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ON MULTIPLICATIVE FUNCTIONS WHICH ARE SMALL ON
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ABSTRACT. Let f be a completely multiplicative function that assumes values inside the
unit disc. We show that if >, _ f(n) < x/(log x)?4, x > 2, for some A > 2, then either

is small on average or retends to be p(n)n™ for some t.
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1. INTRODUCTION

A multiplicative function is an arithmetic function f : N — C which satisfies the functional

equation f(mn)

= f(m)f(n) whenever (m,n) = 1. Many central problems in number theory

such as questions about the distribution of prime numbers can be phrased in terms of the
average behaviour of multiplicative functions. A question of particular importance is when
a given multiplicative function f has mean value 0. This problem was solved by Halasz
[Hal71, Hal75] when f assumes values inside the unit circle U = {z € C : |z| < 1}. His result
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2 DIMITRIS KOUKOULOPOULOS

states that unless f pretends to be n' for some t € R, in the sense that

1—R(f(p)p™™)
2

< 00,
P

then f is 0 on average; the converse is also true. Haldsz also gave a quantitative version
of his result and various authors ([Mon78|, [GS03], [Ten]) improved on it. The state of the
art on this problem is Theorem 1.1 below. Here and for the rest of this paper, given two
multiplicative functions f,¢g: N — U and z > y > 1, we set

— 0\ 1/2
D(f,g;y,7) = ( > - gce(f(p)g(p))>

y<p<z p

This quantity measures a certain “distance” between f and g; as a matter of fact, it satisfies
the triangle inequality (see Lemma 5.3).

Theorem 1.1. Let f : N — U be a multiplicative function and consider x > 1 and T > 1.
Then we have that

1 Me(z;T)+1 1 ) ;
- ;f(n) < };(MfT)T) + T where My (x;T) = |rltr‘lgerl]D)Q(f(n),nt; 1, x).

The generality of the above theorem is quite striking as it makes no assumptions for f other
than that its range of values is U. Nevertheless, the breadth of applicability of Theorem 1.1
comes at a price: it can be shown that M (z,T") <loglogx+O(1) ([GS]), so the best bound
on }an f(n)‘ that Theorem 1.1 can yield is cxloglogx/logx, where ¢ is some absolute
constant. In the converse direction, Montgomery and Vaughan [MV01] constructed for every
x > 2 a multiplicative function whose partial sum up to x is of size xloglogz/logx, thus
showing that Theorem 1.1 is best possible. More recently, Granville and Soundararajan
[GS03] showed an explicit version of Theorem 1.1 and constructed multiplicative functions
whose summatory function achieves the bound in [GS03] within a factor of 10. It is not
very hard to construct slightly weaker but still almost extremal examples. Indeed, for every
y > 3, the completely multiplicative function f defined by

1 ity <p<2y,
1.1 —
(1.1) 1) {O otherwise

satisfies the estimates

Zf(n)<< - H<1+%)<< *_ and Mg (x,T) =loglogz + O(1)

log e log x

n<x

for all x > 3 and T' > 1, the first one of which is a consequence of [Ten, Theorem 5, p. 308].
Moreover, when x € (3y/2, 2y, we also have that

x Y x x
Zf(n) + Z logz  logy logx ~— eMs@T)

n<z y<p<zx

Even though Theorem 1.1 is optimal in this general setting, there are specific multiplicative
functions whose partial sums satisfy (or are conjectured to satisfy) much sharper estimates
than < xloglogz/logz. An important example is the Mdbius function, since controlling
the size of its partial sums corresponds to estimating the error term in the prime number
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theorem. In order to understand the limitations of Haldsz’s theorem better we study the
following question: for which multiplicative functions f there is a constant A > 0 such that

(1.2) D) <4 g logI)A’

n<x

for all x > 27 For simplicity and in order to avoid technical issues at the prime 2, we assume
further that f is completely multiplicative (see Remark 1.4 for further discussion about this
assumption). The key observation towards understanding this problem is that if f(p) is
equal to v € U on average, then by the Selberg-Delange method [Ten, Chap. I1.5] we expect
that

(1.3) > f(n) ( ®

n<z

a >) v(log2)"" (z — o0)

where ¢y, is some non-zero constant and I' denotes Euler’s Gamma function. Therefore,
unless v is a pole of I, relation (1.2) cannot hold for any A > 2 > 1 — R(v). The only poles
of I' in the unit circle are located at —1 and at 0. If now v = —1, then f looks like the
Mébius function g which satisfies (1.2) by a quantitative form of the prime number theorem.
Lastly, for the case v = 0 Granville [GS] showed that

(1.4) > fp)logp < (logz)B (z >2) = > ) log:v) (z > 2).

p<z n<x

The above remarks seem to suggest that if (1.2) holds for some A > 2, then the mean value
of f(p) has to be —1 or 0. However, this is obviously false, as the completely multiplicative
function (—1)%*™n™ also satisfies (1.2) by the prime number theorem®. We make the refined
guess that if (1.2) holds for some A > 2, then either f pretends to be u(n)n’ for some ¢ or
f(p) is 0 on average. Theorem 1.2 below confirms our guess.

We state our results taking into account the possibility that a multiplicative function
might exhibit cancellation only past a certain point, say (), which is related to the so-called
analytic conductor of the associated L-function. So, instead of condition (1.2), we assume
that f satisfies the estimate

z(log Q)

(1.5) o)

> fn)

n<x

(z = Q),

for some constants A > 2 and ) > 3. Note that the condition that A > 2 is necessary: if
A €[0,1)U (1,2), then the completely multiplicative function f(n) = (1 — A)%™ satisfies
(1.2), by (1.3), but violates our guess: neither is f(p) zero on average nor does f pretend to
be p(n)n® for some ¢ € R. Similarly, when A = 1, the function given by (1.1) provides a
counterexample to our guess.

Before we state Theorem 1.2, we let, with a slight abuse of notation,

(16) Qi = exp {2008 Q)1 + [t) 77 } > Q?

10 (n) denotes the number of prime divisors of n, counted with multiplicity.
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and
N(z;T)= min_ {loglog Q; + D*(f(n), p(n)n"; Qs,x)}

[t|<T, Qe<z

1.7 .
() Zmax{w—i—O(l),QlogQ}.

Theorem 1.2. Lete >0, Q > 3 and f : N — U be a completely multiplicative function that
satisfies (1.5) for some A > 2 +e.

(a) For x> Q? and T > 1, we have that

! . o [ logQ o
EZf(p)logp<<A,e (N(z;T) —loglog Q) e +T’

p<z
where
(A-2)/(2A—-2) if2<A<3,
(1.8) B={3(A-2)/(2A4—2) if3<A<4,
24/3 — 2 if A> 4.
(b) Assume that L(1 + ity, f) = 0 for some ty € R. Then we have that

log Qto
log x

1 ' A—-2
— D (L R (pp™™)) logp < ( ) (z 2 Q)

p<z

and, consequently?,

A-2
1 . 2
T S L+ f(p)p "0 log p e > (z > Q).

p<z

log Qy,
log x

Remark 1.3. Using Theorem 1.2 and a similar argument with the one leading to (1.2), it is
possible to show that, given f : N — U as in Theorem 1.2, we have that

LS o) < V1)~ ogton ) (222 )4

X n<z - ’ eN(x;T) T

with B defined by (1.8). If A > 6 and @ = O(1), this constitutes an improvement over
the estimate that Haldsz’s theorem yields for the partial sums of summatory function of
the multiplicative function puf, since N(z;7) > M, ;(z;T)/2 + O(1), by relation (1.7). In
fact, as we will see in Section 10, we may replace B with the larger quantity B’, defined by
(10.34). This yields an improvement over Haldsz’s theorem as soon as A > (31++/681)/10 =
5.70959. ..

Remark 1.4. 1t is possible to weaken the condition that f is a completely multiplicative
function and extend Theorem 1.2 to the class of multiplicative functions f : N — U, but we
need a stronger assumption on f than (1.2) that excludes a certain type of behavior of f
on powers of 2. To see that this is necessary, set f(n) = 1 when n is odd and f(n) = —1
when n is even. Then f is multiplicative and ) __ f(n) = O(1). However, the conclusion
of Theorem 1.2(a) is clearly false. -

2Here we use the Cauchy-Schwarz inequality and the fact that |1 + z|? < 2(1 + R(2)) for z € U.
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In order to avoid the above example, we impose the stronger condition that

(19) S pm)| < WBDTE s )

A
n<z, 2fn <10g .23)

which is clearly satisfied if f is completely multiplicative and (1.5) holds (possibly with Q)
in place of Q). Under condition (1.9), Theorem 1.2 remains true. Indeed, set f(n) = f(n)
if (n,2) =1 and f(n) = 0 otherwise. Also, let g(n) = | f(p)* and write g = f % h, so
that h is supported on odd square-full integers and satisfies the bound |h(n)| < 2™ for all
n. Note that if n is square-full and not divisible by 2, 3, then n > 5% So

S < Y 22 =% 3 9m

n<e n<z, 2n 3'<z  m<a/3”,(m,6)=1
n square-full v>2 m square-full
1, log2
log2 T\ 2t Togs 1, log2

< E oV E mloss & E oV . <3_> %7« p2Tiegs < 095,
~ v >~

¥<xr  m<z/3Y,(m,6)=1 v>2

v>2 m square-full

The above estimate and (1.9) imply that g satisfies (1.5) (with Q°® in place of @), which
allows us to apply Theorem 1.2 to it. Since g(p) = f(p) for all primes p > 2, the conclusion
of Theorem 1.2 holds for the function f too, as claimed.

Similar extensions can be made to all subsequent results.

When f is real valued, it is possible to exclude the possibility that f looks like u(n)n® for
some t # 0 (see Theorem 2.3(b) below) and simplify the statement of Theorem 1.2.

Corollary 1.5. Let € > 0 and QQ > 3. Consider a completely multiplicative function f :
N — [-1,1] that satisfies (1.5) for some A > 2+e€. If L(1,f) # 0, then for x > Q' =
exp{(log @) [,-o(1 — f(p)/p)} we have that

1 2logx log () B
- 1 11
fo(p) ogp K4, (Og logQ’> <10gx

p<w

with B is defined as in (1.8). On the other hand, if L(1, f) = 0, then for x > @ we have

that s
1 logQ\ "
=Y (1+ f(p)) logp <ac (—g ) :
x log

p<z

Proof. For every T' > 1, Theorem 2.3 and Lemma 5.1 below imply that

N(x;T) > loglog Q + Z 1+ /() + O(1) > log ((log x) H (1 — M) 1) + O(1).

Q<p<z p>Q p

So the first part of Corollary 1.5 follows from Theorem 1.2(a) applied with 7" = co. Finally,
if L(1, f) = 0, then the desired result is an immediate consequence of Theorem 1.2(b). O

The dependence on A can be made explicit in the above results. Keeping track of the
implied constants leads to the following result, where we have assumed for simplicity that
f is real valued. A similar but weaker result holds in the general case of a complex valued
function of modulus < 1.
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Theorem 1.6. Let § € (0,1/3), Q > e/ and f : N — [—~1,1] be a completely multiplicative
function such that

1-5
(1.10) D) S g (62Q),
(a) If L(1, f) # 0, then we have that
Z f(p)logp < ec\i@ 4+ glmen/logQ (x> Q),

p<z

for some ¢ = ¢(6), where n = [ .o (1= f(p)/p)~" < 1. Moreover, there is a constant
c € (0,1) such that L(s, f) has at most one zero in the interval [1 — ' /log @, 1), say
at B. If such a zero does not exist, we set § =1— /log@Q. In any case, we have
that n < (1 — ) log Q.

(b) If L(1, f) =0, then

> (14 f(p)logp < z!7HEEQ (2> Q).

p<w

It is evident from the above result that our methods are of comparable strength with more
classical arguments that use the analyticity of L(s, f) to the left of the line R(s) = 1 such
as the ones in [Dav00]. Indeed, in [Koul3] it was shown how to combine the methods of this
paper with estimates for exponential sums due to Korobov and Vinogradov to give a new
proof of the best error term known in the prime number theorem for arithmetic progressions.
However, since we always work with conditions of the form (1.5), we are forced to use different
methods than analytic continuation and the residue theorem. So the proofs of Theorems
1.2 and 1.6 above, as well as of the results in [Koul3], are ‘elementary’ from a broad point
of view. We will give a brief outline of the main ideas that go into them in Subsection 1.2
below.

Finally, it would be desirable to extend the results of this paper to multiplicative functions
that assume values outside the unit circle too. A large portion of the paper can be generalized
to multiplicative functions whose values at primes are uniformly bounded. However, the
results of Section 5, which are of key importance, cannot be transferred immediately.

1.1. Notation. For an integer n we denote with P*(n) and P~ (n) the greatest and smallest
prime divisors of n, respectively, with the notational convention that P*(1) = 1 and P~(1) =
oo. For two arithmetic functions f, g : N — C we write f x g for their Dirichlet convolution,
defined by (f * g)(n) = >_ ., f(a)g(b). Also, for s € C and y > 1 we set

— f(n f(n
(s, f) Z% ad Lys f)= 3 £_>
n=1 P=(n)>y
provided that the series converge. In the special case that f(n) = 1 for all n, we use the
notation

Gy(s) = Ly(s, 1).
We let 73.(n) = > 4. 4,1 and we denote with p(n) the Mobius function, defined to be

(—1)#PIn} if p is squarefree and 0 otherwise. Moreover, we recall the definition of the
generalized von Mangoldt functions A, = p xlog®, k € NU{0}. The case k = 1 corresponds
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to the standard von Mangoldt function, which we denote simply by A; its value at an integer
n is logp if n is a prime power p® and 0 otherwise. Finally, the notation F' <,; = G means
that |F| < CG, where C' is a constant that depends at most on the subscripts a, b, ..., and
F =4p,.. G means that F' <, . G and G <, F. In general, we reserve the letters ¢ and
C in order to denote constants, not necessarily the same ones in every place, and possibly
depending on certain parameters that will be specified using subscripts and other means.

