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Abstract. We study the concentration of the distribution of an additive function, when
the sequence of prime values of f decays fast and has good spacing properties. In particular,
we prove a conjecture by Erdős and Kátai on the concentration of f(n) =

∑
p|n(log p)

−c

when c > 1.

1. Introduction

An arithmetic function f : N → R is called additive if f(mn) = f(m) + f(n) whenever
(m,n) = 1. According to the Kubilius probabilistic model of the integers, statistical prop-
erties of additive functions can be modeled by statistical properties of sums of independent
random variables. We describe this model in the case that f is a strongly additive function,
that is to say f satisfies the relation f(n) =

∑
p|n f(p); the general case is slightly more

involved. Let P denote the set of prime numbers and consider a sequence of independent
Bernoulli random variables {Xp : p ∈ P} such that

Prob(Xp = 1) =
1

p
and Prob(Xp = 0) = 1− 1

p
.

The random variable Xp can be thought as a model of the characteristic function of the event
{n ∈ N : p|n}. Then a probabilistic model for f is given by the random variable

∑
p f(p)Xp.

The above model and well-known facts from probability theory lead to the prediction that
the values of f follow a certain distribution, possibly after rescaling them appropriately. In
fact, the Erdős-Wintner theorem [8] states that if the series∑

|f(p)|≤1

f(p)

p
,

∑
|f(p)|≤1

f 2(p)

p
,

∑
|f(p)|>1

1

p(1.1)

converge, then f has a limiting distribution, in the sense that there is a distribution function
F : R → [0, 1] such that

Fx(u) :=
1

⌊x⌋
{n ≤ x : f(n) ≤ u}| → F (u) as x → ∞

for every u ∈ R that is a point of continuity of F ; the characteristic function of F is given
by

F̂ (ξ) =
∏
p

{(
1− 1

p

)∑
k≥0

eiξf(p
k)

pk

}
.

Conversely, if f possesses a limiting distribution, then the three series in (1.1) converge.
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One way to measure the regularity of the distribution of the set {f(n) : n ∈ N} is by
its concentration. In general, given a distribution function G : R → [0, 1], we define its
concentration function to be

QG(ϵ) = sup
u∈R

{G(u+ ϵ)−G(u)}.

We seek estimates for QFx(ϵ), or for QF (ϵ) if f possesses a limiting distribution. There are
various such results in the literature, a historic account of which is given in [1]. The most
general estimate on QFx(ϵ) is due to Ruzsa [12]. Improving upon bounds due to Erdős [5]
and Halász [9], he showed that

QFx(1) ≪ max
λ∈R

1√
λ2 +

∑
p≤xmin{1, (f(p)− λ log p)2}/p

.(1.2)

This result is best possible, as can be seen by taking f(n) = c log n or f(n) = ω(n) =
∑

p|n 1.

However, both of these functions satisfy f(p) ≫ 1. So, a natural question is whether it is
possible to improve upon (1.2) in the case that f(p) decays to zero. Erdős and Kátai [7],
building on earlier work of Tjan [14] and Erdős [6], showed the following result:

Theorem 1.1 (Erdős, Kátai [7]). Let f : N → R be an additive function such that∑
p>tA

|f(p)|
p

≪ 1

t
(t ≥ 1), |f(p1)− f(p2)| ≫

1

pB2
(p1, p2 ∈ P, p1 < p2),

for some constants A and B. Then

QF (ϵ) ≍A,B
1

log(1/ϵ)
(0 < ϵ ≤ 1/2);

except for A and B, the implied constant depends on the implied constants in the assumptions
of the theorem too.

On the other hand, when f(p) ≪ 1/pδ, p ∈ P, for some δ > 0, then (1.2) applied to f/ϵ

yields an upper bound for QF (ϵ) that is never better than 1/
√
log log(1/ϵ), as can be seen

by taking λ = 0.
Also, Erdős and Kátai studied QF (ϵ) in the case that f(p) = (log p)−c, p ∈ P, for some

c ≥ 1. They showed that{
ϵ1/c ≪c QF (ϵ) ≪c ϵ

1/c log log2(1/ϵ) if c > 1,

ϵ ≪ QF (ϵ) ≪ ϵ log(1/ϵ) log log2(1/ϵ) if c = 1,
(1.3)

for 0 < ϵ ≤ 1/3. Furthermore, they conjectured that, for fixed every c > 1, we have that

QF (ϵ) ≍c ϵ
1/c (0 < ϵ ≤ 1).

The conjecture of Erdős and Kátai was proven for c large enough by La Bretèche and
Tenenbaum in [1]:

Theorem 1.2 (La Bretèche, Tenenbaum [1]). Let c ≥ 1 and f : N → R be an additive
function such that |f(p)| ≍ (log p)−c for every p ∈ P and

|f(p1)− f(p2)| ≫
p2 − p1

p2(log p2)c+1
(p1, p2 ∈ P, p1 < p2).
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If c is large enough, then we have that

QF (ϵ) ≍ ϵ1/c (0 < ϵ ≤ 1);

the implied constant depends at most on the implied constants in the assumptions of the
theorem.

La Bretèche and Tenenbaum derived their theorem from a general upper bound on QF (ϵ)
that they showed when the sequence of prime values of f satisfies certain regularity assump-
tions. Their method uses a result from the theory of functions of Bounded Mean Oscillation,
first introduced by Diamond and Rhoads [2] in this context to study the concentration of
f(n) = log(ϕ(n)/n).

In this paper we give a proof of the full Erdős-Kátai conjecture using a more elementary
method, similar to the ones in [6, 7]:

Theorem 1.3. Let c ≥ 1 and f : N → R be an additive function with f(p) = (log p)−c for
all p ∈ P. For 0 < ϵ ≤ 1/2 we have that

ϵ1/c ≪ QF (ϵ) ≪ min

{
c

c− 1
, log

1

ϵ

}
ϵ1/c.

