_p(s))_q(s) + B(p_ (s))q_ (s) = tJ(s)q(s) + p(s)q_(s) 

which reduces to 

B(-q(s))p_(s) + B(p_ (s))q_(s) = j6(s)q_(s) + p(s)(l(S). (4.7) 

On account of  (4.5), the inner product  of  both sides of  (4.7) with the vector 
z(s)  = q_(s)/p_(s) yields 

(_z(s)B(q_(s)), p_(s)) + p(s)(z_ (s), dl(S))= p(s)(_z(s), q_(s)) + p(s)(z(s) ,  q_(s)), 

i.e. 

(z_ (s )B(q(s) ) ,  p_(s)) = t~(s)(z(s), -q(s)). (4.8) 

Note also that on the basis of (4.6), we have 

> B(-q(s)), p_ (s) = p(p_ (s))(u-, p(s)) = 0, (4.9) 

the equality to zero resulting from (4.3). 
We are now prepared to prove Theorem 3.1. 

(i) Characterization o f  an internal equilibrium 
Necessity. Let p* =_p(0) be an equilibrium of  (3.1) in A ~ Lemma 3.2 ensures 

that q(0), the leading right eigenvector of  B(p*) in A ~ is _p*. Therefore 
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z(O) = q(O)/p(O)= _u and (4.8) in view of (4.5) gives 

ti(0) = (uB(p*), _/J(0)) = p(p*)(_u, _/i(0)) = 0. (4.10) 

Sufficiency. If p* furnishes a critical point for p(p) in A ~ and q* denotes the 
leading right eigenvector of B(p*) in a ~ then the equations (4.8) and (4.9) 
establish that 

p* 
([_=~**] _B(q*),_r/)=0 and ([~-g]B(_q*),_~)=0 (4.11) 

for every ~/c 5f, i.e. for all ~7 satisfying (r/, _u) = 0. Since Le is n - 1 dimensional, 
the equations (4.11) are compatible only-if there exists some scalar a such that 

B(q*)=a B(q*), andtherefore~--~=a-~q., (4.12) 

since B(q*) is invertible by Corollary 3.2. But this is feasible only if q* = ~/c~p* = 
_p*. In such a situation, Lemma 3.2 asserts that _p* must be a polymorphic 
equilibrium of (3.1). 

(ii) Stability criterion for an internal equilibrium 
Let p* be a polymorphic equilibrium, i.e. a critical point of p(_p) in zl ~ 

Differentiating in (4.7) and evaluating at s = 0 produces in the notation of (4.2) 
(with q(0) = p(0) = p* and p(p*) = 2(p*, Mp*) referring to Lemma 3.2) 

B(_p*)_fi + B(_p*)_~ +2_po M-0 +2_0 ~ M_p = p(_p*)_~ + ~(0)_p*. (4.13) 

Observe that Mp*=w(p_*)_u with w(p*)=(_p*,Mp*) so that B(_p*)= 
w(p*)(I + M(p*)) with the notation 

p*oM 
M(p_*) w(p*) (cf.(3.11)). (4.14) 

With reference to _uB(_p*) = 2w(p*)u and in view of (4.3), taking the inner product 
on both sides of (4.13) with _u gives 

~(0) = 4(if, M_O). (4.15) 

In terms of the modified inner product 

((x_, y))= w(p*)(-~,, y_ ), (4.16) 
- \ p  

we have 

,6(0) = 4((_~, M(_p*)_@. 

We next rewrite (4.7) at s = 0 in the form 

( I  - M ( p * ) ) q  = ( I  + M(_p*))_p. 

(4:17) 

Both I +M(p*) and I -  M(p*) are invertible on 5f= {r (~:, _u) =0} and leave this 
linear manifold invariant (cf. Corollary 3.1). Moreover, M(_p*) is symmetric in 
the inner product (4.16) (cf. (3.14)). Thus, every vector _x in 5f can be represented 

(4.18) 
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using an orthonormal basis {_~i} of eigenvectors of M(p*) in ~ such that 

r--]  

x = E ((x, ,Pi))r 
i = l  

In particular, 

(4.19) 

r - - I  r--I  

_q = E ((0, .~i))r ~ = E ((~, _r (4.20) 
i = 1  i = 1  

Using M(p*)r = Air equation (4.18) implies 

(1 -A0((_q, ~i))= (1 + Ai)((p, _~i)) (4.21) 

where Ai is real and ]Ai]< 1 (cf. Lemma 3.1). Expanding (4.17) via (4.20) and using 
(4.21), leads to 

,'-I 2 f 1 +Ai'l 
~/(0) = 4 ,~1 ai((_p, r / ~ "  (4.22) 

Since /i =~/ is an arbitrary vector in 5~, we may conclude that fi(0)< 0 for all 
directions within A if and only if hi < 0, i = l, 2 , . . . ,  r -  l, that is, p* is locally 
stable if and only if p(p) exhibits a (strict) local maximum at p*. 

This completes the proof of Theorem 3.1. 

