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Anatomical investigations

» Choose an integer n € [1, x] uniformly at random. What can we
say about its “multiplicative structure”?

» Distribution of its prime factors p; < po < ---?

» Distribution of its divisors dy < db < ---?
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pi1(n) < --- < px(n) prime factors of n, with kK = w(n) = #{p|n} J

>

>

Hardy—Ramanujan: w(n) ~ loglog x for a “typical” n < x

Landau—-Selberg—Delange: w(n) has a perturbed Poisson
distribution with parameter \ = log log x.

If I,...,In are disjoint (+technical conditions), then the RVs
#{p|n: p € |;} are approximately independent and Poisson with

Aj = Zpelj 1/p.

If ¢ — oo, the vector (%)k —'is approximately distributed like

({,), “¢>Where 0 < & < --- <& < 1 are uniform order statistics.
In particular, log log p;(17) ~ J typically.

Billingsley: The vector ('°g|";kg,; n)t-1is approximately distributed

like (\/,),-:1, where (Vj, Vo,...) has Poisson—Dirichlet distribution.
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Two problems by Erdds about divisors

Problem A (1948)
Is it true that almost all integers have two divisors d < d’ < 2d? J

» Motivation: understand local properties of the sequence of

divisors di(n) < d>(n) < --- of a “random” integer n.
> We typically have log log dj(n) ~ 4.

» Naively, one might then guess log ”E()) j1/log2=1 o,

Problem B (1955)
How many integers are there in the N x N multiplication table? J

» Generalization: how many integers < x have a divisor in [y, z]?
» When x = N2, y = N/2, z = N, this is ~ Problem B.
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Two generalizations

How big can k = k(x) be so that almost all integers n < x have k

Problem A*
divisors dy < db < --- < dg < 2d4? J

» Reformulation: A(n) := max, #{d|n:y < d < 2y}.
» How big is A(n) for a typical n?

» Hooley’s original motivation: study >, A(n) and apply results to
various Diophantine problems.

Problem B*
How many integers are there in the N; x -- - x Nj multiplication table? J

» Reformulation: how many integers < x have a factorization
n=d;---dgwith gy € [y;, zj] forj=1,...,k?
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Integers with two divisors close together
R(n) = U [log %/ — log 2, log %/ + log 2]
d,d'|n, d#d’
» Jd,d'lnst.d<d <2d <= 0eR(n
» We have two competing constraints on measure of R(n):

» Geometric: R(n) C [—log(2n), log(2n)];
» Combinatorial: #{d’/d : d,d’'|n} ~ 3°(" ~ (log n)°e3 (typically).

» Thus, unless there is too much overlap between different intervals,
meas(R(n)) > log n.

» For most n with meas(R(n)) > log n, we may locate a ratio d’/d
close to 1 w.h.p. (uses that R(mpp’') > R(m) + log(p'/p))

Theorem (Maier—Tenenbaum (1984))
For almost all n, there are divisors d < d’' < d - (1 + (log n)1~'eg3+0(1)) J
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Integers with many divisors close together

1/
R(n) = U [log g—d, log 2%// , Nyz= H p.
a,d’|n, d#d’ pln, y<p<z

» For typical n, we have the following competing constraints:
» Geometric: R(ny,z) C [-Clogz, Clog z];
> Combinatorial: #{d’/d : d,d'|n, ,} = 3+(".2) ~ 38 57

log 3
» Iflogz > (logy) =51, we have more than log z ratios d’/d with
d,d'|n, >, so we can find a ratio ~ 1 w.h.p.

> Use J disjoint intervals [y}, zj] to get 27 divisors of n close together.

Theorem (Maier—Tenenbaum (1984))
A(n) > (loglog n)"—°0) for a.a. n, where Hy — 22 — 0.28754 ...

I log 3
log3—1
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Integers with a divisor in a given interval
> 3din, de[x’,2x"] = flogx € L(n) :=|Jllog §,log d]
d|n

?

> Prox(010gx € £(n)) 2 Bpex [2E0] g, [ ming1, 700)]

’ log X

> Erdds—Tenenbaum: need w(n) = °£25* + O(1), i.e. 7(n) = log x.

~ Pngx<3d|n, de [X9,2X‘9]> ~ (log x)~°(log log x) /2

1 + loglog 2

ith =1-
with § log 2

=0.08607 ...

> Ford: we also need #{p|n, p < t} < g% + O(1) for all t < x.
Theorem (Ford (2004))
Pn<x(3d|na dely, 2y]) = (logy)(loglog y)~%% (3 <y < V/x).
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The k-dimensional multiplication table

h(x,y) := Pn<x (30'1 - dk_1|n, di € [yi/2, yi] Vi) =? (1 <)<

> Lk(ny) = U [log &, log ch] x -- [Iog L, log dk_1]
di--dk_1|n
pldi = p<yi

> fwi(n)=#{pln:yi.1 <p<y}tfori=1,....k—1,then

k—1

k—1
m@qgﬂmynénmn{rUk—i+1ymmIImgn}

i=1 i=1

> If \; = loglog y; — loglog y;_1, the above suggests that

k—1
h(x,y) ~ max
meNk—1 1
TS (k=)™ =<]T1 log i

e—)\,')\lr_ni

m;! .
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Theorem (K. (2014))

k—1
1. Ifk <6, then h(x,y)~ max
]

meNk—1 P
15 (k—i+1)Mi<TTi log yi

2. (x)istrue ifk > 7 andlog yx_1 < (log y1)'*¢ with e = 4 small.
3. Letk=7,y1=---=y5 < g and ¢ = 55.82474304950718986 . . .

Iflog ys < (log y1)¢~¢, then () holds; but if log yg > (log y1)°¢"¢,
then h(x, y) is smaller than the RHS of (x).

e MAM

(%)-

m;!

