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Evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively
developed and successfully applied to explain the evolution of animal behavior, but also widely used in
economics and social sciences. Recently, in order to reveal the stochastic dynamical properties of evolutionary
games in randomly fluctuating environments, the concept of stochastic evolutionary stability based on conditions
for stochastic local stability for a fixation state was developed in the context of a symmetric matrix game with two
phenotypes and random payoffs in pairwise interactions [Zheng et al., Phys. Rev. E 96, 032414 (2017)]. In this
paper, we extend this study to more general situations, namely, multiphenotype symmetric as well as asymmetric
matrix games with random payoffs. Conditions for stochastic local stability and stochastic evolutionary stability
are established. Conditions for a fixation state to be stochastically unstable and almost everywhere stochastically
unstable are distinguished in a multiphenotype setting according to the initial population state. Our results
provide some alternative perspective and a more general theoretical framework for a better understanding of
the evolution of animal behavior in a stochastic environment.
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I. INTRODUCTION

Forty years ago, Maynard Smith’s Evolution and the The-
ory of Games was published [1]. This monograph provided a
fundamental theoretical framework, called evolutionary game
theory, for understanding the evolution of animal behavior
(see also [2]). Since then, this theory has been very suc-
cessful not only in biology but also in economics and social
sciences [2,3].

Evolutionary game theory started with the concept of
evolutionarily stable strategy (ESS) introduced by Maynard
Smith and Price [4]. This concept has become one of the
principal tools for analyzing the evolutionary dynamics in
biological populations. Let us recall that an ESS is defined as a
strategy such that, if all the members of a population adopt it,
then no mutant strategy can successfully invade the population
under the effect of natural selection [1,5]. This concept can
explain the evolutionary stability of animal behaviors.

In the context of symmetric pairwise interactions, for in-
stance, let E (x, y) denote the payoff to strategy x against
strategy y. Then a strategy x is an ESS if (i) the payoff to
x against itself is larger or equal to the payoff to any other
strategy y against x, that is, E (x, x) � E (y, x) for any y �= x,
and (ii) the payoff to x against y exceeds the payoff to y
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against itself in the case of an equality in (i), that is, E (x, y) >

E (y, y) if E (x, x) = E (y, x) [1,2]. It can be shown that these
conditions are necessary and sufficient for the expected payoff
to x to exceed the expected payoff to y in an infinite population
of individuals using either x or y if the frequency of y is small
enough and pairwise interactions occur at random.

On the other hand, in the context of asymmetric pairwise
interactions (where the interacting individuals are distin-
guished by their positions, I and II; these could be, for
instance, the male or female functions) [1,2], let û and u
denote two strategies in position I, and v̂ and v two strategies
in position II. Then the strategy pair (û, v̂) is said to be a
Nash equilibrium (NE) if û is a best reply to v̂, while v̂ a
best reply to û, that is, E (u, v̂) � E (û, v̂) for any u �= û and
E (v, û) � E (v̂, û) for any v �= v̂ [2]. Moreover, the strategy
pair (û, v̂) is said to be a strict NE if E (u, v̂) < E (û, v̂) for
any u �= û and E (v, û) < E (v̂, û) for any v �= v̂ [2,6].

It is also known that the evolutionary game dynamics in
an infinite population is described by the replicator equation
[1,2,7]. For the symmetric matrix game with n possible pure
strategies S1, . . . , Sn and random pairwise interactions, the
replicator equation is given by ẋi = xi((Ax)i − x · Ax) for i =
1, 2, . . . , n, where x = (x1, x2, . . . , xn) is a strategy frequency
vector that represents the population state. Here xi is the
frequency of strategy Si for i = 1, 2, . . . , n with

∑n
i=1 xi = 1,

and A = (ai j )n×n is the payoff matrix, with ai j being the pay-
off to strategy Si against strategy S j for i, j = 1, 2, . . . , n [2].
Therefore, the term (Ax)i = ∑n

j=1 x jai j is the expected payoff
to strategy Si for i = 1, 2, . . . , n, while the term x · Ax =∑n

i, j=1 xix jai j is the mean payoff in the population. The most
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important property of the replicator equation is that if x̂ =
(x̂1, x̂2, . . . , x̂n) is an ESS, then it must be an asymptotically
stable equilibrium of the replicator equation [2].

In a similar way, the dynamics of an asymmetric ma-
trix game in an infinite population with m pure strategies
U1, . . . ,Um in position I and n pure strategies V1, . . . ,Vn

in position II in random pairwise interactions is de-
scribed by u̇i = ui((Bv)i − u · Bv) and v̇ j = v j ((Cu) j − v ·
Cu) for i = 1, 2, . . . , m and j = 1, 2, . . . , n, where (i) u =
(u1, u2, . . . , um) with ui being the frequency of strategy Ui

in position I, and v = (v1, v2, . . . , vn) with v j being the fre-
quency of strategy Vj in position II; (ii) B = (bi j )m×n with bi j

being the payoff to strategy Ui in position I against strategy Vj

in position II, while C = (c ji )n×m with c ji being the payoff to
strategy Vj in position II against strategy Ui in position I; and
(iii) (Bv)i and (Cu) j are the expected payoffs to strategies
Ui and Vj in positions I and II, respectively, while u · Bv and
v · Cu are the mean payoffs of individuals in positions I and
II, respectively [2]. As for the stability of equilibrium states in
an asymmetric matrix game, it has been shown that an interior
equilibrium cannot be asymptotically stable, while a fixation
state is asymptotically stable if and only if it is a strict NE
[2,8] (it is necessary to point out that a strict NE is also called
an ESS by some authors [8,9]).

One key assumption in the classical matrix games is that
the payoff matrices are constant, and this supposes that the
environmental conditions do not change over time. How-
ever, as pointed out in Zheng et al. [10,11], the surrounding
environment of a population is actually subject to stochas-
tic fluctuations, and these in turn entail fluctuations in the
occurrence of interactions between individuals and, more im-
portantly, fluctuations in the payoffs received by interacting
individuals. The importance of the effects of environmental
random noise on population and community ecology has been
stressed by many authors [12–19]. May [12], for instance,
pointed out that, since real environments stochastically vary
over time, the birth rates, carrying capacities, competition
coefficients, and other parameters which characterize natural
biological systems all to a greater or lesser degree exhibit
random fluctuations, and that these must be taken into account
in studying biological evolution. Therefore, in evolutionary
matrix games, unless stochastic fluctuations of environmental
conditions are so small that their effects can be neglected,
there is no priori reason to assume that the payoff matrices are
constant. But, then, how can we extend evolutionary stability
concepts to evolutionary games with random payoff matri-
ces? By analogy with an ESS in a constant environment, a
strategy in a random environment could be said stochastically
evolutionarily stable (SES) if this strategy is probabilisti-
cally favored by selection once fixed in the population. The
impact of payoff fluctuations on evolutionary game dynam-
ics has already been considered in some previous studies
[20–23]. For instance, Stollmeier and Nagler [23] divided pay-
off fluctuations into two types, namely, deterministic periodic
fluctuations and stochastic fluctuations, and then investigated
the long-term behavior of a two-phenotype evolutionary game
dynamics using the concept of geometric mean payoff (or
fitness) and numerical simulations.

