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Abstract. Building on the concept of pretentious multiplicative functions, we give a new
and largely elementary proof of the best result known on the counting function of primes in
arithmetic progressions.

1. Introduction

In 1792 or 1793 Gauss conjectured that the number of primes up to x is asymptotic to
x/ log x, as x→∞, or, equivalently1, that

ψ(x) :=
∑
n≤x

Λ(n) :=
∑
pk≤x

p prime, k≥1

log p ∼ x (x→∞).

In 1896 this statement, now known as the Prime Number Theorem, was proven independently
by de la Vallée Poussin and Hadamard. Various authors improved upon this result and,
currently, the best estimate known for ψ(x), due to Korobov [Kor] and Vinogradov [Vi], is

(1.1) ψ(x) = x+O
(
xe−c(log x)

3/5(log log x)−1/5
)

(x ≥ 3),

for some constant c. This result is far from what we expect to be the truth, since the
Riemann Hypothesis is equivalent to the formula

(1.2) ψ(x) = x+O(
√
x log2 x) (x ≥ 2)

(see [Da, p. 113]).
The route to relation (1.1) is well known [Ti, Theorem 3.10]. Consider the Riemann ζ

function, defined by ζ(s) =
∑

n≥1 1/ns when <(s) > 1. The better upper bounds we have
available for ζ close to the line <(s) = 1, the better estimates for ψ(x) − x we can show.
The innovation of Korobov and Vinogradov lies precisely on obtaining sharper bounds for ζ,
which can be reduced to estimating exponential sums of the form

∑
N<n≤2N n

it. However,
the transition from these estimates to the error term in the prime number theorem uses
heavily the analyticity of the Riemann ζ function.

For several years it was an open question whether it is possible to prove the prime num-
ber theorem circumventing the use of Complex Analysis. Philosophically speaking, prime
numbers are defined in a very elementary way and there is no reason a priori why one
should have to use such sophisticated machinery as the theory of complex analytic functions
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∑
p≤x 1 for technical reasons. The two functions

can be easily related using partial summation.
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to understand their distribution. So it was a major breakthrough when Selberg [Se] and
Erdős [Er] succeeded in producing a completely elementary proof of the prime number the-
orem, in the sense that their arguments made no use of complex variables. Their method
was subsequently improved significantly by Bombieri [B] and Wirsing [Wi], and ultimately
by Diamond and Steinig [DS] who showed that

ψ(x) = x+O
(
xe−(log x)

1/7(log log x)−2
)

Later, Daboussi [D] gave a different completely elementary proof of the prime number the-
orem in the equivalent form ∑

n≤x

µ(n) = o(x) (x→∞),

where µ is the Möbius function, defined to be (−1)#{p|n} on squarefree integers n and 0
otherwise. We refer the reader to [IK, Section 2.4] and [Go, Gr] for further discussion about
the elementary and the analytic proofs of the prime number theorem.

In the present paper we devise a new proof of (1.1) that uses only elementary estimates
and Fourier inversion, thus closing the gap between complex analytic and more elementary
methods. More generally, we give a new proof of the best estimate known for the number of
primes in an arithmetic progression, which is Theorem 1.1 below2. Our starting point is a
proof by Iwaniec and Kowalski [IK, p. 40-42] that the Möbius function satisfies

(1.3)
∑
n≤x

µ(n)�A
x

(log x)A
(x ≥ 2)

for any fixed positive A (and hence that ψ(x) = x+OA(x/(log x)A) for all A). We improve
upon this result by inserting into the proof some ideas from sieve methods together with
estimates for exponential sums of the form

∑
N<n≤2N(n + u)it, essentially due to van der

Corput [Ti, Chapter 5] and Korobov-Vinogradov [Wa, Chapter 2].

Theorem 1.1. Fix A > 0. For x ≥ 1 and (a, q) = 1 with q ≤ (log x)A we have that∑
n≤x

n≡a (mod q)

Λ(n) =
x

φ(q)
+O

(
xe−cA(log x)3/5(log log x)−1/5

)

for some constant cA, which cannot be computed effectively.

Theorem 1.1 will be proven in Section 6 as a corollary of the more general Theorem 6.1.
As in the classical proof of Theorem 1.1, in order to treat real Dirichlet characters and pass
from Theorem 6.1 to Theorem 1.1, we need Theorem 1.2 below, which is due to Siegel [Si].
Pintz [Pi73] gave an elementary proof of this theorem, and in Section 5 we give an even
simpler proof of it.

Theorem 1.2. Let ε ∈ (0, 1]. For all real, non-principal Dirichlet characters χ modulo q we
have that L(1, χ)�ε q

−ε; the implied constant cannot be computed effectively.

2In fact, this theorem does not seem to have appeared in print before, even though it is well known to the
experts. The needed zero-free region is mentioned in the notes of Chapter 9 of [Mo94]; deducing Theorem 1.1
is then standard [Da, p. 120, 126]. See also [LZ].
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Lying just underneath the surface of the proof of Theorem 1.1 there is a general idea about
multiplicative functions, which partly goes back to Halász [Ha71, Ha75]. Let f : N → {z ∈
C : |z| ≤ 1} be a multiplicative function, namely f satisfies the functional equation

f(mn) = f(m)f(n) whenever (m,n) = 1.

We want to understand when f is small on average, that is to say, when

(1.4)
∑
n≤x

f(n) = o(x) (x→∞).

First, note that if f(n) = nit for some fixed t ∈ R, then (1.4) does not hold. Also, if we
tweak nit a little bit, we find more counterexamples to (1.4). Halász showed that these are
the only counterexamples: unless f pretends to be nit for some t ∈ R, in the sense that∑

p

1−<(f(p)p−it)

p
<∞,

then relation (1.4) holds.
Letting f = µ in Halász’s theorem, we find that the prime number theorem is reduced

to the statement that µ does not pretend to be nit for any t. Recently, Granville and
Soundararajan [GS] carried out this argument and obtained a new proof of the prime num-
ber theorem. The possibility that µ pretends to be nit was excluded using Selberg’s sieve.
From a broad point of view, this proof can be also regarded elementary, albeit not com-
pletely elementary, since implicit in the proof of Halász’s theorem is Plancherel’s formula
from Harmonic Analysis. Using a quantitative version of Halász’s theorem, due to various
authors [Mo78, Te, GS03], this proof produces the estimate

(1.5)
∑
n≤x

µ(n)� x

(log x)1−2/π+o(1)
(x→∞).

The weak error term in (1.5) is intrinsic to the method of Graville and Soundararajan. The
generality of Halász’s theorem is simultaneously its Achilles’ heel: it can never yield an error
term that is better than x log log x/ log x ([MV01, GS]).