Remark 1.4. When 0 < c < 1, the behavior of QF for f as in Theorem 1.3 is different. As
Gérald Tenenbaum has pointed out to us in a private communication, in this case we have
that

QF (ϵ) ≍c ϵ (0 < ϵ ≤ 1).(1.4)

Corollary 1.3 and relation (1.4) give the concentration of an additive function f with f(p) =
(log p)−c, p ∈ P, for all positive values of c except for c = 1, which is the only case remaining
open.

We will prove Theorem 1.3 in Section 2. The method of its proof is quite flexible; in
particular, it leads to a strengthening of Theorems 1.1 and 1.2. We phrase our more general
result in terms of the distribution function

Fy(u) =
∏
p≤y

(
1− 1

p

) ∑
p|n⇒p≤y
f(n)≤u

1

n
(u ∈ R),

defined for every y ≥ 1. From a technical point of view, this function is more natural to work
with than Fx. Indeed, a calculation of the characteristic function of Fy immediately implies
that Fy converges to F weakly, provided that the latter is well defined. It is relatively easy
to pass from estimates for QFy(ϵ) to estimates for QFx(ϵ).

With this notation, we have the following result (observe that by letting y → ∞ in it, we
deduce as special cases1 Theorems 1.1 and 1.2):

Theorem 1.5. Consider an additive function f : N → R for which there is a set of primes
P and a constant c ∈ [1, 2] such that

|f(p)| ≪ 1

(log p)c
(p ∈ P), and

∑
p∈P\P

1

p
≪ 1.

1To deduce Theorem 1.1, take P = {p ∈ P : |f(p)| ≤ p−1/(2A)}.
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For t ≥ 2 set

g(t) =
sup{|f(p)|(log p)c : p ≥ t, p ∈ P}

(log t)c

and assume that there is some A ≥ 1 such that

|f(p2)− f(p1)| ≫ min

{
g(p2)(p2 − p1)

p2 log p2
, g

(
pA2

)}
(p1, p2 ∈ P , p1 < p2).

Then for 0 < ϵ ≤ 1/2 and y ≥ K(ϵ), where K(ϵ) = min{p ∈ P : g(p) ≤ ϵ}, we have that

1

logK(ϵ)
≪ QFy(ϵ) ≪A

min {1/(c− 1), log(1/ϵ)}
logK(ϵ)

;

except for A, the implied constants depends on the implied constants in the assumptions of
the theorem too.

As an immediate corollary, we deduce the following simpler to state result.

Corollary 1.6. Let f : N → R be an additive function for which there is a constant c ∈ [1, 2]
such that the sequence {|f(p)|(log p)c : p prime} is decreasing. Then for 0 < ϵ ≤ 1/2 and
y ≥ K(ϵ), where K(ϵ) = min{p ∈ P : |f(p)| ≤ ϵ}, we have that

1

logK(ϵ)
≪ QFy(ϵ) ≪

min {1/(c− 1), log(1/ϵ)}
logK(ϵ)

.

Proof. If g is as in the statement of Theorem 1.5 with P = P, then we see immediately that
g(p) = |f(p)|, for all p ∈ P. Moreover, if p1 < p2 are two primes, then we have that

|f(p2)− f(p1)|
|f(p2)|

≥ |f(p1)|
|f(p2)|

− 1 ≥ (log p2)
c

(log p1)c
− 1 =

(log p2)
c − (log p1)

c

(log p1)c

≥ c(p2 − p1)(log p1)
c−1

p2(log p1)c

≥ p2 − p1
p2 log p2

,

by our assumption that {|f(p)|(log p)c : p prime} is decreasing and the Mean Value Theorem.
So Theorem 1.5 can be applied and the claimed result follows. □

The lower bound in Theorem 1.5, which will be proven in Section 3, is a straightforward
application of Theorem 1.2 in [1]. On the other hand, for the proof of the upper bound in
Theorem 1.5, which will be given in Section 4, we use a combination of ideas from [6, 7].
Even though Theorem 1.3 is an immediate corollary of Theorem 1.5, applied with min{c, 2}
in place of c, we have chosen to give the proof of both of them in full detail, so that to
motivate certain choices in the proof of Theorem 1.5, which is rather technical.

A heuristic argument. There is a simple heuristic argument which motivates Theorem
1.5. We demonstrate it in the simpler setting of Corollary 1.6, that is to say when the
sequence {|f(p)|(log p)c : p ∈ P} is decreasing. For every integer n, we have that∑

p|n, p≥K(ϵ)

|f(p)| ≤ ϵ
∑

p|n, p≥K(ϵ)

(logK(ϵ))c

(log p)c
.



ON THE CONCENTRATION OF CERTAIN ADDITIVE FUNCTIONS 5

Since for a typical integer n the sequence {log log p : p|n} is distributed like an arithmetic
progression of step 1 (see, for example, [10, Chapter 1]), we find that2∑

p|n, p≥K(ϵ)

|f(p)| ≲ ϵ
∑

j≥log logK(ϵ)

(logK(ϵ))c

ecj
≪ ϵ.

So only the prime divisors of n lying in [1, K(ϵ)) are important for the size of QF (ϵ). Note
that for a prime number p < K(ϵ), we have that |f(p)| > ϵ. Therefore if a and b are
composed of primes within [1, K(ϵ)), then it is reasonable to expect that |f(a) − f(b)| is
big compared to ϵ, unless a and b have a large common factor. This leads to the prediction
that QF (ϵ) ≈ 1/ logK(ϵ), which is confirmed by Theorem 1.5 when c > 1. However, when
c < 1 this heuristic fails, as (1.4) shows, and the underlying reason is combinatorial: the
pigeonhole principle implies the lower bound QF (ϵ) ≫F ϵ for the concentration function of
any distribution function F (see also [7, Remark 1, p. 297]).

Notation. For an integer n we denote with P+(n) and P−(n) its largest and smallest prime
factors, respectively, with the notational convention that P+(1) = 1 and P−(1) = ∞. The
symbols p and p′ always denote prime numbers. The set of all primes numbers is denoted
by P. Finally, given P ⊂ P and real numbers 1 ≤ z ≤ w, we write P(z, w) for the set of
integers all of whose prime factors belong to P ∩ (z, w].