Recently, Zheng et al. [10,11] investigated a two-
phenotype evolutionary game in an infinite population with

discrete, nonoverlapping, generations, in which the payoffs in
random pairwise interactions over succession generations are
independent identically distributed random variables. Based
on the concept of stochastic local stability (SLS), which was
introduced in a population genetics framework by Karlin and
Liberman [24–26], the concepts of stochastic evolutionary
stability (SES) as described above and stochastic convergence
stability (SCS) about the direction of evolution were devel-
oped [10]. These concepts allow us to better understand the
effects of a random environment on evolutionary outcomes
and, in particular, to study conditions on the variances of
the payoffs that could favor the evolution of cooperation.
Note that the evolutionary game dynamics with fluctuations in
payoffs in a finite population has also aroused some research
interest [27–30]. In particular, Li and Lessard [30] analyzed
thoroughly the stochastic dynamics of a two-phenotype evo-
lutionary game with a random payoff matrix in a finite
population.

In this study, our goal is to extend the results on evolution-
ary stability in Zheng et al. [10] to more general situations,
namely, symmetric as well as asymmetric matrix games with
multiple phenotypes under the effects of random payoffs.

II. SYMMETRIC MATRIX GAME WITH RANDOM
PAYOFFS

We first consider a symmetric evolutionary game in an
infinite population with discrete, nonoverlapping generations
and with n phenotypes (or pure strategies), denoted by
S1, S2, . . . , Sn. As in Zheng et al. [10], the payoffs in pairwise
interactions at time step t � 0 are given by the game matrix

A(t ) = (ai j (t ))n×n =

⎛
⎜⎜⎝

a11(t ) a12(t ) . . . a1n(t )
a21(t ) a22(t ) . . . a2n(t )

...
...

. . .
...

an1(t ) an2(t ) . . . ann(t )

⎞
⎟⎟⎠, (1)

where ai j (t ) is the payoff to strategy Si against strategy
S j for i, j = 1, 2, . . . , n. These payoffs are assumed to be
positive random variables that are uniformly bounded be-
low and above by some positive constants. Therefore, there
exist real numbers B > A > 0 such that A � ai j (t ) � B for
i, j = 1, 2, . . . , n and t � 0. Moreover, the probability dis-
tributions of ai j (t ) for i, j = 1, 2, . . . , n do not depend on
t � 0. The means, variances, and covariances of these ran-

dom payoffs are denoted by 〈ai j (t )〉 = āi j , 〈(ai j (t ) − āi j )
2〉 =

σ 2
i j for i, j = 1, 2, . . . , n, and 〈(ai j (t ) − āi j )(akl (t ) − ākl )〉 =

σi j,kl for i, j, k, l = 1, 2, . . . , n with (i, j) �= (k, l ). As for s �=
t , the payoffs ai j (s) and akl (t ) are assumed to be independent

of each other such that 〈(ai j (s) − āi j )(akl (t ) − ākl )〉 = 0 for
i, j, k, l = 1, 2, . . . , n. A further assumption is that the vari-
ances σ 2

i j for i, j = 1, 2, . . . , n are small.
Let xi,t be the frequency of strategy Si at time step

t � 0 for i = 1, 2, . . . , n with
∑n

i=1 xi,t = 1. Assuming ran-
dom pairwise interactions, the expected payoff to strategy
Si at time step t � 0, denoted by πi,t , is given by πi,t =∑n

j=1 x j,t ai j (t ) = (A(t )xt )i for i = 1, 2, . . . , n, where xt =
(x1,t , x2,t , . . . , xn,t ) denotes the population state at time step
t � 0 [2]. This is a strategy frequency vector that be-
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longs to the simplex �n = {p = (p1, p2, . . . , pn): pi � 0, i =
1, 2, . . . , n,

∑n
i=1 pi = 1}. Then, the mean payoff in the

population at time step t � 0, denoted by π̄t , is π̄t =∑n
i=1 xi,tπi,t = xt · A(t )xt [2]. Finally, the frequency of strat-

egy Si at time step t + 1 is given by the recurrence equation

xi,t+1 = xi,tπi,t

π̄t
= xi,t

(
A(t )xt

)
i

xt · A(t )xt
(2)

for i = 1, 2, . . . , n [2,10]. If the payoff matrix is a constant
matrix, this equation is a deterministic recurrence equa-
tion which is a discrete-time version of the continuous-time
replicator equation as shown by Hofbauer and Sigmund
[2]. The two equations are related by a time change. Note,
however, that the stochastic replicator equation has extra
terms [20,31].

A. Stochastic local stability in a symmetric matrix game

We are interested in the asymptotic (or long-run) behavior
of the process {xt } for t � 0, and, therefore, we look at its
equilibrium structure. Let x̂ represent a constant (nonrandom)
equilibrium of this process, that is, an equilibrium of Eq. (2)
that does not depend on the randomness of the payoff matrix
A(t ). This is clearly the case for each of the vertices in the
simplex �n, that is, ei with 1 in the ith entry and 0 elsewhere
for i = 1, 2, . . . , n. These are called the fixation states. They
are on the boundary of the simplex �n. We may also have a
constant polymorphic equilibrium x̂ = (x̂1, x̂2, . . . , x̂n) (with
at least two x̂i such that 0 < x̂i < 1) that may correspond to
an interior point of �n (if all x̂i are such that 0 < x̂i < 1) or
a point on the boundary of �n (if at least two x̂i are such that
0 < x̂i < 1 but at least one x̂ j = 0). However, the existence
of a constant polymorphic equilibrium strongly depends on
the structure of the random payoff matrix A(t ), which must
be very peculiar. In this paper, we focus our attention on the
stochastic stability of the fixation states.

Following Karlin and Liberman [24–26] (see also Zheng
et al. [10]), a constant equilibrium x̂ is said to be stochastically
locally stable (SLS) if for any ε > 0 there exists δ0 such that
P (xt → x̂) � 1 − ε as soon as |x0 − x̂| < δ0 where | · | de-
notes the Euclidian norm or any equivalent norm. This means
that xt tends to x̂ as t → ∞ with probability arbitrarily close
to 1 (but different from 1) if the initial state x0 is sufficiently
near x̂. Note, however, that no matter how close x0 is to x̂ (but

different from x̂), it is not ascertained that xt will converge
to x̂. Stochastic fluctuations could cause xt to depart sharply
from x̂, but this will occur with small probability if x0 is close
enough to x̂ and x̂ is SLS.