These quantitative limitations of Halász’s theorem were the stumbling block to obtaining
good bounds on the error term in the prime number theorem using general tools about
multiplicative functions. In [Kou] we develop further the methods of this paper and show
how to obtain an improvement over Halász’s theorem for a certain class of functions f : we
show that if ∑

n≤x
(n,2)=1

f(n)�A
x

(log x)A
(x ≥ 2)

for some A ≥ 6, then we have sharper bounds for the partial sums of µ ·f than what Halász’s
theorem gives us. In particular, if f does not pretend to be µ(n)nit for some t ∈ R, then
we can show a lot of cancelation in the partial sums of µ · f . The key observation for the
application to primes in arithmetic progressions is that a non-principal character χ is very
small on average. So using our methods we may show that µ ·χ is also very small on average,
provided that χ does not pretend to be µ(n)nit for some t ∈ R, which, in more classical
terms, corresponds to a suitable zero-free region for the L-function L(s, χ) =

∑
n≥1 χ(n)/ns

around the point 1 + it.
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2. Preliminaries

Notation. For an integer n we denote with P+(n) and P−(n) the greatest and smallest
prime divisors of n, respectively, with the notational convention that P+(1) = 1 and P−(1) =
∞, and we let τr(n) =

∑
d1···dr=n 1. Given two arithmetics functions f, g : N → C, we write

f ∗ g for their Dirichlet convolution, defined by (f ∗ g)(n) =
∑

ab=n f(a)g(b). The notation
F �a,b,... G means that |F | ≤ CG, where C is a constant that depends at most on the
subscripts a, b, . . . , and F �a,b,... G means that F �a,b,... G and G�a,b,... F . Finally, we use
the letter c to denote a constant, not necessarily the same one in every place, and possibly
depending on certain parameters that will be specified using subscripts and other means.

In this section we present a series of auxiliary results we will need later. We start with
the following lemma, which is based on an idea in [IK, p. 40].

Lemma 2.1. Let M ≥ 1, D be an open subset of C and s ∈ D. Consider a function F : D →
C that is differentiable k times at s and its derivatives satisfy the bound |F (j)(s)| ≤ j!M j for
1 ≤ j ≤ k. If F (s) 6= 0, then∣∣∣∣∣

(
F ′

F

)(k−1)

(s)

∣∣∣∣∣ ≤ k!

2

(
2M

min{|F (s)|, 1}

)k
.

Proof. We have the identity(
−F ′

F

)(k−1)

(s) = k!
∑

a1+2a2+···=k

(−1 + a1 + a2 + · · · )!
a1!a2! · · ·

(
−F ′

1!F
(s)

)a1 (−F ′′
2!F

(s)

)a2
· · · ,

which can be easily verified by induction3. In order to complete the proof of the lemma, we
will show that

(2.1)
∑

a1+2a2+···+kak=k

(a1 + a2 + · · ·+ ak)!

a1!a2! · · · ak!
=

∑
a1+2a2+···+kak=k

(
a1 + a2 + · · ·+ ak
a1, a2, . . . , ak

)
= 2k−1.

Indeed, for each fixed k-tuple (a1, . . . , ak) ∈ (N ∪ {0})k with a1 + 2a2 + · · · + kak = k,
the multinomial coefficient

(
a1+a2+···+ak
a1,a2,...,ak

)
represents the way of writing k as the sum of a1

ones, a2 twos, and so on, with the order of the different summands being important, e.g. if
k = 5, a1 = 1, a2 = 2 and a3 = a4 = a5 = 0, then there are three such ways to write 5:
5 = 2 + 2 + 1 = 2 + 1 + 2 = 1 + 2 + 2. So we conclude that∑

a1+2a2+···+kak=k

(
a1 + a2 + · · ·+ ak
a1, a2, . . . , ak

)
= #{ordered partitions of k},

where we define an ordered partition of k to be a way to write k as the sum of positive integers,
with the order of the different summands being important. To every ordered partition of
k = b1+· · ·+bm, we can associate a unique subset of {1, . . . , k} in the following way: consider
the set B ⊂ {1, . . . , k} which contains {1, . . . , b1}, does not contain {b1 + 1, . . . , b1 + b2},
contains {b1+b2+1, . . . , b1+b2+b3}, does not contain {b1+b2+b3+1, . . . , b1+b2+b3+b4}, and
so on. Then B necessarily contains 1 and, conversely, every subset of {1, . . . , k} containing 1
can arise this way. So we conclude that there are 2k−1 ordered partitions, and (2.1) follows,
thus completing the proof of the lemma. �

3A similar identity for the derivatives of 1/F was used by Iwaniec and Kowalski [IK, p. 40] in their proof
of (1.3).
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Below we state a result which is known as the fundamental lemma of sieve methods. It
has appeared in the literature in many different forms (for example, see [HR, Theorem 7.2]).
The version we shall use is Lemma 5 in [FI78].

Lemma 2.2. Let y ≥ 2 and D = yu with u ≥ 2. There exist two arithmetic functions
λ± : N→ [−1, 1] supported in {d ∈ N ∩ [1, D] : P+(d) ≤ y} and such that{

(λ− ∗ 1)(n) = (λ+ ∗ 1)(n) = 1 if P−(n) > y,

(λ− ∗ 1)(n) ≤ 0 ≤ (λ+ ∗ 1)(n) otherwise.

Moreover, if g : N→ [0, 1] is a multiplicative function, and either λ = λ+ or λ = λ−, then∑
d

λ(d)g(d)

d
=
(
1 +O(e−u)

)∏
p≤y

(
1− g(p)

p

)
.

In addition, we need estimates for the exponential sums
∑

N<n≤2N(n+u)it when logN �
log |t|. The best such result that is known is due to Ford [Fo, Theorem 2], but its proof uses
implicitly the zeroes of the Riemann zeta function (see Lemmas 2.1 and 2.2 in [Fo]). Instead,
we use results from [Ti, Chapter 5] and [Wa, Chapter 2] that are due to van der Corput and
Korobov-Vinogradov, respectively, and have completely elementary proofs.

Lemma 2.3. For t ∈ R, 0 ≤ u ≤ 1 and 2 ≤ N ≤ t2 we have that∑
N<n≤2N

(n+ u)it � N · exp

{
− (logN)3

66852(log |t|)2

}
.

Proof. When N ≤ |t|1/18, the result follows by [Wa, Satz 2, p. 57], since⌊
log |t|
logN

⌋
+ 1 ≤ 19

18

log |t|
logN

for such N and 66852 ≥ (19/18)260000. Assume now that |t|1/18 < N ≤ |t|2. Consider

m ∈ {1, 2, . . . , 35} such that |t|
2

m+1 < N ≤ |t| 2m . Let k =
⌊
m
2

+ 7
4

⌋
≥ 2, so that Nk−7/4 ≤

|t| ≤ Nk−1/4, and set K = 2k−1 ≥ 2. Then we apply Theorem 5.9, 5.11 or 5.13 in [Ti, Section
5.9, p. 104-107] according to whether k = 2, k = 3 or k ≥ 4, respectively, to obtain the
estimate

1

N

∑
N<n≤2N

(n+ u)it �
(
|t|
Nk

) 1
2K−2

+

(
Nk−2

|t|

) 1
2K−2

� 1

N
1

8K

≤ exp

{
−
(
k − 7

4

)2
2k+2

(logN)3

(log |t|)2

}
.

Since 2k+2/(k − 7/4)2 ≤ 7050 for 2 ≤ k ≤ 19, the lemma follows in this last case too. �

Next, we show how to combine Lemmas 2.2 and 2.3 to estimate sums of χ(n)nit when n
has no small prime factors. Here and for the rest of the paper we use the notation

δ(χ) =

{
1 if χ is a principal Dirichlet character,

0 otherwise,

and

Vt = exp
{

(log(3 + |t|))2/3(log log(3 + |t|))1/3
}

(t ∈ R).
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Lemma 2.4. Let χ be a Dirichlet character modulo q and t ∈ R. For x ≥ y ≥ 2 with
x ≥ max{q4, V 100

t } we have that∑
n≤x

P−(n)>y

χ(n)nit =
δ(χ)φ(q)

q

x1+it

1 + it

∏
p≤y
p-q

(
1− 1

p

)
+O

(
x1−1/(30 log y) + x1−1/(100 log Vt)

log y

)
.