4.2. Proof of Theorem 3.2: characterization of a locally stable boundary equilibrium 

Let/3 be a boundary equilibrium of (3.1) and define p(s) =/3 + sT1 such that p(s) e A 
for s/> 0 sufficiently small. Assume 

pO(/3) > (M_fi)j for a l l j~  l~ (4.23) 

and let q(s) be the principal right eigenvector of B(p(s)) in A. Then according 
to (3.195 and Lemma 3.2, we have q(0)=/3 and p(~)=2(/3, M/3)=2w(/3), and 
therefore the equation (4.7) for s = 0 becomes 

B(fi)~ + B(fi)q = ,6(0)fi +2w(fi)q, 

or equivalently, 

B(:)[: + ,)3 - 2 w(~)_q = ~(0)_~. 

Since uB(f i)= 2M_fi, taking the inner product with u in (4.24) leads to 

(4.24) 

/5(0) = 2( M/3,/i + q) 

=2w(fi) E [ /Jj+qj]+2 E (Mfi)j[/~j+qj] 
j~l~ j~l~ 

= 2 • [(M_fi)j - w(_fi)][/~j + 0j]. 
j~ l~ 

But for every j ~  l~ we have from (4.24) 

(4.25) 

( M : ) J  : j  + 4 j ] -  2w(_~)4j = o 
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i.e. 

r (M )j I .  
~tj = [ 2 w ( ~ M ~ ) j  JPJ" (4.26) 

Hence (4.25) can be expressed as follows: 

/~(O)=-4w(_~) ~ [ w(_~)-(M_~)j] 
j~lO(~) L2w(_fi) - (M_fi)j J nj- (4.27) 

r Therefore p (0 )<0  in every direction ~ /=071 , . . . ,  ~/r) within a (i.e. ~]y=~ ~b=0 
and 7/j/> 0 for all j ~ l~ with strict inequality somewhere) if and only if (Mi6)j < 
w(_fi) for all j ~ t~ (since equalities are precluded in generic cases), that is, p(p)  
is locally decreasing from fi toward the interior of A if and only if _fi is externally 
stable (see (3.7)). Moreover it has been established in Theorem 3.1 that pO(p) is 
internally maximized at fi (i.e. within the subsystem corresponding to the positive 
components of _fi) if and only if _~ is internally stable. 

It remains to show that a strict local maximum of 

p(p) = max {pO(p), (M_p)j for al l j  ~ lO(_p)} (4.28) 

cannot be achieved (only) through the linear terms (M_p)j, j ~ l~ Otherwise this 
must occur at a vertex, say A~-fixation, and then (relabeling the alleles if 
necessary) we must have m12 > 2mli and m~2 > mlk for all k/> 3 (with the genericy 
conditions (3.2) in force). By continuity, this entails that p(p) = pO(p) within the 

m 2 subsystem {AI, A2} near Al-fixation. With M = II ,jll,,j=, andp = (Pl,P2), we have 

B(p)=DpM+DMp=[2plm11+p2m12 plm12 1 (4.29) 
L p2ml2 2p2mz2+p,m~21 

and at Al-fixation the relation (4.7) becomes 

+ = 

where _fi = (1, 0) and B(_fi)_~ = m,2#, i.e. 

42 = [mlz-2m11]  ql, 
L m12 

(4.30) 

q l = 1 - q2 (4.31) 

Choosing _p = ( -  1, 1), the equality for the second component in (4.30) is 

A A A , A 

-q2m12 +2q2rn22 + ql rn12 = p(0)q2, 

i.e. 

/6(0) = 2m22--  m~2 + m12 
kq2J 

[2rn22- m,2][m,2- 2m, 1] + m22 
m 

rn12- 2ml l 

_ 2rn12[mll + rn22] - 4rnll m:2> 
m~2-2rnll 

4rn~Zl 
>0 .  

m 1 2 - - 2 m l l  
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This contradicts the assumption that p(p) achieves a local maximum at AI-fixation 
and completes the proof of part (i) of Theorem 3.2. Part (ii) is a direct consequence 
of Lemma 3.2. 

5. Stability analysis of the sex-determination model 

We previously emphasized in Sect. 2 that the model of sex-determination of a 
random mating population where an offspring of genotype AiAj is male (female) 
with probability m0 ((1 - too) ) is equivalent to a sex differentiated viability model 
with viability matrices M = 1[ m~j l] and U -  M = Ill - m U II for males and females, 
respectively. In this section we ascertain the stability conditions for the symmetric 
and even-sex-ratio equilibrium states introduced in Sect. 2.2. 

5.1. Stability criteria for the symmetric equilibrium states 

A symmetric equilibrium {fi,/~} for the sex determination model (2.2), represented 
by/~ for brevity, corresponds-to an equilibrium for the viability model M defined 
by (3.1). To avoid unimportant situations involving special relations among the 
sex-determination parameters {too} it will be judicious unless indicated otherwise 
to impose the following additional (genericy) postulate. 

Definition 5./. A sex-determination matrix M is said to be symmetrically generic 
if 

(i) M and U -  M are each generic (in the sense of (3.2)); 
(ii) (_~, M_fi) # 1 for every symmetric equilibrium _~ of (2.2). (In particular mii# �89 

for every i.) (5.1) 

The requirement (ii) guarantees that a symmetric equilibrium state does not 
yield an even-sex-ratio. 