1.2. Overview of the proof methodology. In this subsection we outline the main ideas
that go into the proof of Theorem 1.2 (and, hence, of Theorem 1.6). We start by discussing
the proof of part (a). The main restriction we need to overcome is that condition (1.5) is
not strong enough to guarantee the analytic continuation of L(s, f) to the left of the line
R(s) = 1. This renders arguments based on the location of zeroes of L(s, f) inapplicable.
Instead, we employ an idea used by Iwaniec and Kowalski [IK04, p. 40-42] to give a new
proof of the prime number theorem, upon which we improve by combining it with some ideas
from sieve methods. Our starting point is the combinatorial identity

(1.11)
(_g)(kl)(S):’f! > (_H;l!;ﬁ#...)!(;1;'(8))“1(;g(s))”m?

a1+2az+--=k

which translates upper bounds on the the derivatives of (L'/L)(s, f) to upper bounds on
the derivatives of L(s, f) and lower bounds on |L(s, f)|. Our assumption that f satis-
fies (1.5) then allows us to bound LUY(s, f) easily. On the other hand, lower bounds on
|L(s, f)| with s = 1+ 1/logz + it are equivalent to lower bounds on the distance func-
tion D?(f(n), u(n)n™;1,x). This explains the appearance of the quantity N(x;7T) in the
statement of our results. Then we use an inversion formula, such as Perron’s inversion for-
mula, to insert the information that we have obtained on (L'/L)*~V(s, f) and estimate
> <o An)f(n)(logn) 1. A crucial role when handling the integral of (L'/L)*~Y(s, f) is
played by the fact that L(s, f) cannot be too small too often. This is the context of Theo-
rem 2.2 below. Finally, removing the extra factor (logn)*~! is easily accomplished by partial
summation.

The above simple description of the argument contains at least two inaccuracies. Firstly,
if we apply (1.11) with F(z) = L(z, f), we are bound to lose some logarithmic factors. The
reason is that the partial sums of f(n)n™" are small only past a barrier, which is roughly
equal to @ (see relation (7.1)). Therefore, it is possible that f(n)n~" ~ 1 for n < @, which
would force LU)(1+1/logx +it, f) to be abnormally large. However, if this is the case, then
L(1+1/logx+1it, f) would be also abnormally large. In order to take this phenomenon into
account, we perform a preliminary sieve. So, instead, we apply (1.11) with F(2) = Lg, (2, f)
and s = 1+ 1/logx +it. This ensures that we only consider integers n > ;. An additional
advantage in considering Lq,(z, f) (instead of }_, _, f(n)/n*, for example) is that Lq,(z, f)
possesses an Euler product. In particular, we can relate the size of Lg,(1 + 1/logx + it, f)
to the distance function D?(f(n), u(n); Qs, x). This explains why our results are stated using
N(z;T) instead of M, s(x;T).

The second inaccuracy in our initial description of the proof of Theorem 1.2(a) concerns
the way we translate bounds on the derivatives of (L’'/L)(s, f) to bounds on the partial sums
of f(p)logp. Instead of applying Perron’s inversion formula, which would cause a loss of some
logarithmic factors when z < Q¢ we use the fact that mean values of multiplicative functions
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obey certain recursive relations, which allows us to smoothen out potential irregularities.
Indeed, if ¢ is a completely multiplicative function, then we have that

(1.12) > gn)logn =Y A(d)g(d)g(m),

n<lz dm<z

as a consequence of the identity log = A % 1. Relation (1.12) plays a prominent role in the
study of averages of multiplicative functions. In particular, it is featured in the proof of
Theorem 1.1. Taking g = f in (1.12), and applying relation (1.5) and Dirichlet’s hyperbola
method, we deduce that
z(log Q)2 )
Z f(m) Z J(d)A(d) <a logz)A 1 (x> Q7).

m<y/z d<z/m

The summand corresponding to m = 1is >, f(d)A(d), that is to say, the sum we are
trying to bound. So

(1.13) D_F@AD) == > f(m) Y f()A(d)+Oa

d<z 1<m<\/z d<z/m

However, relation (1.13) is not very useful as it stands because the summand with m = 2 on
its right hand side equals f(2) >, o f (d)A(d), a quantity which is likely to have roughly
the same size as the ‘main term’ ), f(d)A(d). In order to overcome this obstacle, we
resort to sieve methods again. Instead of letting ¢ = f in (1.12), we fix some parameter
z > @ and we let g(n) = f(n) when P~ (n) > z and g(n) = 0 otherwise. Then relation
(1.12) and the fundamental lemma of sieve methods (see Lemma 4.1) yield that?

log z A
(1.14) Y fm) Y fAAD) <az (10gx> .

m< a<a/m
P~ (m)>z

The summand corresponding to m = 1in (1.14) is >, f(d)A(d), as before. However, all
the summands on (1.14) with m € (1, 2] vanish, so the problem we had with relation (1.13)
does not exist anymore (and there is the additional advantage that m runs over a subset of
the integers in (z,+/z] that has density 1/log z instead of all integers in (z,+/z]). Finally,
we make use of relation (1.14) in a similar fashion as in the proof of Haldsz’s theorem to
establish Theorem 1.2(a). However, in Haldsz’s theorem the factorization ' = (F'/F) - F
was key, and in our case such a factorization is not available. This leads to employing a
different strategy, as we will see in the proof of Proposition 10.1.

Finally, we discuss briefly the proof of part (b) of Theorem 1.2, which is distinctly different
from and simpler than the proof of part (a). The following argument was pointed out to us
by an anonymous referee and by Andrew Granville. For simplicity, we assume that t; = 0.
Our starting point is the observation that the convolution 1% f * 1% f assumes non-negative
real values. Therefore

0<2> (1+R(f(p) <Y (I fx1xf)(n).

p<z n<z

3See the proof of Theorem 1.2(a) in Subsection 10.2.
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In order to handle the sum on the right hand side, we use the fact that > _ (1 f)(n) is
small, a consequence of our assumption that L(1, f) = 0 and of relation (1.5). So Dirichlet’s
hyperbola method implies that » _ (1 + R(f(p))) is small too.

As in the proof of part (a), in order to obtain the actual statement of Theorem 1.2(b), we
need to be more careful. We start instead from the formula

0<2 > (1L+R(Uf@) < D, (Lxfxlxf)n).
Q<p<lz n<zx
P~ (n)>Q

A crucial role in the proof is also played by Theorem 2.1 below.

1.3. Outline of the paper. We give here a brief description of how the paper is structured.
Firstly, in Section 2 we state some additional main results, Theorems 2.1, 2.2, 2.3 and 2.4,
which are a bit more technical than Theorems 1.2 and 1.6. Section 3 contains a series of
auxiliary estimates concerning the Riemann ¢ function and its derivatives. Subsequently, in
Section 4 we establish various bounds for partial sums of multiplicative functions and derive
from them estimates for high derivatives of L(s, f). In Section 5 we state and prove several
results related to distance of a multiplicative function from the Md&bius function and apply
them to control the size of L(s, f) close to the line R(s) = 1. We also establish Theorem
2.3. The results of Section 5 are then used in Section 6 to show Theorems 2.1 and 2.2.
In turn, these two results play a crucial in the proof of part (b) of Theorems 1.2 and 1.6,
which is given in Section 7. Next, in Section 8 we see how to control the size of L(1, f) in
terms of a potential Siegel zero and demonstrate Theorem 2.4. Finally, the proof of part (a)
of Theorems 1.2 and 1.6 is split among two sections. In Section 9 we prove some required
bounds on high derivatives of 1/L(s, f) and (L'/L)(s, f). The main part of the proof of these
theorems is then given in Section 10.

2. ADDITIONAL MAIN RESULTS

In this section we state various additional results that our methods yield and that we
believe are of independent interest. These results will also play a key role in the proof of
Theorems 1.2 and 1.6. The proof of the two theorems below will be given in Section 6.

Theorem 2.1. Lete >0 and Q > 3. Let f : N — U be a completely multiplicative function
that satisfies (1.5) with A =2+ €. Then there is some Q' € [Q), +00] such that

Z M<<61 and ZM<<61 (z> Q.
eaze P Q<psz P

So, for any y > @, we have that |L,(1, f)| <. (logy)/log(yQ’). In particular, letting y = Q,
we find that log Q' =, (log Q)/|Lo(1, f)].

Here and for the rest of this paper we define
(2.1) Vi = exp{(log(3 + |#]))**(loglog(3 + [¢)))*}  (t € R).

Theorem 2.2. Let f: N — U be a completely multiplicative function, 7 > 1, Q > (Va, )%
and € > 0 such that

< 2(log Q)

< W (x >Q,te[-1,7]).

> fn*

n<x
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Fizxo > 1 and J C [—-7,7], and let ty € J be such that |Lg(o + ito, f)| = mingey |Lo(o +
it, )| =:m. Then, for any t € J, we have that

n if [t —to] <n/logQ,
|Lo(o +it, )] =c S |t —to|log@Q ifn/logQ < |t —to] < 1/logQ,
1 if [t —to] > 1/log Q.

If we have additional information about f, then it is possible to control the distance of f
from p(n)n®. This is the context of the following theorem, which will be proven in Section
5.

Theorem 2.3. Fize >0 and QQ > 3. Let f : N — U be a completely multiplicative function
that satisfies (1.5) with A =2+ €.

(a) If f? satisfies (1.5) too with A =2+ ¢, then

> —<<€1 (z > Q).

Q<p<z

(b) Assume that f is real valued, and lett € R and x > Q > V3. If |t| > 1/1og Q, then

Z 1+zt < L

Q<p<z

and if [t| < 1/log @, then
D*(f(n), p(n)n™; Q,x) > D*(f(n), u(n); Q, ) — Oc(1)

> log (%) +1og Lo(1, /) — O.(1).

Finally, if we have at our disposal very good estimates on the summatory function of
f, then partial summation implies that L(s, f) converges to the left of the line R(s) = 1.
Moreover, the size of L(1, f) can be determined using information on the location of zeroes
of L(s, f) in a neighbourhood around 1. Remaining faithful to the ‘elementary’ nature of
the paper, in Section 8 we give a proof of this fact in the case when f is real valued that
avoids the use of complex analytic tools. In doing so, we make use of some ideas of Pintz
[Pin76a, Pin76b, Pin76¢|, who gave elementary proofs of some related results when f is a
real Dirichlet character.

Theorem 2.4. Let Q > 3 and f : N — [—1,1] be a completely multiplicative function
satisfying (1.10) with § = 1/log Q. Then L(s, f) converges in the half plane R(s) > 1 —
1/log @ and there is an absolute constant ¢ € (0,1/2) such that L(s, f) has at most one zero
in [1 —2c¢/log @, 1], say at B. If no such zero exists, we set f =1—2c/log Q. In any case,
there are positive constants ¢y and co such that for all o € [1 — ¢/log @, 1+ clog Q] we have
that

ci(oc —pB)logQ < Lg(o, ) < ca(0 — ) log Q.
3. BOUNDS FOR ( AND ITS DERIVATIVES

In this section we give some estimates about the Riemann ( function. First, we have the
following lemma, which is a simple corollary of Lemma 2.4 in [Koul3].
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Lemma 3.1. Let y > 2 and t € R with y > V,}%. For x > vy, we have that

A 1+it 1 1-1/(301log y)
S s (Yo (2
+ 1t o<y p ogy

n<x
P=(n)>y

Consequently, if s = o + it is such that o > 1 —1/(60logy), then

1 1 — st 1 L
2 = (T ! 7) 1 (1 ) ‘) O (atorenee)

n<lx p<y p
P (n)>y

where 75, 1s a constant that depends only on s and y, it is real valued for s € R, and it
satisfies the uniform bound s, < logy for s and y as above.

Proof. The first part of the lemma is a special case of Lemma 2.4 in [Koul3]. For the second
part, note that

§ n—it

n<x n<lx
P~ (n)>y P~ (n)>y
So if we write
y xl—it 1
-t 1—- R t
> " 1_Z.tH( p>+ (,.1).
n<lx p<y
P~ (n)>y

then the second part follows with

R(y,y,t) * R(u,y,1) N [Vdu
757y2(1—7+0/y Wdu H 1—]—? — 1;.

p<y

[l

In order to prove our next result on ¢, we need a lemma due to Montgomery [Mon94,

Theorem 3, p. 131]:

Lemma 3.2. Let A(s) = >_, 5, an/n® and B(s) =, -, b,/n® be two Dirichlet series which
converge for R(s) > 1. If |a,| < b, for alln € N, then

-T

T T
/ Mw+ﬁWﬁ§3/\Bw+ﬁWﬁ

(0>1,T>0).
-T

Using the two lemmas above, we shall prove the following estimate which concerns averages
of Ay = puxlog" and, consequently, provides estimates for ¢ /¢.

