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Anatomical investigations

I Choose an integer n ∈ [1, x ] uniformly at random. What can we
say about its “multiplicative structure”?

I Distribution of its prime factors p1 < p2 < · · · ?

I Distribution of its divisors d1 < d2 < · · · ?
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p1(n) < · · · < pk (n) prime factors of n, with k = ω(n) = #{p|n}

I Hardy–Ramanujan: ω(n) ∼ log log x for a “typical” n 6 x .

I Landau–Selberg–Delange: ω(n) has a perturbed Poisson
distribution with parameter λ = log log x .

I If I1, . . . , Im are disjoint (+technical conditions), then the RVs
#{p|n : p ∈ Ij} are approximately independent and Poisson with
λj =

∑
p∈Ij 1/p.

I If `→∞, the vector ( log log pi (n)
log log x )k−`

i=` is approximately distributed like
(ξi)

k−`
i=` , where 0 6 ξ1 6 · · · 6 ξk 6 1 are uniform order statistics.

In particular, log log pj(n) ∼ j typically.

I Billingsley: The vector (
log pk−i (n)

log n )`−1
i=0 is approximately distributed

like (Vi)
`
i=1, where (V1,V2, . . . ) has Poisson–Dirichlet distribution.
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Two problems by Erdős about divisors

Problem A (1948)
Is it true that almost all integers have two divisors d < d ′ 6 2d?

I Motivation: understand local properties of the sequence of
divisors d1(n) < d2(n) < · · · of a “random” integer n.

I We typically have log log dj(n) ∼ log j
log 2 .

I Naively, one might then guess log
dj+1(n)
dj (n) ≈ j1/ log 2−1 →∞.

Problem B (1955)
How many integers are there in the N × N multiplication table?

I Generalization: how many integers 6 x have a divisor in [y , z]?
I When x = N2, y = N/2, z = N, this is ≈ Problem B.
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Two generalizations

Problem A*
How big can k = k(x) be so that almost all integers n 6 x have k
divisors d1 < d2 < · · · < dk 6 2d1?

I Reformulation: ∆(n) := maxy #{d |n : y 6 d 6 2y}.
I How big is ∆(n) for a typical n?
I Hooley’s original motivation: study

∑
n6x ∆(n) and apply results to

various Diophantine problems.

Problem B*
How many integers are there in the N1 × · · · × Nk multiplication table?

I Reformulation: how many integers 6 x have a factorization
n = d1 · · · dk with dj ∈ [yj , zj ] for j = 1, . . . , k?
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Integers with two divisors close together

R(n) =
⋃

d ,d ′|n, d 6=d ′
[log d ′

d − log 2, log d ′
d + log 2]

I ∃d ,d ′|n s.t. d < d ′ 6 2d ⇐⇒ 0 ∈ R(n)

I We have two competing constraints on measure of R(n):
I Geometric: R(n) ⊂ [− log(2n), log(2n)];
I Combinatorial: #{d ′/d : d ,d ′|n} ≈ 3ω(n) ≈ (log n)log 3 (typically).

I Thus, unless there is too much overlap between different intervals,
meas(R(n))� log n.

I For most n with meas(R(n))� log n, we may locate a ratio d ′/d
close to 1 w.h.p. (uses that R(mpp′) ⊃ R(m) + log(p′/p))

Theorem (Maier–Tenenbaum (1984))

For almost all n, there are divisors d < d ′ < d · (1 + (log n)1−log 3+o(1))
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Integers with many divisors close together

R(n) =
⋃

d ,d ′|n, d 6=d ′
[log d ′

2d , log 2d ′
d ], ny ,z =

∏
p|n, y<p6z

p.

I For typical n, we have the following competing constraints:
I Geometric: R(ny,z) ⊂ [−C log z,C log z];
I Combinatorial: #{d ′/d : d ,d ′|ny,z} = 3ω(ny,z ) ≈ 3log log z

log y .

I If log z > (log y)
log 3

log 3−1 , we have more than log z ratios d ′/d with
d ,d ′|ny ,z , so we can find a ratio ≈ 1 w.h.p.

I Use J disjoint intervals [yj , zj ] to get 2J divisors of n close together.

Theorem (Maier–Tenenbaum (1984))

∆(n) > (log log n)H1−o(1) for a.a. n, where H1 = log 2
log log 3

log 3−1
= 0.28754 . . .

7 / 18



Integers with a divisor in a given interval

I ∃d |n, d ∈ [xθ,2xθ] ⇐⇒ θ log x ∈ L(n) :=
⋃
d |n

[log d
2 , log d ]

I Pn6x

(
θ log x ∈ L(n)

)
?
≈ En6x

[
meas(L(n))

log x

]
??
≈ En6x

[
min{1, τ(n)

log x }
]

I Erdős–Tenenbaum: need ω(n) = log log x
log 2 + O(1), i.e. τ(n) � log x .