Proof. We apply Lemma 2.2 with D = (x/q)1/20 ≥ x3/80. We have that∑
n≤x

P−(n)>y

χ(n)nit =
∑
n≤x

(λ+ ∗ 1)(n)χ(n)nit +O

(∑
n≤x

(λ+ ∗ 1− λ− ∗ 1)(n)

)

=
∑
d

λ+(d)χ(d)dit
∑
m≤x/d

χ(m)mit +O

(∑
d

(λ+(d)− λ−(d))
⌊x
d

⌋)
.

(2.2)

For the error term, note that

(2.3)
∑
d

(λ+(d)− λ−(d))
⌊x
d

⌋
= x

∑
d

λ+(d)− λ−(d)

d
+O

(
(x/q)1/20

)
� x1−3/(80 log y)

log y
,

by Lemma 2.2. To estimate the main term of the right hand side of (2.2), we distinguish
two cases.

First, assume that x > qt2/c, where c is some large constant to be chosen later. Then∑
m≤x/d

χ(m)mit =

∫ x/d

1−
uitd

(
δ(χ)φ(q)

q
u+O(q)

)
=
δ(χ)φ(q)

q

(x/d)1+it

1 + it
+O(q(1 + |t|) log x)

=
δ(χ)φ(q)

q

(x/d)1+it

1 + it
+Oc(x

5/8 log x),

since q(|t|+ 1)�c
√
xq ≤ x5/8. Inserting the above estimate and (2.3) into (2.2) yields that

∑
n≤x

P−(n)>y

χ(n)nit =
δ(χ)φ(q)

q

x1+it

1 + it

∑
d

λ+(d)χ(d)

d
+Oc

(
x5/8+1/20 log x+

x1−3/(80 log y)

log y

)
.

(2.4)

If δ(χ) = 0, the first term on the right hand side of (2.4) vanishes trivially. Otherwise, χ is
principal and, consequently,∑

d

λ+(d)χ(d)

d
=
∑

(d,q)=1

λ+(d)

d
=
(
1 +O

(
x−3/(80 log y)

))∏
p≤y
p-q

(
1− 1

p

)

=
∏
p≤y
p-q

(
1− 1

p

)
+O

(
q

φ(q)

x−3/(80 log y)

log y

)
,

by Lemma 2.2. In any case, we have that∑
n≤x

P−(n)>y

χ(n)nit =
δ(χ)φ(q)

q

x1+it

1 + it

∏
p≤y
p-q

(
1− 1

p

)
+Oc

(
x1−3/(80 log y)

log y

)
,
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which completes the proof in this case.
Finally, assume that x ≤ qt2/c. In this case we must have that |t| ≥

√
c, since x ≥ q4.

Moreover, observe that, for 2 ≤ N ≤ t2 and u ∈ [0, 1], Lemma 2.3 implies that∑
n≤N−u

(n+ u)it = O(
√
N) +

∑
1≤2j≤

√
N

∑
N−u

2j+1<n≤
N−u

2j

(n+ u)it

�
√
N +

∑
1≤2j≤

√
N

N

2j
· exp

{
−(log(N − u)− (j + 1) log 2)3

66852(log |t|)2

}

�
√
N +N · exp

{
−
(
log N−u

2

)3
66852(log |t|)2

}
� N · exp

{
− (logN)3

66852(log |t|)2

}
because the summands on the second line of the above relation decay exponentially in j by
our assumption that N ≤ t2. So for d ≤ (x/q)1/20 we have that∑

n≤x/d

χ(n)nit =

q∑
a=1

χ(a)
∑
n≤x/d

n≡ a (mod q)

nit =

q∑
a=1

χ(a)qit
∑

0≤j≤x/d−a
q

(
j +

a

q

)it

�
q∑

a=1

x

dq
exp

{
− log3(x/(dq))

66852(log |t|)2

}
≤ x

d
exp

{
− (log x)3

185000(log |t|)2

}
,

since x/(dq) ≥ (x/q)19/20 ≥ x0.7125 for d ≤ (x/q)20 and q ≤ x1/4. Inserting this estimate
and (2.3) into (2.2), we deduce that

(2.5)
∑
n≤x

P−(n)>y

χ(n)nit � x(log y) exp

{
− (log x)3

185000(log |t|)2

}
+
x1−3/(80 log y)

log y
.

Lastly, observe that our assumption that x ≥ V 100
t implies that

log x

(log log x)1/3(log |t|)2/3
≥ 100 log Vt

(log(100 log Vt))1/3(log |t|)2/3
∼ 100

(
3

2

)1/3

,

as |t| → ∞. Since |t| ≥
√
c, taking c large enough we find that log x ≥ 100(log log x)1/3(log |t|)2/3

and, consequently,

(log x)3

185000(log |t|)2
=

(log x)3

370000(log |t|)2
+

(log x)3

370000(log |t|)2
≥
(

log x

100 log Vt

)3

+ 2 log log x

Inserting the above inequality into (2.5) completes the proof of the lemma in this last case
too (note that the main term in the statement of the lemma is smaller than the error term

in this case, since |t| ≥
√
cx/q ≥ c1/2x3/8 by assumption). �

3. Distances of multiplicative functions

Given two multiplicative functions f, g : N → {z ∈ C : |z| ≤ 1} and real numbers
x ≥ y ≥ 1, we set

D(f, g; y, x) =

( ∑
y<p≤x

1−<(f(p)g(p))

p

)1/2

.
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This quantity defines a certain measure of ‘distance’ between f and g. In particular, it
satisfies the following triangle-like inequality [GS08, p. 207].

Lemma 3.1. Let f, g : N → {z ∈ C : |z| ≤ 1} be multiplicative functions and x ≥ y ≥ 1.
Then

D(1, f ; y, x) + D(1, g; y, x) ≥ D(1, fg; y, x).

It is possible to relate the distance of two multiplicative functions to the value of a certain
Dirichlet series. Here and for the rest of the paper, given an arithmetic function f : N→ R,
we let

L(s, f) =
∞∑
n=1

f(n)

ns
and Ly(s, f) =

∑
P−(n)>y

f(n)

ns
,

provided the series converge.

Lemma 3.2. Let x, y ≥ 2, t ∈ R and f : N→ {z ∈ C : |z| ≤ 1} be a multiplicative function.
Then

log

∣∣∣∣Ly (1 +
1

log x
+ it, f

)∣∣∣∣ =
∑
y<p≤x

<(f(p)p−it)

p
+O(1).

Proof. This result has appeared in the literature before, at least implicitly (see [El, Lemma
6.6 in p. 230, and p. 253] as well as [Te, p. 459-460]). The current formulation is due to
Granville and Soundararajan [GS]. The proof follows by writing Ly(1 + 1/ log x + it, f) as
an Euler product and observing that4 log |1 + z| = <(z) +O(|z|2) for |z| ≤ 1/2, and that

(3.1)
∑
p≤x

(
1

p
− 1

p1+1/ log x

)
+
∑
p>x

1

p1+1/ log x
� 1,

by Chebyshev’s estimate
∑

p≤u log p� u and partial summation. �

We conclude this section with the following lemma, which is a partial demonstration of
the phenomenon mentioned towards the end of the introduction: if a multiplicative function
f : N→ U is small on average and it does not pretend to be µ(n)nit for some t, then f(p) is
small on average.