Lemma 3.3. Let v,z > 3, k e NU{0}, m € N, r e NU{0} and T > 2. There exists a

constant ¢ > 0 such that

A ()7, (n)(logn)"
3 (n)Tim(n)(log n)

nl+l/logz
Pt (n)<z

L M (k4 ) min{log z, log 2 }F+"



12 DIMITRIS KOUKOULOPOULOS

and
2

/T Z Ag(n)7m(n)(logn)” gt

nl+1/logz+it

T pt+(n)<z

K mPFFT (k4 1)1 {T(log Vr)***" + min{log 2, log 2 } ¥~} |
Proof. First, we show the lemma in the special case when z = oo and m = 1. Then we show

how to deduce the general case from this special one. We claim that, for any s = o 4 it with
o> 1and t € R, we have that

(r) k+r
C(’C) . 1
(T (s)| < C]f+ kElr! | logV; + m )

for some absolute constant ¢;. Observe that this estimate immediately implies both parts of
the lemma in the special case when z = co and m = 1. So it remains to show (3.1). Lemma
4.3 in [Koul3| implies that

'

for some constant co. We will show (3.1) with ¢; = 4¢y by inducting on k. When k£ = 0,
(3.1) holds trivially, whereas when k = 1, it follows by (3.2). Assume now that (3.1) holds
for all £ € {0,1,...,K} and all » € NU {0}, where K is some positive integer. Writing

¢UH = (£ - ), we find that
¢’ (41)
"0 (£)
and, consequently,

oS ()
() 0= 2 (G EE) o) o

71=0
0<j2<r

(3.1)

1 r+1
(32) S Cg—HT! (loth + m) (T e NU {0})

By the induction hypothesis and relation (3.2), we deduce that

(r) K+4r+1
C(KJrl) 1 2 : K—H" —j1—j +j2+1 ]1 +]2
( C (8) < Klr! loth—l—m ! 26’]1 2

0<j1<K g
0<ja<r
K4ri1 o
1 L ci1\Jitje+l .
< Klrl(logV, + —— g e (—1> Q1+
|s — 1] - 4
0<1 <K
0<jp<r

1 K4r+1
< C{G_H_IK!’F! (log Vi + |—1|) s
8 —_—

since ¢3 = ¢1/4. This completes the proof of (3.1) and hence of the lemma when z = co and
m = 1.

Finally, we show how to deduce the general case of the lemma from the case when z = oo
and m = 1. First, we prove that the same result holds with 2\, in place of A,. Then we
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deduce the lemma from this weaker statement. Indeed, if P™(n) < z and p?(n)Ax(n) # 0,
then n < zF and 7,,(n) < m*, since n is square-free and it has at most k distinct prime
factors®. Therefore
Tm(N) mk (em)k
nit+l/logz — pl+l/logz — p1+1/log(min{z,z})

for all such n. Consequently, we have that

2 , 0o .
E 1= (1) Ay (n) 7 (1) (log 1) k Ag(n)(logn)
(33) Prm< nltl/logz < (em) Z_:l nl+1/log(min{z,z})

< mF(ecs)* (k + r)! min{log z, log z}**",

by the case with z = co and m = 1 we already proved. Similarly, Lemma 3.2 implies that
2
12 ( Tim(n)(log n)" o [T
/ Z nH—l/logw—Ht dt <3- <€m)
T | PH(n)<z =T
(3.4) <m*FET (k4 1) {T(log Vp)?M 2"
}2k+2r—1} ‘

00 2
nl+1/log(min{z,2})+it

n=1

+ min{log z, log x

The above estimates prove our claim that the lemma holds with p?A; in place of Aj.
We are now ready to complete the proof of the lemma. Every integer n can be written
uniquely as n = ab, where a is square-free, b is square-full and (a,b) = 1. Moreover, we have

that .
-5 (rcionc

(see, for example, [IK04, p. 16]) and

log” (ab) = T (r) (loga)™ 7 (logb)’,

=0
Consequently,
Ap(n)7(n)(logn)” 12 (a)Ay(ab) 7, (ab) log” (ab)
Z nl+1/logz+it o Z (ab)1+1/ log z+it
Pt(n)<z Pt (ab)<z, (a,b)=1

b square-full

(35) = (Jl)( ) > a a1+1/10g(:c—21(tloga)j2 - Cjja(a),

0<j1 <k P+(a)<z
0<ja<r

where

Ag—j, (0) T (b) (log b)" 72
thjQ ((l) = Z : pl+1/loga+it ’
Pt(b)<z, (ba)=1

b square-full

1t is well-known that Ay, is supported on integers with at most & distinct prime factors, something which
can be seen using the recursive formula Api1 = Ay log +A x Ay.
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Since

Y ) <) Tnld®h?) < Va(logx)" Y <, 2?8

b<wz g2h3<zx
b square-full

and Ay_;, (b) < (logb)*=71, by the positivity of Ay_j;, and the fact that log" 7" = 1% Ay_j,,
partial summation implies that

T (D) (log b)k+r—i1—32 i . .
56 Canals Y TR iy o)

b square-full

So relation (3.3) with 7; and j, in place of k£ and r, respectively, and relation (3.5) imply

that
B ()

Pt(n)<z 0<j1<k
0<]2<T’

x min{log z, log x}1 92 T2 (e op — ) — o)

< mPe " (k + r)! min{log z, log z }**",

since (g + h)! < 29%hglhl. This proves the first part of the lemma. For the second part,
relation (3.4) and Lemma 3.2 yield that

2

[[| & seosemouac.uw,

qltl/logz+it

-T Pt+(n)<z

Z P (@) (0)l0g a2 |

2(k+r—j1—j2)
<m Cy (k? +7r— ]1 - ]2 / a1+1/log;r+zt

< Cg(k‘+7“*j1*j2)(k +r—j = 92) mQJICi1+]2(]1 "‘]2).
X {T(log V)%t 272 4 min{log z, 10g$}2j1+2j2—1} ‘

Together with (3.5) and the triangle inequality for the L%norm, the above estimate yields
the second and last part of the lemma. 0

4. BOUNDS FOR THE DERIVATIVES OF L(s, f)

In this section we estimate the partial sums of f over integers with no small primes factors
and deduce bounds for the derivatives of L,(s, f). In order to do so, we appeal to the so-
called fundamental lemma of sieve methods. This result has appeared in the literature in
many different forms (for example, see [HR74, Theorem 7.2]). The version we shall use is a
direct consequence of Lemma 5 in [FI78].

Lemma 4.1. Let y > 2 and D = y* with u > 2. There exist two arithmetic functions
AN — [—1,1], supported in {d € N: PT(d) <y, d < D}, for which

D(n) =1 if P~(n) >y,
* 1

= (AT % 1
A% 1)(n) <0< (AT x1)(n) else
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Moreover, if g : N — [0, 1] is a multiplicative function and X\ € {\", A"}, then
A(d)g(d) u 9(p)
ZT:(1+O(€ ))H 1—7 .
d Py

Using Lemma 4.1, we estimate the partial sums of f over integers with no small primes
factors. Note that the second formula in part (b) of the following lemma is similar to [Pin76c,
Lemma 4].

Lemma 4.2. Let f: N — U be a completely multiplicative function such that

> fn)

n<x
for some oy € [3/5,1], Q >3, M >1 and A > 0. Consider z > Q*, y € [10,+/z] and t € R.
(a) Let o1 = (1+09)/2. Then

44 (|¢ ! Mot 1-1/(2logy)
S S A Do) k)
nt (log z)A logy

< M xeo0
~ (logx)4

(z>Q)

n<x
P~ (n)>y

(b) Let o9 = (1+01)/2= (34 00)/4. If A>1 and y > V;}°°, then
(L f)(n) a'" 1 A 8A(Jt| £ 1) Moz gl-1/(60logy)
PANC/ A L, 1- 2 |
; nZt 1 — Zt y( ’ f>}]‘<_‘z[/ P +O A — ]_ (]_0g .’,U)A_l + logy
P=(n)>y -

Moreover, if A > 2, then for s = o + it with 0 > max{oy,1 —1/(120logy)} we have

that
(1% f)(n) 1 st 1
—_— = L — L,(1 1—-—
Z op s—1+%’y y(s: f) s_1 y(1, ) H »
n<lz p<y
P~ (n)>y
O A-1 8A(|t‘ + 1)M + x—l/(lZOlogy)
A—2 (logz)A—2 ’
where s, is defined in Lemma 3.1.
Remark 4.3. Note that
) 1 ZL’_8+1 ,
il_r)r% s—1 +73,y Ly(s?f) _:Ly(Lf) = (10gx+71,y)[’y(17f)+Ly<1af)'

So, when s = 1, the second formula in part (b) of Lemma 4.2 is interpreted to be

. = f)n) _ {(ogx +71,)Ly(1, ) + L1 A} ] (1 B %)

n
n<wz p<y

P~ (n)>y
A
O A—-18 (|t| + I)M + x—l/(12010gy) ]
A—2 (logx)4-2
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Proof of Lemma 4.2. (a) Note that

> st ﬁ>+/u ”d<Zf>

(4.1) = O(v/u) +u‘“2f(n) + it / w (Zf )
24(|t] 4+ 1) Muoo
<<\/_+ ||/ dw<<\/_+ logu)d

for all u > Q?. Next, we apply Lemma 4.1 with D = 2/? and we find that

v nzt _y I A+*1() O(Z(A**l—)\*l)(n)>.

n<z n<z n<lx
P=(n)>y

For the first sum on the right hand side of the above relation, we have that

f(n)(AT x1)(n) 24([t| + 1) M a0 x
Z nit - Z dzt Z mzt << Z ( (log(z/d))Ad +\/g)

n<z d<\/z m<z/d d<\/z
Pt (d)<y Pt (d)<y
44(t) + D (logy) Ma™ 5,
+az,
(log )

since z/d > /r > Q* and

%0 1 " 1\ ! "
Z %g Z y SxIH(l—]—) <L 27" logy.
d</z d</z Py
Pt (d)<y Pt (d)<y

Finally, we have that

1-1/(2logy)
Fe1 _ () O\~ x L
SO sl=A s« D) = Y (A(d) - A (d))(d+0(1)><< oy
n<z d<\/z
PH(d)<y

by Lemma 4.1, and part (a) of the lemma follows.
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(b) Part (a) and Lemma 3.1 imply that

1%
Z ( n]:t Z azt bzt Z Z

zt
n<w a<\/z b<z/a b<\T f<a<$/b “
P~ (n)>y P~ (a)>y P=(b)>y P=(b)>y P~ (a)>y
v S0 {(a:l/aft“ 1 (1 . 1) o ((x/alfsoégy ) }
a<y/z @ ! p<y p o8 Y
P~ (a)>y

AAM (|t + 1) (logy) (x/b)r  (z/b)' Tiogy
> { (log(z/0)* log }

In addition, we have that

xt x7? 0\ ! log x
< g — < Y2 | | — = o2,
(4.2) bor — b = F (1 ) <

b<\x b<\/x y<p<z p logy
P=(b)>y PH(b)<y
and
Z (x/b 2logy < Z x/a 3011)gy < 1_'_ Z (l./er)l*m Z 1

b<y/z a<\x logy<r§1°%+l e’ ~1<a<e”
P=(b)>y P=(a)>y P~ (a)>y

1ol _r

€T 301ogy63010gy

<1+ Y
logy

logy<r§1°%+l
(43) < xl—l/(GOIOgy).
So we deduce that

1 1 8A t 1) M x°2 1-1/(601logy)
> e X AR e (M
vt nt k@ 1—it o P (log x) logy

P~ (n)>y P=(a)>y

17

Finally, note that, for any s = o + it with ¢ > o4, part (a) and partial summation imply

that

f@) ¥ 1 oot ol o | 2
O s A IDSICY 1D SN ORS B i SV

w2
a>\/x a<w a<\T G asw
P~ (a)>y P~ (a)>y P~ (a)>y P~ (a)>y
84 (log y)anlT_l g1/ (4logy)
(log )7 oz

© [ 44(logy)Mwor 1 1
+/ (logy) i — dw
N w(logw) w' sy log y

A 84(logy)Mzo2~1

(44) A—-1 (logz)A-1

+ x*l/(410gy)7
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since w1 < 275 = 2721 for w > /z, thus proving our first claim.
The proof of our second claim is similar. First, note that
(1= f)(n) f(a) 1 1 f(a)
(45) Z ns - Z a’ Z bs + Z bs Z a’

n<wz a<+/T b<z/a <z Vz<a<lz/b
P~ (n)>y P=(a)>y P~ (b)>y P=(b)>y P~(a)>y

Since A > 2 and ¢ > 09 > o7 by assumption, following a similar argument with the one
leading to (4.4), we deduce that

f(a) / 1 f(a)
E = —d E —
4.6 u<a<u’ a w W7 a<w at
( : ) Pf(aj>y P_(_(l)>y
Aa(|t\+1)(10gy)M+ 1—o—1/(2logy)
U
(logu)A-1us—o

Relations (4.6), (4.2) and (4.3) imply that

f \t!+1)(10gy)M 2 /p)l=o-1/2logy)
Z Z << Z b ( (x/b)7=1(log(x/b))A~ +(@/b) )

b<\/z f <a<z/b b<f
P~ (b)>y P~ (a)>y P=(b)>y

AU(|t| + 1)(log y) M 4 gl=o=1/(60logy)
x .
(log x)A-1go—o2

(v >u>y).

Furthermore, Lemma 3.1 and relation (4.3) yield that

f
>y
a<\T b<z/a

P~ (a)>y P (0)>y

(x/a)l—a—l/(ii()logy)

D G = e (G DV

a</z p<y a</z
P~ (a)>y P=(a)>y
1_ r/la —s+1 1 :13'1 o—1/(60logy)
L ( (a/a)” +757y)H(1——>—|—O(—1 )
a< [z 5 <y p o8Y
P~ (a)>y

Inserting the above estimates into (4.5) and using our assumption that ¢ > max{cs, 1 —
1/(120logy)}, we deduce that

o O R ()

n<z a</z P<y
(47) P~ (n)>y P~ (a)>y

L0 (SA(!tHl)(lOgy)M 1 )

(lOg x)A—l $1/(12010gy)
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Finally, we extend the summation over a to all integers with no prime factors < y and we
estimate the error term. Fix N > z. First, relation (4.6) and the fact that 75, < logy, by
Lemma 3.1, imply that

A
S L T (1 1) S DN
a’ ’

JE<a<N A (logz)A~ta™
(48) P~ (a)>y

84(|t] + 1)(logy) M 4 - 1/(8logy)
:'E )
(log z)A1

where the last inequality follows by our assumption that o > max{oy,1 — 1/(120logy)} >
max{coy,1 — 1/(4logy)}. Next, using the identity

1— (.CL'/CL)_S+1 B /x/ad_u
1

s—1 us

9

we deduce that

f )1 —(z/a)~5tt fa) [ du fla) ' du
Z s—1 B Z ?/1 w o Z a® /x/aE

Vz<a<N Vz<a<z z<a<N
P~ (a)>y P~ (a)>y P~ (a)>y

_/ﬁ g L)) do f s f@) du

1 vr<a<z/u ar w z/N z/u<a<N @ u?