Let p* be an interior symmetric equilibrium of the system (2.2) with associated 
sex ratio w*= (p*, Mp*). We recall the following result (e.g. Karlin 0978)). 

The relevant gradient matrix of the system (2.2) at {p*, p*} is of the form 

acting on ~ |  ~7}: (~:, _u)=(~, u)=O} with 

The relevant eigenvalues of F are those of R + S relative to the linear manifold 
~ plus the eigenvalue 0 which occurs with additional multiplicity r. Note that 
the matrix 

[.  -2w, lei:_M 
R + S = I  +L2(1-w*)J w* (5.3) 

resembles the gradient matrix at p* for the viability selection model with associ- 
ated matrix M except for the constant multiplier (1 -2w*)/[2(1 - w*)] (compare 
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with (3.9)). It follows that if _p*c/t o is a stable equilibrium of (3.1) (such that 
(p* o M ) / w *  has only negative eigenvalues of magnitude less than 1 with respect 
to ~ )  and w* < �89 then all eigenvalues of  R + S are also of magnitude less than 
1 relative to ~,  and conversely. These facts are worth highlighting. 

Theorem 5.1. A symmetric interior equilibrium {p*, _p*} with w*= (_p*, M_p*)<�89 is 
stable in the sex-determination model (2.2) if  and only if p* is stable for the one-locus 
viability model M, i.e. the transformation (3.1). 

Analogously, if w*> �89 {p*, p*} is a symmetric stable equilibrium for the sex- 
determination model (2.2) if and only if p_* is stable for the viability model U -  M. 

The stability analysis for a symmetric boundary equilibrium {/3,/3} entails the 
internal stability conditions relative to the face of/3 akin to Theorem 5.1 and the 
external stability conditions with respect to the alleles not represented in 
the array of _fi (cf. (3.7)). 

The local linear analysis near {_~, _~} with respect to external alleles reveals 
the first-order approximation 

. [ (M/3)j ( ( U - M ) / 3 ) j q  
( q J + P J ) = ( q J + P J ) L - - ~  + 2---O-~--~ J f~176 (5.4) 

where ~ = (/3, M/3). The following result is then immediate. 

Theorem 5.1'. a symmetric equilibrium { ~_, ~_ } with ~ = ( ~_, M~_ ) < l is stable for the 
sex-determination model (2.2) if  and only if: 

(i) The eigenvalues of  (/3o M ) /  ffp in the face of ~, i.e. with respect to ~ = 
{_~: ~i~t0(p) ~:i = 0} are all negative and 

(M/3)j ( ( U -  M)~_)j 
(ii) 2~ + 2 ( 1 - ~ )  <1 forallj~l~ 

or equivalently since ff~ < �89 

(M_~)j< ~ f o r a l l j ~  I~ 
1 When ff~ > ~, then the ascertainment of  stability for {/3,/3} in the sex determination 

model corresponds to the stability criteria for the one-locus viability model U - M .  
1 Thus, a symmetric equilibrium (boundary or interior) of sex ratio ~ < ~  is 

stable for the sex-determination model (2.2) if and only if it is stable for the 
one-locus random mating multiallele system (3.1) with viability matrix M. The 
condition for external stability deduced from (5.4) was pointed out by Eshel and 
Feldman (1982). Theorems 5.1 and 5.1' entail the following consequence. 

Corollary 5.1. When fi_ is stable for the viability model M and ^ J w > ~, then {~_, ~_} is 
unstable in the sex-determination model (2.2). 

5.2. Nature of  the even-sex-ratio equilibria 

Let {_~, _~} be an equilibrium for the sex-determination (2.2) with 

1 
(_4, M_~) = ~. (5.5) 
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Recall from (2.5) that an even-sex-ratio equilibrium is completely characterized 
by the eigenvalue one equation 

B(/~)ff = ~ (5.6) 

where B(p) = DMp + DpM and Dp is the diagonal matrix with the components of 
_p down the diagonal. When (5.5) and (5.6) prevail, necessarily _~ ~ _~ owing to the 
genericy stipulation (ii) of Definition 5.1. In cognizance of the discussion follow- 
ing (2.5), an even-sex-ratio equilibrium exists if and only if p(_~) = p(B(~))  = 1 
and then ~ is the corresponding unique right eigenvector in A (actually on the 
same face of A as _~ in view of (3.19) and (3.20)). The basic result of this subsection 
concerns the existence of even-sex-ratio equilibrium states. Such equilibria com- 
prise a continuum when present. In the following theorem it is understood that 
an even-sex-ratio equilibrium state is represented by its corresponding allelic 
frequencies in the female population (i.e. the vector component fi in the pair {fi, _~} 
satisfying (5.6)). 

Theorem 5.2. Let M be a symmetrically generic sex-determination matrix according 
to Definition 5.1. 

(i) Even-sex-ratio equilibria of the sex-determination model (2.2), when they 
exist, are part of an equilibrium surface of dimension r - 2 in the simplex of frequency 
vectors/t of dimension r -  1. (Only for the case of two alleles are the even-sex-ratio 
equilibria isolated points.) 

(ii) An interior stable symmetric equilibrium (or any stable symmetric equili- 
brium that is the only stable equilibrium for the corresponding viability model 
according to Theorem 5.1) cannot coexist with an even-sex-ratio equilibrium and 
any other stable symmetric equilibrium in A. 

