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Rational approximations |

Fundamental Question
Let x e R\ Q. Find fractions a/q that approximate it “well”.

» g must be small (fractions of “low complexity")

» the error |[x — a/q| must be small

» possible additional constraint: g must lie in a restricted set of
denominators (e.g. primes, squares etc.)
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Rational approximations Il

» Decimal expansion: x & a/10" with error ~ 1/10" (typically).

» Dirichlet: for every irrational x, the inequality
|x —a/q| < 1/q? has infinitely many solutions (a,q) € Z x N.

» Continue fractions: algorithm for constructing best possible
rational approximations.
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Improving Dirichlet’s theorem |

Definition (Irrationality measure)

v

pu(x) :==sup{r > 0: |x — a/q| < g infinitely often}

> If x € Q, then u(x) = 1.
» Dirichlet: if x € R\ Q, then pu(x) > 2.
» Roth: if x is an algebraic irrational, then u(x) = 2.

» Zeilberger—Zudilin (2020): u(7) < 7.10320533...
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Improving Dirichlet’s theorem Il

Theorem (Zaharescu (1995))

Fix e > 0. For every irrational x, there are infinitely many pairs
(a,q) € Z x N such that }x— 5| < 8/3 =

Theorem (Matomaki (2009))

Fix € > 0. For every irrational x, there are infinitely many primes p
and integers a such that ‘x — %| < #.

A

Hard open problem: improve the exponents to 3 and 2,
respectively.

These would be best possible (we'll see a justification shortly).

A
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Metric Diophantine approximation

Basic principles

» Approximating specific numbers leads to hard open problems.
» Focus on proving results about almost all numbers.

» Exclusion of small pathological sets ~» simple, general results
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Khinchin's theorem

Definition

Given “admissible margins of error” A1, As,... >0, let

A:={xel0,1]: ’x—i‘ < Aq for co-many (a,q) € Z x N}

We may focus on [0,1] WLOG by periodicity.

Theorem (Khinchin (1924))
1 If Y 451 GQq < o0, then meas(A) = 0.
2. IfY 421 g = 00 and g° A ™\, then meas(A) = 1.

Lete > 0. For a.a. x € R, there are co-many (a, q) such that

Ix =2l < W, but only finitely many s.t. |x — | < -

A

q? log

q/
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The Borel-Cantelli lemmas

Theorem (Borel-Cantelli)

Let Eq, Ey, ... be events in the probability space (2, F,PP), and let
E =limsup;_,, E; be the event that co-many occur.

1. IFSSP(E;) < oo, then P(E) = 0.
2. If 3_IP(E;) = oo and the E;'s are independent, then P(E) = 1.

> We may write A = limsup,_,., Ag, where

Aq=100,1n | J (g—Aq,ngAq).

0<a<gq

» meas(Aq) =294,
» Khinchin: the Ag's are sufficiently “quasi-independent” when
RPN
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Generalizing Khinchin

If g?A, \,, then either A, = 0 for all large g, or supp(A) = N.

Conclusion: must remove this condition to restrict denominators.

Proposition (Duffin—Schaeffer (1941))

Khinchin's theorem fails in full generality, i.e. we may find
A1, Ay, ... st. > qAy = oo and yet meas(A) = 0.

A

(Recall: A=set of “approximable numbers” with errors < Ag)

1 2
0 3 3 1
-~ —— —— -
1 2 3 4
0 5 5 5 5 1
1 2 1 4 1 2 7 8 3 2 11 4 13 14
0 15 15 5 15 3 § 15 15 5 3 15 5 15 15 1
[ —— —— —— —— —— —— —— —— —— —— -—

Example with Az, As C Ais 0/1



The Duffin—Schaeffer conjecture

> A = {xe[0,1]: |x— 3‘ < A for co-many reduced 3}
» This is the limsup of the sets
Af={xe[0,1]: |x - ﬂ < Aq for some a € Z co-prime to q}

that have measure 2p(q)Aq, where p(q) = #(Z/qZ)*.

Conjecture (Duffin-Schaeffer (1941))

1. Iy p(q)Ag < 0o, then meas(A*) = 0.
2. If Y- p(q)Aq = oo, then meas(A*) =1

Theorem (K.-Maynard (2019 — 2020))
The Duffin-Schaeffer Conjecture (DSC) is true.
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The history of the conjecture

» Duffin-Schaeffer (1941): DSC is true if the errors A, are
supported on “not-too-abnormal integers”, i.e. if

S o w2
Iimsup—qgQ 9 _a

>0 with weights wy = qA
Qo0 2iq<@Wa

Corollary. [x — 2| < # and |x — §| < % i.o., fora.a. x.
» Gallagher (1961): there is a 0-1 law, i.e. meas(A*) € {0, 1}.
> Erdds (1970) — Vaaler (1978): DSC is true if A, = O(1/q?).
(Note: >-¢(q)Aq = oo implies then }- e 00n)1/q = 00.)
» Pollington—Vaughan (1990): DSC true in all dimensions > 1.

» Many authors: DSC is true when there is “extra divergence”.

» Beresnevich—Velani (2006): DSC implies a generalized DSC
for Hausdorff measures (via their general Mass Transference
Principle).
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Some corollaries of DSC

1. » Recall: A is the set of approximable numbers without
constraints on GCDs. What is the correct 0-1 law for A?

> When x € R\ Q and A, — 0, it is easy to check that
x = 2[<Agio. =  |x— 2] <Ay with ged(a,q) =10,

[
where Af = sup,,~1 Apmg.