So relation (4.6) yields that

s+1 84 Ve
Z f )1 —(x/a)~* < ( o(lt]+ 1)(10gy)M + xl?f—l/(‘“"gy)) / du
1

s—1 2 (log ) A~ ue

Vz<a<N
P~ (a)>y

' / ((qut’ e i <x/u>1””(”°g”) o

)71 log" ™ (2/u) u?

Since o > max{oy,1 — 1/(120logy)} > max{oy,1 — 1/(8logy)}, we find that

\/Ed loga 1 ﬂl
;L/ du o /2wﬂm<d+mw%x<m%
1 0

xo‘;o'l uo— :Eo';o'l x%
_ Ve d _ _ 1 1
152 -1/(4logy) du 152-1/(410gy) e ogr ogy
x 2 /1 o Lz ? (1+272 )logr < 1/(log ) < Ti0logy)”

o /1 du o /°° dv .0 /°° dv
7o Jo wrrlog N /u) xSy elmev(logx +0)At T zoor foo (loga + v)A-!

o 1 1
T (A—2)(loga) A2 S (A—2)(logz)A?

and

1
du logy
1-0—1/(2logy) 1-0—-1/(2logy) __eJ
x /0 ul-1/(2logy) <z logy < 1/(4logy)
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So we deduce that
3 fla)1 = (x/a)**t A —18%(|t| + 1)(logy) M log y
as s—1 A—-2 (log z)A—2 x1/(10logy) "

Vz<a<N
P=(a)>y

Inserting the above estimate and relation (4.8) into (4.7), we complete the proof of the second
portion of part (b) of the lemma too. O
Finally, we have the following pointwise bound on the derivatives of L,(s, f).

Lemma 4.4. Let Q > 10, e € (0,1), y > Q°+1 and f : N — C be a completely multiplicative
function.
(a) If f satisfies (1.5) for some A > 2, then for o > 1 and k € ZN[0, A—1] we have that
A—k 1
L% 1 "min{ ————— log (24 ———— | ¢.
| y (U7f)|<<A,e<Ogy) min A_k_lvog +(0__1)10gy
(b) If f satisfies (1.10) with 6 = 1/log Q, then for o > max{1—1/(4log@Q),1—1/(4logy)}
and k € NU{0}, we have that

|L(l<:)(0_7 f)| < (k + 1)!(410g(y@))k‘

Proof. We are going to prove the two parts simultaneously. We assume that f satisfies the
relation

‘rl—a/logQ(log Q)B_2
(log 2)?

(4.9) (z > Q)

> fn)

n<x

<

for some B > 2 and some a € [0,1]. In part (a) we know that this is true with B = A
and a = 0, whereas in part (b) relation (4.9) holds with B = 2 and o = 1. Furthermore,
we consider K € NU {0} and ¢ > max{l —a/(4log@),1 —1/(4logy)}. Lemma 4.2(a) and
partial summation imply that

xo

LW (o, f) = /%Md S fn)

n<lz
P~ (n)>y
> o(logz)* — k(log z)"*
:(‘”k/ > [ | ds
Y n<x
P (n)>y
oo 1 FrQ 41 B-2,.1-a/(210g Q) 1-1/(2logy)
<<(k,+0)/ (ogxl) ((ogy)( 0g Q) Kl L )dx
maxfy2,@t) 7T (log z) log y

o mlt QY (1 ) log 1)
xZ.
y x° logy

The last integral appearing in the above relation is at most
max{y,Q*} (L. 41 k k+1)(41 ket k+1)(41 k
[ G, G Uk (ko D(4lg(0)
y

Y

x° logy log y €
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by our assumption that y > @+ 1. Thus making the change of variable x = y* yields that
1,k S k—B+2(4] B-2 1 k, k 41 k
y (O,f)<<0/ ((Ogy) (4log Q) (log y)*u )du+( 0g(yQ))
1

kE+1 uB—ky(U—1+a/(210gQ))u y(a—l)ueu/2 €

- / > < 047 Plogy)t (logy)kuk) i Alos(yQ))*
1

uB—ky(U—1+oc/(21ogQ))u eu/4 €

B o0 du (41og(y@Q))"*
B 2-B k k+17.) k
(4.10) < 04%e 7 (logy) /1 Ry T + 4" kl(logy)® + ; :
since 0 > 1 —1/(4logy) and [~ the " dt = k.
It remains to estimate the integral in (4.10). If « = 1, B = 2 and ¢ > max{l —
1/(4logQ),1 —1/(4logy)}, then

> - (logy)*d < ukd kl(4log Q)F' El(4log Q)*
0 - (logy)"du < (logy)* wdu _ K(dlog Q) H(4logQ)F
1 uBfky(O'flJra/(QlogQ))u yu/(4logQ) logy €

by our assumption that y > Q4+ 1. The above inequality together with (4.10) completes
the proof of part (b). Finally, in order to show part (a), we estimate the integral in (4.10)
when B=A, a=0,k < A—1and ¢ > 1. In this case we have that

o du > du 1
(411) 0—/1 y(oflJra/(ZlogQ))uuBfk <</1 ud—k - A—k—1

and, if we set Y = max{1, ((¢ — 1)logy)~'}, then

/°° du < /°° du _ /Y du N 1 [~ du
O' —_— — JE— —
(4.12) | ylo—lt+a/Q2logQ))uy Bk Loyl w2y = [y Yy ylohu/2

<logY +2e71/2.

Combining relations (4.11) and (4.12) with (4.10) completes the proof of part (a) of the
lemma too. O

5. DISTANCES OF MULTIPLICATIVE FUNCTIONS

This section is devoted to studying some properties of the distance function and estab-
lishing Theorem 2.3. We start with two straightforward results, which we state for easy
reference. The first one of them links the size of L, (s, f) to a certain distance function. In
its current formulation it is due to Granville and Soundararajan [GS], but similar results have
appeared before in work of Elliott [ENl79, Lemma 6.6 in p. 230, and p. 253] and Tenenbaum
[Ten, Lemma 2.1, p. 326]. A sketch of its proof is given in [Koul3, Lemma 3.2].

Lemma 5.1. Let z,y > 2, t € R and f : N — U a multiplicative function. Then

L, <1+@+z‘t,f)‘: > WJFO(U.

y<p<z

log

The second lemma is an immediate consequence of Lemmas 4.4(a) and 5.1.

Lemma 5.2. Let Q > 3 and f : N — U be a completely multiplicative function satisfying
(1.5) with A = 2. Then there is an absolute constant ¢ such that

> wgc (x>y>Q).

y<p<z
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Next, we have the triangle inequality [GS] for the distance function defined in Section 1.
Lemma 5.3. Let f,g,h: N — U be multiplicative functions and v >y > 1. Then
D(f,g;y,x) + D(g, h;y, x) = D(f, h; y, ).
The following result is Lemma 3.3 in [Koul3].

Lemma 5.4. Let yo > y; > yo > 2. Consider a multiplicative function f: N — U such that

1
Ly, (14‘@,,}6)‘ <clogyy (y1 <z <o)

for some ¢ > 1 and

y1<p<y2

We are now in position to show Theorem 2.3.

Proof of Theorem 2.3. (a) Assume that f? satisfies (1.5) with A = 2+ €. Then Lemmas 5.2
and 5.3 imply that

L) i), 2) = (DU (), i) :2) + D), T 0))

_ 1
> (o). 70 ) = Do), L) = o (152 ) + 0),
for all x >y > @. So part (a) of the theorem follows by Lemma 5.4, which is applicable by
Lemma 4.4(a).

(b) Assume that f assumes values in [—1, 1] and consider ¢t € R with ) > max {V21t00, 61/“'}.
Applying the second part of Lemma 3.1 with s = 1 + 1/logx + 2it implies that

o=t 3 = () T (1-5) <

n<u p<y
P~ (n)>y

for every y > @, since |t| > 1/logy and ~,, < logy. Therefore Lemmas 5.1 and 5.3 give us
that

4-D*(f(n), u(n)n';y, x) = (D(u(n)n™™, f(n);y,z) + D(f(n), p(n)n';y, )"
(n)n™", p(n)n™;y, ) = D*(1,n*";y, x)

1
@Q+ +m0‘
log x

I
o
0
A/~ -/~ &
o
]
8
~
+ =
Q
=
|
o
o
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for all z > y > Q. So, applying Lemma 5.4, which is possible by Lemma 4.4(a), we deduce
that

(5.1) Z 1+n <1 (z>y>0Q),

y<p<z

which completes the proof in this case.
Finally, assume that [t| < 1/log@ and Q > V2. Let # > @Q and z = min{x, e!/I1} > Q.
We claim that

(52) Z 1+$t <l

z<p<x

Indeed, if z > e/ then (5.2) follows by the argument leading to (5.1) with z in place of
y and e/ in place of @), whereas if z < e/l then z = 2 and hence (5.2) holds trivially.
Consequently,

3 R(f(Pp™) _ 3 RUWD™) | 6,1y = > Jp) + O(tllogp) , )

Q<p<z p Q<p<z p Q<p<z p
= Z f) +0.(1)
Q<p<lz p

So, for every u > x > 2z, Lemmas 5.1 and 5.2 yield that

Z%(p Zf + O Zf—+0)

QR<plz Q<p<z Q<plz
f 1
=Y (1) =logLg [1+——,f)+O01).
log u
Q<p<u
Letting u — oo completes the proof of the theorem in this last case too. 0

Finally, we need the following result which is a strengthening of Lemma 5.4 when yy = y;.

Lemma 5.5. Let y; > yo > 2 and let f : N — U be a multiplicative function such that

1
Ly, (1 + @J)‘ <clogyo  (z = yo)

and

log z
D) i) = Slog (T2 ) <M (o <2 < )
08 Yo

for some ¢y > 0,6 >0 and M > 0. There is a constant co, depending at most on c1, such
that if y1 > ySXp{CQM/é}, then for all z > yj, = ySXP{QM/5}

we have that
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for some positive constant c3 < 1/2. For y > y; > Y, set

D?(f(n), u(n); 9o, )
w<e<y Dy ep<a 1/D

and note that

1
(5.4 M < o <o <)
yo<p<w p y
by Lemma 5.4. We claim that
(5.5) €(y) > c30.

Assume on the contrary that €(y) < c30. Let x¢ € [y}, y] be such that

D2(f(n), pln)s o, 20) = €ly) 3~

Yo<p<zo

We must have that zo > y;; otherwise, (5.3) would contradict our assumption that e(y) < c3d.
Moreover, we have that

DA(f (), j(n); yor w0) = €ly) S %:1_(—% 5 ZRUE)

<z <p<z0 p
(5.6) Yo<p=To Yo
o (elyM e(y) —R(f(p))
() it X T

by (5.4) and our assumption that €(y) < c3d. On the other hand, we have that

0 1 M
DA(f (), (n); o, 70) = D*(f (), ju(m); s 1) > 5 log (gggg) > 2

by (5.3). If ¢y is large enough, the above inequality contradicts (5.6). This implies that
relation (5.5) does indeed hold. Combining relations (5.4) and (5.5), we deduce that

f(p 1
> L T )
p
Since the above inequality is true for all y > y;, the desired result follows. O

6. PROOF OF THEOREMS 2.1 AND 2.2

In this section we prove Theorems 2.1 and 2.2. We start by proving a weaker version of
the former.

Theorem 6.1. Lete >0, QQ > 3 and f : N — U be a completely multiplicative function that
satisfies (1.5) with A =2+ e. Then there is some Q' € [Q, +00] such that

D*(f(n),n(n);Q,Q) <1 and Y /) <1 (2>Q).

Q'<p<z p
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Proof. Let ¢ be a large fixed integer that depends at most on €, to be chosen later, and
assume, without loss of generality, that () > c¢. Define Y to be the smallest integer y > @
such that

(6.1) D*(f(n), p(n);y, y°) <

log? ¢
if such an integer exists; else, set Y = oo. This definition immediately implies that
c1 log 2
6.2 D? ; > 1 — el
(6:2) (F i Qu3) > oot (225 ) = e
for Q < z <Y, where ¢; and ¢y, are some appropriate absolute constants. By the above

relation and Lemma 5.5, which is applicable by Lemma 4.4(a), there is a constant ¢ = c3(€),
independent of our choice of ¢, such that if Y > Q; = Q@®les(loed™}  then

Z J N\ <<6 10g 0)3 for all z > QO — Qexp{2c2(logc)4/c1}‘

Qo<p<z

So the theorem follows in this case by taking @' = Qo = Q9. Consequently, we may
assume that Y < Q1.

Now, let y > @ that satisfies (6.1). We are going to show that it is possible to control the
size of Ly(1, f) very well. We start by observing that

1/2
Z H% Z \/2 1+;R ) < D(f(”)?ﬂ(”);yayc) ( Z %) < \/li?,

y<p<y° y<p<y° y<p<y°

by the Cauchy-Schwarz inequality and the inequality |1 + u[* < 2R(1 + u) for v € U.

