Ancestral recombination-selection graph and fixation probability

Sabin Lessard and Amir Kermany
Université de Montréal

IMS 2010 Gothenburg
9-13 August

Ancestral recombination-selection graph

and fixation probability

Application to the Hill-Robertson effect

Sabin Lessard and Amir Kermany
 Université de Montréal

IMS 2010 Gothenburg 9-13 August

Two-locus selection model

Two-locus selection model

Two-locus selection model

Two-locus selection model

Two-locus selection model

type	$\phi_{\phi} A$	$\phi_{b} A$	$\phi^{\bullet} a$	$\phi_{b} a$	
mortality	$1-s$	$1-c s$	$1-c s$	1	$0<c, s<1$
frequency	ε	0	$x-\varepsilon$	$1-x$	probability x
	0	ε	x	$1-x-\varepsilon$	probability $1-x$

Linkage disequilibrium

$$
D=x_{A B}-x_{A} x_{B}=(\varepsilon-\varepsilon x)(x)+(-\varepsilon x)(1-x)=0
$$

Linkage disequilibrium

$$
D=x_{A B}-x_{A} x_{B}=(\varepsilon-\varepsilon x)(x)+(-\varepsilon x)(1-x)=0
$$

Epistasis

positive $A B$ fitter than expected $(1-s)<(1-c s)^{2}$
negative $A B$ less fit than expected $(1-s)>(1-c s)^{2}$
absent $A B$ as fit as expected $(1-s)=(1-c s)^{2}$

Recombination

Recombination

Negative linkage disequilibrium $D<0$

Recombination

Negative linkage disequilibrium $D<0$

Negative epistasis
in an infinite population

Recombination

Negative linkage disequilibrium $D<0$

Negative epistasis
in an infinite population

Random drift in a finite population

Recombination makes more likely

the fixation of beneficial mutants

in finite populations

Moran model for population of size N

Moran model for population of size N

- At each time step, one offspring produced by two individuals at random

Moran model for population of size N

- At each time step, one offspring produced by two individuals at random
- Recombinant offspring with probability $r=\frac{\rho}{N}$

Moran model for population of size N

- At each time step, one offspring produced by two individuals at random
- Recombinant offspring with probability $r=\frac{\rho}{N}$
- One individual at random to be replaced by the offspring

Moran model for population of size N

- At each time step, one offspring produced by two individuals at random
- Recombinant offspring with probability $r=\frac{\rho}{N}$
- One individual at random to be replaced by the offspring
- Replacement in all cases with probability $1-s=1-\frac{\sigma}{N}$

Moran model for population of size N

- At each time step, one offspring produced by two individuals at random
- Recombinant offspring with probability $r=\frac{\rho}{N}$
- One individual at random to be replaced by the offspring
- Replacement in all cases with probability $1-s=1-\frac{\sigma}{N}$
- Type-specific replacement with probability $s=\frac{\sigma}{N}$

Moran model for population of size N

- At each time step, one offspring produced by two individuals at random
- Recombinant offspring with probability $r=\frac{\rho}{N}$
- One individual at random to be replaced by the offspring
- Replacement in all cases with probability $1-s=1-\frac{\sigma}{N}$
- Type-specific replacement with probability $s=\frac{\sigma}{N}$ and then with conditional probability

$$
\begin{cases}0 & \text { if } A B \\ 1-c & \text { if } A b \text { or } a B \\ 1 & \text { if } a b\end{cases}
$$

Ancestral recombination-selection graph (ARSG)

Ancestral recombination-selection graph (ARSG)

Backwards in time with $\frac{N^{2}}{2}$ time steps as unit of time as $N \rightarrow \infty$

coalescence C of each pair of lineages at rate 1 (Kingman 1982)

Ancestral recombination-selection graph (ARSG)

Backwards in time with $\frac{N^{2}}{2}$ time steps as unit of time as $N \rightarrow \infty$

coalescence C of each pair of lineages at rate 1 (Kingman 1982)

recombination R of each lineage at rate $\frac{\rho}{2}$
(Griffiths and Marjoram 1997) (Griffiths and Marjoram 1997)

Ancestral recombination-selection graph (ARSG)

Backwards in time with $\frac{N^{2}}{2}$ time steps as unit of time as $N \rightarrow \infty$

coalescence C of each pair of lineages at rate 1 (Kingman 1982)

recombination R of each lineage at rate $\frac{\rho}{2}$
(Griffiths and Marjoram 1997) (Griffiths and Marjoram 1997)

selection S of each lineage at rate $\frac{\sigma}{2}$ (Krone and Neuhauser 1997)

Probability of fixation of A

$$
x_{A}(0)+\sum_{\tau \geq 0} E\left[x_{A}(\tau+1)-x_{A}(\tau)\right]
$$

Probability of fixation of A

$$
x_{A}(0)+\sum_{\tau \geq 0} E\left[x_{A}(\tau+1)-x_{A}(\tau)\right]
$$

$$
x_{A}(0)+\frac{\sigma}{N^{2}} \sum_{\tau \geq 0} E\left[x_{A B}(\tau) x_{a b}(\tau)+c x_{A b}(\tau) x_{a b}(\tau)+(1-c) x_{A B}(\tau) x_{a B}(\tau)\right]
$$

Calculation

$$
\frac{2}{N^{2}} \sum_{\tau \geq 0} E\left[x_{A B}(\tau) x_{a b}(\tau)\right] \rightarrow \int_{0}^{\infty} E\left[x_{A B}(t) x_{a b}(t)\right] d t
$$