» This observation led Catlin to conjecture:

meas(4) =1 < Z ©(q)Ay = oo

> DSC readily implies Catlin's conjecture (which is the correct
generalization to Khinchin)

2. Beresnevich-Velani: if > ¢(q)Aq < oo, then

dim(A*) = inf {s >0: an(q)Af] < oo}.
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Reduction to a pair-correlation estimate

Theorem (Borel-Cantelli)

Let E1, E;, ... be events in the probability space (2, F,P), and let
E =limsup;_,, E; be the event that co-many occur.

1. If Y P(Ej) < oo, then P(E) = 0.
2. If Y P(Ej) = oo and the Ej’s are independent, then P(E) = 1.

» Turan used Cauchy-Schwarz to prove Borel-Cantelli when
P(E; N Ej) < (1+¢)P(E;)P(E;) on average over i # j.

» For DSC, we know the limsup satisfies a 0-1 law, so we only
need to show that

P(EiNEj) < 1010101P’(E,-)IP(EJ-) on average over | # j.
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A special but crucial case

> SC [Q,2Q] set of denominators

> qus q =: Q/D, so that D > 1. (Think #S ~ Q/D.)

| 2 Aq = % 1q€$

> Can we prove meas(|J,cs Ag) > 17

(AZ) = 1.

14/1



A special but crucial case, ctd.

Recall: S C [@,2Q)], qus q = Q/D, Aq—Q LvTES

> Pollington-Vaughan: meas(lJ,csAg) > 1, unless 3t > 1010%
s.t. there are > t 14852 pairs (q,r) € S x S with:

1. the number gr/ gcd(q, r)? has too many prime factors > t;
2. ged(q, r) > D/t.

» Condition 1 occurs for < e tQ? pairs (q,r) € [Q,2Q]2. This
is sufficient if D < 1 (Erdés—Vaaler argument).

» If D is large, we must exploit Condition 2. We show it induces
“structure” on S.

> If d >D/tand S C {q € [Q,2Q] : d|q}, then Condition 2 is
satisfied for all pairs (g, r). Is some converse statement also
true?
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A combinatorial problem

The guiding model problem

Let S C [Q,2Q)] a set of Q/D integers. Suppose there are

> #82/t pairs (q,r) € S x S such that gcd(q, r) > D/t. Must
there exist some integers d > D/t that divides > t1004S
elements of S7

> If such a d exists, replace S with 8’ = {m: dm € S}.
> #S' > (Q/D)t 1% and S C [1,2tQ/D], so S’ is “dense”.

> In addition, qr/gcd(q, r)> = mn/ gcd(m, n)?> when
(g, r) = (dm, dn)

» Hence, Condition 2 carries through to the “dense” set &', and
the Erdés—Vaaler argument completes the proof.
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The graph of dependencies
Consider the graph G = (S, &), where:

> S C[Q,2Q] is a set of =~ Q/D integers;
» £={(q,r) € S xS :gcd(q,r) > D}.

(graph by J. Maynard)
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An iterative compression algorithm

» Simplify: S contains only square-free integers.

» Technical manoeuvre: necessary to view G as a bipartite
graph (S,S,€).

P Divise an algorithm that produces a nested sequence bipartite
graphs GU) = (YU WU g0))

G = Gstart —- G(O) 5 G(l) S5.e D G(J) — Gend

and distinct primes pi1, po, ..., py such that:

1. For each i < j, the prime p; either divides all elements of v
or none of them (and similarly with W)

2. G has all large GCDs due to a universal divisor. Hence, we
can analyze it using the Erdés—Vaaler argument.

3. the graph GU) has better “quality” than GU~1) (i.e. more
edges than naively expected). This ensures that the EV
argument on G®"¢ gives us non-trivial bounds on Gst"t.
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The quality increment argument |

First attempt: ensure 6(GY)) > §(GU~1)) at each step,
mimicking Roth’s density increment strategy.

This fails because we lose control on edge set of Ge";
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The quality increment argument Il

Second attempt: consider the following notation:
> (V,W) = (VU_1)7W(j_1)) and p = pj;
> V,={veV:plv} Vs =V\V,

)
o

1. (Vp, Wp): gain factor of p left and right; but lose a factor of
p in the GCDs (that affects both sides).

2. (Vp, Wp): no gained factors of p, so balanced situation.

3. (Vp, W5): we gain a factor of p on the left, and nothing on
the right. BUT the GCDs are not affected, so we gain a factor
of p overall. Hence, we can afford a large loss of edges.

4. (Vp, Wp): as in case 3, we gain a factor of p.

We then have four options
for (WU, WO)):
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The quality increment argument Il|

Second attempt continued: ensure that pfj#é’(j) > #£0-1) at
each step, where o; = 0 in the symmetric Cases 1,2 and o; = 1 in
the asymmetric Cases 3,4.

This would allow control of 52" in terms of £2", but we cannot
show it can be made to increase.

Third attempt: ensure that
)110 .77 ' j—1))10 j—1
S(GU) 0PI V) > §(GUN) 104U,

This almost works. Stumbling block: the Model Problem as stated
is false! We must take account the weights ¢(q)/q.

Fourth attempt: ensure that

S(GYOp (1 —1/py) i#EW > §(GUD)O04EUD at each
step, where 7; = 1 in Case 1 where everything is divisible by p;,
and 7; = 0 otherwise.
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Sam Chow's counterexample

S={P/j:jIP, x/2<j<x} with P=T]]p.

P<X

» all pairwise GCDs here are > P/x?

> no fixed integer of size > P/x? dividing a positive proportion
of elements of S

» notice that if p < x/log x, then the proportion of S divisible
by pis~1—1/p.

» The case when #V, ~ (1 —1/p)#V turns out to be the
critical case in our “quality increment argument”, and where
we need to make use of the weights ¢(q)/q.
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Thank you for your attention
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