Therefore
$ fl*f\ SERI ( |1*£’(p)+|1*£(]92)+m)

1<n<y° y<p<y°

P=(n)>y
:—1+exp{ Z |1+f ( )}
1

y<p<y°

1 1
-1 o) I ,
+€Xp{ ( logc+y)} Vlogc

since y > @ > ¢. On the other hand, Lemma 4.2(b) yields that

> W _f( L) b - S FIT (1 3) + 0,

n<y‘ <y
P~ (n)>y

uniformly for ¢ > 1 and y > (). So we deduce that

(6.3) { (% + %-,y> Ly(o, f) - yUC(_Jll) L,(1, f)} 11 <1 - %) =1+0. (ﬁ) _

p<y

In order to proceed further, we distinguish two cases, according to whether L(1, f) vanishes
or not. First, assume that L(1, f) = 0, in which case we also have that L,(1, f) = 0. Note
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that letting x — oo in the second formula of Lemma 3.1 yields the identity

Cylo) = (ﬁ +%,y> 1T (1 - %) .

p<y

So (6.3) becomes

(o) Ly, f) =1+ O, (%) |

In the above relation we choose ¢ = ¢(e) large enough and we set 0 = 141/ logz with = > y.
Then Lemma 5.1 implies that

D?(f(n), u(n); y, x) = log

1 1
Gy (1+ 1og:z;> L, (1 + @,f) ‘ +0(1) < 1.

Since this holds for all = > vy, selecting y = Y = Q%<1 completes the proof of the theorem
in this case by taking Q' = oo.

Lastly, we consider the case when L(1, f) # 0. As in Remark 4.3, letting ¢ — 17 in (6.3)
yields that

{(clogy + ) Ly(1, f) + Ly (o, f)} 1:[ (1 - %) =1+0. (\/%gc) :

Dividing the above formula by

=Tl (-3) - (-2) )

Py Py
gives us that

L 1+ O.(log™"%¢)
(6.4) clogy + v, + =2(1, f) = ‘
8Y+ My Ly( ) PQy)
Since 71, < logy by Lemma 3.1 and i—i’(l7 f)= %(1, f) + O(logy), relation (6.4) becomes
L 14 O.(log™"?¢)
(6.5) clogy=——(1,f) + + O(logy).
L) O (loz9)

We are going to use the above formula to estimate the size of L,(1, f). The problem is
that we do not know how big (L'/L)(1, f) is. However, if y > v} and both y; and y, satisfy
(6.1), then relation (6.5) is true with y = y; and y = y». Subtracting the first one of these
formulas from the second one yields the estimate

1 1 1 1 1 Y2
6.6 — +OE< ( + )) = clog == 4 O(log y2) = clog ys,
©) P~ Pl "% \Vioge \Pw) ¥ Plwa) g, +Ollostn) = clogys
provided that c is large enough. Note that
P(y1) { ( 1 ) 2 }

=exps O | — )| +D*(f(n), u(n);y, :

Therefore, if D(f(n), u(n);y1,y2) > 1 and c is large enough, then 1/|P(y2)| > e'/2/|P(y1)|.
Together with (6.6), this implies that

1
|P(y2)|

= clog s,
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that is to say, |L,,(1, f)| < 1/c. Combining this last relation with (6.1) for y = y,, we find
that

R(f ()

1
= — | = 1.
. ~explog c}

(6.7) |Lys (1, )] = Ly (L f)lexp{ = D

Y2 <p<ys

Having proven this, it is relatively easy to complete the proof of the theorem. First, define
a sequence Y7,Ys, ... inductively as follows. Set Y7 =Y and let Y;;; be the smallest integer
y > Y which satisfies (6.1), provided that such an integer exists. Let J be the total number
of elements in this sequence (for now we allow the possibility that J = oo, even though we
will show that this is impossible under the assumption that L(1, f) # 0). If J < 2, then
(6.2) holds for all z > @, possibly with a different constant ¢, in place of ¢y, and Lemma 5.1,
which is applicable by Lemma 4.4(a), completes the proof of the theorem with @)’ = Q. So
assume that J > 2 and consider an integer j € [1,J — 1]. Then, for u > Y, |, Lemmas 5.1
and 5.2, and relation (6.1) with y = Yj.;, imply that

Lyjc(1+ : f)‘xexp y Re) oy 8“E(J;<1?))+ 5 R

logu’ P D
Ye<p<Yjn Yi+1<p<Yf Y¢,, <p<u

< exp 3 R(f(p)) <1

Via<rsvs, ¢
Consequently,
. 1 1
(69 Lyt Dl = Ji [ (14 ot ) <+
This implies that
(6.9) D(f(n), u(n); ¥1,Y;) < 1;

otherwise, (6.7) with yo = Y; would yield the estimate [Ly¢(1, f)| =< 1, which contradicts

(6.8), provided that c is large enough. Together with our assumption that Y < Qo = QO
relation (6.9) yields that

D(f(n), u(n); Q,Ys-1) <ee L.
In particular, J < oo; otherwise, letting j — oo in (6.9) would imply that Lg(1, f) =0, a
contradiction to our assumption that L(1, f) = 0. We claim that the theorem holds with
Q' =Y, 1. Indeed, its first assertion is an immediate consequence of (6.9). For the second
one, note that

Cy
D? Yr,2) > ——1
(P ) Yo12) 2 oo
by the definition of Y;_;. Hence Lemma 5.4, which is applicable by Lemma 4.4(a), implies
that

(6.10) > % < 1 (2>Y5)).

Yy_1<p<z

log z

— 51 >Y;_
lOgYJ_]_) csloge (2 >Y;4),

So the second assertion of the theorem holds too, thus completing the proof in this last
case. U
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We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We will prove the theorem with ()" as in Theorem 6.1. First, note
that an immediate consequence of Lemma 5.1 and Theorem 6.1 is that

logy

6.11 Ly(L ) =e ——55 (¥=2Q),

(6.11) L D= ol 02 Q)

which shows the last part of the theorem. It remains to prove that

1+
3 11+ f(p)] <. 1.
o=@ P
Observe that the function ¢ = 1% f % 1 % f assumes non-negative real values and that

g(p) =2+ 2R(f(p)). Moreover,
doogm)= > (xfla) D AxHO+ D (1xNHE) DY (1 f)(a)

n<z a<\/x b<z/a <z a<z/b
P~ (n)>Q P=(a)>Q P=(b)>Q P=(b)>Q P=(a)>Q

- X 1N Y. (1))

alyx b<yz
P~ (a)>Q P=(b)>Q
So
1 1
0< > A+RE@ <5 D o <5 > g0n)
Q<p<z Q<p<z n<z
P~ (n)>Q
2
— 1
=R > @xfla) Y 1= —5 > (1= f)a)
a<\/x b<z/a a<\z
P~ (a)>Q P=(b)>Q P~ (a)>Q

Now, Lemma 4.2(b) implies that

> wenm=uton NI (1-1)+0(FEL) w=a

n<lu p<Q
P~ (n)>Q

Therefore, for every x > Q® we have that

LS asngem | Y %{L_@u,ﬂﬂ(vﬁ%()(%)}

Q<p<z a< [z p<Q
P~ (n)>Q

Lo N ] (1 - %) +0 (%) |

p<Q

(6.12) _ %
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We shall estimate each of the terms appearing above separately. First, the second formula
of Lemma 4.2(b) with s = 1 (see also Remark 4.3) implies that

> M = {(log vz +m,0) Lo(L, /) + Lo(L N} T (1 - %) O ((logQ)e)

1
s yE = 0

P=(n)>Q
~ (logz)Lq(1, f) 1 log x
_ ; IT (1 ;. + 0.(1) <. oz 0 |Lo(1, f)I 41,
p<Q

for all z > @Q®, since Lq(1, f) < 1 and Li(1, f) < log@, by Lemma 4.4(a), and 719 <
log @, by Lemma 3.1. Moreover, |Lg(1, f)| <. log @Q/log Q" by (6.11). Thus we deduce that

> 000y ez

alx
P (n)>Q

In addition, Lemma 6.1, the Cauchy Schwarz inequality, and the inequality |1 + ul? <
2R(1+u), for u € {z € C: |2| < 1}, imply that

s @i s s
a<\/x “ Q<p<yz P
P~ (n)>Q
1"’ 21+ RGN
p
o (QZ 73) 2 p
<psz Q<p<Vz

log z\ /2 log z \ “/?
<exp? O <log og Q) <e <10g Q) ;

for all z € [Q®, Q']. Therefore

5 W{L_@u,ﬂﬂ (“%)*O(%)}

a<y/z <Q
(6.13) P=(n)>Q !
< LNl (ogQ)” 1 (log @)/

08 Q" (og ) < iog@ " (logn)
for all z € [Q®, Q'], where we used (6.11). Similarly,

1 102 \|' _ [Lo(LNE | (or@)*
LQ(l’f)pl:!)(l p)+0((10gaﬁ)”e)‘ < (log Q)? +(10g37)2+26

(log @)*
(log @) (logz)*+2<
by relation (6.11). Inserting (6.13) and (6.14) into (6.12), we deduce that

e allogQ)
>0+ RO < oy + gy

(6.14)

<Le

(Q*<r<Q).
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So the Cauchy Schwarz inequality and the inequality |1+ f(p)|* < 2R(1 + f(p)) imply that

z(log @)/

- /
(log z)/2(log @)/2 " (log z)1+</4 (Q®<z<Q).

> I+ f(p)] <

p<w

Finally, summation by parts yields the estimate

Q<p<Q’ b RE<p=Q’ b

which completes the proof of Theorem 2.1. O
We conclude this section by showing Theorem 2.2.

Proof of Theorem 2.2. 1t suffices to show the theorem when () is large enough. Note that
n < 1, by Lemma 4.4(a). Set X = e/ If X < @, then |Lg(o + it, f)] < 1 for all
t € [-7,7], by Lemma 5.1, and the lemma follows. So for the rest of the proof we assume
that X > Q. For each t € [—7,7|, Theorem 2.1 implies that there is some C; € [Q, +0]
such that

(6.15) Z LS <1 and Z /) <1 (2>0C)).

1+t
Q<p<Cj p Cij<p<z p

In particular, |Lo(o + it, f)| <. (log @)/ min{log X,log C}} by Lemma 5.1. So if we set
Cy = min{C}, X} > @, then n <. (log@Q)/logC;, and the theorem becomes equivalent to
showing that

(log Q)/log C’to lf |t - t0| S 1/ log Ctou
(6.16) |Lo(o +it, )| <c < |t — to|log Q if 1/1ogCyy < |t —to] < 1/1og@Q,
1 if [t —to| > 1/1logQ,

for all t € J. So we shall prove this relation instead.

First, note that C; < C’fg‘(l) for every t € J, by the choice of ty. Thus if [t —ty| < 1/log Cy,,
then relation (6.15) and the formula pi=%) = 1 4+ O(|t — t,|logp), which is valid for p <
Cy, < eMli=0l imply that

5 gce(f(p)p‘“)zoe(l) S R(f(p)p~™)

Q<p<X p Q<p<Ci, p
R —ito t — 1|1
—om+ ¥ ™) 4 3 |t — to|logp
Q<p<Cy, p Q<p<Cr, p
1 log C;
—om- Y Lo -t (ER).
Q<p<Cy, p log Q

So Lemma 5.1 completes the proof of (6.16) in this case.
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Fix now t € J with |t — to| > 1/log C;, and let y = max{Q, e*/l=%!}. Then

> RS _ T RO > ™ + f(p)|

p p p

y<p<Ctq y<p<Ctq

1
Gy <1 + log Cr, +i(t — to)) ‘ + O(1),

by (6.15) with ¢t = ¢y and Lemma 5.1. Moreover, letting z — oo in the second part of Lemma
3.1, which is applicable because y > Q > (V5,)'% > (V;_;,)'% by assumption, implies that

1 1 1
1 (t—t = o | | 1——
Cy ( * log Cto " Z< 0)) (1/ log Cto + i(t - tg) + 71+1/10g0t0+1(t t0)7y> ( p>

p<y

y<p<Ct,

= —log

< 1,
since |t — tg| > 1/logy and Y141/ 10g Cry +i(t—to) y < logy. Consequently, we deduce that

3 R(f(p)p™) > e,

p

y<p<Cy,

for some constant ¢, that depends at most on €, which, together with Lemma 5.2, yields the
estimate

<. L.

8% —it
3 (f(p)p™)

y<p<Cy, p

Since we also have that C; < C’ge(l), we conclude that

(617) 3 R(f(p)p™) _ om+ Y RO L

y<p<X p Cio<p<X p
0

by (6.15). If |t — to] > 1/log @, so that y = @, the above relation and Lemma 5.1 yield
(6.16). Finally, if 1/log Cy, < |t —to| < 1/log @, then (6.17) implies that

3 %(f(p)p*”):Oe(l) . R(fp)p™™)

Q<p<X p Q<p<el/lt—tol p

—om+ Y R | > |t—t;|logp

Q<p§el/‘t7t0| pgel/‘tft()‘

_ 05(1) + Z éR(f(Ij)p_ito) )
Q<p<el/lt—tol

Since el/lt=tl < €, < C! | applying relation (6.15) with ¢ = o, we obtain the estimate

Z m =0.(1) — Z ! = O(1) +log(|t — to| log Q).
Q<p<X p O<p<el/lt—tol

Together with Lemma 5.1, this implies relation (6.16) in this last case too, thus completing
the proof of the theorem. O
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7. PROOF OF THEOREMS 1.2 AND 1.6: THE CASE WHEN L(1 +itg, f) =0

In this section we show part (b) of Theorems 1.2 and 1.6. These proofs are distinctly
different from the proofs of parts (a).

