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Fundamental Theorem of Natural Selection

The rate of increase in fitness of any organism at any time is
equal to its genetic variance in fitness at that time. (Fisher
1930, p.35)

I Partial change in mean fitness
(Price 1972, Ewens 1989, Lessard 1997)

I Increase of mean fitness under weak selection
(Nagylaki 1976, 1977, 1987, 1989, 1993)
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Group selection

The average adaptiveness of the species thus advances under
intergroup selection, an enormously more effective process than
intragroup selection. (Wright 1932)

By all odds the most important cases of interdeme selection are
those in which the character that increases the probability of
survival of the deme as a unit is itself being selected against
within the population. (Lewontin 1965)
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Kin selection

Species ... should tend to evolve behaviour such that each
organism appears to be attempting to maximize its inclusive
fitness. (Hamilton 1964)

WJ = 1+∑
I

ρJ→IeJ→I

for some coefficient of relatedness ρJ→I
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Evolutionarily stable strategy

Roughly, an ESS is a strategy such that, if most of the members
of a population adopt it, there is no ”mutant” strategy that
would give higher reproductive fitness. (Maynard Smith and
Price 1973)

Stable state of the replicator dynamics (Taylor & Jonker 1978)

ẋk = xk((Hx)k−x ·Hx)

for a game matrix H = ‖hkl‖, and conversely if H symmetric.
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Evolutionary stability for finite populations

For finite N, we propose that B is an ESS ... if two conditions
hold: (1) selection opposes A invading B,... and (2) selection
opposes A replacing B. (Nowak et al. 2004)

P(fixation of single A among N genes) <
1
N
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Questions

• Does an inclusive fitness make sense in finite populations?

• What are the roles of inbreeding and group selection?

• What coefficients of relatedness come into play?

• What is the relationship with game dynamics?
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Population structure

D groups of N mating pairs of diploid individuals

L alleles A1, ...,AL at a single locus

zi(t) frequency of ordered group type (Ai,1, ...,Ai,4N)

in generation t ≥ 0 for i = 1, ...,L4N
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Life cycle

Reproduction: infinite number of offspring

Selection: viability of AkAl in a group of type i

wkl,i = 1+ σkl,i
4ND

with scaled selection coefficient σkl,i = hkl + v̄i
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Life cycle

Reproduction: infinite number of offspring

Selection: viability of AkAl in a group of type i

wkl,i = 1+ σkl,i
4ND

with scaled selection coefficient σkl,i = hkl + v̄i

20 Population structure 2-ième Congrès France-Québec UQAM 1-5 juin 2008



Life cycle

Reproduction: infinite number of offspring

Selection: viability of AkAl in a group of type i

wkl,i = 1+ σkl,i
4ND

with scaled selection coefficient σkl,i = hkl + v̄i

21 Population structure 2-ième Congrès France-Québec UQAM 1-5 juin 2008



Migration:

• Proportional dispersal
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• Local extinction and recolonization

&%
'$

w̄i

1−m

�
�

�
�

�
�3

m

Q
Q

Q
Q

Q
Qs

&%
'$w̄i

9

&%
'$

w̄i

25 Population structure 2-ième Congrès France-Québec UQAM 1-5 juin 2008



Mating: after migration or before migration

Mutation: from Ak to Al with probability

ukl = µkl
4ND

Sampling: group of type j from type i with probability

PD
ij (z(t))
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Key Lemma

When D = ∞, there is uniform convergence of the frequency

zj(t +1) = ∑i zi(t)Pij(z(t))

to

ẑj(x) = ∑r cj(r)xr1
1 · ... · xrL

L

with cj(r) the number of ways for a group of type j to have

rk unrelated ancestral genes Ak and xk the frequency of Ak.
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Proof: Coalescent approach
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Diffusion approximation

The allele frequency process X(b4NDτc) converges weakly
when D → ∞ to a diffusion with infinitesimal covariances

akl(x,0) = Cxk(δkl− xl)

for some coefficient of diffusion C, and infinitesimal means

bk(x,0) = ∑
l

µlkxl−∑
l

µklxk + xk((Hx)k−x ·Hx)

for some fitness matrix H.
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Proof: Two-time scale MC (Ethier and Nagylaki 1980)

Ez(∆Xk) =
bk(x,y)

4ND
+o(D−1)

Ez((∆Xk)(∆Xl)) =
akl(x,y)

4ND
+o(D−1)

Ez((∆Xk)4) = o(D−1)