On the other hand, a constant equilibrium x̂ is said to
be stochastically unstable (SU) if P (xt → x̂) = 0 as soon
as |x0 − x̂| > 0 [24,25]. This means that, if x̂ is SU, then x̂
cannot be reached with probability 1 from any initial state
different from x̂.

More generally, we will say that a constant equilibrium x̂
is almost everywhere stochastically unstable (a.e. SU) if the
condition P (xt → x̂) = 0 holds for almost every initial state
x0. For a fixation state ei for i = 1, 2, . . . , n, for instance, it
suffices to have the condition for x0 = (x1,0, x2,0, . . . , xn,0)
with x j,0 > 0 for all j �= i.

We first consider the stochastic local stability of the fix-
ation state corresponding to the vertex e1 with 1 in the first
entry and 0 in all the others. Note that x1,t = 1 − ∑n

j=2 x j,t at
any time step t � 0. Then the expected payoff to Si at time
step t � 0 can be rewritten as

πi,t = ai1(t )+
n∑

j=2

x j,t (ai j (t ) − ai1(t )) for i = 1, 2, . . . , n,

(3)

and, similarly, the mean payoff in the population at the same
time step as

π̄t = π1,t +
n∑

j=2

x j,t (π j,t − π1,t )

= a11(t ) +
n∑

j=2

x j,t (a1 j (t ) − a11(t )) +
n∑

j=2

x j,t (π j,t − π1,t ).

(4)

Therefore, for i = 2, 3, . . . , n and every time step T � 1,
Eq. (2) yields

xi,T = xi,0

T −1∏
t=0

(
ai1(t )

a11(t )

)
Qi,t , (5)

where

Qi,t = 1 + ∑n
j=2 x j,t (ai j (t ) − ai1(t ))/ai1(t )

1 + [∑n
j=2 x j,t (a1 j (t ) − a11(t )) + ∑n

j=2 x j,t (π j,t − π1,t )
]
/a11(t )

. (6)

Assuming xi,0 > 0, this leads to

lim
T →∞

1

T
log

(
xi,T

xi,0

)
= lim

T →∞
1

T

T −1∑
t=0

log

(
ai1(t )

a11(t )

)
+ lim

T →∞
1

T

T −1∑
t=0

log Qi,t , (7)

where log Qi,t → 0 as xt → e1. This is the case since all ai j (t ) for i, j = 1, 2, . . . , n are assumed to be uniformly bounded below
and above by positive constants. It can be shown by the strong law of large numbers and Egorov’s theorem that the vertex e1 is
SLS if 〈

log

(
ai1(t )

a11(t )

)〉
= 〈log ai1(t )〉 − 〈log a11(t )〉 < 0 for i = 2, 3, . . . , n. (8)
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On the other hand, e1 is a.e. SU if at least one of the above
inequalities is reversed, and SU if they are all reversed. (The
detailed mathematical proof of these claims is given in the
Appendix.)

Furthermore, let us assume that the random payoffs are
close enough to their means so that Taylor’s theorem leads
to the approximations

〈log ai j (t )〉 ≈ log āi j − σ 2
i j

2ā2
i j

for i, j = 1, 2, . . . , n. (9)

Thus, the conditions in Eq. (8) for the vertex e1 to be SLS
reduce to

log
( ā11

āi1

)
>

1

2

[
σ 2

11

ā2
11

− σ 2
i1

ā2
i1

]
for i = 2, 3, . . . , n. (10)

If at least one of the inequalities is reversed, then the vertex e1

is a.e. SU, while it is SU if they are all reversed. Therefore, the
conditions for the vertex e1 to be SLS become less stringent
as σ 2

i1 increases and more stringent as σ 2
11 decreases for i =

2, 3, . . . , n.
More generally, under the same assumptions, the vertex ek

is SLS if

log
( ākk

āik

)
>

1

2

[
σ 2

kk

ā2
kk

− σ 2
ik

ā2
ik

]
for i = 1, 2, . . . , n but i �= k,

(11)

a.e. SU if at least one of the inequalities is reversed, and SU if
they are all reversed. For n = 2, the vertex e1 = (1, 0) is SLS
if 2 log (ā11/ā21) > σ 2

11/ā2
11 − σ 2

21/ā2
21; and the vertex e2 =

(0, 1) is SLS if 2 log (ā22/ā12) > σ 2
22/ā2

22 − σ 2
12/ā2

12 [10].
As an example, we consider a three-phenotype evolution-

ary game with the random payoff matrix

A(t ) =
⎛
⎝a11(t ) a31(t ) a21(t )

a21(t ) a11(t ) a31(t )
a31(t ) a21(t ) a11(t )

⎞
⎠, (12)

where, at any time step t � 0, a11(t ) = 1.9 and 2.1 with
the same probability 0.5 such that ā11 = 2 and σ 2

a11
= 0.01;

a31(t ) = 1.4 and 1.6 with the same probability 0.5 such
that ā31 = 1.5 and σ 2

a31
= 0.01; and the mean of a21(t ) is

taken as ā21 = 3. Here we will show how the size of the
variance of a21(t ), σ 2

a21
, affects the stochastic stability of the

system. It is easy to see that (1/3, 1/3, 1/3) is a constant
interior equilibrium of the system, that is, it is independent
of the randomness of the payoffs. It is also easy to see
that the mean payoff matrix of A(t ), denoted by Ā, exactly
corresponds to a rock-scissors-paper game [2]. From the
above theoretical analysis, we can see that the vertex ek

(k = 1, 2, 3) is SLS if log (ā11/ā21) > 1
2 [σ 2

a11
/ā2

11 − σ 2
a21

/ā2
21]

and log (ā11/ā31) > 1
2 [σ 2

a11
/ā2

11 − σ 2
a31

/ā2
31], that is,

log (2/3) > 1
2 [0.01/4 − σ 2

a21
/9] and log (2/1.5) >

1
2 [0.01/4 − 0.01/2.25]. More specifically, the vertex ek

(k = 1, 2, 3) will lose its stability if σ 2
a21

< 7.32. Moreover,
the stochastic local stability analysis of the constant interior
equilibrium (1/3, 1/3, 1/3) is beyond the scope of this study,
but it is similar to the one in Zheng et al. [10]. The simulation
results are shown in Fig. 1, where we take a21(t ) = 2.9 and

0

0.5

1

0

0.5

1

0

0.5

1
x1
x2

0 50 100 150 200 250 300

(a)

(b)

(c)

time

FIG. 1. Simulation results for the three-phenotype stochastic
evolutionary game with the random payoff matrix given in Eq. (12).
Here x1,t and x2,t denote the frequencies of strategies S1 and S2,
respectively, at time step t � 0 (so that the frequency of strategy S3

is 1 − x1,t − x2,t ). In panels (a), (b), and (c), the solid red and dashed
blue curves represent the time evolution of x1,t and x2,t , respectively,
where the initial state is taken as (x1,0, x2,0 ) = (0.2, 0.7). (a) Taking
a21(t ) = 2.9 and 3.1 with the same probability 0.5 such that σ 2

a21
=

0.01, the time evolution (x1,t , x2,t ) converges to (1/3, 1/3). (b) Tak-
ing a21(t ) = 1.5 and 4.5 with the same probability 0.5 such that
σ 2

a21
= 2.25, the time evolution of (x1,t , x2,t ) periodically oscillates

around (1/3, 1/3). (c) Taking a21(t ) = 0.2 and 5.8 with the same
probability 0.5 such that σ 2

a21
= 7.84, the time evolution of (x1,t , x2,t )

converges to (1,0).