1
Proof of Theorem 1.2(b). For x > Q, = Q>0+ *™* > 2 the argument leading to (4.1) and
our assumption that f satisfies (1.5) imply that

—it log Q)42 At (log Qi)
- D i

n<x

since /7 > (elogx)?/(2A)4. We set h(n) = f(n)n~" and follow the argument in the proof
of Theorem 2.1 with % in place of f and (), in place of ) to deduce that
2

YU +RAE) <R D (Ixh)a) D (1xh)b) | - % > (1xh)(a)
- 5L -5

Now, note that L(1,h) = L(1 + itg, f) = 0 and therefore Lq, (1,h) = 0. Together with
Lemma 4.2(b), this implies that

1 u(8log Qy, )42 u(8log Qy, )42
(1 h)(n)= uLQtO(l, h) <1 — —) + 0 < - < —
WZ@ py@to p <10g u)A ' <log U)A '
Pi(n‘)>Qt0

for all u > Qf . Hence

2(16log Qy, )" 2 [(Lxh)(a)]  2(16log Qy)*4~
(7.2) Z (14 R(h(p))) < (log x)A-1 Z a * (logx)24-2 7

Qty<p<z

a<\z
P~ (n)>Qt0

for all x > Qfo. Lastly, relation (7.1) allows us to apply Theorem 2.1 with h in place of f

and Qge(l) in place of Q). Since, L(1,h) = 0, the parameter @)’ in Theorem 2.1 is equal to
0o. Consequently,

5 M<<exp 3 L T Ay

a<y/z Qty<p<y/z P
P~ (n)>Qt0

Inserting this estimate into (7.2), we find that

0<) (L+R(A(D) €2Qu+ Y. (L+R(A(p))) <a

p<z Qto<p<z

x(log Qto )AiQ
(log )41

This inequality holds trivially when = € [2,Q;°] too. So the theorem follows by partial
summation. 0
Proof of Theorem 1.6(b). Since f assumes values in [—1, 1], we have that

0< S +/p)< Y 1xNH) (= Q).

Q<p<z n<z
PT(n)>Q

(7.3)
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As L(1, f) = 0, applying Lemma 4.2(b) with 0g = 1 —4§ € [3/5,1 —1/log @], A = 2 and
M =1, which is possible by (1.10), yields the estimate

3445 1— 1 1— 1
€T 4 x 60 log Q x 60 log Q
1 > Q).
2 < g < g 729
P~ (n)>Q

Inserting the above estimate into (7.3) and using partial summation, we conclude that

1——1
60 log Q log €T

0<> (14 f(p)logp=0(Q)+ > (1+ f(p)logp < Q+ T 08T o e,
log )
p<z Q<p<z
for all z > @), which completes the proof. O

8. REAL ZEROES AND THE SIZE OF L(1, f)
In this section we prove Theorem 2.4.

Proof of Theorem 2.4. For o > 1 — 1/10gQ and y > 1, we have that

f(n
Uf_]\%l—moz Z Z M dg N—>ooZ

n<N dn Pt (d)<y

(8.1) Py
~ eI (1-22).

pO’
p<y

by our assumption that f is totally multiplicative. In particular, the zeroes of L(s, f) and
Lg(s, f) in the region R(s) > 1 — 1/log () are in one-to-one correspondence. Moreover, for
y > () we have that

(52 Ly(o.f) = Lalo. ) [] (1_

Q<p<y

Next, by Lemma 3.1, there is a constant M > 120 such that v,_,, € [-M logy, M logy|
for all y > 3 and all n € [0,1/(601logy)]. We claim that, for 0 < n < 1/(M log @), we have
the relation

1)),

pcr

(8:3) Lo(l=n.f) 20 = Lq(1,f) >nlogQ.
Indeed, our assumption that (1.10) holds with § = 1 — 1/log @ implies that
log Q) 2101gQ
> .

Thus Lemma 4.2(b) with A =3, 09 =1 —1/(2logQ), M <1logQ, 0 =1 —1n, y = /M)
and x = y©, where C is a large enough constant, yields the formula

(8.5)
= RGeS (- ) o ()

P (n)>y
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By the choice of y, we have that _, , < Mlogy = 1/n. Moreover, since f is real valued, if
Lo(l1—mn, f) >0, then L, (1 —n, f) > 0 by relation (8.6). So the term (—1/n+~1_,,)L, (1 —
n, f) is non-positive. Consequently, choosing C' large enough in (8.5) gives us that

c
n<eC/n " " P<y p

P (n)>y
On the other hand, the sum on the left hand side of the above inequality is at least (1% f)(1) =
1, by positivity (our assumption that f is a real valued completely multiplicative function

implies that (1 f)(n) > 0 for all n). So we find that

-1
(8.6) L,1,f)> Qic H (1 — 1) =nlogy < 1.

¢ Py b
However, if ()’ is as in Theorem 2.1, then L, (1, f) < (logy)/log(yQ’). Comparing this esti-
mate with (8.6), we find that logy > log ()’. Since we also have that log @)’ < (log Q)/Lq(1, f)
and logy =< 1/n, (8.3) follows.

Fix now a small enough constant ¢ < 1/M?. Note that Lg(o, f) > 0 for ¢ > 1, by the
Euler product representation. So if Lg(s, f) does not vanish in [1 — /¢/log @, 1], then we
must have that L(1—+/c/log @, f) > 0 by continuity, and (8.3) gives us that Lg(1, f) > c14/c
for some positive constant ¢; that is independent of ¢. Consequently, Lemma 4.4(b) implies
that, for 0 € [1 — ¢/log @, 1 + ¢/ log Q],

Lq(o, f) = Lo(1, f) + /IU Lo(u, f)du = Lo(1, f) + O(|1 — o|log Q)
> c1v/e+O(c) > /e,

provided that ¢ is small enough. Since we also have that Lg(o, f) < 1 by Lemma 4.4(b),
the theorem follows in this case.

Lastly, consider the case that Lg(s, f) has a zero in [1 — y/c/log @, 1], say at 5. Relation
(8.4) allows us to apply Lemma 4.2(b) with A = 3, 09 = 1 — 1/(2logQ), M =< logQ,
r= Ql/cl/4, y =@ and s = 1 to obtain the estimate

ZM (1*_7{)(71) = {(121%4@ + 71,Q> Lo(L, f) + L’Q(l,f)} 11 (1 _ é) L0 (e

nSQl/c p<Q
P7(n)>Q

Relation (8.7) with ¢ = # and Lemma 4.4(b) imply that

(8.7)

Lo(lf) = /6 Ly(u, f)du < (1 - §)log @ < V.

Moreover, 71 ¢ < log ) by Lemma 3.1. Combining the above estimates, we deduce that

(15 H)n) 1 i
> DOy (1) sown.
nSQl/cl/4 p<Q
P~ (n)>Q
However, as before, the left hand side of the above inequality is > (1 % f)(1) = 1, by
positivity. So if ¢ is small enough, then Ly(1, f) > cyplog@ for some absolute positive
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constant ¢o. Consequently, for any u € [1 —¢/log @, 1+ ¢/ log Q], Lemma 4.4(b) implies that

colog )

1
Lyl /) = T ) = [ Tt Piw > log @+ 0 (11— ullog? Q) > 2B,

provided that c is small enough. Since we also have that L (u, f) < log@, by Lemma
4.4(b), we deduce that

c

5 108@Q < Ly(u, f) < ¢ log Q,

where ¢} is some positive constant. The theorem then follows by the identity Lg(o, f)
5 L(u, f)du, which holds for all ¢ > 1 —1/log Q.

oo

9. BOUNDS FOR THE DERIVATIVES OF %(s,f) AND 1(s, f)

In this section we list some estimates for the derivatives of 1 (s, f) and £ (s, f), which we
shall need in the proof of Theorems 1.2(a) and 1.6(a). The key lemma is the following result
which has a combinatorial flavour and is based on an idea in [IK04, p. 40], also exploited in
[Koul3, Lemma 2.1].

Lemma 9.1. Let k € N, D be an open subset of C, s € D, and F : D — C be a function
which is differentiable k times at s. Assume that F(s) # 0 and set
}1/3‘

1/j N (G—1)
1|/F
s) } and N = lrgja;(k {? (F) (s)
Proof. By arguing as in [Koul3, Lemma 2.1], we find that N < 2M.

In order to show that M < 2N, we argue inductively. First, we have that |(F'/F)(s)| < N,
by the definition of N. Next, we assume that |FU)(s)/F(s)| < j/(2N)’ for all j € {1,...,7},
for some r € {1,...,k —1}. Since

FO+(g) = <F . %) " (s) = Z (;) FO(s) (%)M) (s),

F)

F

1
M = max {—

1<j<k | 7!

Then M/2 < N < 2M.

§=0
we find that
[(r+1) " . :
’ ()| < (r+1)! z;(zN)JNT—JH < (r+1)(2N)",
]:
which completes the inductive step and hence the proof of the lemma. 0

Using the above lemma, we bound the derivatives of %(s, f) and of (s, f) in terms of
the derivatives of L(s, f) and a lower bound on |L(s, f)| in a similar fashion as in [IK04, p.
40-42]. Similar arguments were also used in [Koul3].

Lemma 9.2. Let s=o0+ it witho > 1 andt € R, ke N, Q > 2 and M > 1. Consider a
completely multiplicative function f: N — U such that

1L (s, f)l <7 (1< j < k).
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There is an absolute constant ¢ such that for z > 3/2 we have that

7\ *1
() o

Proof. Note that

(1/L.)™®
1/L.

M
min{1, |Lo(s, f)|}

- ’ (s, f)' < k! < + log(zQ)>k.

N\ (G-1) 1N G-1)
00 (£) 6n-(12)  en+olamey) 0<isp

: Lq
and
1LY M M 7 ‘
7 L_Q<S’f" < Tato 7 = e y) 45959

So Lemma 9.1, applied with F(s) = Lg(s, f), implies that

K%)w o)< (Grizgy) 0=i<

Together with (9.1), this implies that

(%) G-1 (5)

for some constant co > 2. Finally, since the logarithmic derivative of a function f is minus
the logarithmic derivative of its inverse 1/f, relation (9.2) and Lemma 9.1 applied with
F(s)=1/L,(s, f) imply that

(9.2)

. M J .
<t (s ECQ)) 0=i<h)

(1/L:)"™ Kk M ’
—_ < 2%¢s k! 1
it 0| < 2 (g + s
and the lemma follows by taking ¢ = 2c¢s. O

10. PROOF OF THEOREMS 1.2 AND 1.6: THE CASE WHEN L(1+ it, f) DOES NOT VANISH

In this section, we complete the proof of Theorems 1.2 and 1.6 by showing their first
parts. This will be accomplished in two steps. We start with two preliminary estimates in
Subsection 10.1, which are then combined to show our main theorems in Subsection 10.2.

Here and for the rest of this paper, given an arithmetic function ¢ : N —-C, £k >0,z > 1
and o > 1, we set

Sy(x;9) = Zg(n)(logn)k and Ii(o;g) = (/000 ‘wrdﬁ 1/2.

n<x
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10.1. Preliminary estimates.

Proposition 10.1. Let € > 0 and Q > 3. Consider a completely multiplicative function
f N = U satisfying (1.5) for some A > 2+e¢€. Foro =1+ 1/logx, we have that

Ik(O'; Af) . logQ min{A—27k+%}
(logayrt e (N T) —loglog Q) Gy

_ (k1) (k+2) (2k+1)(A-2)

+ log ].ng IOgQ Inin{k:—’—% 4(A—1)  2k+A—-1 + l
lOg Q log €T T,

uniformly in k € [0,A—2|NZ, x > Q* and T > 1, where N(x;T) is defined by (1.7).

Proof. Without loss of generality, we may assume that x is large enough in terms of A and e.
Note that h(7) = 7/eA=2N @) i5 an increasing function of 7 that tends to infinity as 7 — oo
and is continuous from the right. Moreover, h(1) < 1/eA=21el0s@) — 1/(2]og Q)4~2. So
there exists a unique 77 > 1 such that h(7) < 1/(log@Q)4~2 for all 7 < T} and h(T}) >
1/(log Q)*~2. We may assume that T < Tj. Indeed, if T > T}, then set T] = max{T; — 1,1}
and note that

)

. 1
log @ min{A-2he3}
. ! _ —_—
(N(z; T})—loglog Q) (eN(x;Tl’))

since N(z;T) < N(x;T]), and that
A-2 A—2
;<3<2.<w) §2.<M> |

Tll — Tl — eN(x;Tl) eN(:U;T)

since h(Ty) > 1/(logQ)*~2 and N(x;T) < N(z;T}). So the claimed result follows by the
case when 7' =T € [1,T}). Similarly, we may assume that

log Q min{A—2,k+%}
< (N(I, T)_log log Q) (eN(x;T) )

(2k+1)(A—2)

2k+A—1 A=2
T<T, - log x 1< log x 9
2log Q) 2log Q)

In particular, Q; < x for all t € [-T,T].

Our starting point towards the proof of the proposition is the identity

N\ () 2
(%) (o + i, f)‘ dt

o2 + t2’

101) Lo Af)? = /‘” ‘Sk(e“;Af)

0 eau

1

2
du = —
2m Jr

which follows by observing that the Fourier transform of the function u — e=7"Si(e*; Af)
is the function & — (—1)*(—L'/L)® (o +2mi¢, f)/(0 + 2mi€) and then applying Plancherel’s
identity. This turns the proposition to a problem of bounding (L'/L)* (s, f) on average.
However, unlike the proof of Haldsz’s theorem (i.e. Theorem 1.1), where a similar integral is
bounded, with L'(s, f) in place of (L'/L)*)(s, f), we do not have at our disposal the factor-
ization L'(s, f) = (L'/L)(s, f) - L(s, f) that allows one to control the integral of |L/(s, f)|?
without losing any logarithmic factors. So we are forced to use a different strategy, as we
will see below.