2. The conjecture of Erdős and Kátai

Proof of Theorem 1.3. The lower bound follows by relation (1.3), with the implied constant
depending on c. To remove this dependence, see Theorem 3.1 below.

It remains to show the corresponding upper bound. Before delving into the details of the
proof, we give a brief outline of the main idea. For δ > 0, we set Pδ = exp{δ−1/c}, so that
f(p) = δ if and only if p = Pδ. As the heuristic argument presented towards the end of
Section 1 indicates, it suffices to bound QFq(ϵ), where q := P2ϵ. We split the elements of the
set M := {n ∈ P(1, q) : u < f(n) ≤ u+ϵ} into subsets Mδ := {n ∈ M : P2δ < P−(n) ≤ Pδ},
where δ ∈ {2jϵ : 1 ≤ j ≤ j0} with j0 = ⌊(log(1/ϵ)− c log log 2)/ log 2⌋}. Then we find that∑

n∈Mδ

1

n
≈

∑
m∈P(Pδ,q)

1

m

∑
P2δ<p≤Pδ

u−f(m)<f(p)≤u−f(m)+ϵ

1

p
.

Fix m for the moment and set vm = u − f(m). Then the variable p lies in the interval
Im = [Pmin{vm+ϵ,2δ}, Pmax{vm,δ}], which is non-empty only when vm + ϵ ≥ δ ≥ vm/2. Since
δ ≥ 2ϵ by assumption, we find that vm ≍ δ ≫ ϵ. So the interval Im has double-logarithmic
length3 ≪ ϵ/vm ≍ ϵ/δ. Hence the Prime Number Theorem [13, Theorem 1, p. 167] implies
that

∑
p∈Im 1/p ≲ ϵ/δ, provided that I is not too short. Assuming that this is indeed the

case, we deduce that ∑
n∈Mδ

1

n
≲ ϵ

δ

∑
m∈P(Pδ,q)

1

m
≪ ϵ log q

δ logPδ

≍ ϵ1−1/c

δ1−1/c
.

2The symbol ‘≲’ here is used in a non-rigorous fashion to denote ‘roughly less than’. Similarly, the symbol
‘≈’ means ‘roughly equal to’.

3Given an interval I = [α, β], its double-logarithmic length is log log β − log logα.
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Summing the above inequality over δ ∈ {2jϵ : 1 ≤ j ≤ j0} implies that

QF (ϵ) ≈ QFq(ϵ) ≲
1

log q

j0∑
j=1

∑
n∈M

2jϵ

1

n
≲ ϵ1/c

j0∑
j=1

1

2j(1−1/c)

≪ min

{
c

c− 1
, log

1

ϵ

}
ϵ1/c,

which shows (heuristically at least) the desired result.
The main technical difficulty we have to surpass in order to make the above argument

work is that the estimate
∑

p∈Im 1/p ≪ ϵ/δ, which we used above, might not be accurate for

large δ (i.e. when Pδ is small). So below we shall employ a variation of the argument of this
paragraph where, instead of looking where P−(n) lies, we will look where min{p|n : p ≥ q′}
lies, with q′ being some small parameter chosen appropriately.

Without loss of generality, we may assume that ϵ ≤ 1/100c; otherwise (2.2) follows imme-
diately by the trivial bound QF (ϵ) ≤ 1. Define η by Pη/η

2 = 1/ϵ2. Note that 4ϵ ≤ η ≤ 1/2,
since P4ϵ/(4ϵ)

2 ≥ 1/ϵ2 ≥ P1/2/(1/2)
2 by our assumption that ϵ ≤ 1/100c. Before we proceed

further, we will prove that, for v ∈ R, δ ∈ [2ϵ, 1] and 2 ≤ z ≤ Pδ, we have that∑
z<p≤Pδ

v<f(p)≤v+ϵ

1

p
≪ ϵ

δ
+

1√
z
≪

{
ϵ/δ if z ≥ P2δ ≥ Pη,

ϵ/δ + 1/(log z)2 otherwise.(2.1)

First, note that it suffices to show the first inequality. Indeed, if z ≥ P2δ ≥ Pη, then
P2δ/(2δ)

2 ≥ Pη/η
2 = 1/ϵ2 and thus

√
z ≥

√
P2δ ≥ 2δ/ϵ, which proves the second inequality

of (2.1). Turning back to the first inequality of (2.1), observe that the primes p on the
left hand side of (2.1) lie in the interval [max{z, Pv+ϵ}, Pmax{v,δ}] =: [α, β]. For this interval
to be non-empty we need that v + ϵ ≥ δ. Since δ ≥ 2ϵ, we deduce that v ≥ ϵ and thus
2v ≥ v + ϵ ≥ δ. So we have that

log

(
log β

logα

)
≤ log

(
logPv

logPv+ϵ

)
=

1

c
log

(
v + ϵ

v

)
≤ ϵ

v
≤ 2ϵ

δ
.