3.1 with the same probability 0.5 such that σ 2
a21

= 0.01 in
Fig. 1(a), a21(t ) = 1.5 and 4.5 with the same probability
0.5 such that σ 2

a21
= 2.25 in Fig. 1(b), and a21(t ) = 0.2 and

5.8 with the same probability 0.5 such that σ 2
a21

= 7.84 in
Fig. 1(c). We can see that the simulation results are consistent
with the theoretical predictions.

Note that, in the degenerate case where aik (t ) = akk (t ) for
all t � 0 for some i �= k, the conditions in Eq. (11) cannot be
used to determine the stochastic local stability of ek . As an
example, consider the case n = 2 with a11(t ) = a21(t ) for all
t � 0. Defining vt = x1,t/x2,t for t � 0, we have

vt+1 = vt

(
vt a11(t ) + a12(t )

vt a21(t ) + a22(t )

)
, (13)

from which

vt+1 − vt = a12(t )

a11(t )
− a22(t )

a11(t )
− a22(t )[a12(t ) − a22(t )]

a21(t )[vt a11(t ) + a22(t )]
.

(14)

Therefore, we get

lim
T →∞

1

T
(vT − v0) = lim

T →∞
1

T

T −1∑
t=0

(
a12(t )

a11(t )
− a22(t )

a11(t )

)

− lim
T →∞

1

T

T −1∑
t=0

a22(t )[a12(t ) − a22(t )]

(a21(t )[vt a11(t ) + a22(t )]
,

(15)
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where
a22(t )(a12(t ) − a22(t ))

(a21(t )[vt a11(t ) + a22(t )])
→ 0 (16)

as xt = (x1,t , x2,t ) → (1, 0) = e1, that is, vt → ∞. Using the
strong law of large numbers and Egorov’s theorem, it can be
shown that the vertex e1 is SLS if〈

a12(t )

a11(t )
− a22(t )

a11(t )

〉
=

〈
a12(t )

a11(t )

〉
−

〈
a22(t )

a11(t )

〉
> 0, (17)

and a.e. SU (actually SU) if the inequality is reversed
(the mathematical proof is similar to one presented in
Zheng et al. [10]).

Developing the random payoffs around their means and
using the approximations〈

a12(t )

a11(t )

〉
≈ ā12

ā11
+ ā12σ

2
11

ā3
11

− σ11,12

ā2
11

(18)

and 〈
a22(t )

a11(t )

〉
≈ ā22

ā11
+ ā22σ

2
11

ā3
11

− σ11,22

ā2
11

, (19)

the above condition for e1 to be SLS reduces to

ā12 − ā22

ā11
>

σ11,12 − σ11,22

ā2
11 + σ 2

11

. (20)

If the inequality is reversed, then e1 is a.e. SU (actually SU).

B. Stochastic evolutionary stability in a symmetric matrix game

We now extend the standard concept of an evolutionarily
stable strategy (ESS) in a constant environment to a vari-
able environment. A stochastically evolutionarily stable (SES)
strategy is defined as a strategy such that, if all the mem-
bers of the population adopt it, then the probability for at
least any slightly perturbed strategy to invade the population
as a result of selection is arbitrarily low [10]. More specif-
ically, a mixed strategy represented by a frequency vector
x̂ = (x̂1, x̂2, . . . , x̂n) ∈ �n is a SES strategy if the fixation of
x̂ is SLS against any other strategy x = (x1, x2, . . . , xn) ∈ �n

with x �= x̂ close enough to x̂ [10].
Assuming payoffs for n pure strategies in pairwise interac-

tions given by the random matrix A(t ) at time step t � 0, the
expected payoffs for two mixed strategies x̂ and x in pairwise
interactions at the same time step are given by the game matrix(

x̂ · A(t )x̂ x̂ · A(t )x
x · A(t )x̂ x · A(t )x

)
. (21)

Here x̂ · A(t )x̂ [or x̂ · A(t )x] is the expected payoff to strategy
x̂ against strategy x̂ (or strategy x), and x · A(t )x̂ [or x · A(t )x]
is the expected payoff to strategy x against strategy x̂ (or
strategy x). According to the conditions for the vertices of the
simplex �n to be SLS using approximations based on means,
variances, and covariances of payoffs [see Eq. (10)], the mixed
strategy x̂ is SES if

log

(
x̂ · Āx̂
x · Āx̂

)
>

1

2

[
σ 2

x̂·A(t )x̂

(x̂ · Āx̂)2
− σ 2

x·A(t )x̂

(x · Āx̂)2

]
(22)

for x �= x̂ close enough to x̂. Here (i) Ā denotes the mean
of the random payoff matrix A(t ) = (ai j (t ))n×n, that is, Ā =

(āi j )n×n; (ii) x̂ · Āx̂ and x · Āx̂ are the means of the random
variables x̂ · A(t )x̂ and x · A(t )x̂, respectively; and (iii) σ 2

x̂·A(t )x̂

and σ 2
x·A(t )x̂ are the variances of the random variables x̂ · A(t )x̂

and x · A(t )x̂, respectively. These can be expressed as

σ 2
x̂·A(t )x̂ = 〈(x̂ · A(t )x̂ − x̂ · Āx̂)2〉 (23)

and

σ 2
x·A(t )x̂ = 〈(x · A(t )x̂ − x · Āx̂)2〉. (24)

In the case n = 2, for instance, x̂ = (1, 0) is SLS against
x = (x, 1 − x) �= x̂ close enough to x̂ if

log

(
ā11

xā11 + (1 − x)ā21

)

>
1

2

[
σ 2

11

ā2
11

− x2σ 2
11 + 2x(1 − x)σ11,21 + (1 − x)2σ 2

21

(xā11 + (1 − x)ā21)2

]
, (25)

that is,

ā2
11(ā11 − ā21) > ā21σ

2
11 − ā11σ11,21, (26)

as shown in Zheng et al. [10]. This is the condition for x̂ =
(1, 0) to be SES.