(iii) Two symmetric equilibria fi~ and fie with associated sex ratios ff~, = 
. ' ,  ,'~ 1 A "~ ~ - 1  (p_~, Mils)< ~ and w e = (_Pc, M fie) > ~, respectively, are completely separated by at 

least one even-sex-ratio equilibrium surface. 

Note. Coexistence of one or several surfaces of even-sex-ratio equilibria with 
one or several locally stable boundary symmetric equilibria is not precluded. 

Proof of Theorem 5.2. (i) Let/~ be an even-sex-ratio equilibrium interior to A, i.e. 
_fi ~ /t~ satisfies p(_fi) = 1. Since-M is assumed to be symmetrically generic, fi cannot 
coincide with a symmetric equilibrium, i.e. a critical point of p(p) owing to 
Theorem 3.1. Therefore there exists some direction within /to along which the 
derivative of p(p) at _fi is nonzero. Hence/~ must belong to the common frontier 
of two components of the open sets {_p c/to: p(_p) > 1} and {_p ~/to: p(p) < 1}, 
respectively. That frontier is an even-sex-ratio equilibrium surface of dimension 
r - 2  (and simply connected) in the simplex/to of dimension r - 1  by continuity 
of o(p). 

If-_fi is on the boundary o f / t ,  then p(p) = pO(p) in some neighborhood of fi 
by appeal to (3.19) and (3.20). The preceding arguments can be applied mutatis 
mutandis with respect to the face of/~, and then extended to a l l / t  by continuity. 

(ii) An interior stable symmetric equilibrium _p* with w* = (p*, Mp*)< 1 cor- 
responds to an interior stable equilibrium for the viability model M (Theorem 
5.1) and therefore to a global and unique maximum of p(p) over a l l / t  (Theorem 
3.2). This precludes the existence of another stable symmetric equilibrium. 
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Moreover, since p(p*)= 2(_p*, M_p*)< 1 (Lemma 3.2), the function p(_P) cannot 
achieve the value one in A and even-sex-ratio equilibria cannot be present. If  
w*> �89 we replace M by U - M .  

(iii) If p~ and p~ are two symmetric equilibria such that (/~, M/~,)= ~ <�89 ? A< 
and(pro M/~)--- w~>~ , thenwehavep  (p~)=2w,  1 a n d p ~  1 owing 
to Lemma 3.2 and therefore 

0 ~ "~ p(_fi,) = max {p (_p,), (M_fi~),, i ~ l~ < 1, 
(5.7) 

p(_fie) = max {pO(_p~), (M_fi~)~, i ~ l~ > 1. 

By continuity of p(p), all curves connecting _fi~ and _p~ in A must intersect p(_p) = 1 
and these points of intersection generate at least one separating even-sex-ratio 
equilibrium surface. 

5.3. An optimality property for even-sex-ratio realizations 

Eshel and Feldman (1982) considered a symmetric equilibrium {p*, p*}, p* > 0, 
i = l , . ,  r for the r-allele model (2.2) w i t h w * -  , , < l  . ,  - ( Mp , p ) ~. With a new allele 
At+l, let mi, r+l be the probability for a zygote of genotype AiAr+I to be a male 
and (1 - mi, r+l) to be a female. The marginal fraction of male progeny carrying 
allele Ar+t at the equilibrium state p* is w*§ - - ~ =  ~ p*m~.r+~. A symmetric equili- 
brium {p*, p*} stable for the r-allele sex-determination model becomes unstable 
with the introduction of A~+~ if and only if 

W~§ 1 ~" W :~ provided w* <�89 (5.8) 

(The condition for local instability at p* is * w* _ Wr+l < if W* > �89 These conditions 
do not require that the marginal sex ratio w*+~ at _p* should be closer to �89 than 
w*. However, in case of departure, it was conjectured that the augmented allele 
system in the long run would attain a sex-ratio closer to one-to-one than existing 
at the previous equilibrium. 

We can prove the following facts in support of the evolutionary tendency 
toward an even-sex-ratio. 

Theorem 5.3. Let p_* be a stable polymorphie symmetric equilibrium of (2.2) with 
sex-ratio w* = (p*, Mp*) that becomes unstable following the introduction of  a new 
allele Ar+~. Then, for the augmented (r + l)-allele system with the non-degenericy 
conditions (5.1) in force either: (i) there exists a unique stable symmetric equilibrium 
whose sex-ratio is closer to �89 compared to w* and which do not coexist with any 
even-sex-ratio equilibrium; or (ii) _p* is enclosed by an even-sex-ratio equilibrium 
surface containing no stable symmetric equilibria. 