$E\left[x_{A B}(t) x_{a b}(t)\right]=P(A B$ and $a b$ in this order at time $t)$
where t is for time in units of $\frac{N^{2}}{2}$ time steps as $N \rightarrow \infty$

Calculation

$$
\frac{2}{N^{2}} \sum_{\tau \geq 0} E\left[x_{A B}(\tau) x_{a b}(\tau)\right] \rightarrow \int_{0}^{\infty} E\left[x_{A B}(t) x_{a b}(t)\right] d t
$$

$E\left[x_{A B}(t) x_{a b}(t)\right]=P(A B$ and $a b$ in this order at time $t)$
where t is for time in units of $\frac{N^{2}}{2}$ time steps as $N \rightarrow \infty$

$$
E\left(T_{2}\right) x_{A B}(0) x_{a b}(0)+
$$

$$
P\left(R_{2}\right) E\left(T_{3}\right) x_{A}(0) x_{B}(0) x_{a b}(0)+
$$

$$
(1-c) P\left(R_{2}\right) P\left(S_{3}\right) E\left(T_{4}\right) x_{A}(0) x_{B}(0) x_{a B}(0) x_{a b}(0)+
$$

$$
(1-c) P\left(R_{2}\right) P\left(S_{3}\right) P\left(C_{4}\right) E\left(T_{3}\right) x_{A}(0) x_{a B}(0) x_{a b}(0)+\cdots
$$

Result with positive epistasis $\left(c<\frac{1}{2}\right)$

$$
\begin{aligned}
P(A \text { fixation }) \approx \varepsilon & +\frac{\varepsilon \sigma}{2}(c+x(1-2 c)) \\
& +\frac{\varepsilon \sigma^{2}}{12}\left(c^{2}+x(1-2 c)(1+2 c(1-x))\right) \\
& -\frac{\varepsilon \sigma^{3}}{24} x(1-x)(c+x(1-2 c))
\end{aligned}
$$

Result with positive epistasis $\left(c<\frac{1}{2}\right)$

$$
\begin{aligned}
P(A \text { fixation }) \approx \varepsilon & +\frac{\varepsilon \sigma}{2}(c+x(1-2 c)) \\
& +\frac{\varepsilon \sigma^{2}}{12}\left(c^{2}+x(1-2 c)(1+2 c(1-x))\right) \\
& -\frac{\varepsilon \sigma^{3}}{24} x(1-x)(c+x(1-2 c)) \\
& +\frac{\varepsilon \rho \sigma^{2}}{432} x(1-x)(1-2 c)(3-c)
\end{aligned}
$$

positive term in ρ

Result with no epistasis ($c=\frac{1}{2}$)

$$
\begin{aligned}
P(A \text { fixation }) \approx \varepsilon & +\frac{\varepsilon \sigma}{4}+\frac{\varepsilon \sigma^{2}}{48}-\frac{\varepsilon \sigma^{3}}{192} x(1-x) \\
& -\frac{\varepsilon \sigma^{4}}{11520}\left(1+15 x-29 x^{2}+14 x^{3}\right)
\end{aligned}
$$

Result with no epistasis ($c=\frac{1}{2}$)

$$
\begin{aligned}
P(A \text { fixation }) \approx \varepsilon & +\frac{\varepsilon \sigma}{4}+\frac{\varepsilon \sigma^{2}}{48}-\frac{\varepsilon \sigma^{3}}{192} x(1-x) \\
& -\frac{\varepsilon \sigma^{4}}{11520}\left(1+15 x-29 x^{2}+14 x^{3}\right) \\
& +\frac{19 \varepsilon \rho \sigma^{3}}{3456} x(1-x)
\end{aligned}
$$

positive term in ρ

Final comments

- The analysis confirms the Hill-Robertson effect in favor of recombination in finite populations with positive or no epistasis

Final comments

- The analysis confirms the Hill-Robertson effect in favor of recombination in finite populations with positive or no epistasis
- The approach allows us to get approximations of any order with respect to σ and ρ, more easily in comparison with previous methods

Final comments

- The analysis confirms the Hill-Robertson effect in favor of recombination in finite populations with positive or no epistasis
- The approach allows us to get approximations of any order with respect to σ and ρ, more easily in comparison with previous methods
- branching processes (Barton 1995)
- perturbations around the deterministic trajectory (Barton, Otto 2005)
- perturbations around the neutral process (Lehman, Rousset 2009)

Final comments

- The analysis confirms the Hill-Robertson effect in favor of recombination in finite populations with positive or no epistasis
- The approach allows us to get approximations of any order with respect to σ and ρ, more easily in comparison with previous methods
- branching processes (Barton 1995)
- perturbations around the deterministic trajectory (Barton, Otto 2005)
- perturbations around the neutral process (Lehman, Rousset 2009)
- The results are valid for a wide class of models (exchangeable in the realm of the Kingman coalescent) and can be extended to other classes (e.g. lambda coalescent)

Final comments

- The analysis confirms the Hill-Robertson effect in favor of recombination in finite populations with positive or no epistasis
- The approach allows us to get approximations of any order with respect to σ and ρ, more easily in comparison with previous methods
- branching processes (Barton 1995)
- perturbations around the deterministic trajectory (Barton, Otto 2005)
- perturbations around the neutral process (Lehman, Rousset 2009)
- The results are valid for a wide class of models (exchangeable in the realm of the Kingman coalescent) and can be extended to other classes (e.g. lambda coalescent)
- The same approach can be used to study factors of evolution in multilocus models

Thanks!

$4 \equiv \Rightarrow$ 引 \ddagger の