III. ASYMMETRIC MATRIX GAME WITH RANDOM
PAYOFFS

We now consider an asymmetric matrix game, also known
as a bimatrix game [1,2,32]. In pairwise interactions, players
are in one of two possible positions, I or II. In position I, there
are m phenotypes (or pure strategies), denoted by Ui for i =
1, 2, . . . , m; and in position II, n phenotypes, denoted by Vj

for j = 1, 2, . . . , n. At time step t � 0, the payoffs to players
in position I against players in position II are given by the
game matrix

B(t ) = (bi j (t ))m×n =

⎛
⎜⎜⎝

b11(t ) b12(t ) . . . b1n(t )
b21(t ) b22(t ) . . . b2n(t )

...
...

. . .
...

bm1(t ) bm2(t ) . . . bmn(t )

⎞
⎟⎟⎠,

(27)

where bi j (t ) is the payoff to strategy Ui against strategy Vj

for i = 1, 2, . . . , m and j = 1, 2, . . . , n; and the payoffs to
players in position II against players in position I by

C(t ) = (c ji(t ))n×m =

⎛
⎜⎜⎝

c11(t ) c12(t ) . . . c1m(t )
c21(t ) c22(t ) . . . c2m(t )

...
...

. . .
...

cn1(t ) cn2(t ) . . . cnm(t )

⎞
⎟⎟⎠,

(28)

where c ji(t ) is the payoff to Vj against Ui for j = 1, 2, . . . , n
and i = 1, 2, . . . , m. We assume that the payoffs are pos-
itive random variables that uniformly bounded below and
above by two positive constants, that is, there exist real
numbers A, B > 0 such that A � bi j (t ), c ji(t ) � B for i =
1, 2, . . . , m and j = 1, 2, . . . , n. The probability distributions
of the payoffs do not depend on t � 0. The means, variances,
and covariances of bi j (t ) for i = 1, 2, . . . , m, j = 1, 2, . . . , n

and t � 0 are given by 〈bi j (t )〉 = b̄i j , 〈(bi j (t ) − b̄i j )
2〉 = σ 2

bi j
,
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〈(bi j (t ) − b̄i j )(bkl (t ) − b̄kl )〉 = σbi j ,bkl , for all i, k, j, l with

(i, j) �= (k, l ), while 〈(bi j (s) − b̄i j )(bkl (t ) − b̄kl )〉 = 0 for all
i, k, j, l and s �= t , since payoffs at different time steps are
assumed to be independent, and similarly for c ji(t ). Moreover,
bi j (t ) and clk (s) are independent of each other for all i, k, j, l
and t, s � 0. Another assumption is that all variances are
small.

At time step t � 0, the frequencies of strategy Ui in po-
sition I and strategy Vj in position II are denoted by ui,t

and v j,t , respectively, for i = 1, 2, . . . , m and j = 1, 2, . . . , n
with

∑m
i=1 ui,t = 1 and

∑n
j=1 v j,t = 1, respectively. Assuming

random pairwise interactions, the expected payoffs to Ui and
Vj are given by

φi,t = (B(t )vt )i =
n∑

j=1

v j,t bi j (t ) for i = 1, 2, . . . , m,

(29a)

ψ j,t = (C(t )ut ) j =
m∑

i=1

ui,t c ji(t ) for j = 1, 2, . . . , n,

(29b)

respectively, where ut = (u1,t , u2,t , . . . , um,t ) ∈ �m and vt =
(v1,t , v2,t , . . . , vn,t ) ∈ �n are frequency vectors that describe
the current population state. The corresponding mean payoffs
in positions I and II take the form

φ̄t = ut · B(t )vt =
m∑

i=1

ui,tφi,t , (30a)

ψ̄t = vt · C(t )ut =
n∑

j=1

v j,tψ j,t , (30b)

respectively [2]. As a result, the frequencies of strategies Ui

and Vj at time step t + 1 are given by

ui,t+1 = ui,t (B(t )vt )i

ut · B(t )vt
for i = 1, 2, . . . , m, (31a)

v j,t+1 = v j,t (C(t )ut ) j

vt · C(t )ut
for j = 1, 2, . . . , n, (31b)

respectively [2].

A. Stochastic local stability in an asymmetric matrix game

Let (û, v̂) ∈ �m × �n represent a constant equilibrium
of the process {ut , vt } for t � 0, that is, an equilibrium of
Eq. (31) that does not depend on the randomness of the payoff
matrices B(t ) and C(t ). This is clearly the case for each of the
points (e′

i, e′′
j ) for i = 1, 2, . . . , m and j = 1, 2, . . . , n, where

e′
i denotes a vertex in the simplex �m and e′′

j a vertex in the
simplex �n. These are fixation states or boundary equilibria of
Eq. (31). We will focus on the stochastic local stability (SLS)
of these boundary equilibria.

According to the definitions introduced in the previ-
ous sections, a constant equilibrium (û, v̂) of Eq. (31) is
SLS if for any ε > 0 there exist δ′

0 > 0 and δ′′
0 > 0 such

that P ((ut , vt ) → (û, v̂)) � 1 − ε as soon as |u0 − û| < δ′
0

and |v0 − v̂| < δ′′
0 . On the other hand, (û, v̂) is a.e. SU if

P ((ut , vt ) → (û, v̂)) = 0 as soon as |u0 − û| > 0 or |v0 −
v̂| > 0 and SU if |u0 − û| > 0 and |v0 − v̂| > 0.

Without loss of generality, we consider here only the
stochastic local stability of the fixation state (e′

1, e′′
1 ). Note

that u1,t = 1 − ∑m
i=2 ui,t and v1,t = 1 − ∑n

j=2 v j,t . Then the
expected payoffs to Ui and Vj can be reexpressed as

φi,t = bi1(t )+
n∑

j=2

v j,t (bi j (t ) − bi1(t )) for i = 1, 2, . . . , m,

(32a)

ψ j,t = c j1(t )+
m∑

i=2

ui,t (c ji(t ) − c j1(t )) for j = 1, 2, . . . , n,

(32b)

respectively, and the mean payoffs in positions I and II as

φ̄t = φ1,t +
m∑

i=2

ui,t (φi,t − φ1,t )

= b11(t ) +
n∑

j=2

v j,t (b1 j (t ) − b11(t )) +
m∑

i=2

ui,t (φi,t − φ1,t ),

(33a)

ψ̄t = ψ1,t +
n∑

j=2

v j,t (ψ j,t − ψ1,t )