Remark. In the conditions of Theorem 5.3, the only possible stable equilibrium 
points attainable from p* entail sex-ratios closer (compared to w*) to �89 or equal 
to �89 This expresses an optimality property in favor of a one-to-one population 
sex-ratio. Our numerical iterations have shown convergence to either a symmetric 
equilibrium or an even-sex-ratio equilibrium in agreement with the theme of 
Theorem 5.3. The paths of the population sex-ratios over successive generations 
may exhibit small oscillations, but in the long run they always tend (increasingly 

l (See also Sect. 6.2.) or decreasingly) in the direction toward ~. 
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Proof of  Theorem 5.3. Suppose that p* is a stable polymorphic symmetric equili- 
brium for the sex-determination model (2.2) with (p*, Mp*)= w* <�89 (The case 

1 w*> ~ would be dealt with analogously.) Then Theorem-5.1 tells us that p* is 
stable for the viability model (3.1) with matrix M =  [[mij[lirj=~. But p* is also 
externally unstable in both models (compare (5.8) with (3.7)) after the introduction 
of the allele Ar+b i.e. with respect to the augmented (r + 1)-dimensional matrix 
~ t  = Jim0 [I r+' i.j=~. We make appeal to Theorem 3.2 in Karlin (1978) (see also Sect. 
3.1) assuring the existence of a unique stable equilibrium p** (interior or on the 
boundary of the augmented allelic frequency simplex) for the viability model )V/. 
Moreover, we must have (_p**, M_p**)= w**> w*. In the event w** <�89 p** is a 
stable symmetric equilibrium for the sex-determination model corresponding to 
/~t and actually the unique stable equilibrium for that model with no even-sex-ratio 

1 equilibria present owing to part (ii) of Theorem 5.2. On the other hand, if w** > ~, 
part (iii) of Theorem 5.2 asserts that p** is separated from _p* in the augmented 
system by an even-sex-ratio equilibrium surface. 

In the latter event (i.e. w*<�89 w**), any stable symmetric equilibrium /3 
for the sex-determination model M must be associated with a sex ratio (/3, ~//3) - 

> �89 (but/3 # _p** by Corollary 5.1). If  such a _fi exists, it must be separated from 
_p* by an even-sex-ratio equilibrium surface that cannot intersect the faces of p* 
and/3 because these equilibria are internally stable (see Theorem 5.2). This-is 
possible only if _fi corresponds to Ar+~-fixation and then 

mi, r+l > mr+l,r+l > �89 i = 1, . . . ,  r. (5.9) 

5.4. Predominance of  the one-to-one sex-ratio equilibria for 
dichotomous sex-determination systems 

Theorem 5.4 below further amplifies the predominant endowment of even-sex- 
ratio equilibrium realizations under sex genotype determination involving exact 
allelic variants, i.e. when the sex phenotype is controlled at a single multiallelic 
locus with exact zero-one genotypic sex ascertainment. In the following the 
nondegenericy conditions (5.1) are not assumed. 

Theorem 5.4. Suppose all genotypes involving r alleles at a single locus divide into 
two groups (all genotypes in ~M become males unambiguously, while all genotypes 
in ~F become females). Assuming random mating in this dioecious population, the 
only possibly stable equilibria entail one-to-one sex ratio, i.e. the frequency of  a 
stable equilibrium phenotype representation has freq (~/M) = freq (~F) = �89 

Remark. It is interesting to contrast Theorems 5.3 and 5.4. When the genotype- 
phenotype classes of sex-determination is not absolute (that is, 0 < my < 1), then 
the possibility of a stable non-even-sex ratio can emerge. Theorem 5.4 asserts 
that with exact genotype sex-determination (mij = 0 or 1 for every i,j) creating 
the sex dimorphism of the two phenotype classes with ~/M comprising all 
genotypes with m o = 1 and ~ v  consisting of all genotypes with m U = 0, then only 
an even-sex-ratio outcome can be stable for such a randomly mating population. 

Proof of  Theorem 5.4. Let _p* be a polymorphic symmetric equilibrium of (2.2) 
where M = [[ m~ [[ [i= i is a dichotomous sex-determination matrix (i.e., m o = 0 or 1 
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for every i and j) .  In this circumstance M is nonsingular if and only if U -  M is 
nonsingular since Mp* = w*u has a unique solution in A ~ if and only if ( U -  
M ) p *  = (1 - w*)_u has a unique solution in A ~ Consider the case (p*, M p*) = w* < 
1. Vqe show that p* cannot be stable. Otherwise _p* would be stable for the viability 
model M and w(p)=(p ,  Mp) would achieve a global maximum in zi at p*. 
Therefore we would have �89 w*> m, compelling m, = 0 for all i. But then for 
some i # j ,  mo. = 1 and the equilibrium/~ with/~--/~j =�89 would have mean fitness 

1 w(/~) = �89 exceeding w(p*) = w* which is a contradiction. (The case w*> ~ can be 
dealt with analogously.) 

Consider next a symmetric equilibrium p* with w*~�89 and corresponding 
coefficient matrix M singular. Then U-':)Vi is also singular and there exist 
nontrivial vectors ~: and ~ satisfying M ~ = 0  and ( U - M ) ~  =0. It follows 
that 0=(~:, (U-M-)~7)=(~ ,  U~?)-(M~, ~7)=(~, U~)--'(~, _u)07, _u) and therefore 
(~:, u) = 0 and /o r  (r/, ~)) = 0_ Assume for definiteness (E,-_u) = O. The line _p* + t~ in 
/~ for t real satisfies M(_p* + t_~) = M_p* = w*u and this symmetric equilibrium line 
must intersect the boundary of za at some point _p**. If the submatrix correspond- 
ing to p** is singular, we can reduce again the analysis to a smaller face along an 
equilibrium line with sex ratio w* # �89 Proceeding in this way, we finally arrive at 
a boundary symmetric equilibrium whose corresponding submatrix is nonsingular 
and which cannot be internally stable because of the previous arguments. We 
conclude that _p* must belong to an unstable symmetric equilibrium surface. 