Thus, if β ≥ α+
√
α, then covering the interval [α, β] by subintervals of the form [y, y+

√
y)

and applying the Brun-Titchmarsch inequality [13, Theorem 9, p. 73] to each one of them
yields that ∑

z<p≤Pδ
v<f(p)≤v+ϵ

1

p
≪ ϵ

δ
,

which proves (2.1). Finally, if β < α +
√
α, then we have that∑

z<p≤Pδ
v<f(p)≤v+ϵ

1

p
≤

∑
α≤p≤β

1

p
≤ β − α + 2

α
≪ 1√

α
≤ 1√

z

and (2.1) follows in this last case too.
We are now ready to show the upper bound implicit in Theorem 1.3. Fix for the moment

y ≥ q = P2ϵ and u ∈ R. Given n ∈ P(1, y) with u < f(n) ≤ u + ϵ, we write n = ab,
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where a is square-free, b is square-full and (a, b) = 1. We further decompose a = a1a2, where
P+(a1) ≤ q < P−(a2). So∑

P+(n)≤y
u<f(n)≤u+ϵ

1

n
=

∑
P+(b)≤y

b square-full

1

b

∑
a2∈P(q,y)
(a2,b)=1

µ2(a2)

a2

∑
P+(a1)≤q, (a1,b)=1

u−f(a2b)<f(a1)≤u−f(a2b)+ϵ

µ2(a1)

a1

≤
∑

P+(b)≤y
b square-full

1

b

∑
a2∈P(q,y)

1

a2
sup
v∈R


∑

P+(a1)≤q
v<f(a1)≤v+ϵ

µ2(a1)

a1


≪ log y

log q
· sup
v∈R


∑

P+(a1)≤q
v<f(a1)≤v+ϵ

µ2(a1)

a1

 .

Since log q ≍ ϵ−1/c, then Theorem 1.3 will follow from the estimate∑
P+(n)≤q

v<f(n)≤v+ϵ

µ2(n)

n
≪ min

{
c

c− 1
, log

1

ϵ

}
(v ∈ R)

(2.2)

by letting y → ∞. Set J = −1 + ⌊log(η/ϵ)/ log 2⌋ ∈ N and, for j ≥ 0, define qj = P2j+1ϵ, so
that q = q0 > · · · > qJ ≥ Pη. Fix v ∈ R and let

N = {n ∈ N : µ2(n) = 1, P+(n) ≤ q0, v < f(n) ≤ v + ϵ}.

As in the heuristic argument of the first paragraph, we partition N into certain subsets and
estimate the contribution of each one of them to

∑
n∈N 1/n separately. The difference is that

instead of looking at the location of P−(n), we write n = an′ with P+(a) ≤ qJ < P−(n′)
and look at the location of p = P−(n′). An additional fact that we shall take advantage of
is that if n′ = pb and log p ≍ logPδ, then, for fixed b, the number f(a) lies in an interval of
length ≪ ϵ+ f(p) ≪ ϵ+ δ ≪ δ, which allows us to gain an additional crucial savings in our
estimate for

∑
n∈N 1/n. So we write N = ∪J

j=0Nj, where N0 = {n ∈ N : P+(n) ≤ qJ} and

Nj = {n ∈ N : n = apb, P+(a) ≤ qJ < p < P−(b), qj < p ≤ qj−1}

for j ∈ {1, . . . , J}.
First, we bound

∑
n∈N0

1/n. If n > 1, then we write n = mP+(n) = mp′. Thus∑
n∈N0

1

n
≤ 1 +

∑
P+(m)≤qJ

1

m

∑
P+(m)<p′≤qJ

v−f(m)<f(p′)≤v−f(m)+ϵ

1

p′
(2.3)

≪ 1 +
∑

P+(m)≤qJ

1

m

(
ϵ

2Jϵ
+

1

log2(1 + P+(m))

)
≪ 1 +

log qJ
2J

,(2.4)

by relation (2.1).
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Next, we bound
∑

n∈Nj
1/n for j ∈ {1, . . . , J}. We have that

∑
n∈Nj

1

n
≤

∑
b∈P(qj ,q0)

1

b

∑
P+(a)≤qJ

µ2(a)

a

∑
qj<p≤qj−1

v−f(a)−f(b)<f(p)≤v−f(a)−f(b)+ϵ

1

p

≤
∑

b∈P(qj ,q0)

1

b
sup
w∈R


∑

P+(a)≤qJ

µ2(a)

a

∑
qj<p≤qj−1

w−f(a)<f(p)≤w−f(a)+ϵ

1

p


≪ log q0

log qj
· sup
w∈R


∑

P+(a)≤qJ

µ2(a)

a

∑
qj<p≤qj−1

w−f(a)<f(p)≤w−f(a)+ϵ

1

p



(2.5)

Fix some w ∈ R and consider a with P+(a) ≤ qJ and p ∈ (qj, qj−1] with w < f(a) + f(p) ≤
w + ϵ, as above. Since |f(p)| ≤ 2j+1ϵ for p > qj, we must have that |f(a)− w| < 2j+2ϵ. So∑

P+(a)≤qJ

µ2(a)

a

∑
qj<p≤qj−1

w−f(a)<f(p)≤w−f(a)+ϵ

1

p
=

∑
P+(a)≤qJ

|f(a)−w|<2j+2ϵ

µ2(a)

a

∑
qj<p≤qj−1

w−f(a)<f(p)≤w−f(a)+ϵ

1

p

≪ ϵ

2jϵ

∑
P+(a)≤qJ

|f(a)−w|<2j+2ϵ

µ2(a)

a
,(2.6)

by the first part of (2.1) applied with w−f(a), 2jϵ and qj in place of v, δ and z, respectively,
since qj ≥ qJ ≥ Pη. Finally, if a > 1, then we write a = mP+(a) = mp′. So we find that∑

P+(a)≤qJ
|f(a)−w|<2j+2ϵ

µ2(a)

a
≤ 1 +

∑
P+(m)≤qJ

1

m

∑
P+(m)<p′≤qJ

|f(p′)−(w−f(m))|<2j+2ϵ

1

p′
.

For every fixed m ∈ N, we have that∑
P+(m)<p′≤qJ

|f(p′)−(w−f(m))|<2j+2ϵ

1

p′
≪ 2jϵ

2Jϵ
+

1

log2(1 + P+(m))
,

by the second part of (2.1) with 2jϵ, 2J+1ϵ and P+(m) in place of ϵ, δ and z, respectively4,
and with v ∈ {w − f(m) + h · 2jϵ : h ∈ [−4, 4) ∩ Z}. So we find that∑

P+(a)≤qJ
|f(a)−w|<2j+1ϵ

µ2(a)

a
≪ 1 +

∑
P+(m)≤qJ

1

m

(
2jϵ

2Jϵ
+

1

log2(1 + P+(m))

)
≪ 1 +

log qJ
2J−j

.