In order to bound the integral on the right hand side of (10.1), we let J, = {t € R :
7/2 —1 < |t| < 7 — 1} and estimate the contribution to this integral from ¢ € J., for
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each 7 > 2 Observe that o? + ¢ < 72 for t € J,, so it suffices to bound the integral
[ L'/ L)) (o +it, f)[?dt. First, note the ‘trivial’ bound

(10.2) / <%>(k) <"+“vf)2dt§3/_: (%)(k) (a+z‘t)2

<4 (log )+ + 7(log V;)**2,

which follows by Lemmas 3.2 and 3.3. Moreover, if 7 < T, then we claim that

N\ (k) 2 .
/ (%) (o +it, f)| dt <ae (N(z;T)—loglog Q) <<log:]38f;g; QT))

dt

1
(10.3) + 7(log Q)+ (log ljgg g) + 7(log V;)?+?
Qk‘ 1 k+1 2<k7j+1>
+ (log Q)*** ZT EECRN P
=1
where

) logz \ > TA-2 9
Ij,T = min (@) (l()gQ—2J1/ |L U+Zt f)| dt

Before we proceed to the proof of (10.3), we show how to combine relations (10.2) and
(10.3) in order to complete the proof of the Proposition 10.1. We partition the range of
integration on the right hand side of (10.1) as |J,,~, Jom and apply (10.2) or (10.3) to the
part of the integral over Jom according to whether 2™ > T or 2™ < T. So

{ (NV(2;T) —loglog Q) <(10g z)(log Qam) ) 2k+1

(o Af)? < Z

2m<T

qm eN(z;T)

n (log Qom )** ! log f;’ggg (log Vam )2k+2 }

2m 2m
k+1
IOgQ 2k+ I] om (10gl’)2k+1 <logv2m>2k+2
3y (e 5 flon 8 Lol PR
j=12m<T 2m>T

Since log Qam = 2372 log Q, we find that

2k+1

log x N (log x)?F+1
log @ 1?2

+ (logT) <1 + T%_l) (log Q)*+* (log

k+1

IOgQ 2k+1 Z Z ]imj+1

m
j=12m<r 4

We use our assumption that 7" < 77, which implies that 7" < (eN®7)/log Q)4~2, to bound
(logT)(1 4+ T%_2) and our assumption that 7" < 75 to bound (log T')(1 + T%ﬁ?l_l). This
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yields that

[k(O'; Af)2 . Og Q min{2k+1,2(A-2)}
W <A (]\7(117 T) log log Q) “NGT)
(10.4) L (1 log x 2 log Q mi“{%“?% . 1
& log Q log x T2
log Q 2k+1 k41 j m
F(22) Yy e
=1 om<T 4

Finally, we bound the sum over m appearing on the right hand side of (10.4) for each
jeA{l,...,k+1}. So fix such a j and note that, for any L; > 4, we have that

( 1 logz \ 7! , . )
; o (1 - ]+l) (10gQ> lij<4 ST,
-
o=k o
LA / Lo @+ _dt oy ymoy,
SR A (T e e <L

Sincel — (k—j+1)/(A—2)>1—-Fk/(A—2) >0, we deduce that

Iiom log(2T) (logz \* koit2 |L (o +it, f)I*  dt
(10.5) ey € om + LA
A—2 A-2

)2i-1 2 | 12
eyt L log ) (log@Q)¥~t o2+t
In addition, Plancherel’s identity yields that
; . dt = 1S5 fo)|?
10.6 LY t )P =2 / SRRV
(10.6) I ey I e K

where fo(n) is defined to be f(n) if P~(n) > @ and 0 otherwise”. By relation (1.5) and
Lemma 4.2(a), we find that

(log Q)"

Sole"s fo) <a €2l (u 2 410g Q).

Consequently,
) u ) u(] A-1
56 fo) = Ol + [ wias(es o) <4 “UED— (> 8105Q)
u/2

by integration by parts. The above relation also holds trivially when u € [log @, 8log Q).
Together with (10.6), this implies that

(4) . o Al 2(A-1) o du
/éR(s):o— |LQ ((7 + Zt7f)| 0_2 + t2 <<A (log Q) 1 (U—l)UUQ(A—j)

2
ogQ €

B o du i
< (log Q)**~Y / —a—y < (logQ)¥7,
logQ U

Note that S;(e¥; fg) = 0 for all u < log Q, since j > 1.



40 DIMITRIS KOUKOULOPOULOS
since 2(A — j) > 2(A — k — 1) > 2. Combining the above inequality with (10.5), we obtain
the estimate
Iiom log(2T) ([ logaz \* kit
P i : L‘A 2 )
2 o) <4 i \lgg) T

m
om<r 4 Lj

(A=2)(2j-1)

We choose L; = (logz/log@) 4-1 and note that log7 < logT> <4 log(logz/log@).
So

(2j=1) (k—j+2)
Liom log x AT log x
107 2 =) < 080

Finally, note that

(k—j+2)(2—1) < QSJ +1> <2/<;—2EJ +1) = <k+1>2(k+2),

since k — |k/2] + 1 is the nearest integer to k/2 4+ 5/4 (i.e. the point where the quadratic
polynomial ¢t — (k —t + 2)(2¢t — 1) is maximized). Consequently, (10.7) becomes

I ] il ]

jom ogxr A=t ogxr
—_— &y ( ) (log ) .
2 o5 <4 o log Q

Inserting the above relation into (10.4) completes the proof of Proposition 10.1.

It remains to prove relation (10.3). First, we prove a pointwise bound for (L'/L)*) (s, f).
Fix 7 € [2,T) and let t € J, C [-T,T7, so that (); < . Note that relation (7.1) and Theorem
4.4(a) imply that

. . A—j 1
(10.8) LD (5 +it, f)| <4 (log 2)] min{ J Og‘”}

A—j—l’ Oglogz

J
log
A {(bgz) (10g logz) } 7

uniformly in v/Q; < z < y/z and j € {1,...,k + 1}. Thus, applying Lemma 9.2 with

F(s) = L(s, f), we deduce that
<2 | log = . b log log x .
min{1,|L.(c +it, f)|} logz

For each t € J, we choose z = y;, where

(10.9) ' <%) v (0 +it, )

log Qs log =
min{|Lqg, (o +it, )|, 1}’ |

Note that Lemma 5.1 and Theorem 2.1 imply that

1
(10.10) logy, = 5 -min{

—zt
log |Ly, (o +it, f)| )+ Z R~ < 1,

yt<p<z
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that is to say, | Ly, (o +it, f)| <c 1. So we find that

lo
<. (logyy)F (log gm) :

(10.11) ‘(%>(k) (o +it, f)

Before we proceed further, we need to bound y; in terms of N(x;T). Firstly, we claim that
log vy < log Q:/|Lg, (0 +it, f)|. Indeed, we have that Lg, (o +it, f) < 1, by Lemma 4.4(a)
and relation 7.1, which implies that

log 4, < min { log Q? ,logx} .
Lo, (0 +it, f)]

Moreover, since Q; < z for |t| < T < Ty, we also have that

3% —it 1
log | Zau(o +it, )l =01 + 3 2L 5 51y 1o (bogé ) |
Qi<p<z p g Wt

where we used Lemma 5.1 and Mertens’ estimate on Epgt 1/p. This proves our claim that
logy: < log Q¢/|Lg,(0 +1it, f)|. As a result, Lemma 5.1 and the definition of N(z;7") imply
that

logz _ logz Loy (0 + it, f)| xexp{ Z 1+§R(f(p)p_it)}

(10.12) logy;  log @ 0T, p

eN(@T)
zmax{ ,1} (=T <t<T)),
log Q;

which provides the required relation between y;, and N (z;T).
Now, let ty € J; be such that logy;,, = max;c;. logy,, and set

o, =J, Ntg—1/logQ,to+1/logQ,] and B, =J,\ .
Theorem 2.2 and relation (7.1) imply that

log y1, if [t —to] < 1/1og s,
(10.13) logy: < Q [t —to|™' if 1/logyy, < |t —to] <1/logQ-,

log Q- if [t —to| > 1/10gQ-,
for every t € J,. The above estimate and relation (10.11) imply that

N\ (k) 2
/m (%) (o +it, f)

Together with relation (10.12), this implies that
2 2k+1
7\ ® aogz)aogczf)) (1 eNW)) if NE@ET) > 9]
[15)" e 0B D) it NE) 2 21050,
o

dt < ae ( eV T) log Q-
In any case, since Q; > @ and eN@T) > 2log @, we find that

(log x)#+1 if eN=T) < 21og Q..
7\ ® 2
o1 [ 1(F) i)
o

]
dt <4, (logyy, ) (log et ) :
log vy,

log 2)(log Q) Z**!
dt <<A,E (N(l',T) — 10g10gQ) (( ge]\)fgm,Tg)Q >> ’
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which is admissible. Finally, we bound the contributions to the integral on the left hand side
of (10.3) from t € A,. Note that

(4) 0 ritn - (%)(’“) o= 3 LEA@ogn)

(10.15) P (m<Q k
_ oy JeAeogn
P <@ "
for any s € C with R(s) > 1. Moreover,
2 2
k T k
[| 5 smsenent) g | s st
J no+ . no+zt
TPt (n)<Q Pt (n)<Q

<4 (log Q)" + 7(log V; )72,
by Lemmas 3.2 and 3.3. So we deduce that

N (k) 77\ ® 2
(10.16)/@ (%) (o+z’t,f)—<i) (0 +it, f)

Next, Lemma 9.1 implies that

1\ (k)
(10.17) / (%) (0 +it, f)
Br Q

Relation (10.13) gives us that

dt <4 (log Q)**™ + 7(log V)22,

2(k+1)

k+1 J

2
dt<s S /
j=1"%r

L(])
L—Q(a +it, f) dt.
Q

(10.18) Lo, (0 +it, f)| =1 (t € B.).

So, when j € {1,...,k} C [1,A — 2], then applying Lemma 9.2 with z = @, f(n)n™" in
place of f, 7 in place of k, @), in place of ) and M =< log Q);, which is possible by relation
(10.8), we deduce that

(10.19) Lo, log @1 j '
) = it . . : (1 ) (te B
15D <o (G e T ) € @) e
Consequently,
) 2y ) 2
L 7 . L
(10.20) / =9 (o +it, f) dt <. (log Q,)**F=i+D / L (o +it, f)| dt,
2. | Lq # | La

by (10.19) if j € {1,...,k} and trivially if j = k£ + 1. It remains to bound the integral on
the right hand side of (10.20), which we perform in two different ways. Firstly, Lemmas 3.2
and 3.3 imply the ‘trivial” bound

()
L—Q(a +it, f)

(10.21) / L :
Br

2 2

dtSB/_: %(a—i—it}

dt <4 7(log V;)* + (logz)* 1.
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Finally, observe that

logQ 1
“logQy A

| Lo(o +it, f)|>> Tog O ILQt( o +it, f)] < (t € %),

by (10.18), and thus

(10.22) /
Br

Combining relations (10.21) and (10.22), we conclude that

/.

The above estimate and relation (10.20) imply that

L(]) 2

I =9 (o +it, f)

dt <, 7= 2/ )L a—i—ztf)

2

L(J) . .
dt <4 (log Q)Y 1, + r(log V)%

I =2 (o +it, f)

. 2(k+1)
L(]) J . . .
/ LQ (o it f)' dt <a. (log Q-)** 7 L(log Q)% 1, + 7(log V) }
Q

2(k—j+1)

<4 (log Q)1 a= I, +7(log Q- )2E=I D (log V) ¥

since log @, < rae log ). Furthermore, note that
(log Q-)*" ) (log V;)¥ < (log V;)*** + (log Q,)** (log V;)* <4 (log V)™ 4 (log Q).
The above inequalities, together with (10.17), yield the estimate

r, (k) ' 2
/%T (L—Q> (U+Zt, f)

dt <<A,6 T {(10g ‘/;)QkJrQ 4 (lOg QT)2/€+1}

k1
(k—j+1)
+ (log Q)* Z A I,

Together with (10.14), the above relation completes the proof of (10.3) and hence of Propo-
sition 10.1. 0

Proposition 10.2. Let f : N — [—1, 1] be a completely multiplicative function which satisfies
(1.6) for some 6 € (0,1/3) and some Q > e'/%. Forx > 2, 0 > 1 and k € NU {0}, we have

that
k+3
e <o (259)

where ¢ = ¢(0) is some positive constant.

Proof. All constants ¢y, ¢y, ... that appear below might depend on §, but no other param-
eters. Also, without loss of generality, we may assume that ¢ is small enough, so that
Q > 100.