5.5. Stable equilibrium possibilities with a dominant male ( or female) sex-determiner 

A dominant male (or female) determining factor (as occurs in standard X X  - X Y  
systems) can be accommodated by (2.2) if we set mlj = 1 for all j in the sex- 
determination matrix M = [[ m~ I[ [j= 1" Since ( M _ p ) l  = 1 for all frequency vectors _p, 
the strong sex-determiner represented by allele AI cannot be present at any 
symmetric equilibrium (otherwise the sex ratio would be one which is not 
biologically feasible). Moreover, a symmetric (non-even-sex-ratio) equilibrium is 

m r stable if and only if it is stable with respect to the subsystem M = [] ij[[ i,j=2 and 
associated with a sex ratio exceeding �89 to ensure external stability against A1. In 
all circumstances, we can draw the following conclusion. 

Theorem 5.5. A dominant sex-determiner in (2.2) can be maintained at equilibrium 
only with an even-sex-ratio. 

6. Examples and further results 

6.1. A sex-determination model based on the state o f  heterozygosity 
versus homozygosity 

A sex-determination matrix of some biological interest has the form 

M = ( a - f l ) I  +/3U (6.1) 

where the probability of being a male is either a or/3 according as the genotype 
is either homozygous or heterozygous independently of the allelic composition. 

We denote the matrix of type (6.1) with r alleles by M(r).  We examine the 
case a < l < f l .  It is readily verified that the central frequency vector p*( r )=  
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(1/r, 1 / r , . . . ,  1/r) is a symmetric equilibrium for M(r) with associated sex-ratio 
w*(r) =/3 +(a -/3)/r.  Note that w*(r) increases with r. It is simple to check that 
h = ( a - / 3 ) < 0  is the only eigenvalue (of multiplicity r - l )  for M(r)  whose 
corresponding right eigenvectors ~: satisfy (~, _u)= 0. Therefore (see (3.4)), p*(r) 
is globally stable (respectively unstable and actually totally repelling) for the 
viability model with matrix M(r)  (respectively U -  M(r)).  It is easy to check that 
w*(r)>�89 if and only if 

r ~ > ~ = i n t [ ~ + l  1. (6.2) 

(int [h] stands for the largest integer smaller or equal to h.) By appeal to Theorem 
5.1, p*(r) is uniquely stable for the sex-determination model corresponding to 
M(r)  provided r <  ~', and unstable when r>~ P. 

In the case at hand 

B(p) = DMv +_P o M =/31 +2(a  -/3)Dp +/3D v U. (6.3) 

Therefore at an even-sex-ratio equilibrium, the relation 

q = B(fi)q =/34_ + 2(ee - ~3)rio q + tiff 

holds, or equivalently, 

U 
4 =/3P ~ - (6.4) 

(1 -/3)_u +2(/3 - c~)fi 

where/~ and 4 are frequency vectors. This is possible with r alleles if and only 
if the surface 

~! /3pi - 1 (6.5) h(_p)= = ( 1 - / 3 ) + 2 ( / 3 - a ) p ,  

with p = (p~ , . . . ,  Pr) intersects the frequency simplex A. Note that h(p) spans a 
concave surface on A symmetric in the components of p and whose maximum is 

/3 
h(p*(r)) = 1 + / 3 -  2w*(r)" (6.6) 

! 
Consistent with Theorem 5.2, h(p*(r))> 1 if and only if w*(r)>~, and then 
even-sex-ratio equilibrium surfaces exist since the value of h at any corner is 
/3/(1 +/3 - 2 a ) <  1. A schematic representation of the equilibrium system versus 
the critical dimension ? of (6.2) is given in Fig. 1 (cf. Karlin, 1978, p. 343). The 
case ~ >�89 is analogous. When �89 o~ </3 or/3 < a <�89 only fixation states can 

1 be stable. When �89 < a or a </3 <~, the polymorphic equilibrium p*(r) is 
globally stable. 

6.2. Global convergence to a one-to-one sex-ratio for the sex-determination model 
where all homozygotes determine females while heterozygotes determine males 

Consider an r-allele system with sex dichotomization 

females males 
MF = {aiai, i= l , . . . ,  r} Mm = {AiA j ,  i # j}" (6.7) 
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Fig. 1. Equilibrium configurations for the sex-determination model (2.2) with matrix M(r)= 
(a- /3)1  +/3U of dimension r. The arrows suggest the directions of convergence 

Thus the matrix M of  (2.2) corresponding to (6.7) is M =  U - I  (cf. (6.1)) and 
the t ransformation equations become 

piqi and ql - Pi + qi - 2piqi i = 1, 2 , . . . ,  r, (6.8) 
P l - ~ ~ =1 Pkqk 2(1 -- ~ 2 =1 Pkqk)' 

with sex-ratio Y~2=~ Pkqk in the current generation. Let p~") and q~") denote the 
frequencies of  allele A~ (i = 1 , . . . ,  r) in the female and male populat ions,  respec- 
tively, at generation n. 