= c11(t ) +
m∑

i=2

ui,t (c1i(t ) − c11(t )) +
n∑

j=2

v j,t (ψ j,t − ψ1,t ),

(33b)

respectively. Therefore, iterating Eq. (31) leads to

ui,T = ui,0

T −1∏
t=0

bi1(t )

b11(t )
Gi,t for i = 2, 3, . . . , m, (34a)

v j,T = v j,0

T −1∏
t=0

c j1(t )

c11(t )
Hj,t for j = 2, 3, . . . , n, (34b)

where

Gi,t = 1 + ∑n
j=2 v j,t (bi j (t ) − bi1(t ))

/
bi1(t )

1 + [ ∑n
j=2 v j,t (b1 j (t ) − b11(t )) + ∑m

i=2 ui,t (φi,t − φ1,t )
]/

b11(t )
, (35a)

Hj,t = 1 + ∑m
i=2 ui,t (c ji(t ) − c j1(t ))

/
c j1(t )

1 + [ ∑m
i=2 ui,t (c1i(t ) − c11(t )) + ∑n

j=2 v j,t (ψ j,t − ψ1,t )
]/

c11(t )
, (35b)
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respectively. Thus, for i = 2, 3, . . . , m and j = 2, 3, . . . , n, we have

lim
T →∞

1

T
log

(
ui,T

ui,0

)
= lim

T →∞
1

T

T −1∑
t=0

log

(
bi1(t )

b11(t )

)
+ lim

T →∞
1

T

T −1∑
t=0

log Gi,t , (36a)

lim
T →∞

1

T
log

(
v j,T

v j,0

)
= lim

T →∞
1

T

T −1∑
t=0

log

(
c j1(t )

c11(t )

)
+ lim

T →∞
1

T

T −1∑
t=0

log Hj,t , (36b)

where log Gi,t → 0 and log Hj,t → 0 as (ut , vt ) → (e′
1, e′′

1 ).
From there, proceeding as previously and using the same
assumptions, it can be shown that the fixation state (e′

1, e′′
1 )

is SLS if

log

(
b̄11

b̄i1

)
>

1

2

[
σ 2

b11

b̄2
11

− σ 2
bi1

b̄2
i1

]
for i = 2, 3, . . . , m, (37a)

log

(
c̄11

c̄ j1

)
>

1

2

[
σ 2

c11

c̄2
11

−
σ 2

c j1

c̄2
j1

]
for j = 2, 3, . . . , n, (37b)

a.e. SU if at least one of these inequalities is reversed, and
SU if they are all reversed (the mathematical proof is similar
to the one in the case of a symmetric matrix game; see the
Appendix).

By analogy, the fixation state (e′
k, e′′

l ) for k = 1, 2, . . . , m
and l = 1, 2, . . . , n is SLS if

log

(
b̄kl

b̄il

)
>

1

2

[
σ 2

bkl

b̄2
kl

− σ 2
bil

b̄2
il

]
, (38a)

log

(
c̄lk

c̄ jk

)
>

1

2

[
σ 2

clk

c̄2
lk

−
σ 2

c jk

c̄2
jk

]
, (38b)

for i = 1, 2, . . . , m but i �= k and j = 1, 2, . . . , n but j �= l ,
a.e. SU if at least one of these inequalities is reversed, and SU
if they are all reversed.

In the special case m = n = 2, for instance, we conclude
that (e′

1, e′′
1 ) is SLS if

2 log(b̄11/b̄21) > σ 2
b11

/
b̄2

11 − σ 2
b21

/
b̄2

21, (39a)

2 log(c̄11/c̄21) > σ 2
c11

/
c̄2

11 − σ 2
c21

/
c̄2

21; (39b)

(e′
2, e′′

2 ) is SLS if

2 log(b̄22/b̄12) > σ 2
b22

/
b̄2

22 − σ 2
b12

/
b̄2

12, (40a)

2 log(c̄22/c̄12) > σ 2
c22

/
c̄2

22 − σ 2
c12

/
c̄2

12; (40b)

(e′
1, e′′

2 ) is SLS if

2 log(b̄12/b̄22) > σ 2
b12

/
b̄2

12 − σ 2
b22

/
b̄2

22, (41a)

2 log(c̄21/c̄11) > σ 2
c21

/
c̄2

21 − σ 2
c11

/
c̄2

11; (41b)

and (e′
2, e′′

1 ) is SLS if

2 log(b̄21/b̄11) > σ 2
b21

/
b̄2

21 − σ 2
b11

/
b̄2

11, (42a)

2 log
(
c̄12

/
c̄22

)
> σ 2

c12

/
c̄2

12 − σ 2
c22

/
c̄2

22. (42b)

As an example, we consider a two-phenotype asymmetric
evolutionary game with random payoff matrices

B(t ) =
(

2 6
b21(t ) 3.5

)
, (43a)

C(t ) =
(

2 c12(t )
1 3.5

)
, (43b)

where b21(t ) = c12(t ) and b̄21 = c̄12 = 2.5. The mean payoff
matrices B̄ and C̄ correspond to the game known as the
battle of the sexes [2]. From the above theoretical analysis,
the vertex (e′

1, e′′
1) is SLS if log (b̄11/b̄21) > 1

2 [σ 2
b11

/b̄2
11 −

σ 2
b21

/b̄2
21] and log (c̄11/c̄21) > 1

2 [σ 2
c11

/c̄2
11 − σ 2

c21
/c̄2

21], that is,
log (2/2.5) > − 1

2σ 2
b21

/6.25 and log (2/1) > 0. More specifi-
cally, the vertex (e′

1, e′′
1) is SLS (or a.e. SU) if σ 2

b21
> 2.79

(or σ 2
b21

< 2.79). The simulation results are shown in Fig. 2,
and these results match the theoretical predictions.

B. Stochastic evolutionary stability in an asymmetric
matrix game

Consider (û, v̂) ∈ �m × �n and (u, v) ∈ �m × �n, where
û and u represent two mixed strategies in position I, and v̂ and
v two mixed strategies in position II. At time step t � 0, the
expected payoffs to û or u against v̂ or v, and vice versa, are
given by the game matrices(

û · B(t )v̂ û · B(t )v
u · B(t )v̂ u · B(t )v

)
(44)

0

1

0

1

0

1

u1
v1

0 50 100 150 200 250 300

0.5

0.5

0.5

(a)

(b)

(c)

time

FIG. 2. Simulation results for the two-phenotype stochastic
asymmetric evolutionary game with the random payoff matrices
given in Eq. (43). Here u1,t and v1,t denote the frequencies of strategy
U1 in position I and strategy V1 in position II, respectively, at time
step t � 0. In panels (a), (b), and (c), the solid red and dashed blue
curves represent the time evolution of u1,t and v1,t , respectively,
where the initial state is taken as (u1,0, v1,0) = (0.5, 0.4). (a, b)
Taking b21 = 2.4 and 2.6 with the same probability 0.5 such that
σ 2

b21
= 0.01, and taking b21 = 1.5 and 3.5 with the same probability

0.5 such that σ 2
b21

= 1, the time evolution of (u1,t , v1,t ) periodically
oscillates between the boundaries. (c) Taking b21 = 0.5 and 4.5 with
the same probability 0.5 such that σ 2

b21
= 4, the time evolution of

(u1,t , v1,t ) converges to the vertex (e′
1, e′′

1).
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and

(
v̂ · C(t )û v̂ · C(t )u
v · C(t )û v · C(t )u

)
, (45)

respectively. If both B(t ) and C(t ) are constant payoff matri-
ces, denoted by B and C, respectively, then the strategy pair
(û, v̂) is known to be a Nash equilibrium if û is the best reply
to v̂, and vice versa, that is, u · Bv̂ � û · Bv̂ for all u ∈ �m,
and v · Cû � v̂ · Cû for all v ∈ �n [2].