4Note that the parameter η is not involved in the second part, so the same proof allows us to replace ϵ
with 2jϵ.
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Combining the above inequality with (2.5) and (2.6), we deduce that∑
n∈Nj

1

n
≪ 1

2j

(
1 +

log qJ
2J−j

)
log q0
log qj

≪ 1

2j(1−1/c)

(
1 +

log qJ
2J−j

)
.

Together with relation (2.4), this implies that∑
n∈N

1

n
≪

J∑
j=0

1

2j(1−1/c)

(
1 +

log qJ
2J−j

)
=

J∑
j=0

1

2j(1−1/c)
+

J∑
j=0

2j/c log qJ
2J

≪ min

{
c

c− 1
, J

}
+

min{c, J} log qJ
2J(1−1/c)

.

Furthermore, we have that 2J ≍ η/ϵ and, as a result,

log qJ = (2J+1ϵ)−1/c ≍ η−1/c = logPη = 2 log(η/ϵ) ≪ J ≪ log(1/ϵ).

Thus ∑
n∈N

1

n
≪ min

{
c

c− 1
, J

}
+

J min{c, J}
2J(1−1/c)

≪ min

{
c

c− 1
, J

}
≪ min

{
c

c− 1
, log

1

ϵ

}
,

by the inequality 2J(1−1/c) ≫ J2 if c ≥ 2 and the inequality 2J(1−1/c) ≫ max{1, J(1− 1/c)}
if 1 ≤ c ≤ 2. Therefore relation (2.2) follows, thus completing the proof of the theorem. □

3. The lower bound in Theorem 1.5

In this section we derive the lower bound in Theorem 1.5 from the following general result,
which is a corollary of Theorem 1.2 in [1].

Theorem 3.1. Let f : N → R be an additive function and 0 < ϵ < 1. If there is a set of
primes P and some M ≥ 2 such that∑

p∈P\P

1

p
≪ 1 and

∑
p∈P, p>M

|f(p)|
p

≪ ϵ,

then, for y ≥ M , we have that

QFy(ϵ) ≫
1

logM
;

the implied constant depends at most on the implied constants implicit in the assumptions of
the theorem.

Proof. Let M0 be a large constant to be chosen later. If M ≤ y ≤ M0, then the theorem
follows by the trivial bound QFy(ϵ) ≫ 1/ log y, which holds since 1 is always in {n ∈ N :
P+(n) ≤ y, |f(n)| < ϵ/2}. Assume now that y ≥ M0 and set M ′ = max{M,M0}, so that
y ≥ M ′. Let

C =
1

ϵ

∑
p∈P, p>M ′

|f(p)|
p

≪ 1.
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Define g : N → R by

g(n) =

{
f(n) if n ∈ P(1, y),

0 otherwise,

and call G its distribution function. Then Theorem 1.2 in [1] yields that5

QG(3Cϵ) ≥
(
1− 2 · Cϵ

3Cϵ
+ oM ′→∞(1)

) ∏
p≤M ′

(
1− 1

p

)
≫ 1

logM ′ .

So, by the pigeonhole principle, we deduce that

QG(ϵ) ≥
QG(3Cϵ)

3C + 1
≫C

1

logM ′ ≍
1

logM
,(3.1)

provided that M0 is large enough. Finally, we have that

QG(ϵ) = sup
u∈R


∏

p∈P∩[1,y]

(
1− 1

p

) ∑
n∈P(1,y)

u<f(n)≤u+ϵ

1

n


≤ QFy(ϵ)

∏
p∈P\P

(
1− 1

p

)−1

≪ QFy(ϵ),

which together with (3.1) completes the proof of the theorem. □
Proof of the lower bound in Theorem 1.5. The definition of g implies that the function t →
g(t)(log t)c is decreasing. Thus, for p ∈ P with p ≥ K(ϵ), we have that

|f(p)| ≤ g(p) ≤ g(K(ϵ))(log(K(ϵ)))c

(log p)c
≤ ϵ(log(K(ϵ)))c

(log p)c
.

Consequently, ∑
p>K(ϵ)

|f(p)|
p

≪ ϵ,

which implies that the hypotheses of Theorem 3.1 are satisfied with M = K(ϵ) and P, and
the desired lower bound follows. □

4. The upper bound in Theorem 1.5

We conclude the paper by showing the upper bound in Theorem 1.5. We start with the
following technical lemma whose hypotheses mimic all the crucial facts about the additive
function f(n) =

∑
p|n(log p)

−c that we used in the proof of Theorem 1.3.

Lemma 4.1. Let f : N → R be an additive function for which there is a set of primes P
and a decreasing function Pf : (0, 1] → [2,+∞) such that∑

p∈P\P

1

p
≪ 1,(4.1)

|f(p)| ≤ ϵ (0 < ϵ ≤ 1, p ∈ P , p > Pf (ϵ)).(4.2)

5In [1, Theorem 1.2], the authors let ϵ → 0. However, an easy modification of their proof allows us to let
instead M ′ → ∞.
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Furthermore, assume that there is some λ ∈ (0, 1] and some ρ ≥ 1 such that∑
p∈P∩(z,w]

u<f(p)≤u+ϵ

1

p
≪

{
ϵ/δ if z ≥ Pf (2δ) ≥ (2δ/ϵ)ρ,

ϵ/δ + 1/(log z)2 otherwise,(4.3)

for all u ∈ R, 0 < ϵ ≤ δ ≤ 1 and 2 ≤ z ≤ w ≤ min{Pf (δ), Pf (ϵ)
λ}. Let 0 < ϵ ≤ δ ≤ 1

such that Pf (δ) ≤ Pf (ϵ)
λ, set qj = Pf (2

jδ) for j ≥ 0, and consider J ∈ {0} ∪ {j ∈ N : 2j ≤
1/δ and qj ≥ (2jδ/ϵ)ρ}. For y ≥ q0, we have that

QFy(ϵ) ≪
1

log q0
+

ϵ

λδ

J∑
j=1

1

2j log qj
+

ϵ

δ

J∑
j=0

log qJ
2J log qj

;(4.4)

the implied constant depends at most on the implied constants in (4.1) and (4.3).