Lemma 3.3. Let y2 ≥ y1 ≥ y0 ≥ 2. Consider a multiplicative function f : N → {z ∈ C :
|z| ≤ 1} such that ∣∣∣∣L′y0 (1 +

1

log x
, f

)∣∣∣∣ ≤ c log y0 (y1 ≤ x ≤ y2)

for some c ≥ 1 and

D2(f(n), µ(n); y0, x) ≥ δ log

(
log x

log y0

)
−M (y1 ≤ x ≤ y2)

for some δ > 0 and M ≥ 0. Then ∣∣∣∣∣ ∑
y1<p≤y2

f(p)

p

∣∣∣∣∣�c,M
1

δ
.

4Note that |f(p)/ps + f(p2)/p2s + · · · | ≤ 1/(pσ − 1) ≤ 1/2 for p > y ≥ 2 and <(s) > 1.



PRETENTIOUS MULTIPLICATIVE FUNCTIONS AND PRIMES IN ARITHMETIC PROGRESSIONS 9

Proof. Let s = σ + it ∈ C with σ > 1 and t ∈ R. Note that |f(p)/ps + f(p2)/p2s + · · · | ≤
1/(pσ − 1) ≤ 1/2 for p > y0 ≥ 2, so that(

1 +
f(p)

ps
+
f(p2)

p2s
+ · · ·

)−1
= 1 +O

(
1

pσ

)
(p > y0 ≥ 2).

Now, since Ly0(s, f) =
∏

p>y0
(1+f(p)/ps+f(p2)/p2s+· · · ), logarithmic differentiation yields

the formula

−
L′y0
Ly0

(s, f) =
∑
p>y0

f(p)(log p)/ps + 2f(p2)(log p)/p2s + · · ·
1 + f(p)/ps + f(p2)/p2s + · · ·

=
∑
p>y0

(
f(p) log p

ps
+O

(
log p

p2σ

))(
1 +O

(
1

pσ

))
=
∑
p>y0

(
f(p) log p

ps
+O

(
log p

p2σ

))
=
∑
p>y0

f(p) log p

ps
+O(1).

Moreover, relation (3.1) implies that∑
y0<p≤z

f(p)

p
=
∑
p>y0

f(p)

p1+1/ log z
+O(1) (z ≥ y0).

Combining the above formulas, we find that∑
y1<p≤y2

f(p)

p
= O(1) +

∑
p>y0

f(p)

p1+1/ log y2
−
∑
p>y0

f(p)

p1+1/ log y1

= O(1) +
∑
p>y0

f(p) log p

p

∫ y2

y1

du

p1/ log uu log2 u

= O(1) +

∫ y2

y1

∑
p>y0

f(p) log p

p1+1/ log u

du

u log2 u

= O(1)−
∫ y2

y1

L′y0
Ly0

(
1 +

1

log u
, f

)
du

u log2 u
.

(3.2)

Moreover, Lemma 3.2 and our assumptions on f imply that, for u ∈ [y1, y2], we have that∣∣∣∣Ly0 (1 +
1

log u
, f

)∣∣∣∣ � ( log y0
log u

)
exp

{
D2(f(n), µ(n); y0, u)

}
�M

(
log u

log y0

)−1+δ
and |L′y0(1 + 1/ log u, f)| ≤ c log y0. Inserting these estimates into (3.2), we conclude that

∑
y1<p≤y2

f(p)

p
�c,M 1+

∫ y2

y1

(log y0)

(
log u

log y0

)1−δ
du

u(log u)2
= 1+(log y0)

δ

∫ y2

y1

du

u(log u)1+δ
� 1

δ
,

thus completing the proof of the lemma.
�
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4. Bounds on Dirichlet L-functions

In this section we list some essential estimates on the derivatives of Ly(s, χ) and
L′y
Ly

(s, χ).

We start with the following result, which is a consequence of Lemma 2.4.

Lemma 4.1. Let χ be a Dirichlet character modulo q, k ∈ N ∪ {0}, and s = σ + it with
σ > 1 and t ∈ R. For y ≥ 3/2 we have that

(4.1)

∣∣∣∣∣∣∣∣L
(k)
y (s, χ) +

(−1)k+1k!

(s− 1)k+1

δ(χ)φ(q)

q

∏
p≤y
p-q

(
1− 1

p

)∣∣∣∣∣∣∣∣�
k!(c log(yqVt))

k+1

log y
.

In particular, if y ≥ max
{
qVt, e

δ(χ)/|t|}ε for some fixed ε > 0, then

(4.2)
∣∣L(k)

y (s, χ)
∣∣� k!(cε log y)k.

Proof. Set z = max{y, q4, V 100
t } and note that

(−1)kL(k)
y (s, χ) =

∑
n>z

P−(n)>y

χ(n)(log n)k

ns
+O

(
(log z)k+1

log y

)
.

Moreover, Lemma 2.4 implies that∑
n≤u

P−(n)>y

χ(n)n−it =
δ(χ)φ(q)

q

u1−it

1− it
∏
p≤y
p-q

(
1− 1

p

)
+Rt(u)

with Rt(u)� u1−1/(30 log z)/ log y for u ≥ z. Consequently, we have that

∑
n>z

P−(n)>y

χ(n)(log n)k

ns
=

∫ ∞
z

(log u)k

uσ
d

δ(χ)φ(q)

q

u1−it

1− it
∏
p≤y
p-q

(
1− 1

p

)
+Rt(u)


=
δ(χ)φ(q)

q

∏
p≤y
p-q

(
1− 1

p

)∫ ∞
z

(log u)k

us
du+

∫ ∞
z

(log u)k

uσ
dRt(u).

Since∫ ∞
z

(log u)k

uσ
dRt(u) = −(log z)kRt(z)

zσ
+

∫ ∞
z

(log u)k−1(σ log u− k)

uσ+1
Rt(u)du

� (log z)k

log y
+
σ + k

log y

∫ ∞
z

(log u)k

uσ+1/(30 log z)
du

≤ (log z)k

log y
+

σ + k

zσ−1 log y

∫ ∞
z

(log u)k

u1+1/(30 log z)
du� (k + 1)!(30 log z)k+1

log y
,

by partial summation, and∫ ∞
z

(log u)k

us
du =

∫ ∞
1

(log u)k

us
du+O((log z)k+1) =

k!

(s− 1)k+1
+O((log z)k+1),
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by observing that (log u)mu−s = (log u)md(u1−s/(1−s))
du

for all m ≥ 0 and integrating by parts
k times, relation (4.1) follows. Finally, relation (4.2) is a direct consequence of relation (4.1),
since |s − 1| ≥ |t| ≥ ε · δ(χ)/ log y under the assumption that y ≥ eε·δ(χ)/|t|. This completes
the proof of the lemma. �

The next lemma provides a lower bound on Ly(s, χ) close to the line <(s) = 1.

Lemma 4.2. Fix ε ∈ (0, 1]. Let χ be a Dirichlet character modulo q, s = σ + it with σ > 1
and t ∈ R, and y ≥ qVt. If |t| ≥ ε/ log y or if χ is complex, then we have that |Ly(s, χ)| �ε 1.
Finally, if χ is a non-principal, real character, and |t| ≤ 1/ log y, then |Ly(s, χ)| � Ly(1, χ).

