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Rational approximations I

Fundamental Question

Let x ∈ R \Q. Find fractions a/q that approximate it “well”.

I q must be small (fractions of “low complexity”)

I the error |x − a/q| must be small

I possible additional constraint: q must lie in a restricted set of
denominators (e.g. primes, squares etc.)
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Rational approximations II

I Decimal expansion: x ≈ a/10n with error ≈ 1/10n (typically).

I Dirichlet: for every irrational x , the inequality
|x − a/q| < 1/q2 has infinitely many solutions (a, q) ∈ Z× N.

I Continue fractions: algorithm for constructing best possible
rational approximations.
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Improving Dirichlet’s theorem I

Definition (Irrationality measure)

µ(x) := sup{ν > 0 : |x − a/q| 6 q−ν infinitely often}

I If x ∈ Q, then µ(x) = 1.

I Dirichlet: if x ∈ R \Q, then µ(x) > 2.

I Roth: if x is an algebraic irrational, then µ(x) = 2.

I Zeilberger–Zudilin (2020): µ(π) 6 7.10320533 . . .
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Improving Dirichlet’s theorem II

Theorem (Zaharescu (1995))

Fix ε > 0. For every irrational x , there are infinitely many pairs
(a, q) ∈ Z× N such that

∣∣x − a
q2

∣∣ 6 1
q8/3−ε .

Theorem (Matomäki (2009))

Fix ε > 0. For every irrational x , there are infinitely many primes p
and integers a such that

∣∣x − a
p

∣∣ 6 1
p4/3−ε .

Remark

Hard open problem: improve the exponents to 3 and 2,
respectively.

These would be best possible (we’ll see a justification shortly).
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Metric Diophantine approximation

Basic principles

I Approximating specific numbers leads to hard open problems.

I Focus on proving results about almost all numbers.

I Exclusion of small pathological sets  simple, general results
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Khinchin’s theorem

Definition

Given “admissible margins of error” ∆1,∆2, . . . > 0, let

A :=
{
x ∈ [0, 1] :

∣∣x − a
q

∣∣ < ∆q for ∞-many (a, q) ∈ Z× N
}

Remark

We may focus on [0, 1] WLOG by periodicity.

Theorem (Khinchin (1924))

1. If
∑

q>1 q∆q <∞, then meas(A) = 0.

2. If
∑

q>1 q∆q =∞ and q2∆q ↘, then meas(A) = 1.

Corollary

Let ε > 0. For a.a. x ∈ R, there are ∞-many (a, q) such that
|x − a

q | <
1

q2 log1−ε q
, but only finitely many s.t. |x − a

q | <
1

q2 log1+ε q
.
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The Borel–Cantelli lemmas

Theorem (Borel–Cantelli)

Let E1,E2, . . . be events in the probability space (Ω,F ,P), and let
E = lim supj→∞ Ej be the event that ∞-many occur.

1. If
∑

P(Ej) <∞, then P(E ) = 0.

2. If
∑

P(Ej) =∞ and the Ej ’s are independent, then P(E ) = 1.

I We may write A = lim supq→∞Aq, where

Aq := [0, 1] ∩
⋃

06a6q

(a
q
−∆q,

a

q
+ ∆q

)
.

I meas(Aq) = 2q∆q

I Khinchin: the Aq’s are sufficiently “quasi-independent” when
q2∆q ↘
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Generalizing Khinchin

Remark

If q2∆q ↘, then either ∆q = 0 for all large q, or supp(∆) = N.

Conclusion: must remove this condition to restrict denominators.

Proposition (Duffin–Schaeffer (1941))

Khinchin’s theorem fails in full generality, i.e. we may find
∆1,∆2, . . . s.t.

∑
q∆q =∞ and yet meas(A) = 0.

(Recall: A=set of “approximable numbers” with errors < ∆q)
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The Duffin–Schaeffer conjecture

I A∗ :=
{
x ∈ [0, 1] :

∣∣x − a
q

∣∣ < ∆q for ∞-many reduced a
q

}
I This is the limsup of the sets

A∗q :=
{
x ∈ [0, 1] :

∣∣x − a
q

∣∣ < ∆q for some a ∈ Z co-prime to q
}

that have measure 2ϕ(q)∆q, where ϕ(q) = #(Z/qZ)×.