Ez(∆Yj) = cj(x,y)+o(1),

Varz(∆Yj) = o(1)

uniformly in z, where y = z− ẑ and cj(x,y) = ∑i ziPij(z)− zj
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Inclusive fitness formulation

With proportional dispersal before mating:

H = ‖(1− fJ)σ•
kl + fJσ

••
kk ‖

where
σ
•
kl = hkl− (1−m)ρ•

J→Ihkl +mρ
•
J→Ivkl

σ
••
kk = hkk− (1−m)ρ••

J→Ihkk +mρ
••
J→Ivkk

with coefficients of relatedness ρ•
J→I and ρ••

J→I given

that J is allozygous or autozygous, respectively, and

inbreeding coefficient fJ
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• Uniform dispersal before mating: stronger group selection

(1−m)2 instead of (1−m)

• Proportional or uniform dispersal after mating: smaller size

C = (1− fJ +4m(2−m)fJ) instead of C = (1− fJ)

• Local extinction before mating: like proportional dispersal

but with larger C if and only if 4Nm > 1
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Concluding remarks

I A diffusion approximation for selection, mutation and drift
in group-structured populations as the number of groups
increases can be ascertained by a two-time scale argument.

I With interactions within groups, the selection drift
functions can be expressed in terms of scaled inclusive
fitnesses for allozygous and autozygous individuals, giving
the entries of an inclusive fitness matrix H.

I Competition within groups is the result of population
regulation; competition between groups the result of
dispersal or colonization. Inbreeding only affects the
coefficient of diffusion and the coefficients of relatedness.
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Concluding remarks

I A diffusion approximation for selection, mutation and drift
in group-structured populations as the number of groups
increases can be ascertained by a two-time scale argument.

I With interactions within groups, the selection drift
functions can be expressed in terms of scaled inclusive
fitnesses for allozygous and autozygous individuals, giving
the entries of an inclusive fitness matrix H.

I Competition within groups is the result of population
regulation; competition between groups the result of
dispersal or colonization. Inbreeding only affects the
coefficient of diffusion and the coefficients of relatedness.

41 Concluding remarks 2-ième Congrès France-Québec UQAM 1-5 juin 2008



Concluding remarks

I A diffusion approximation for selection, mutation and drift
in group-structured populations as the number of groups
increases can be ascertained by a two-time scale argument.

I With interactions within groups, the selection drift
functions can be expressed in terms of scaled inclusive
fitnesses for allozygous and autozygous individuals, giving
the entries of an inclusive fitness matrix H.

I Competition within groups is the result of population
regulation; competition between groups the result of
dispersal or colonization. Inbreeding only affects the
coefficient of diffusion and the coefficients of relatedness.

42 Concluding remarks 2-ième Congrès France-Québec UQAM 1-5 juin 2008
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I Without interaction or without inbreeding, H is symmetric
like in the classical viability model for a random mating
population (Kimura 1964). In general, H is a sum of a
symmetric matrix and a rank one matrix.

I In the case of an infinite number of groups with the inverse
of the intensity of selection s as unit of time as s → 0 and
without mutation, the deterministic dynamics is described
by the replicator equation with H as game matrix.

I The approach leads to sampling formulas and it can be used
to study the evolution of cooperation.
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THE END!
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Evolution of cooperation

I A diffusion approximation holds for any scaled selection
coefficients depending on the individual genotype and the
group type, e.g.,

σkl,i = (hkl,1−hkl) ·A(h̄i,1− h̄i)

with generalized conditional coefficients of relatedness
between two or more individuals.

I Is tit-for-tat replacing always to defect in the repeated
Prisoner’s dilemma (Nowak et al. 2004) made easier in
group-structured populations? (in preparation)

48 Further results 2-ième Congrès France-Québec UQAM 1-5 juin 2008
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Sampling formulas

I With groups of N haploid individuals dispersing at rate m,
the equilibrium frequencies when D = ∞ depend on

N!
k!∏

k
i=1 ni!

(
mN

1−m

)k

∑
(ri,t)

T

∏
t=1

[
(1−m)rtN[rt+1] ∏

k
i=1 Sri,tri,t+1

Nrt − (1−m)rtN[rt]

]

the probability for a focal group to have k labeled migrant
ancestors having n1, ..., nk descendants (Lessard 2007).

I This extends Ewens’s (1972) sampling formula for the
infinitely-many-alleles model to an exact Wright-Fisher
population!
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THANKS!
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