Proof. First, assume that either |t| ≥ ε/ log y or χ is complex. Equivalently, |t| ≥ εδ(χ2)/ log y.
Note that for every x ≥ y we have that

2 · D(χ(n), µ(n)nit; y, x) = D(1, χ(n)µ(n)nit; y, x) + D(1, χ(n)µ(n)nit; y, x)

≥ D(1, χ2(n)µ2(n)n2it; y, x) = D(χ2(n), n2it; y, x),
(4.3)

by Lemma 3.1. Mertens’s estimate on
∑

p≤t 1/p and Lemma 3.2 imply that

D2(χ2(n), n2it; y, x) = log

(
log x

log y

)
+O(1)−

∑
y<p≤x

<(χ2(p)p−2it)

p

= log

(
log x

log y

)
+O(1)− log

∣∣∣∣Ly (1 +
1

log x
+ 2it, χ2

)∣∣∣∣ .
So, applying relation (4.2) with k = 0, we find that

D2(χ2(n), n2it; y, x) ≥ log

(
log x

log y

)
+O(1).

Inserting this estimate into (4.3), we deduce that

D2(χ(n), µ(n)nit; y, x) ≥ 1

4
log

(
log x

log y

)
+O(1)

(
x ≥ y ≥ max

{
qVt, e

ε·δ(χ2)/|t|
})

.

The above inequality, and relation (4.2) with k = 1, allow us to apply Lemma 3.3 with
y0 = y1 = y and any y2 > y. So we conclude that

(4.4)

∣∣∣∣∣ ∑
y<p≤x

χ(p)

p1+it

∣∣∣∣∣� 1
(
x ≥ y ≥ max

{
qVt, e

ε·δ(χ2)/|t|
})

.

The above relation for x = max{e1/(σ−1), y} and Lemma 3.2 imply that |Ly(s, χ)| � 1, which
completes the proof of the first part of the lemma.

Finally, assume that χ is a real, non-principal character, and that |t| ≤ 1/ log y. Let
x = max{e1/(σ−1), y} and z = min{x, e1/|t|} ≥ y ≥ qVt. Then we have that∣∣∣∣∣ ∑

z<p≤x

χ(p)

p1+it

∣∣∣∣∣� 1,

trivially if z = x, and by relation (4.4) with z in place of y otherwise, which holds, since in

this case z = e1/|t| ≥ eδ(χ
2)/|t|. So we deduce that∑

y<p≤x

χ(p)

p1+it
=
∑
y<p≤z

χ(p)

p1+it
+O(1) =

∑
y<p≤z

χ(p) +O(|t| log p)

p
+O(1) =

∑
y<p≤z

χ(p)

p
+O(1).
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Finally, for every w ≥ z ≥ qVt, we have that∑
z<p≤w

χ(p)

p
= log

∣∣∣∣Lz (1 +
1

logw
, χ

)∣∣∣∣+O(1) ≤ O(1),

by Lemma 3.2, and relation (4.2) with k = 0. So∑
y<p≤x

<(χ(p)p−it)

p
=
∑
y<p≤z

χ(p)

p
+O(1) ≥

∑
y<p≤w

χ(p)

p
+O(1) (w ≥ z).

Lemma 3.2 then implies that |Ly(s, χ)| � Ly(1 + 1/ logw, χ) for all w ≥ z. Letting w →∞
completes the proof of the last part of the lemma too. �

Finally, we prove an estimate for the derivatives of
L′y
Ly

(s, χ), which will be key in the proof

of Theorem 1.1.

Lemma 4.3. Let χ be a Dirichlet character modulo q and s = σ + it with σ > 1 and t ∈ R.
For every k ∈ N we have that∣∣∣∣∣

(
L′

L

)(k−1)

(s, χ) +
δ(χ)(−1)k−1(k − 1)!

(s− 1)k

∣∣∣∣∣�
(

ck log(qVt)

δ(χ) + (1− δ(χ))|LqVt(s, χ)|

)k
.

Proof. Set y = qVt and fix some constant ε to be chosen later. We separate three cases.

Case 1: σ ≥ 1 + ε/ log y. Note that δ(χ) + (1− δ(χ))|LqVt(s, χ)| � 1, trivially if δ(χ) = 1,
and by relation (4.2) with k = 0 if δ(χ) = 0. Since we also have that∣∣∣∣∣
(
L′

L

)(k−1)

(s, χ) +
δ(χ)(−1)k−1(k − 1)!

(s− 1)k

∣∣∣∣∣ ≤
∞∑
n=1

Λ(n)(log n)k−1

n1+ε/ log y
+

(k − 1)!

(ε/ log y)k
� (c1k log y)k

for some c1 = c1(ε), the lemma follows.

Case 2: |t| > ε/ log y. Note that

(4.5)

(
L′

L

)(k−1)

(s, χ) = O
(
(c2k log y)k

)
+

(
L′y
Ly

)(k−1)

(s, χ).

Furthermore, relation (4.2) implies that |L(j)
y (s, χ)| ≤ j!(c3 log y)j for all j ∈ N, for some

c3 = c3(ε). Additionally, we have that |Ly(s, χ)| �ε 1 by Lemma 4.2. So Lemma 2.1
applied to F (s) = Ly(s, χ) yields that the right hand side of (4.5) is � (c4k log y)k for some
c4 = c4(ε), and the lemma follows (note that in this case |s− 1| ≥ |t| ≥ ε/ log y).

Case 3: |s− 1| ≤ 2ε/ log y. Let

F (s) = (s− 1)δ(χ)Ly(s, χ)
∏
p≤y

(
1− 1

p

)−δ(χ)
,

and observe that

F (j)(s) =
(
(s− 1)δ(χ)L(j)

y (s, χ) + δ(χ)jL(j−1)
y (s, χ)

)∏
p≤y

(
1− 1

p

)−δ(χ)
� j!(c5 log y)j,
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for all j ∈ N, by relation (4.1). So Lemma 2.1 implies that(
L′y
Ly

)(k−1)

(s, χ) +
δ(χ)(−1)k−1(k − 1)!

(s− 1)k
=

(
F ′

F

)(k−1)

(s)�
(

c6k log y

min{|F (s)|, 1}

)k
.

Together with (4.5), the above estimate reduces the desired result to showing that

(4.6) min{|F (s)|, 1} � δ(χ) + (1− δ(χ))|Ly(s, χ)|.
If δ(χ) = 0, then (4.6) holds, since |F (s)| = |Ly(s, χ)| � 1, by relation (4.2) with k = 0.
Lastly, if δ(χ) = 1, then |F (s)| = 1 +O(|s− 1| log y) = 1 +O(ε) by relation (4.1) with k = 0
(note that

∏
p≤y, p|q(1 − 1/p) = φ(q)/q, since y > q by assumption). So choosing ε small

enough (independently of k, q and s), we find that |F (s)| � 1, that is, (4.6) is satisfied in
this case too. This completes the proof of (4.6) and hence of the lemma. �

5. Siegel’s theorem

In this section we prove Theorem 1.2. In fact, we will show a more precise result, originally
due to Tatuzawa [Ta], from which Theorem 1.2 follows immediately:

Theorem 5.1. Let ε ∈ (0, 1]. With at most one exception, for all real, non-principal,
primitive Dirichlet characters χ, we have that L(1, χ)� εq−ε, where q denotes the conductor
of χ; the implied constant is effectively computable.

Deduction of Theorem 1.2 from Theorem 5.1. Fix some ε ∈ (0, 1) and let ψε be the possible
exceptional character from Theorem 5.1. Consider a real, non-principal Dirichlet character
χ modulo q, and let χ1 modulo q1 be the primitive character inducing χ. We have that

L(1, χ) = L(1, χ1)
∏
p|q

(
1− χ1(p)

p

)
≥ L(1, χ1) ·

φ(q)

q
� L(1, χ1)

log q
.