We now extend this concept to the situation where the
payoff matrices B(t ) and C(t ) are random. The strategy pair
(û, v̂) is said to be SES (stochastically evolutionarily stable) if
the fixation state (û, v̂) is SLS against any other close enough

strategy pair (u, v). From the previous analysis, this is the case
if

log

(
û · B̄v̂
u · B̄v̂

)
>

1

2

[
σ 2

û·B(t )v̂

(û · B̄v̂)2
− σ 2

u·B(t )v̂

(u · B̄v̂)2

]
, (46a)

log

(
v̂ · C̄û
v · C̄û

)
>

1

2

[
σ 2

v̂·C(t )û

(v̂ · C̄û)2
− σ 2

v·C(t )û

(v · C̄û)2

]
, (46b)

where B̄ = (b̄i j )m×n and C̄ = (c̄ ji )n×m are the mean payoff
matrices, while σ 2

û·B(t )v̂, σ 2
u·B(t )v̂, σ 2

v̂·C(t )û, and σ 2
v·C(t )û are the

variances of û · B(t )v̂, u · B(t )v̂, v̂ · C(t )û, and v · C(t )û,
respectively.

In the case m = n = 2, for instance, the pure strategy pair
(e′

1, e′′
1 ) is SES against any other close enough strategy pair

(u, v) �= (e′
1, e′′

1 ) if

log

(
b̄11

ub̄11 + (1 − u)b̄21

)
>

1

2

[
σ 2

b11

b̄2
11

− u2σ 2
b11

+ 2u(1 − u)σb11,b21 + (1 − u)2σ 2
b21

(ub̄11 + (1 − u)b̄21)2

]
, (47a)

log

(
c̄11

vc̄11 + (1 − v)c̄21

)
>

1

2

[
σ 2

c11

c̄2
11

− v2σ 2
c11

+ 2v(1 − v)σc11,c21 + (1 − v)2σ 2
c21

(vc̄11 + (1 − v)c̄21)2

]
, (47b)

that is,

b̄2
11(b̄11 − b̄21) > b̄21σ

2
b11

− b̄11σb11,b21 , (48a)

c̄2
11(c̄11 − c̄21) > c̄21σ

2
c11

− c̄11σc11,c21 . (48b)

IV. CONCLUSION

As pointed out in the Introduction, environmental condi-
tions are randomly changing over time, and those stochastic
fluctuations in the surrounding environment of a population
introduce random variations in the occurrence of interactions
between individuals and, more importantly, random variations
in the payoffs received by interacting individuals. On the other
hand, evolutionary concepts such as those of evolutionary
stability and convergence stability [33–36] were originally
introduced for a large (virtually infinite) population in a de-
terministic environment. Therefore, they were initially stated
in terms of conditions that ensure local (actually, asymptotic)
stability of a resident strategy against any mutant strategy or
instability (actually, initial invasion) of any resident strategy
close enough to a given population strategy following the
introduction of any mutant that brings the population strategy
even closer. How can we extend such concepts for a popula-
tion in a stochastic environment? This is the question that has
been addressed in this paper.

We have investigated not only the concept of stochastic
evolutionary stability in a general setting of a n-phenotype
symmetric matrix game with random payoffs but also its
extension to a multiphenotype asymmetric matrix game (or
bimatrix game) with random payoff matrices. In addition, we
have to point out that although, in general, our analysis does
not require the assumption that the variances of the payoffs are
small to get criteria for stochastic local stability and stochastic
evolutionary stability [see Eqs. (8) and (36)], this assumption
is just more convenient to understand how stochastic fluc-

tuations in the payoffs affect the long-term behavior of the
stochastic evolutionary game dynamics.

In the case of a symmetric matrix game with a ran-
dom payoff matrix A(t ) = (ai j (t ))n×n at every time t � 0,
we have shown that the vertex ek of the frequency sim-
plex �n, which corresponds to the fixation state of strategy
Sk , for k = 1, 2, . . . , n, is stochastically locally stable (SLS)
if 2 log(ākk/āik ) > (σ 2

kk/ā2
kk − σ 2

ik/ā2
ik ) for all i = 1, 2, . . . , n

but i �= k. This result has been obtained under the assumption
that the payoffs in pairwise interactions have variances small
enough so that higher-order moments can be ignored. When
the variances vanish, the result reduces to the well-known
condition for local stability of ek in the deterministic game
dynamics [2]. Moreover, we have shown that a mixed strategy
represented by the frequency vector x̂ = (x̂1, x̂2, . . . , x̂n) ∈
�n, so that the pure strategy Si is used with probability x̂i for
i = 1, 2, . . . , n, is stochastically evolutionarily stable (SES)
if 2 log(x̂ · Āx̂/x · Āx̂) > [σ 2

x̂·Āx̂/(x̂ · Āx̂)2 − σ 2
x·Āx̂/(x · Āx̂)2],

which means that x̂ is SLS against x, for any close enough
mixed strategy x �= x̂. This result extends the concept of
evolutionary stability in a deterministic environment to a
stochastic environment.

In the case of an asymmetric matrix game with random
payoff matrices B(t ) = (bi j (t ))m×n and C(t ) = (c ji(t ))n×m at
every time t � 0, a fixation state is represented by (e′

k, e′′
l )

for 1 � k � m and 1 � l � n, where e′
k represents a ver-

tex of the simplex �m and e′′
l a vertex of the simplex

�n, for k = 1, 2, . . . , m and l = 1, 2, . . . , n. Under the as-
sumption that the payoffs in pairwise interactions have
small enough variances, we have shown that a fixation state
(e′

k, e′′
l ) is SLS if 2 log(b̄kl/b̄il ) > (σ 2

bkl
/b̄2

kl − σ 2
bil

/b̄2
il ) and

2 log(c̄lk/c̄ jk ) > (σ 2
clk

/c̄2
lk − σ 2

c jk
/c̄2

jk ) for all i = 1, 2, . . . , m
but i �= k and j = 1, 2, . . . , n but j �= l . This result
extends the concept of stochastic local stability in a symmet-
ric matrix game to an asymmetric matrix game. As in the
symmetric case, this result can be applied to mixed strate-
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gies to get conditions for stochastic evolutionary stability
in the asymmetric case. The strategy pair (û, v̂) ∈ �m × �n

(where û = (û1, û2, . . . , ûm) represents a mixed strategy in
position I, and v̂ = (v̂1, v̂2, . . . , v̂n) a mixed strategy in posi-
tion II) is SES if 2 log(û · B̄v̂/u · B̄v̂) > [σ 2

û·B(t )v̂/(û · B̄v̂)2 −
σ 2

u·B(t )v̂/(u · B̄v̂)2] and 2 log(v̂ · C̄û/v · C̄û) > [σ 2
û·C(t )û/(v̂ ·

C̄û)2 − σ 2
v·C(t )û/(v · C̄û)2].