Remark 4.2. The parameters λ and ρ, and the set P are introduced to make Lemma 4.1
more applicable. One can think of Pf defined by Pf (ϵ) = max{p ∈ P : |f(p)| > ϵ}. Condition
(4.3) can be motivated as follows. Assume that∑

p>Pf (α)

|f(p)|
p

≪ α (0 < α ≤ 1).(4.5)

We have that |f(p)| ≈ δ for p ∈ (Pf (2δ), Pf (δ)]. So if the sequence {f(p) : p ∈ P} is
‘well-spaced’, then we expect that∑

Pf (2δ)<p≤Pf (δ)
w<f(p)≤w+ϵ

1

p
≲ ϵ

δ

∑
Pf (2δ)<p≤Pf (δ)

1

p
≈ ϵ

δ2

∑
Pf (2δ)<p≤Pf (δ)

|f(p)|
p

≪ ϵ

δ
,

by (4.5).

Proof of Lemma 4.1. Fix for the moment u ∈ R. Given n ∈ P(1, y) with u < f(n) ≤ u + ϵ,
we write n = ab, where a is square-free, b is square-full and (a, b) = 1. We further decompose
a = a1a2a3, where a1 ∈ P(1, q0), a2 ∈ P(q0, y) and all primes factors of a3 lie in Q := P \ P .
So ∑

P+(n)≤y
u<f(n)≤u+ϵ

1

n
=

∑
P+(b)≤y

b square-full

1

b

∑
a3∈Q(1,y)
(a3,b)=1

µ2(a3)

a3

∑
a2∈P(q0,y)
(a2,b)=1

µ2(a2)

a2

×
∑

a1∈P(1,q0), (a1,b)=1
u−f(a2a3b)<f(a1)≤u−f(a2b)+ϵ

µ2(a1)

a1

≤
∑

P+(b)≤y
b square-full

1

b

∑
a3∈Q(1,y)

1

a3

∑
a2∈P(q0,y)

1

a2
sup
v∈R


∑

a1∈P(1,q0)
v<f(a1)≤v+ϵ

µ2(a1)

a1


≪ log y

log q0
· sup
v∈R


∑

a1∈P(1,q0)
v<f(a1)≤v+ϵ

µ2(a1)

a1

 .(4.6)
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Next, fix v ∈ R and let

N = {n ∈ P(1, q0) : µ
2(n) = 1, v < f(n) ≤ v + ϵ}.

As in the proof of Theorem 1.3, we split N according to the size of min{p|n : p > qJ}. So
we write N = ∪J

j=0Nj, where N0 = N ∩ P(1, qJ) and

Nj = {n ∈ N : n = apb, P+(a) ≤ qJ < p < P−(b), qj < p ≤ qj−1}.

First, we bound
∑

n∈N0
1/n. If n > 1, then we write n = mP+(n) = mp′. So we find that∑

n∈N0

1

n
≤ 1 +

∑
P+(m)≤qJ

1

m

∑
p′∈P∩(P+(m),qJ ]

v−f(m)<f(p′)≤v−f(m)+ϵ

1

p′

≪ 1 +
∑

P+(m)≤qJ

1

m

(
ϵ

2Jδ
+

1

log2(1 + P+(m))

)
≪ 1 +

ϵ log qJ
2Jδ

,(4.7)

by applying the second part of (4.3) with v − f(m), 2Jδ, P+(m) and qJ in place of u, δ, z
and w, respectively.

Next, we bound
∑

n∈Nj
1/n for j ∈ {1, . . . , J}. In this part of the argument we may

assume that J ≥ 1; otherwise, there is no such j. Then we have that∑
n∈Nj

1

n
≤

∑
b∈P(qj ,q0)

1

b

∑
a1∈P(qλJ ,qJ )

1

a1

∑
a2∈P(1,qλJ )

µ2(a2)

a2

∑
p∈P∩(qj ,qj−1]

v<f(p)+f(a1b)+f(a2)≤v+ϵ

1

p

≤
∑

b∈P(qj ,q0)

1

b

∑
a1∈P(qλJ ,qJ )

1

a1
sup
t∈R


∑

a2∈P(1,qλJ )

µ2(a2)

a2

∑
p∈P∩(qj ,qj−1]

t<f(p)+f(a2)≤t+ϵ

1

p

 .(4.8)

Fix some t ∈ R and consider a2 ∈ P(1, qλJ) and p ∈ P∩(qj, qj−1] with t < f(a2)+f(p) ≤ t+ϵ,
as above. Since |f(p)| ≤ 2jδ for p ∈ P ∩ (qj,+∞), by (4.2), we must have that |f(a2)− t| ≤
2j+1δ. So ∑

a2∈P(1,qλJ )

µ2(a2)

a2

∑
p∈P∩(qj ,qj−1]

t<f(p)+f(a2)≤t+ϵ

1

p
=

∑
a2∈P(1,qλJ )

|f(a2)−t|≤2j+1δ

µ2(a2)

a2

∑
p∈P∩(qj ,qj−1]

t−f(a2)<f(p)≤t−f(a2)+ϵ

1

p

≪ ϵ

2jδ

∑
a2∈P(1,qλJ )

|f(a2)−t|≤2j+1δ

µ2(a2)

a2
,(4.9)

by the first part of (4.3) applied with t− f(a2), 2
j−1δ, qj and qj−1 in place of u, δ, z and w,

respectively, since z ≥ qj ≥ qJ = Pf (2
Jδ) ≥ (2Jδ/ϵ)ρ ≥ (2jδ/ϵ)ρ. Finally, if a2 > 1, then we

write a2 = mP+(a2) = mp′. Consequently∑
a2∈P(1,qλJ )

|f(a2)−w|≤2j+1δ

µ2(a2)

a2
≤ 1 +

∑
m∈P(1,qλJ )