So

L(1, χ)� 1

log q
·

{
L(1, ψε) if χ1 = ψε,

εq−ε if χ1 6= ψε.

Moreover, Dirichlet’s class number formula [Da, p. 49-50] implies that L(1, ψε) > 0 (see
also [IK, p. 37] for a different proof of this statement, in the spirit of the proof of Lemma 5.2
below). So, in any case, we find that L(1, χ) �ε q

−ε/ log q. Since this inequality holds for
every ε ∈ (0, 1), Theorem 1.2 follows. �

Before we give the proof of Theorem 5.1, we state a preliminary lemma. The idea behind
its proof can be traced back to [Pi73, Pi76]. Note that some of its assumptions concern
the behavior of L(s, f) inside the critical strip. However, the assumption that

∑
n≤x f(n)�

x4/5 log x, together with partial summation, guarantees that L(s, f) converges (conditionally)
for all s with <(s) > 4/5. Hence we still use only elementary facts about Dirichlet series and
no analytic continuation.

Lemma 5.2. Let c ≥ 1, r ∈ N and Q ≥ 2. Consider a multiplicative function f : N → R
such that 0 ≤ (1 ∗ f)(n) ≤ τr(n) for all integers n, and∣∣∣∣∣∑

n≤x

f(n)

∣∣∣∣∣ ≤ cx4/5 log x (x ≥ Q).
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(a) If L(1− η, f) ≥ 0 for some η ∈ [0, 1/20], then L(1, f)�c,r η/Q
2η.

(b) There is a constant c0 depending at most on c and r such that L(σ, f) has at most
one zero in the interval [1− c0/ logQ, 1].

Proof. Before we begin, we record some estimates, which follow by partial summation. For
A2 ≥ A1 ≥ Q, we have that

(5.1)
∑

A1<a≤A2

f(a)

a1−η
�c

logA1

A
1/5−η
1

and
∑

A1<a≤A2

f(a) log a

a1−η
�c

(logA1)
2

A
1/5−η
1

,

and, for B ≥ 1, we have that

(5.2)
∑
b≤B

1

b1−η
=
Bη − 1

η
+ γη +O(Bη−1), where γη = 1− (1− η)

∫ ∞
1

{u}
u2−η

du,

and
(5.3)∑
b≤B

log b

b1−η
=
Bη logB

η
−B

η − 1

η2
+γ′η+O

(
logB

B1−η

)
, where γ′η =

∫ ∞
1

{u}(1− (1− η) log u)

u2−η
du.

(a) For x ≥ Q2 we have that

S1 :=
∑
n≤x

(1 ∗ f)(n)

n1−η =
∑
a≤
√
x

f(a)

a1−η

∑
b≤x/a

1

b1−η
+
∑
b≤
√
x

1

b1−η

∑
√
x<a≤x/b

f(a)

a1−η

=
∑
a≤
√
x

f(a)

a1−η

(
(x/a)η − 1

η
+ γη +O

(
(x/a)η−1

))
+Oc

 log x

x1/10−η/2

∑
b≤
√
x

1

b1−η


=
∑
a≤
√
x

f(a)

a1−η
(x/a)η − 1

η
+ γηL(1− η, f) +Oc,r

(
log2 x

x1/10−η

)
,

by relations (5.1) and (5.2), since |f | = |µ∗ (1∗f)| ≤ τr+1. Finally, for A >
√
x we have that∑

√
x<a≤A

f(a)

a1−η
(x/a)η − 1

η
= −

∫ A

√
x

(x/u)η − 1

η
d

( ∑
u<a≤A

f(a)

a1−η

)
�c

log2 x

x1/10−η
,

by relation (5.1) and integration by parts. Consequently,

S1 =
xη

η
L(1, f) +

(
γη −

1

η

)
L(1− η, f) +Oc,r

(
log2 x

x1/10−η

)
.

Note that S1 ≥ 1 because (1 ∗ f)(1) = 1 and (1 ∗ f)(n) ≥ 0 for all n > 1 by assumption.
Since L(1− η, f) ≥ 0 and γη < 1 < 1/η for η ∈ (0, 1), we readily find that L(1, f)� η/Q2η

by taking x = c1Q
2 for some sufficiently large constant c1 that depends at most on c and r.

(b) Let η ∈ [0, 1/20] and x ≥ Q2. We use a similar argument as in the proof of part (a)
to compute

S2 :=
∑
n≤x

(1 ∗ f)(n) log n

n1−η =
∑
a≤
√
x

f(a)

a1−η

∑
b≤x/a

log(ab)

b1−η
+
∑
b≤
√
x

1

b1−η

∑
√
x<a≤x/b

f(a) log(ab)

a1−η
.
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Relations (5.2) and (5.3) imply that, for 1 ≤ a ≤ x, we have that∑
b≤x/a

log(ab)

b1−η
= (log a)

∑
b≤x/a

1

b1−η
+
∑
b≤x/a

log b

b1−η
= g(a) +O

(
log(2x)

(x/a)1−η

)
,

where

g(a) = (log a)

(
(x/a)η − 1

η
+ γη

)
+
η(x/a)η log(x/a)− (x/a)η + 1

η2
+ γ′η(5.4)

= (log x)
(x/a)η

η
+ (log a)

(
γη −

1

η

)
− (x/a)η − 1

η2
+ γ′η.(5.5)

By (5.4), we find that

(5.6) g(a)� log2(2a) + (x/a)η log2 x,

uniformly in a ≥ 1, x ≥ 1 and η ∈ [0, 1/20]. Moreover, differentiating (5.5) with respect to
a, we deduce that

g′(a) = −(log x)(x/a)η

a
+

1

a

(
γη −

1

η

)
+

(x/a)η

ηa

= −(log x)(x/a)η

a
+
γη
a

+
(x/a)η − 1

ηa
� log(2a) + (x/a)η log x

a
,

(5.7)

uniformly in a ≥ 1, x ≥ 1 and η ∈ [0, 1/20]. Therefore

S2 =
∑
a≤
√
x

f(a)

a1−η

(
g(a) +O

(
log(x/a)

(x/a)1−η

))
+Oc

(
(log x)3

x1/10−η

)

=
∑
a≤
√
x

f(a)g(a)

a1−η
+Oc,r

(
(log x)3

x1/10−η

)
=
∞∑
a=1

f(a)g(a)

a1−η
+Oc,r

(
(log x)3

x1/10−η

)
for all x ≥ Q2, where the first equality is a consequence of relation (5.1) and the third
equality follows by relations (5.6) and (5.7) together with partial summation. Furthermore,
we have that
∞∑
a=1

f(a)g(a)

a1−η
=
xη(η log x− 1)

η2
L(1, f) +

(
1

η
− γη

)
L′(1− η, f) +

(
1

η2
+ γ′η

)
L(1− η, f).

Since S2 ≥ 0, by our assumption that 1 ∗ f ≥ 0, we conclude that
(5.8)

0 ≤ xη(η log x− 1)

η2
L(1, f)+

(
1

η
− γη

)
L′(1−η, f)+

(
1

η2
+ γ′η

)
L(1−η, f)+Oc,r

(
(log x)3

x1/10−η

)
.