 Pn6x

(
∃d |n, d ∈ [xθ,2xθ]

)
≈ (log x)−δ(log log x)−1/2

with δ = 1− 1 + log log 2
log 2

= 0.08607 . . .

I Ford: we also need #{p|n, p 6 t} 6 log log t
log 2 + O(1) for all t 6 x .

Theorem (Ford (2004))

Pn6x

(
∃d |n, d ∈ [y ,2y ]

)
� (log y)−δ(log log y)−3/2 (3 6 y 6

√
x).
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The k -dimensional multiplication table

h(x , ~y) := Pn6x

(
∃d1 · · · dk−1|n, di ∈ [yi/2, yi ] ∀i

)
=? (y1 6 y2 6 · · · )

I Lk (n;~y) :=
⋃

d1···dk−1|n
p|di ⇒ p6yi

[log d1
2 , log d1]× · · · × [log

dk−1
2 , log dk−1]

I If ωi(n) = #{p|n : yi−1 < p 6 yi} for i = 1, . . . , k − 1, then

meas(Lk (n;~y))
?
≈ min

{ k−1∏
i=1

(k − i + 1)ωi (n),

k−1∏
i=1

log yi

}
.

I If λi = log log yi − log log yi−1, the above suggests that

h(x , ~y) ≈ max
~m∈Nk−1∏k−1

i=1 (k−i+1)mi�
∏k−1

i=1 log yi

k−1∏
i=1

e−λiλmi
i

mi !
.
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Theorem (K. (2014))

1. If k 6 6, then h(x , ~y) ≈ max
~m∈Nk−1∏k−1

i=1 (k−i+1)mi�
∏k−1

i=1 log yi

k−1∏
i=1

e−λiλmi
i

mi !
(∗).

2. (∗) is true if k > 7 and log yk−1 6 (log y1)1+ε with ε = εk small.
3. Let k = 7, y1 = · · · = y5 6 y6 and c = 55.82474304950718986 . . .

If log y6 6 (log y1)c−ε, then (∗) holds; but if log y6 > (log y1)c+ε,
then h(x , ~y) is smaller than the RHS of (∗).

Key observation: there are low-dimensional constraints of
geometro-combinatorial nature:
I L7(n;~y) =

⋃
d1···d6|n

p|di ⇒ p6yi ∀i66

∏
i65

[log di
2 , log di ]× [log d6

2 , log d6]

I meas(L7(n;~y)) 6
∑

d1···d5|n
p|di ⇒ p6yi ∀i65

(log 2)5 ·meas(L2( n
d1···d5

; y6)).
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Improving the 1984 Maier–Tenenbaum result
I MT 1984: suppose we can find J disjoint intervals [yj , zj ] for which
∃dj ,d ′j |n distinct s.t.:
I dj ,d ′

j only consist of primes in [yj , zj ];
I dj ≈ d ′

j .

Then n has 2J prime factors close together.

I MT 2009: use primes in [y1, z1] to find d1,d ′1. Then, use primes in
[y2, z2] and remaining primes in [y1, z1] to find d2,d ′2, etc.

∆(n) > (log log n)H2−o(1) a.s. with H2 = log 2
log( 1−1/ log 27

1−1/ log 3 )
= 0.33827 . . .

I Ford–Green–K. (2019→2022?): locate J disjoint intervals [yj , zj ]
s.t. the primes from each [yj , zj ] yield k distinct divisors
dj,1 ≈ dj,2 ≈ · · · ≈ dj,k .

∆(n) > (log log n)H3−o(1) a.s. with H3 = 0.3533227727 . . .
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The linear algebra of k divisors close together
I We want to understand when there are distinct d1, . . . ,dk that all

divide ny ,z =
∏

p|n, y<p6z p and satisfy the linear system(∑
p|d1

log p,
∑
p|d2

log p, . . . ,
∑
p|dk

log p
)

= O(1) (mod~1).

I For each ~ω = (ω1, . . . , ωk ) ∈ {0,1}k , let

D~ω :=
∏

p∈P~ω

p with P~ω = {p|ny ,z s.t p|di ⇔ ωi = 1},

so that (log d1, . . . , log dk ) =
∑
~ω

~ω log D~ω.

I Conditionally on Ω = {~ω ∈ {0,1}k \ {~0, ~1} : D~ω > 1}, the
distribution of (log d1, . . . , log dk ) mod ~1 is controlled by:
I V = Span(Ω)/〈~1〉 (geometric)
I the distribution of {p|D~ω} with ~ω ∈ Ω (combinatorial)
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Geometric constraints
I The “longest” dim of

∑
~ω∈Ω ~ω log D~ω is onto ~ω1 ∈ Ω s.t.