1

m

∑
p′∈P∩(P+(m),qλJ ]

|f(p′)−(t−f(m))|≤2j+1δ

1

p′
.
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For every fixed m ∈ N we have that∑
p′∈P∩(P+(m),qλJ ]

|f(p′)−(t−f(m))|≤2j+1δ

1

p′
≪ 2jδ

2Jδ
+

1

log2(1 + P+(m))
,

by (4.3) with 2jδ, 2Jδ, P+(m) and qλJ in place of ϵ, δ, z and w, respectively, and with
u ∈ {t− f(m) + h · 2jδ : h ∈ {−2,−1, 0, 1}}. So we find that∑

a2∈P(1,qλJ )

|f(a2)−w|≤2j+1δ

µ2(a2)

a2
≪ 1 +

∑
P+(m)≤qλJ

1

m

(
2jδ

2Jδ
+

1

log2(1 + P+(m))

)

≪ 1 +
1 + λ log qJ

2J−j
≪ 1 +

λ log qJ
2J−j

.

Combining the above estimate with (4.8) and (4.9) implies that∑
n∈Nj

1

n
≪ ϵ

2jδ

(
1 +

λ log qJ
2J−j

) ∑
b∈P(qj ,q0)

1

b

∑
a1∈P(qλJ ,qJ )

1

a1

≪ ϵ

2jδ

(
1 +

λ log qJ
2J−j

)
log q0
log qj

· 1
λ
≤ ϵ

2jδ

(
1

λ
+

log qJ
2J−j

)
log q0
log qj

,

which, together with relations (4.6) and (4.7), completes the proof of the lemma. □
We are now in position to complete the proof of Theorem 1.5.

Proof of the upper bound in Theorem 1.5. As we have already seen, the function t → g(t)(log t)c

is decreasing. In particular, g is strictly decreasing. For every δ ∈ (0, 1], we define

K∗(δ) = min{n ∈ N : n ≥ 3, g(n) ≤ δ}.
Then we have that K∗(δ) − 1 ≤ K(δ) ≤ 2K∗(δ), with the second inequality being a conse-
quence of Bertrand’s postulate.

We claim that

log(K∗(δ)− 1) ≥ 1

2

(η
δ

)1/c

log(K∗(η)− 1) (0 < η ≤ δ ≤ 1).(4.10)

Indeed, if K∗(δ) = K∗(η), then this inequality holds trivially. Next, assume that K∗(η) ≥
K∗(δ) + 1 ≥ 4. Then the definition of K∗(η) implies that g(K∗(η) − 1) > η. Since, in
addition, the function t → g(t)(log t)c is decreasing and (x − 1) ≤ x2 for all x ≥ 3, we find
that

1 ≥ g(K∗(η)− 1)(log(K∗(η)− 1))c

g(K∗(δ))(logK∗(δ))c
≥ η(log(K∗(η)− 1))c

δ(logK∗(δ))c

≥ η(log(K∗(η)− 1))c

δ(2 log(K∗(δ)− 1))c
.

In any case, (4.10) holds.
Using relation (4.10), we shall show that we may apply Lemma 4.1 with Pf = K∗ − 1,

P , λ = 1/A and ρ = 2. Condition (4.1) holds by assumption and condition (4.2) follows
immediately by the definition of K∗ and the fact that |f(p)| ≤ g(K∗(δ)) ≤ δ for p ≥ K∗(δ).
Lastly, we show (4.3) with λ = 1/A and ρ = 2. This will be done in several steps. Fix u ∈ R,
0 < η ≤ δ ≤ 1 and 2 ≤ z ≤ w ≤ min

{
Pf (δ), Pf (η)

1/A
}
.
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First, we show (4.3) when z ≥ w1/4. By assumption, there is an absolute constant C > 0
such that

|f(p1)− f(p2)| ≥
2

C
min

{
g(p2)(p2 − p1)

p2 log p2
, g

(
pA2

)}
(p1 < p2, p1, p2 ∈ P).

We claim that if v ∈ R and η′ := min{η, δ/ logw}/C, then∑
p∈P∩(z,w]

v<f(p)≤v+η′

1

p
≪

{
η′/δ if z ≥ Pf (2δ) ≥ (2δ/η)2,

η′/δ + 1/(logw)3 otherwise.(4.11)

If this relation does hold, then breaking the interval (u, u + η] into at most 1 + η/η′ ≤
1 + C logw intervals of the form (v, v + η′], we deduce that (4.3) holds too when z ≥ w1/4.
So it remains to show (4.11) to complete the proof of (4.3) in this special case.

Without loss of generality, we may assume that w ≥ 3; otherwise there are no primes
in (z, w] ⊂ (2, 3) and (4.11) is trivially true. In particular, we may assume that K∗(η) ≥
K∗(δ) ≥ 4. Therefore, for every p ∈ (z, w], we have that g(p) ≥ g(K∗(η) − 1) > η and
g(pA) ≥ g(K∗(δ) − 1) > δ. Now, consider two primes p1 < p2 that both belong to the set
{p ∈ P ∩ (z, w] : v < f(p) ≤ v + η′}. Then

1

C
min

{
η,

δ

logw

}
= η′ > |f(p1)− f(p2)|

≥ 2

C
min

{
g(p2)(p2 − p1)

p2 log p2
, g

(
pA2

)}
≥ 2

C
min

{
δ(p2 − p1)

p2 log p2
, η

}(4.12)

and, consequently,

0 < p2 − p1 ≤
Cη′

2δ
· p2 log p2 = min

{
η

δ
,

1

logw

}
· p2 log p2

2
≤ p2

2
.