Case  (I).  Assume in the initial generation 

p~O) > p(2 o) > . . .  > p~) and q~O) > q(2 o) > . . .  > q~). (6.9) 

We prove: 

Lemma 6.1. For  all succeeding generat ions  and  i < L  P~') > P~") a n d  q~') > q~'). 

Proo f  We merely need to prove these inequalities for n = 1. For i < j ,  we have 

P " - P '  q ' >  P ' >  1. (6.10) 
P~ e j q j  Pj 

Consider  nex t  

q~ Pi + qi - 2piqi - - -  . ( 6 . 1 1 )  
qj pj + c b - 2pjqj 
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For  q~ ~< �89 and  because  q~ < q~ and necessari ly 2p~ < 1, j  ~> 2, the right hand  fract ion 
is d iminished if qj is increased to q;. The result ing ratio exceeds 1 if  and only if 
( p ; -p~ ) (1 -2q~)~>0  which is correct when  q~ ~<�89 

Suppose  next that  q~ > ~. Then q~ varies be tween 0 and 1 -  q~. The condi t ion 
that  the r ight-hand side in (6.11) exceeds 1 is 

P; - P~ + qi - qj > 2p~q~ - 2p~q~. (6.12) 

This is l inear  in the var iable  qj. For  qj = 0, (6.12) becomes  p~ - p ;  + q; > 2p~q;, which 
is l inear in q~. The last inequal i ty  is correct  for  q; = �89 and  for  q~ = 1 (with equalities 
permi t ted)  because  p~ +pj  <~ 1. Therefore  (6.12) holds for  qj = 0. When  q3 = 1 - %  
the inequal i ty  reduces to p~ +pj  + 2 q i -  I > 2qf(p~ +pj)  which holds for  q~ = �89 and 

1 q; = 1 as before,  and therefore  for  all 5 <  q~ < 1. We have thus establ ished (6.12) 
in all cases implying ql > q~ and the p r o o f  of  the l emma  is complete .  

We next  prove:  

( n )  I Lemma 6.2. (i) p~n) ~ 0 as n ~ ~ f o r  k = 3, . . . ,  r. (ii) Either  p~2 ~) ~ 0 and  then q~ ~ 
lim~_,oo p(2 ~) > 0 and  lim~_,~ q~) = l i m ~  ~(~) - _1 and  q(2 ~) + .  �9 �9 + q(7 )-~ ~, or ~12 -- 2. Thus, 

ei ther A~A~ is exc lus ive ly  es tabl ished in MF and  MM = {A~Ak,  k = 2 , . . . ,  r} or the 

l imit  composi t ion consis ts  o f  M v = { A 1 A I ,  AeA2}  and  M~ = {AIA2}. 

P r o o f  I f  -(")/"(")  "(") -(") j,~ /w+~ 1' ~ ,  then W+l,  w+2,  �9 . . ,p(~")oO. Moreover ,  since p]")/p~") 
increases in all cases by (6.10) and ~7=, p~")= 1, we deduce  that  l im,~oop~")=p * 
exists for  all i. 

N o w  suppose  lim ~(~)/~(~) is finite. Then e~ /e;+~ , - , ~ v ,  / e~  .,(~)/-(") increases to a finite 
limit for  each i < - k - 1  and q ~ " ) / q ~ " ) - l  in view of  (6.10). We show that  this 
convergence  is imposs ib le  for  k = 3. Otherwise,  p~")/p~") increases to a finite limit 
and necessari ly  q~f)/q~3")~ 1. But 

q~+l) n(n) + ~(n)__ O~(n)~(n) 
F 2  - -  ~ 2  ~ F 2  ~ 2  

q ( n  + I )  - -  . ( n )  ..t- . ( n )  - -  o.(n)~(n) 
3 t " 3  ~ " / 3  ~ / J 3  L'/3 

(6.13) 

which converges  for  at least a subset  o f  indices n to some quant i ty  

p* + q* - 2 p ' q *  

p*  + q *  - 2p*3 q* 
(6.14) 

which strictly exceeds I because  q* -- q* < �89 while p*  > p*. To avert  this contradic-  
tion, we must  have p]")/p~3 ") "[ ~ .  

Cons ide r  next  the cont ingency p]n)/p~") 1' c~ < ~ .  It follows then that  p ] " ) -  p*,  
p~" ) -  p*,  (p*  + p *  = 1 with p* > p*)  and q~")/q~2")-~ 1. But 

q(2 n+l) - -  v2"(") -" ,~2"(") - '~"(")"(") ~ ~ - v 2  u2 1, (6.15) 

which is possible  only if q~) and q~) converge and the limits are q~* = q2* = �89 
In  the case p~n)~ 1, we find that  q~n +i) .~ q~n)/[2( 1 _ q~n))], k = 2 , . . . ,  r, q~n+~) 

( 1 -  q l n ) ) / [ 2 ( 1 -  ql"))] =�89 as n ~ .  So ql~)~�89 and  Y~=2 q~')~�89 
This comple tes  the analysis for the initial condi t ions (6.9). 
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Case (2). Suppose next  

p~O~ > p~O~ > . . .  > p~> 

(this is no restriction and reflects merely a labeling of  the alleles A 0 but  now 

q~O)> q]O)> q~3O)>... > qT). (6.16) 