These extensions to concepts in deterministic matrix games
[1,2] and random 2 × 2 symmetric matrix games [10] provide
a theoretical framework to address questions related to evolu-
tion in a population in a stochastic environment with multiple
phenotypes and asymmetric pairwise interactions.
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APPENDIX: STOCHASTIC LOCAL STABILITY
IN A SYMMETRIC MATRIX GAME

The proof below for n types is an extension of an analy-
sis for two types that can be found in Karlin and Liberman
[24,25] and Zheng et al. [10].

Equation (5) can be rewritten as

xi,T

xi,0
=

T −1∏
t=0

(
ai1(t )

a11(t )

)
Qi,t , (A1)

which implies

1

T
log

(
xi,T

xi,0

)
= 1

T

T −1∑
t=0

log

(
ai1(t )

a11(t )

)
+ 1

T

T −1∑
t=0

log Qi,t ,

(A2)

for every time step T � 1 and i = 2, . . . , n such that xi,0 > 0.
Let

μi =
〈
log

(
ai1(t )

a11(t )

)〉
(A3)

and

Ei =
{

1

T

T −1∑
t=0

log

(
ai1(t )

a11(t )

)
→ μi as T → ∞

}
, (A4)

for i = 2, . . . , n. By the strong law of large numbers, we
have that P (Ei ) = 1 for i = 2, . . . , n. On the other hand, for
Qi,t given in Eq. (6) with akl (t ) being assumed uniformly
bounded below and above by positive constants for all k, l =
1, . . . , n, we have log Qi,t → 0 for i = 2, . . . , n when 1 −
x1,t = ∑n

j=2 x j,t → 0. But then we conclude from Eq. (A2)
that

lim
T →∞

1

T

T −1∑
t=0

log

(
ai1(t )

a11(t )

)
� 0 (A5)

if this limit exists and xi,0 > 0 for some i = 2, . . . , n, since
then

log

(
xi,T

xi,0

)
� log

(
1

xi,0

)
< ∞ (A6)

for i = 2, . . . , n and all T � 1. This conclusion is not possible
in the set Ei if μi > 0 and xi,0 > 0 for some i = 2, . . . , n, in
which case

P (x1,t → 1) � P
(
EC

i

) = 0. (A7)

This entails that the fixation state e1 is almost everywhere
stochastically unstable (a.e. SU) if μi > 0 for some i =
2, . . . , n, and stochastically unstable (SU) if μi > 0 for all
i = 2, . . . , n,

Now consider the case where μi < 0 for all i = 2, . . . , n.
By the strong law of large numbers and Egorov’s theorem,
given any ε > 0, there exists an integer Ti � 1 such that the
probability of the event

Fi =
{

1

T

T −1∑
t=0

log

(
ai1(t )

a11(t )

)
<

μi

2
for all T � Ti

}
(A8)

satisfies

P (Fi ) � 1 − ε/(n − 1) (A9)

for i = 2, . . . , n, so that the event F = ⋂n
i=2 Fi satisfies

P (F ) � 1 − ε. (A10)

On the other hand, using the assumption that A � akl (t ) � B
for some constants A, B > 0 and for all k, l = 1, . . . , n, there
exists δi > 0 such that

log Qi,t = log

(
1 + ∑n

j=2 x j,t (ai j (t ) − ai1(t ))
/

ai1(t )

1 + [∑n
j=2 x j,t (a1 j (t ) − a11(t )) + ∑n

j=2 x j,t (π j,t − π1,t )
]/

a11(t )

)
< −μi

4
(A11)

as soon as 1 − x1,t = ∑n
j=2 x j,t < δi for i = 2, . . . , n. Moreover, if 1 − x1,t = ∑n

j=2 x j,t � δ1 where δ1 = A
4(B−A) > 0, then

Eq. (5) leads to

xi,t+1 = xi,t

(
ai1(t ) + ∑n

j=2 x j,t (ai j (t ) − ai1(t ))

a11(t ) + [∑n
j=2 x j,t (a1 j (t ) − a11(t )) + ∑n

j=2 x j,t (π j,t − π1,t )
]
)

� xi,t

(
B + (B − A)

∑n
j=2 x j,t

A + 2(A − B)
∑n

j=2 x j,t

)
� xi,t

(
5B

2A

)
(A12)
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and, by recurrence,

xi,t+1 � xi,0

(
5B

2A

)t+1

(A13)

for i = 2, . . . , n, from which

1 − x1,t+1 =
n∑

i=2

x j,t+1 �
(

n∑
i=2

xi,0

)(
5B

2A

)t+1

= (1 − x1,0)

(
5B

2A

)t+1

(A14)

for all t � 0. Therefore, there exists 0 < δ0 < δ1 such that
1 − x1,t < δ̌ for t = 0, 1, . . . , T̂ − 1 as soon as 1 − x1,0 < δ0,
where δ̌ = min(δ2, . . . , δn) and T̂ = max(T2, . . . , Tn). Then
in the set F = ⋂n

i=2 Fi as soon as 1 − x1,0 < δ0, we have

1

T̂
(log xi,T̂ − log xi,0) <

μi

2
− μi

4
= μi

4
< 0 (A15)

for i = 2, . . . , n, owing to Eqs. (A2), (A8), and (A11). This
implies

1 − x1,T̂ =
n∑

i=2

xi,T̂ <

n∑
i=2

xi,0 < δ̌ (A16)

and, by recurrence, 1 − x1,T < δ̌ for all T � T̂ .
Since P(F ) � 1 − ε, it remains to show that 1 − x1,T → 0

as T → ∞ in F as soon as 1 − x1,0 < δ0. It suffices to notice
that Eq. (A15) extends from T̂ to all T � T̂ , from which

log xi,T < log xi,0 + T μi

4
→ −∞ (A17)

as T → ∞ for i = 2, . . . , n, and then

1 − x1,T =
n∑

i=2

xi,T → 0 (A18)

as T → ∞. This completes the proof.
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