Now, assume that L(1− η, f) = 0 for some η ∈ [0, c0/ logQ], where c0 a small constant to
be chosen later, then setting x = e1/(2η) in (5.8), we find that

0 ≤ −e
1/2

2η2
L(1, f) +

(
1

η
− γη

)
L′(1− η, f) +Oc,r

(
(1/η)3

e1/(20η)

)
.

Also, part (a) implies that L(1, f) � η/Q2η � η. So there is some constant c2 = c2(c, r)
such that (

1

η
− γη

)
L′(1− η, f) ≥ c2

η
+Oc,r

(
(1/η)3

e1/(20η)

)
≥ c2

2η
,
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provided that c0 is large enough. Since γη < 1 < 1/η for η ∈ (0, 1), we conclude that
L′(1− η, f) > 0.

We are now ready to complete the proof of part (b): let

Z = {β ∈ [1− c0/ logQ, 1] : L(β, f) = 0}

and note that Z is a closed set under the Euclidean topology. Since L′(β, f) > 0 whenever
β ∈ Z from the discussion in the above paragraph, the set Z has no accumulation points
(L′(σ, f) is continuous for σ > 4/5, so around every element of Z there is an open neigh-
borhood where L′(σ, f) > 0 and, as a result, where L(σ, f) is strictly increasing5). Now,
assume that β1 < β2 are two consecutive elements of Z , that is to say, there is no other
element of Z in (β1, β2). Then L(σ, f) is strictly increasing in a neighborhood of β1 and of
β2. In particular, L(σ, f) is positive in a neighborhood to the right of β1 and negative in a
neighborhood to the left of β2. But then the Intermediate Value Theorem implies that there
must another zero of L(σ, f) in the interval (β1, β2), which contradicts the choice of β1 and
β2. This shows that Z can contain at most one element, thus completing the proof of the
lemma. �

Proof of Theorem 5.1. Fix ε ∈ (0, 1] and let C be the set of all real, non-principal, primitive
Dirichlet characters. Note that if χ (mod q) is an element of C for which L(σ, χ) has no zeroes
in [1 − ε/40, 1], then L(1 − ε/40, χ) > 0, by continuity. So Lemma 5.2(a) with Q = q5/4

implies that L(1, χ) ≥ c1ε/q
ε, for some absolute constant c1 > 0.

Now, assume that there are two distinct elements of C , say χ1 (mod q1) and χ2 (mod q2),
such that L(1, χj) < c2ε/q

ε
j for j ∈ {1, 2}, where c2 is some constant in (0, c1] to be chosen

later. Then the discussion in the above paragraph implies that L(σ, χ1) and L(σ, χ2) both
vanish somewhere in [1− ε/40, 1], say at 1− η1 and 1− η2, respectively. Set q = max{q1, q2}
and f = χ1 ∗ χ2 ∗ χ1χ2. We shall apply Lemma 5.2 to f but, first, we need to bound its
partial sums. We do so by Dirichlet’s hyperbola method: Note that∑
n≤x

(χ1 ∗ χ2)(n) =
∑
a≤
√
x

χ1(a)
∑
b≤x/a

χ2(b) +
∑
b≤
√
x

χ2(b)
∑

√
x<a≤x/b

χ1(a)�
∑
a≤
√
x

q2 +
∑
b≤
√
x

q1 ≤ 2q
√
x.

So for x ≥ q10 we have that∑
n≤x

f(n) =
∑

k≤(x/q)2/3
(χ1 ∗ χ2)(k)

∑
m≤x/k

χ1χ2(m) +
∑

m≤x1/3q2/3
χ1χ2(m)

∑
(x/q)2/3<k≤x/m

(χ1 ∗ χ2)(k)

�
∑

k≤(x/q)2/3
τ2(k)q2 +

∑
m≤x1/3q2/3

q
√
x/m� q4/3x2/3 log x ≤ x4/5 log x,

that is to say, the hypotheses of Lemma 5.2 are satisfied with Q = q10 and r = 4. Since
L(σ, f) = L(σ, χ1)L(σ, χ2)L(σ, χ1χ2) for σ > 2/3, a formula which can be proven using
Dirichlet’s hyperbola method in a similar fashion as above, we deduce that L(1 − η1, f) =

5This is a consequence of the Mean Value Theorem, but it can be also shown directly: Integrating

term by term, we have that
∑N
n=1 f(n)n−σ2 −

∑N
n=1 f(n)n−σ1 = −

∫ σ2

σ1

∑N
n=1 f(n)(log n)n−udu. So letting

N → ∞ yields the formula L(σ2, f) − L(σ1, f) =
∫ σ2

σ1
L′(σ, f)dσ for σ2 > σ1 > 4/5, since the series∑N

n=1 f(n)(log n)/nσ converges uniformly in [σ1, σ2], as it can be seen by partial summation. Hence if
L′(σ, f) > 0 for all σ ∈ [σ1, σ2], then L(σ2, f) > L(σ1, f).
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L(1 − η2, f) = 0. So Lemma 5.2(b) implies that η := max{η1, η2} � 1/ log q. Moreover,
Lemma 5.2(a) and the inequality ex ≥ x2/2, x > 0, imply that

(5.9) L(1, f)� η

q20η
≥ η

qε/2
� 1

qε/2 log q
≥ ε2 log q

4qε
.

However, our assumption on χ1 and χ2 and the standard bound L(1, χ1χ2) � log q, which
follows by partial summation, imply that

L(1, f) = L(1, χ1)L(1, χ2)L(1, χ1χ2)�
c2ε

qε1

c2ε

qε2
(log q) ≤ c22ε

2 log q

qε
,

which contradicts (5.9) if c2 is chosen to be small enough. So we conclude that there cannot
be χ1 (mod q1) and χ2 (mod q2), distinct elements of C , such that L(1, χj) < c2ε/q

ε
j for both

j = 1 and j = 2. This completes the proof of Theorem 5.1. �

6. Proof of Theorem 1.1

As we mentioned in the introduction, we shall deduce Theorem 1.1 from the following
more general result.

Theorem 6.1. For x ≥ 1 and (a, q) = 1 we have that∑
n≤x

n≡a (mod q)

Λ(n) =
x

φ(q)
+O

(
xe−c1(log x)

3/5(log log x)−1/5

+
√

log x

(
x1−

c2
log q +

τ2(q)x
1−c3η(q)

φ(q)

))
,

where η(q) = min {Lq(1, χ)/ log(3q) : χ real and non-principal character mod q}.

Deduction of Theorem 1.1 from Theorem 6.1. Fix A ≥ 1. Note that if χ is real and non-
principal, then

Lq(1, χ)

log q
= lim

σ→1+

{
L(σ, χ)

log q

∏
p≤q

(
1− χ(p)

pσ

)}
=
L(1, χ)

log q

∏
p≤q

(
1− χ(p)

p

)
� L(1, χ)

log2 q
�A q

− 1
3A .

by Mertens’s estimate and Theorem 1.2. So if x ≥ eq
1/A

, then we find that η(q)�A q
−1/(3A) ≥

(log x)−1/3. Combining this estimate with Theorem 6.1 completes the proof of Theorem 1.1.
�

Proof of Theorem 6.1. For every x ≥ 1 and (a, q) = 1, the orthogonality of characters implies
that

(6.1)
∑
n≤x

n≡ a (mod q)

Λ(n)− x

φ(q)
=

1

φ(q)

∑
χ (mod q)

χ(a)
∑
n≤x

(χ(n)Λ(n)− δ(χ)) +O

(
1

φ(q)

)
.