We deduce,  parallel to Case (1), that p~")/p~"~ ~ ~ and q~")/q~"~ > 1 for  a l l j  >i 3, i < j .  
Suppose  now p]"~>p~2 "~ and q~")> q]") hold for all n >/1. It follows that 

p]"~/p~"~$a/> l and consequent ly  ql"~/q~"~ ~ 1. 
Adapting the arguments  of  Case (1), we deduce  immediately that l im,_~ 

q~"~ = lim,~o~ q ~  = �89 if a > 1. If  a = 1, then [q~" +'~ + q~+~]-~ 1 / [ 2 -  q~"~- q~)] 
as n ~ ~ and therefore  q~") + q~"~-~ 1. In every case, the resulting limiting genotype 
composi t ion  is 

{A~A,, a2az} {A1A~}" (6.17) 

Ifp~ "~ > p]") and q]"~> q~"~ hold for all n >1 1, the same ultimate outcome as (6.17) 
is realized. 

Finally, if for  some n, the relationships 

p~"~> p(2 n) and q~"~> q~"~ (6.18) 

or 

p~z"~>p] n~ and q~"~> q]") (6.19) 

take place then the results of  Case (1) apply noting that (6.19) emerges from (6.9) 
because we are again in Case (1) with alleles A2 and A1 interchanged.  The relevant 
global convergence holds, mutatis mutandis.  

Case (3). Suppose 

but  now 

p~O~ > p~O~ > . . .  > pT~ 

q~O~ > q~30) > q]0) > q?> > . . .  > q~>. (6.20) 

p~-"~0 for j~>4, p~"~/p~3")'~ and q~/q~3")>l. If  We deduce  as in Case (1), j 
lim,~p~2"~/p~3 ") is finite then q~"~/q~3"~ 1. These results are consistent only if 
lim,~o~ q~z")=lim,_.~ q~3"~=�89 and therefore  q ] " )~0  which compels  p~")~0. But 
then the ordering of  (6.20) cannot  be mainta ined for all n. 

Another  possibility has p~z")/p~3")'~ ~ or p~3")~ 0. If also ffl"(n)>n(n)u2 and q~"~> 
q~3 "~ > q]") are mainta ined for all n, then p~")/p~") $ a ~> 1 and q]"~/q~"~ -~ 1, implying 
as in Case (2) that l i m , ~  q~"~ = l i m , ~  q~"~ = �89 and therefore  q~3 ") ~ 0 which is a 
contradict ion.  

The foregoing arguments  establish that 

p(-) ~ ~c-~-.~ ,(,~ and q~2 ") t f t ,  z / 7 3  > q ~ " ~ > q l  ") (6.21) 

cannot  prevail for  all n. 
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The switch to 

p(z")> p~")> p~ ") and q(z")> q~")> q] "~ 
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p~) > p(3 ") > p~") and q]") > q~")> q~'), 
~ ( n ) ~ !  if maintained,  would compel p(f)~ 1 and u2 ~ 2 while the possibilities 

p~n) > p(f) > p~,) and rain (q(f), q~n)) > q~,) (6.23) 

for some n reduce directly to Case (1) or (2) by proper relabeling if necessary. 
We next examine the possibility 

p~") > p(f) > p(3 ~) and q(3 ~) > q(f) > q~">. (6.24) 

If  this persists for all n, we can argue that 

l imp]")  = lim p(2 ") = lim / /3"(") - -3-- !  and lim q(3 ") = lira q(f)= lim q]")= �89 (6.25) 
n--~ oo n ~ a o  r~ ---~ oo n ~ O O  n ~ O O  n --~oo 

But the central equilibrium representing equally alleles A~, A2, and A3 is totally 
repelling (see Sect. 6.1) and therefore the convergence (6.25) cannot occur. 
Therefore the realizations reduce to those of  Cases (1) or (2) modulo  a relabeling 
of  alleles. 

Case (4). The general case 

and (6.26) 

p73> p?3>.. .  > p~03 

q(kO) > q~O] > . . . >  q(kO) 

and (6.27) 

hold for all n ~> 0 we easily deduce that  

lim p~") = 1_, 
n ~ e o  r 

and 

where ki is a permutat ion of  { 1 , . . . ,  r} is analyzed by the same methods involving 
more arduous details. 

For example, in the extreme case, if 

p~"~>... > p?~ 

q(n)• . . ~ o ; n )  
[ 

I 
r ~ l r - - I  f 

i = l , 2 , . . . , r  

lim q~"~ - ! .  
n ~ e O  r 

But the central symmetric equilibrium point is totally repelling so that the outcome 
(6.28) is precluded. Thus the reverse ordering (6.27) cannot be maintained and a 
switch of  order occurs. 

(6.28) 

or (6.22) 
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We ult imately  secure either convergence  to 

~IF = {AkAk} for some k while  s~4  = {AkA~, l = 1, 2 . . . . .  k -  1, k + 1 , . . . ,  r} 

or for some pair i # j ,  

~F = {A~Ai, AjA~} and ~M = {A,Aj}. 
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