We follow an argument that is similar with the one leading to Proposition 10.1. As in
that proof, our starting point is relation (10.1). We bound the right hand side of (10.1) by
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breaking the range of integration into sets of the form J, = {t e R:7/2 -1 < |t| <1 —1},
for 7 € {2™ : m € N}. For every 7 > 2, we claim that

2
1 L/ (k) 1 2k+1
12 / ‘ (f> (c+it, f)| dt <7 (%) + 7(cy log 7_)2k+2
12/, 7

(10.23)
S LS (o it )

2k-|—1
+(crlog Q) Z/ 12(log Q)51 dt

Before we prove this estimate, we show how to use it to deduce Proposition 10.2. Clearly, if
this relation holds, then combining it with relations (10.1) and (10.6) we deduce that

2
Lo Af)? &1 \W .
T<<Z_k!24m/]m T (o +it, f)| dt

c1log Q) 2ot 2k+4-2
<sz{<LQ1f>> +(62m>k+}

k+1
+ (c1log Q) 2k+1 ’L o +it, ) _d
&) 12 IOgQ 2] 1 0-2 _|_t2

k+1
(10.24) < (M)%H A2 Z 2k (log Q)2+~ 2]+2/
LQ(I,f) j12 g0

where fo(n) = f(n) if P~(n) > @ and f(n) = 0 otherwise. Fix j € {1,...,k+ 1}. Relation
(1.10) and our assumption that Q > /% imply that

¢u(1-1/10Q)

Si(e"; fo) |°

eau

du,

[So(e™; ) < (u>logQ).

w2
So Lemma 4.2(a) yields that
(log Q)ev(1-1/(210gQ))  u(1-1/(2105Q)) cu(1-1/(210g Q)
> 41 .
u? * log @ < log Q (u > 4log Q)

This relation also holds trivially if u € [(log@)/2,4log@]. So partial summation implies
that

Sy fa) o(e“”“j) [ wassiers 1o
(e = + w e
! Q IOgQ u/2 0 Q
e/ 2y : Y
=0 ( ) + u? Sp(e"; fo) —j/ w7 S (e fo)dw

So(e"; fQ) <

IOgQ u/2
- eu(1-1/(210g Q)) 4, L j_l/u ew(lfl/(QlogQ))d < eu(lfl/(ZlogQ))juj
Ju — A ww )
log @ w2 logQ log @
for all u > log ). Consequently,
u 2
Sj(e"; fo)

j2 [e’e) u2j ) i1
200 i
du < e /lOgQ gt < (25)!(log Q).

eau

o0
/logQ
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Inserting the above estimate into (10.24) completes the proof of Proposition 10.2, since
Lg(1, f) < 1 by Lemma 4.4(b).

It remains to prove relation (10.23). First, note that, for any x > Q?, our assumption that
f satisfies (1.10) and the argument leading to (4.1) imply that

> o~ = Zf o M(Zf>

n<z n<zx nlu
< VE+ G+l /
e 4 (1+[tat -7
< d —_—
<Vz+ (log 22 + ok ], u <K (log 2)?
So if z > ¢, = max{Q*, (|t| + 3)*/°}, then
1-6/4 1-1/logg:
noit < & x
<
(10.25) Z Jn log z)2 = (logx)?

n<x

Consequently, Lemma 4.4(b) yields that
(10.26) ILD(0 +1it, )] < jl(cilogq)’ (j € NU{0}, t € R).
Together with Lemma 9.2, this implies that

\® ) co log q; i
(7) wrnn|sn(gn2fiy) e

Moreover, combining Theorems 2.2 and 2.3 with our assumption that f is real-valued and
satisfies (1.10), we find that

(10.27)

(log @)/ Lqo(L, f) i [t] < Lq(1, f)/log @,

log q .
(10.28) 17 (H;t il 1/|t] if Lo(1,f)/1logQ < |t| < 1/logQ,
" ’ log(Q + [t]) if [ > 1/1log Q.
So
1/108Q | 7 17\ ¥) 2 e log Q \ 2!
(10.29) / (-) o+it, f)| dt < k!? (4—) ,
—1/logQ L ( ) LQ(lvf)

which is admissible. Therefore it remains to bound the contributions to the integral on the
left hand side of (10.23) from t € A, := J, \ [-1/log @, 1/log Q]. First, note that if 7 > Q,
then relations (10.27) and (10.28) imply that

N (k) 2
(10.30) /j (Lf) (o +it, f)

which is admissible. Finally, assume that 7 < ). As in (10.15), we have that

N\ (k) 1N (k)
() esar (5) - 3 S

dt < k*7(cslogT)* "2,




46 DIMITRIS KOUKOULOPOULOS

for any s € C with R(s) > 1. Moreover,

2 2
2T

1 f(n)A(n)(logn)* 3 A(n)(logn)*
k!2 Z na—i—zt dt S ﬁ/ Z notit dt

T |P+(n)<Q 2T | P+(n)<Q
< (cglog Q)" + 7(cglog V)2,

by Lemmas 3.2 and 3.3. So we deduce that

NG NG
" (f) (O’ + Zt, f) — (L—Q) (O' + Zt, f)

< (crlog Q)1 + 7(cr log V)2,
Next, Lemma 9.1 implies that

2

1
(10.31) k2

9 ) 2(k+1)
1 I (k) k+1 g1 L(]) J
(10.32) —/ (—Q> (o +1it, f)] dt < E / =2 (o +it, f) dt.
G+ |, |\Zo 2T [, | T

Using relation (10.28) and since log ¢; =<5 log @ for ¢ € J., by our assumption that 7 < Q,
we obtain the estimate

|Lo(o+it, f)| =<s1 (t € A,).
Together with relation (10.26), this implies that

2(k+1) 9

L(j) J Bhgi1) L(j)
[ o ritn|  de<diios) T / "o tit,f)
,%’7— Q G Q

. 2(k— J+1) ; .
<5 M Mog @) T [ LG+ it )P
B,

Inserting the above bound into (10.32), we find that

2
1 AW AR (log Q)2(k=3+1)
10.33 —/ (—Q> o+ it, dt < it E / L (o +it, f)|?dt,
( ) E? Ju |\ Lo ( P ? = 2 | )

which is admissible. Combining relations (10.29), (10.30) and (10.33), we obtain relation
(10.23), thus completing the proof of the proposition. 0

10.2. Completion of the proofs. We conclude this section with the proof of part (a) of
Theorems 1.2 and 1.6.

Proof of Theorem 1.2(a). Recall the definition of B from (1.8) and set k = [A — 2] and

. 1 (k+1D(k+2) (A-2)(2k+1)
10.34 B = kE+ - — .
(10-34) mm{ YT TAASD T 2t A
We claim that B’ > B. Indeed, if 2 < A < 3 or if 3 < A < 4, it is straightforward to check
that B = (A —-2)/(2A—2) = B or B’ =3(A—2)/(2A — 2) = B, respectively. Assume now
that A > 4. Since A —2 > k > A — 3, we have that
k’+1— (k+1)(k+2) Zk‘+1— (k+1)(k+2) :% > 3(A—3) > %_2’
2 4(A-1) 2 4k +1) 4 4 3
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and
(A—2)(2k+1) S (A—2)(2A—-5) S %_2
2k+A—-1 — 3A -7 — 3 ’
which together imply that B’ > B in this last case too. Thus it suffices to prove Theorem
1.2 with B’ in place of B.

Without loss of generality, we may assume that @) is large enough in terms of A and
e. Let 2 > Q and T > 1, and set L = V@) /logQ and z = x'/(105eL)  Note that
L < logx/log @, by Lemma 5.2, which is applicable by relation (7.1). Moreover, we may
assume that L is large enough in terms of €, so that Q* < z < z/3; otherwise, the desired
result holds trivially. Set f.(n) = f(n) if P~(n) > z and f.(n) = 0 otherwise. Relation
(1.5), Lemma 4.2(a) and the choice of z imply that, for all w € [#'/4,z] C [2?, 2], we have
that

<10g Q)A—Q 10gZ wl—l/(?logz)
(log w)4 log 2

(log Q)2 w Y
(logz)A=1 " 21/Gle=) logz " LB logx

The above estimate and partial summation then give us that

So(w; f2) <4 w -
(10.35)
<Lpq W -

x

(10.36) Si(w; f2) <a 5

Moreover, since f,log = f, * f.A, by our assumption that f is completely multiplicative,
Dirichlet’s hyperbola method yields

dm<t
(1037) = > ADLAD) (So(w/d; f) = Sola' s £)) + Y folm)So(x/m; Af).
d§x3/4 m§$1/4
The above formula, and relations (10.35) and (10.36), yield that
x/d x
> f(m)So(z/miAf.) <a LB, + > A LB,lng <7y
m<gl/4 d<g3/4

Since So(w; Af.) = So(w; Af)+O(zlogw) for w > 1, f.(m) = 0 for m € (1,2], and z < z*/%,
we find that

So(ws Af)+ Y f(m)So(z/miAf) = Y fu(m)So(x/m;Af)

z<m<gl/4 m<gl/4

= Y f(m)So(x/m; Af.) + O(a*Plog z)
m§w1/4
T
(10.38) <4 5
Next, set A = x/L? € [z/(logz)?, x/2] and note that

[So(@/m; Af) — So(t/m; Af)| < % (¢ —A<t<w, m<a)
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In addition, D 14 [f.(m)|/m <logz/logz =< log L. Thus

T

(z;Af) = Z fo(m) - < So(t/m; Af)dt +O4 (LB/ +AlogL>
z<m<al/4 z—A
- > flm)m- < / Solts Af)dt+ 0, (Lloe L
(10.39) — mjm 0 A\ m
z<m<zxl/4

=y xlog L
A A/A Sot;Af) [ D f(mym | dt+ O (L—B) ‘

z—A z
oSms3

For every t € [/z,2/2] C [(x — A) /x4 x/2] we apply Lemma 4.1 with D = (x/t)'/3 > 21/3
and y = z'/9 to obtain the estimate

10.40 T
( ) =7 | AT (d) (AT/t - 0(1))

Ax <a:>4/3v Az AzlogL

T 2logz ~ t2logz

since A/t > y/z/t for t < x/z. Consequently,

(10.41)

A logL [* t; A log L
SO(:E7 f) <A 0g / ‘SO( a2 f)’dt_'_ OgB/
x logz J & t L

We want to relate the above integral with an average involving Si(¢; Af). By partial sum-
mation, we have that

so(t;Af)ZO(\/%H/t LS Af) = (ﬂ)+—5’“(t”\f)+/ft—ks’“(“”\f)du

vi (logu)k (logt)* 7 u(logu)k+t

2°1 Sk (t; AS)] 5 " Sk (us AS)]
< Vi (log x)* * (log x)k+1 /\/g u du
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for all t € [/x, z]. So, if we set 0 =1+ 1/logz, then
v A 1 2k A A

/ [Sot AN o L / [Set: AP, . 1/ / |5ku [Se(uws AP,
vz log:v +

t2 x4 (log )k t2
1 N 2k / | S (t; Af)|dt 5* /’” | Sy (u; Af)|
a4 (logx)* | 5z t2 (log z)¥+1 Jaz u?
1 5k: logz |Sk(€w,Af)|
<ot (log )* /loiz e dw
1 "Tu(o; A 08T 5y, : 1 *Le(o; A
(1042) S—at P kf) / eosrdw | < Vi S Lo {)7
xl/ (log ) logx xl/ (log z)*~2

by the Cauchy-Schwarz inequality. Inserting this estimate into (10.41), we deduce that
So(w; Af) (log L) (o3 Af) | logL
<<A 1 B!
x (log z)**2 L
So estimating I (o; Af) by Proposition 10.1 implies that
So(x; A logL)? 1
o(z; Af) < (log L) +

x AoE T
and Theorem 1.2(a) follows. O

Proof of Theorem 1.6(a). We follow a similar argument with the one leading to Theorem
1.2(a). Without loss of generality, we may assume that @ is large enough. Let x > @ and
k € N, and set

1, )1
L= min{\/logx,%} and z = maX{Q4,x1/L}.

We will show that

So(z; L) < we™°,
for some constant ¢ = ¢(J). The theorem then follows, since n = Lg(1, f) < (1 — ) log @,
by Theorem 2.4.

Note that Lg(1, f) < 1, by (10.26). So L < logz/log() and consequently logz =
(logzx)/L. Moreover, we may assume that L is large enough, so that z < z'/8; otherwise,
the desired result holds trivially. Set f.(n) = f(n) if P~(n) > z and f,(n) = 0 otherwise.
Relation (1.10) and Lemma 4.2(a) imply that

(10g Z)wl—l/(Qlogz) wl—l/(?logz) wl—l/(210gz) wl—l/(310gz)

So(w; f < > 2).

o(ws f:) < (log w)? * log z log z < log w (w=z)
Together with partial summation, this gives us that

Sl(w;fz) < wl—l/(310gz) (U) > Z).
Inserting the above estimates into (10.37), we find that
1-1/(3log 2) Ald
Z fz SO x/m Afz) < o 1/(3log z) + x s dl_l/((31)0gz) < xl—l/(l?logz)’

m§m1/4 d§x3/4
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by Chebyshev’s estimate ;. , A(d) < t and partial summation. So following the argument
leading to (10.38), we deduce that

So(z; Af) = Z F(m)So(z/m: Af) + O (' 1/( 121082))

z<m<al/4

Set A = x/el € [x/erVIoe™ 1 /2] for some constant ¢; > 0. Note that A > x/+/z, provided
that ¢; is small enough, since log z < (logx)/L > L. Thus arguing as in (10.39) and then as
in (10.40) implies that

So(z; Af) = / So(t; Af) Z fo(m)m | dt + O (27V/02182) 4 [A)

m<E
A L [* (A
L / Solt: f>|dH Con ke [ISEAL o
logz J /7 12 el logx J 7 12 ec2l

since A/t > \/z/t for t < x/z. Combining the above estimate with (10.42) and Proposition
10.2, we deduce that

So(x; Af) <L 5ka(O',A]f) Lol . csklog Q) 2 N csk? 2 e
T (log z)F+2 Lo(1, f)logx log

for some constant ¢3 = ¢3(0) > 1, where 0 = 1+ 1/logz. Choosing k = |L/(ecs)] in the
above inequality, so that

2 2
csklog Q) < Llog @ < 1 and csk < L < l’
Lo(1, f)logx = eLg(L, f)logz ~ e logz — e2czlogx — e?

we conclude that

So(xﬂ\f)

T
which proves Theorem 1.6(a). O

< I - e*L/(EC:;) + e*CQL,
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