Set

P = max{p ∈ P ∩ (z, w] : v < f(p) ≤ v + η′}
and

y =
Cη′

2δ
· P logP ≤ P

2
,

so that {p ∈ P ∩ (z, w] : v < f(p) ≤ v + η′} ⊂ [P − y, P ]. The second part of relation (4.11)
then follows by the Prime Number Theorem [13, Theorem 1, p. 167]. For the first part of
(4.11), note that if z ≥ Pf (2δ) ≥ (2δ/η)2, then

y√
P

=

√
P logP

2
min

{
η

δ
,

1

logw

}
≥ (2δ/η) log z

2
min

{
η

δ
,

1

logw

}
≥ 1

4
,

where we used our assumption that z ≥ max{w1/4, 2}. So the first part of (4.11) follows by
the Brun-Titchmarsch inequality [13, Theorem 9, p. 73], thus completing the proof of (4.11)
and hence of (4.3) in the case when z ≥ w1/4.

Finally, we show (4.3) when z < w1/4. First, note that

logPf (2
jδ) ≥ 2−1−j/c logPf (δ) ≥ 2−1−j/c logw ≥ 4−j logw,



ON THE CONCENTRATION OF CERTAIN ADDITIVE FUNCTIONS 15

by (4.10), for every j ≥ 1. Since w ≤ Pf (δ) too, by assumption, we deduce that

Pf (2
jδ) ≥ wj := w4−j

(j ≥ 0).(4.13)

Applying this inequality with j = 1 implies that z < Pf (2δ), that is to say we are in the
second case of (4.3). Let

j0 = max{j ≥ 0 : wj ≥ z and 2j ≤ 1/δ},

Sj =
∑

p∈P∩(wj+1,wj ]
u<f(p)≤u+η

1

p
,

for j ∈ {0, 1, . . . , j0 − 1}, and

Sj0 =
∑

p∈P∩(z,wj0
]

u<f(p)≤u+η

1

p
.

Then the part of (4.3) that we have already proven and (4.13) imply that

Sj ≪
η

2jδ
+

16j

(logw)2
,(4.14)

for j ∈ {0, 1, . . . , j0 − 1}. We claim that the same estimate holds for Sj0 too. If 2j0+1δ ≤ 1,

then w
1/4
j0

= wj0+1 < z and thus we may apply again the part of (4.3) that we have already

proven. Finally, if 2j0+1δ > 1, then we have that wj0 ≤ Pf (2
j0δ) ≤ Pf (1/2) ≪ 1, since

g(t) ≪ 1/(log t)c by our assumptions on f . Consequently, covering the interval (z, wj0 ] by
O(1) intervals of the form (t, t4] and applying the already proven part of (4.3) shows that
(4.14) holds in this case too for j = j0. Summing (4.14) over j ∈ {0, 1, . . . , j0} implies that∑

p∈P∩(z,w]
u<f(p)≤u+η

1

p
=

j0∑
j=0

Sj ≪
η

δ
+

1

(log z)2
,

which completes the proof of (4.3). In conclusion, we may apply Theorem 4.1 with Pf =
K∗ − 1, ρ = 2 and λ = 1/A.

We are finally ready to show the upper bound in Theorem 1.5. Let ϵ ∈ (0, 1/2]. We may
assume that K∗(ϵ) is large enough; otherwise, the theorem follows by the trivial upper bound
QFy(ϵ) ≤ 1. In particular, we may assume that the parameter δ := g

(⌊
K∗(ϵ)1/A

⌋
− 1

)
lies

in [ϵ, 1/2]. Since g is strictly decreasing, the definition of K∗ implies that

K∗(δ) =
⌊
K∗(ϵ)1/A

⌋
− 1.(4.15)

In particular, Pf (δ) ≤ Pf (ϵ)
1/A. For j ∈ N ∪ {0} with 2j ≤ 1/δ, we set qj = Pf (2

jδ) =
K∗(2jδ)− 1. Note that

q0 = K∗(δ)− 1 ≤ K∗(ϵ)− 1 ≤ K(ϵ)

and

log qj ≥ 2−1−(j−i)/c log qi (0 ≤ i ≤ j ≤ log(1/δ)/ log 2),(4.16)

by (4.10). Set

J = max
(
{0} ∪ {j ∈ N : 2j ≤ 1/δ and qj ≥ (2jδ/ϵ)2}

)
.



16 DIMITRIS KOUKOULOPOULOS

Then Theorem 4.1 and relation (4.16) imply that, for y ≥ K(ϵ) ≥ q0, we have that

QFy(ϵ) ≪A
1

log q0
+

ϵ

δ

J∑
j=1

1

2j log qj
+

ϵ

δ

J∑
j=0

log qJ
2J log qj

≪ 1

log q0
+

ϵ

δ

J∑
j=1

1

2j−j/c log q0
+

ϵ

δ

J∑
j=0

log qJ
2J−j/c log q0

≪ min {1/(c− 1), 1 + Jϵ/δ}
log q0

+
ϵ

δ

log qJ
2J(1−1/c) log q0

≪ min {1/(c− 1), 1 + Jϵ/δ}
log q0

+
ϵ

δ

log qJ
max{1, (J + 1)(c− 1)} log q0

.(4.17)

Finally, note that if 2J+1 ≤ 1/δ, then the maximality of J and (4.16) imply that

log qJ ≤ 4 log qJ+1 ≤ 8 log(2J+1δ/ϵ) ≪ J + 1 + log(δ/ϵ).

On the other hand, if 2J+1 > 1/δ, then qJ ≤ K∗(1/2) ≪ 1, since g(t) ≪ (log t)−c. In any
case, we find that log qJ ≪ J + 1 + log(δ/ϵ). So the inequalities

Jϵ

δ
≪ ϵ log(1/δ)

δ
≤ log(1/ϵ) and

ϵ

δ
log(δ/ϵ) ≪ 1

and relation (4.17) imply that

QFy(ϵ) ≪
min{1/(c− 1), log(1/ϵ)}

log q0
.

Finally, we have that log q0 ≍A logK∗(ϵ) ≍ logK(ϵ), by (4.15) and the fact that K∗ − 1 ≤
K ≤ 2K∗. So the upper bound in Theorem 1.5 follows. □
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