Fix for the moment a character χ modulo q and set Λχ(n) = χ(n)Λ(n)− δ(χ) and

Fχ(s) =
∞∑
n=1

Λχ(n)

ns
= −L

′

L
(s, χ)− δ(χ)ζ(s).

We claim that, for k ∈ N and s = σ + it with σ > 1 and t ∈ R, we have that

(6.2) F (k−1)
χ (s)�

{
(c4k log(qVt))

k if |t| ≥ 1/ log(3q),

(c4k log(3q))kM(χ)−k otherwise,
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where

M(χ) =

{
Lq(1, χ) if χ is real, non-principal,

1 else.

Indeed, relation (4.1) with y = 3/2, q = 1, χ(n) = 1 for all n, and k−1 in place of k, implies
that ∣∣∣∣ζ(k−1)(s) +

(−1)k(k − 1)!

(s− 1)k

∣∣∣∣� k!(c5 log Vt)
k.

Together with Lemma 4.3, this yields the estimate

F (k−1)
χ (s)�

(
c6k log(qVt)

δ(χ) + (1− δ(χ))|LqVt(s, χ)|

)k
.

Since Vt � 1 for |t| ≤ 1/ log(3q), this reduces (6.2) to showing that

(6.3) δ(χ) + (1− δ(χ))|LqVt(s, χ)| �

{
1 if |t| ≥ 1/ log(3q),

M(χ) otherwise.

If, now, |t| ≥ 1/ log(3q) ≥ 1/(3 log(qVt)) or χ is complex, then |LqVt(s, χ)| � 1 by Lemma 4.2,
so (6.3) follows. Also, if |t| ≤ 1/ log(3q) and χ is principal, that is to say, δ(χ) = 1, then we
have trivially that δ(χ) + (1− δ(χ))|LqVt(s, χ)| = 1 = M(χ), so (6.3) holds in this case too.
Finally, if |t| ≤ 1/ log(3q) ≤ 1 and χ is real and non-principal, then 1.5 ≤ V0 ≤ Vt ≤ V1 < 3.
In particular, |t| ≤ 1/ log(qVt), and thus Lemma 4.2 implies that

δ(χ) + (1− δ(χ))|LqVt(s, χ)| = |LqVt(s, χ)| � LqVt(1, χ).

Since Vt ∈ [1.5, 3], a continuity argument implies that

LqVt(1, χ) = lim
σ→1+

{
Lq(σ, χ)

∏
q<p≤qVt

(
1− χ(p)

pσ

)}
= Lq(1, χ)

∏
q<p≤qVt

(
1− χ(p)

p

)
� Lq(1, χ),

(6.4)

which shows (6.3) in this last case too. This completes the proof of (6.2).
Next, for every integer k ≥ 3 and for every real number y ≥ 2, we apply relation (6.2) to

get that∑
n≤y

Λχ(n)(log n)k−1 log
y

n
=

(−1)k−1

2πi

∫
<(s)=1+ 1

log y

F (k−1)
χ (s)

ys

s2
ds

� y

∫
|t|≥ 1

log(3q)

(c4k log(qVt))
k

t2 + 1
dt+

y

log(3q)

(
c4k log(3q)

M(χ)

)k
.

(6.5)

Moreover, we have that∫
|t|≥ 1

log(3q)

(c4k log(qVt))
k

t2 + 1
dt ≤

∫
R

(2c4k log q)k + (2c4k log Vt)
k

t2 + 1
dt

� (c7k log(3q))k + (c7k)k
∫ ∞
e

(log t)2k/3(log log t)k/3

t2
dt

= (c7k log(3q))k + (c7k)k
∫ ∞
1

u2k/3(log u)k/3e−udu.

(6.6)
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The function u → log(u2k/3(log u)k/3e−u/2) is concave for u > 1 and its maximum occurs
when u � k. So∫ ∞

1

u2k/3(log u)k/3e−udu ≤ (c8k)2k/3(log(c8k))k/3
∫ ∞
1

e−u/2du� (c8k)2k/3(log(c8k))k/3

for some c8 > 1. The above estimate, together with relations (6.5) and (6.6), implies that∑
n≤y

Λχ(n)(log n)k−1 log
y

n
� y(c9k

5 log k)k/3 + y(c9k log q)k +
y

log(3q)

(
c9k log(3q)

M(χ)

)k
≤ y(c9k

5/3(log k)1/3)k + y

(
c10k log(3q)

M(χ)

)k(6.7)

for some c10 ≥ c9 ≥ 1, since M(χ) � 1, trivially if χ is complex or principal and by
relation (4.2) with k = 0 and ε = 1/2 otherwise.

Now, set

∆(x) = x
√

log x

{(
c9k

5/3(log k)1/3

log x

)k/2
+

(
c10k log(3q)

M(χ) log x

)k/2}
and note that ∆(x) ≥

√
x, since c9k

5/3(log k)1/3 ≥ k5/3(log 3)1/3 > k ≥ x−1/k log x. We claim
that

(6.8)
∑
n≤x

Λχ(n)(log n)k−1 � ∆(x)(log x)k−1 (x ≥ 4).

If ∆(x) > x/2, then (6.8) holds trivially. So assume that ∆(x) < x/2. Applying (6.7) for
y = x and y = x−∆(x) and subtracting one inequality from the other completes the proof
of (6.8). Relation (6.8) and partial summation imply that∑

n≤x

Λχ(n) = O(
√
x) +

∫ x

√
x

1

(log t)k−1
d

(∑
n≤t

Λχ(n)(log n)k−1

)
� 2k∆(x) (x ≥ 16).

If (log x)M(χ)/ log(3q) ≥ 8c10 and x is large enough, then choosing

k = min

{
(log x)3/5

2c9(log log x)1/5
,
(log x)M(χ)

2c10 log(3q)

}
yields the estimate

(6.9)
∑
n≤x

Λχ(n)� xe−c1(log x)
3/5(log log x)−1/5

+ x1−c2M(χ)/ log(3q)
√

log x.

This bound holds trivially when (log x)M(χ)/ log(3q) < 8c10 or when x is small as well.
Inserting (6.9) into (6.1) completes the proof of the theorem, since there are at most 2τ2(q)
real characters modulo q (for every d|q, there at most 2 real primitive characters modulo q
of conductor d [Da, Chapter 5]). �

As a conclusion, perhaps it is worth noticing that, arguing along the lines of this paper
and using some ideas going back to Halász6, it is possible to prove a stronger form of Theo-
rem 6.1 with x1−c4/ log q + x1−c5·η(q)/φ(q) in place of

√
log x (x1−c2/ log q + τ2(q)x

1−c3·η(q)/φ(q)).

6The factor
√

log x can be removed by the argument leading to Theorem 1.7 in [Kou]. Finally, Theorem
2.1 in [Kou] and Lemma 3.1 above can be used to show that, with at most one exception, we have that
Lq(1, χ)� 1 for all real, non-principal characters χ mod q. This allows us to remove the factor τ2(q) too.
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Furthermore, the size of η(q) can be related to the location of a potential Siegel zero [Kou,
Theorem 2.4]. In particular, it is possible to show that η(q) � 1/ log q if there are no Siegel
zeroes for any characters modulo q. So using these elementary methods, we obtain a re-
sult which is analogous to the current state of the art on the counting function of primes
in an arithmetic progression, originally achieved using the machinery of Complex Analysis.
However, showing these improved results is considerably more technical and we have chosen
not to include them in this paper in order to keep the presentation simpler. We refer the
interested reader to [Kou] for more details.
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