Conjecture (Duffin-Schaeffer (1941))

1. If
∑
ϕ(q)∆q <∞, then meas(A∗) = 0.

2. If
∑
ϕ(q)∆q =∞, then meas(A∗) = 1.

Theorem (K.–Maynard (2019 → 2020))

The Duffin–Schaeffer Conjecture (DSC) is true.
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The history of the conjecture

I Duffin–Schaeffer (1941): DSC is true if the errors ∆q are
supported on “not-too-abnormal integers”, i.e. if

lim sup
Q→∞

∑
q6Q wq · ϕ(q)

q∑
q6Q wq

> 0 with weights wq = q∆q

Corollary. |x − a
p | <

1
p2 and |x − a

q2 | < 1
q3 i.o., for a.a. x .

I Gallagher (1961): there is a 0–1 law, i.e. meas(A∗) ∈ {0, 1}.

I Erdős (1970) – Vaaler (1978): DSC is true if ∆q = O(1/q2).
(Note:

∑
ϕ(q)∆q =∞ implies then

∑
q∈supp(∆) 1/q =∞.)

I Pollington–Vaughan (1990): DSC true in all dimensions > 1.

I Many authors: DSC is true when there is “extra divergence”.

I Beresnevich–Velani (2006): DSC implies a generalized DSC
for Hausdorff measures (via their general Mass Transference
Principle).
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Some corollaries of DSC

1. I Recall: A is the set of approximable numbers without
constraints on GCDs. What is the correct 0–1 law for A?

I When x ∈ R \Q and ∆q → 0, it is easy to check that

|x − a
q | < ∆q i.o. ⇐⇒ |x − a

q | < ∆′q with gcd(a, q) = 1 i.o.,

where ∆′q := supm>1 ∆mq.

I This observation led Catlin to conjecture:

meas(A) = 1 ⇐⇒
∑

ϕ(q)∆′q =∞

I DSC readily implies Catlin’s conjecture (which is the correct
generalization to Khinchin)

2. Beresnevich–Velani: if
∑

q ϕ(q)∆q <∞, then

dim(A∗) = inf
{
s > 0 :

∑
ϕ(q)∆s

q <∞
}
.
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Reduction to a pair-correlation estimate

Theorem (Borel–Cantelli)

Let E1,E2, . . . be events in the probability space (Ω,F ,P), and let
E = lim supj→∞ Ej be the event that ∞-many occur.

1. If
∑

P(Ej) <∞, then P(E ) = 0.

2. If
∑

P(Ej) =∞ and the Ej ’s are independent, then P(E ) = 1.

I Turan used Cauchy–Schwarz to prove Borel–Cantelli when

P(Ei ∩ Ej) 6 (1 + ε)P(Ei )P(Ej) on average over i 6= j .

I For DSC, we know the limsup satisfies a 0–1 law, so we only
need to show that

P(Ei ∩ Ej) 6 101010
P(Ei )P(Ej) on average over i 6= j .
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A special but crucial case

I S ⊂ [Q, 2Q] set of denominators

I
∑

q∈S
ϕ(q)
q =: Q/D, so that D � 1. (Think #S ≈ Q/D.)

I ∆q := D
Q ·

1q∈S
q , so that

∑
q∈S meas(A∗q) = 1.

I Can we prove meas(
⋃

q∈S A∗q)� 1?
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A special but crucial case, ctd.

Recall: S ⊂ [Q, 2Q],
∑

q∈S
ϕ(q)
q = Q/D, ∆q = D

Q ·
1q∈S
q

I Pollington–Vaughan: meas(
⋃

q∈S A∗q)� 1, unless ∃t > 101010

s.t. there are > t−1#S2 pairs (q, r) ∈ S × S with:

1. the number qr/ gcd(q, r)2 has too many prime factors > t;
2. gcd(q, r) > D/t.

I Condition 1 occurs for � e−tQ2 pairs (q, r) ∈ [Q, 2Q]2. This
is sufficient if D � 1 (Erdős–Vaaler argument).

I If D is large, we must exploit Condition 2. We show it induces
“structure” on S.