Key observation: there are low-dimensional constraints of
geometro-combinatorial nature:

> L7(n;§) = U [[llog & log di] x [log % log ]
db\n i<5
pld; :> P<y; Vi<6

> meas(L7(n; y)) < Z (log2)° - meas(Lo(g-" 5 V6))-
dy |1
pldi = p<y; Vi<h
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Improving the 1984 Maier—Tenenbaum result
» MT 1984: suppose we can find J disjoint intervals [y;, z] for which
ddj, di|n distinct s.t.:
> d, d; only consist of primes in [y;, z];
> dj ~ dj’_
Then n has 2/ prime factors close together.

» MT 2009: use primes in [y1, z1] to find dy, d]. Then, use primes in
[y2, Z2] and remaining primes in [y1, z1] to find d>, dj, etc.

A(n) > (loglog )=o) a.s. with Hp = — 8%~ = 0.33827 ... J

og(5=; log 3 )

» Ford-Green—K. (2019 — 20227): locate J disjoint intervals [y;, zj]
s.t. the primes from each [y;, zj] yield k distinct divisors
djg =~ Q2 ~ -~ ik

A(n) > (loglog n)=°() a.s. with Hs — 0.3533227727 ... |
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The linear algebra of k divisors close together

» We want to understand when there are distinct dj, .. ., di that all
divide n, - = [[,, ,,-p and satisfy the linear system

(Zlogp,ZIogp,...,Zlogp> =0(1) (modf).

pld plda p di
» Foreach & = (wq,...,wk) € {0, 1}, let

D;:= [] p with Ps={plny. st pld & w=1}
PEP

so that (log di, ..., log dk) = ZJ} log D.

» Conditionally on Q = {@ € {0,1}*\ {0,1} : D5 > 1}, the
distribution of (log d, . .., log dx) mod 1 is controlled by:

> V = Span(Q)/(1) (geometric)
> the distribution of {p|D;} with J € Q (combinatorial)
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Geometric constraints
> The “longest” dim of 3" @ log D is onto &' € Q s.t.

Pt (D) > PT(D5) V&€ Q

> The second longest dim is onto &2 € Q \ Span(&') s.t.
P (D) > P*(Dg) V& e Q)\ Span(a').

> Having defined &',.. ., & with span V; < V, the (j + 1)-th longest
dimension is the projection onto &/*1 € Q\ V; s.t.

PH(Dyi1) > PH(Ds) V&€ Q\ V.

» This terminates after r = dim(V) steps. We then find that
> seq W log Dy are contained in an r-dim rectangle of r-volume

< [[ loePH (D).

1<
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e Given ¢ € (0,1) and k € Z,, consider the following data:
> M =V<V<- <V <QF
» 1>c¢y>---¢ > ¢, where log y = (log 2)°
> .; probability measure supported on V; N {0,1}¥
e To construct dy, .. ., di close together, we consider configurations s.t.
> D;>1if-fde V. \{0,1};
> PT(Dg) < exp{(logz)d} forall w € V;n{0,1 }k;
> #{pIDs : i1 < 1oEiees < G} ~ wi(&)(G — Cj11) log log 2.

» To avoid all geometro-combinatorial constraints, we need VV/ < V;

2. (G =G, (V) + D gdm(Vi/Vi) > 3 gdim(Vi/Vj-1),

1<j<r 1<j<r 1<j<r

where H,(W) is the p-entropy of the partition of Q¥ into W-cosets.

Theorem (Ford—Green—K. (2019 — 20227))

A random integer has k divisors close together composed of primes in
[exp{(log 2)°, Z] “iff” there are V;, c;, j1; as above.
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The binary system
Binary flag of order r

Let k = 27, identify Q¥ with QPI"), and for i = 1,...,r let V; be the
subspace of all (xs)sc(, for which xs = xsn; for all S C [r].

Theorem (Ford—Green—K. (2019 — 20227))

A random integer has 2" divisors close together composed of primes in
[exp{(log 2)¢, z] w.h.p. ifc > (p/2)"t°("), where p = 0.2812... is s.t.

_f a1+a’
2/(2—p) = log2 + Y27 log (3751).

j>1 !

2 2 5
wherea; =2, &y =2+2, gj=a; ; + aj’-i1 - ajfz forj > 3.

Corollary

A(n) = (log log n) el e/ o) a.s. (conjectured to be optimal)
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A unified point of view
Given a set of integers A and a linear map ¥ : R* — W, where W is a
real vector space, determine

P E|d1,...,dg|n s.t. \Il(logd1,...,|ogdg):ﬁ+0(1)
neN | and the sets {p|di}, i=1,...,¢, satisfy certain conditions /-

» Problem A: N = {typical integers in [1,x]}, ¢ =2, W =R,
V(t,s) = t—S,,B:O, (di,do) = 1.

> ProblemB: N =ZnN[1,x], (=1, W=R,¥(t)=t,p=logy, dis
y-smooth

> Problem B N =ZN[1,x], =k -1, W=Rs", ¥(X) = X,
p = (log y;)’=", (di, dj) = 1 and d; is y;-smooth Vi # .

> Problem A*: \ = {typical integers in [1,x]}, £ = k, W = RK/(1),
V(t) = t, complicated constraints.
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Some future directions

1. For each k > 2, calculate optimal ay s.t. w.h.p. here are k divisors
di,...,dx of nwith |log(d/d})| < (log n)~+o() i, j

MT: ap = log3 — 1 ~ 0.09861;
FGK (work in progress): asz ~ 0.026865, a4 ~ 0.0131218. J

2. Determine order of magnitude of k-dim multiplication table for
k > 7 for all possible side-lengths.

3. Upper bounds for A(n).
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Thank you for your attention
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