P+(D~ω1) > P+(D~ω) ∀~ω ∈ Ω

I The second longest dim is onto ~ω2 ∈ Ω \ Span(~ω1) s.t.

P+(D~ω2) > P+(D~ω) ∀~ω ∈ Ω \ Span(~ω1).

I Having defined ~ω1, . . . , ~ωj with span Vj 6 V , the (j + 1)-th longest
dimension is the projection onto ~ωj+1 ∈ Ω \ Vj s.t.

P+(D~ωj+1) > P+(D~ω) ∀~ω ∈ Ω \ Vj .

I This terminates after r = dim(V ) steps. We then find that∑
~ω∈Ω ~ω log D~ω are contained in an r -dim rectangle of r -volume

/
∏

16j6r

log P+(D~ωj ).
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• Given c ∈ (0,1) and k ∈ Z>2, consider the following data:
I 〈~1〉 = V0 6 V1 6 · · · 6 Vr 6 Qk

I 1 > c1 > · · · cr > c, where log y = (log z)c

I µi probability measure supported on Vi ∩ {0,1}k

• To construct d1, . . . ,dk close together, we consider configurations s.t.
I D~ω > 1 if-f ~ω ∈ Vr \ {~0, ~1};
I P+(D~ω) 6 exp{(log z)cj} for all ω ∈ Vj ∩ {0,1}k ;
I #{p|D~ω : cj+1 <

log log p
log log z 6 cj} ∼ µj(~ω)(cj − cj+1) log log z.

• To avoid all geometro-combinatorial constraints, we need ∀V ′j 6 Vj∑
16j6r

(cj − cj+1)Hµj (V
′
j ) +

∑
16j6r

cj dim(V ′j /V
′
j−1) >

∑
16j6r

cj dim(Vj/Vj−1),

where Hµ(W ) is the µ-entropy of the partition of Qk into W -cosets.

Theorem (Ford–Green–K. (2019→2022?))
A random integer has k divisors close together composed of primes in
[exp{(log z)c , z] “iff” there are Vj , cj , µj as above.
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The binary system
Binary flag of order r

Let k = 2r , identify Qk with QP[r ], and for i = 1, . . . , r let Vi be the
subspace of all (xS)S⊆[r ] for which xS = xS∩[i] for all S ⊆ [r ].

Theorem (Ford–Green–K. (2019→2022?))
A random integer has 2r divisors close together composed of primes in
[exp{(log z)c , z] w.h.p. if c > (ρ/2)r+o(1), where ρ = 0.2812 . . . is s.t.

2/(2− ρ) = log 2 +
∑
j>1

2−j log
(aj+1+aρj

aj+1−aρj

)
,

where a1 = 2, a2 = 2 + 2ρ, aj = a2
j−1 + aρj−1 − a2ρ

j−2 for j > 3.

Corollary

∆(n) > (log log n)
log 2

log(2/ρ)
+o(1) a.s. (conjectured to be optimal)
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A unified point of view
Given a set of integers N and a linear map Ψ : R` →W , where W is a
real vector space, determine

Pn∈N

(
∃d1, . . . ,d`|n s.t. Ψ(log d1, . . . , log d`) = ~p + O(1)
and the sets {p|di}, i = 1, . . . , `, satisfy certain conditions

)
.

I Problem A: N = {typical integers in [1, x ]}, ` = 2, W = R,
Ψ(t , s) = t − s, ~p = ~0, (d1,d2) = 1.

I Problem B: N = Z ∩ [1, x ], ` = 1, W = R, Ψ(t) = t , ~p = log y , d is
y -smooth

I Problem B*: N = Z ∩ [1, x ], ` = k − 1, W = Rk−1, Ψ(~x) = ~x ,
~p = (log yi)

k−1
i=1 , (di ,dj) = 1 and di is yi -smooth ∀i 6= j .

I Problem A*: N = {typical integers in [1, x ]}, ` = k , W = Rk/〈~1〉,
Ψ(~t) =~t , complicated constraints.

16 / 18



Some future directions

1. For each k > 2, calculate optimal αk s.t. w.h.p. here are k divisors
d1, . . . ,dk of n with | log(di/dj)| 6 (log n)−αk +o(1) ∀i , j

MT: α2 = log 3− 1 ≈ 0.09861;
FGK (work in progress): α3 ≈ 0.026865, α4 ≈ 0.0131218.

2. Determine order of magnitude of k -dim multiplication table for
k > 7 for all possible side-lengths.

3. Upper bounds for ∆(n).
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Thank you for your attention
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