I If d > D/t and S ⊂ {q ∈ [Q, 2Q] : d |q}, then Condition 2 is
satisfied for all pairs (q, r). Is some converse statement also
true?
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A combinatorial problem

The guiding model problem

Let S ⊂ [Q, 2Q] a set of Q/D integers. Suppose there are
> #S2/t pairs (q, r) ∈ S × S such that gcd(q, r) > D/t. Must
there exist some integers d > D/t that divides � t−100#S
elements of S?

I If such a d exists, replace S with S ′ = {m : dm ∈ S}.

I #S ′ � (Q/D)t−100 and S ⊂ [1, 2tQ/D], so S ′ is “dense”.

I In addition, qr/ gcd(q, r)2 = mn/ gcd(m, n)2 when
(q, r) = (dm, dn)

I Hence, Condition 2 carries through to the “dense” set S ′, and
the Erdős–Vaaler argument completes the proof.
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The graph of dependencies

Consider the graph G = (S, E), where:
I S ⊂ [Q, 2Q] is a set of ≈ Q/D integers;
I E = {(q, r) ∈ S × S : gcd(q, r) > D}.
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An iterative compression algorithm

I Simplify: S contains only square-free integers.

I Technical manoeuvre: necessary to view G as a bipartite
graph (S,S, E).

I Divise an algorithm that produces a nested sequence bipartite
graphs G (j) = (V(j),W(j), E(j))

G = G start =: G (0) ⊃ G (1) ⊃ · · · ⊃ G (J) =: G end

and distinct primes p1, p2, . . . , pJ such that:

1. For each i 6 j , the prime pi either divides all elements of V (j)

or none of them (and similarly with W (j)).
2. G end has all large GCDs due to a universal divisor. Hence, we

can analyze it using the Erdős–Vaaler argument.
3. the graph G (j) has better “quality” than G (j−1) (i.e. more

edges than naively expected). This ensures that the EV
argument on G end gives us non-trivial bounds on G start.
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The quality increment argument I

First attempt: ensure δ(G (j)) > δ(G (j−1)) at each step,
mimicking Roth’s density increment strategy.

This fails because we lose control on edge set of G end;
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The quality increment argument II

Second attempt: consider the following notation:

I (V,W) = (V(j−1),W(j−1)) and p = pj ;

I Vp = {v ∈ V : p|v}, Vp̂ = V \ Vp

We then have four options
for (V(j),W(j)):

pVp

Vp̂

pWp

Wp̂

1. (Vp,Wp): gain factor of p left and right; but lose a factor of
p in the GCDs (that affects both sides).

2. (Vp̂,Wp̂): no gained factors of p, so balanced situation.

3. (Vp,Wp̂): we gain a factor of p on the left, and nothing on
the right. BUT the GCDs are not affected, so we gain a factor
of p overall. Hence, we can afford a large loss of edges.

4. (Vp̂,Wp): as in case 3, we gain a factor of p.
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The quality increment argument III

Second attempt continued: ensure that p
σj
j #E(j) > #E(j−1) at

each step, where σj = 0 in the symmetric Cases 1,2 and σj = 1 in
the asymmetric Cases 3,4.

This would allow control of E start in terms of Eend, but we cannot
show it can be made to increase.

Third attempt: ensure that
δ(G (j))10p

σj
j #E(j) > δ(G (j−1))10#E(j−1).

This almost works. Stumbling block: the Model Problem as stated
is false! We must take account the weights ϕ(q)/q.

Fourth attempt: ensure that
δ(G (j))10p

σj
j (1− 1/pj)

−τj #E(j) > δ(G (j−1))10#E(j−1) at each
step, where τj = 1 in Case 1 where everything is divisible by pj ,
and τj = 0 otherwise.
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Sam Chow’s counterexample

S = {P/j : j |P, x/2 6 j 6 x} with P =
∏
p6x

p.

I all pairwise GCDs here are > P/x2

I no fixed integer of size � P/x2 dividing a positive proportion
of elements of S

I notice that if p 6 x/ log x , then the proportion of S divisible
by p is ∼ 1− 1/p.

I The case when #Vp ∼ (1− 1/p)#V turns out to be the
critical case in our “quality increment argument”, and where
we need to make use of the weights ϕ(q)/q.
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Thank you for your attention
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