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Abstract. We determine for what proportion of integers h one now knows that there are
infinitely many prime pairs p, p + h as a consequence of the Zhang-Maynard-Tao theorem.
We consider the natural generalization of this to k-tuples of integers, and we determine the
limit of what can be deduced assuming only the Zhang-Maynard-Tao theorem.

1. Introduction and statement of results

The twin prime conjecture states that there are infinitely many pairs of integers (n, n+ 2)
which are simultaneously primes. More generally, Hardy and Littlewood conjectured that
each entry of the k-tuple (n+ h1, · · · , n+ hk) should be prime infinitely often, unless there
is a trivial reason why this cannot happen. This “trivial reason” is about divisibility by
small primes p. For example, the triplet (n+ 2, n+ 4, n+ 6) can never all be prime if n > 1
because at least one of them must be a multiple of 3. So we call a k-tuple admissible if, for
each prime p, the reductions of the numbers h1, . . . , hk modulo p do not cover all of Z/pZ.
With this definition in hand, the Hardy-Littlewood conjecture states that if (h1, . . . , hk)
is an admissible k-tuple, then there are infinitely many integers n for which the numbers
n+ h1, . . . , n+ hk are all prime.

Even though we are still far from proving the full Hardy-Littlewood conjecture, there has
been remarkable progress made towards it recently. Firstly, in May 2013, Yitang Zhang [8]
made headlines by proving that there are bounded gaps between primes, and specifically
that

lim inf
n→∞

pn+1 − pn < 70,000,000,

where pn denotes the n-th prime. Then, in November 2013, James Maynard [3] and Terence
Tao independently showed, using somewhat different techniques, that 70,000,000 can be
replaced by 600, and, as it stands right now, the best bound known is 246, due to the
Polymath project [6]. Even more impressively, they proved that for any integer m ≥ 1 there
is an integer k = km such that if (h1, . . . , hk) is an admissible k-tuple, then there are infinitely
many integers n for which at least m of the numbers n+h1, . . . , n+hk are prime. Obviously,
km ≥ m, and in [6] it was shown that one can take k2 = 50 and km � e3.82m.

We call a k-tuple of integers (h1, . . . , hk) a Dickson k-tuple if there are infinitely many
integers n for which n+ h1, . . . , n+ hk are each prime. The Hardy-Littlewood conjecture is
equivalent to the statement that “all admissible k-tuples of integers are Dickson k-tuples”,
and the Maynard-Tao theorem implies that “every admissible km-tuple of integers contains

Date: October 19, 2015.
The first and third authors are supported by Discovery Grants from the Natural Sciences and Engineering

Research Council of Canada. The second and fourth authors were supported by NSF Mathematical Sciences
Postdoctoral Research Fellowships.

1



2 A. GRANVILLE, D. M. KANE, D. KOUKOULOPOULOS, AND R. J. LEMKE OLIVER

a Dickson m-tuple”. In particular, the Maynard-Tao theorem implies that Dickson m-
tuples exist, yet no explicit example of a Dickson m-tuple is known! Nevertheless, a simple
counting argument (which also appeared in [2]) yields the following attractive consequence
of the Maynard-Tao theorem.

Corollary 1.1. A positive proportion of m-tuples of integers are Dickson m-tuples.

Proof. Let k = km, so that m ≤ k, and define R =
∏

p≤k p and x = NR for some (very large)
integer N . We let

N = {n ∈ (−x, x] : (n,R) = 1},
so that |N | = 2xϕ(R)/R. Any subset of k elements of N is admissible, since it does not

contain any integer ≡ 0 (mod p) for any prime p ≤ k. There are
(|N |
k

)
such k-tuples. Each

contains a Dickson m-tuple by the Maynard-Tao theorem.
Now suppose that there are T (x) Dickson m-tuples within N . Any such m-tuple is a

subset of exactly
(|N |−m
k−m

)
of the k-subsets of N , and hence

T (x) ·
(
|N | −m
k −m

)
≥
(
|N |
k

)
,

and therefore

T (x) ≥
(
|N |
k

)/(
|N | −m
k −m

)
≥ (|N |/k)m =

(
ϕ(R)

kR

)m
· (2x)m,

as desired. �

The main goal of this paper is to provide better lower bounds on the proportion of m-
tuples that are Dickson m-tuples. If ∆(m) is the proportion of such m-tuples, then Corollary
1.1 implies that ∆(m) > 0. We are interested in determining the best possible lower bound
on ∆(m) assuming only the results of Zhang, Maynard, and Tao and treating them as “black
boxes”: If Dm is the set of Dickson m-tuples, then there is an integer k = km for which:

• Dm is translation-invariant, that is to say, if (h1, . . . , hm) ∈ Dm and t ∈ Z, then
(h1 + t, . . . , hm + t) ∈ Dm;
• Dm is permutation-invariant, that is to say, if (h1, . . . , hm) ∈ Dm and σ ∈ Sm, then

(hσ(1), . . . , hσ(m)) ∈ Dm;
• for any admissible k-tuple, (x1, . . . , xk), there exist distinct h1, . . . , hm ∈ {x1, . . . , xk}

such that (h1, . . . , hm) ∈ Dm.

We call any set A ⊂ Zm that has the above properties (m, k)-plausible. Then we define

δ(m, k) = min

{
lim inf
N→∞

|A ∩ [−N,N ]m|
(2N)m

: A ⊂ Zm, A is (m, k)− plausible

}
;(1.1)

and, for any m ≥ 1, we have that

∆(m) ≥ δ(m, km)

by the Zhang-Maynard-Tao theorem. Our main result is the following.

Theorem 1.2. For k ≥ m ≥ 1, we have, uniformly

δ(m, k) =
(log 2m)O(m)

( k
m

log log 3k
m

)m−1
.
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In the Maynard-Tao Theorem we know that one can obtain km ≤ ecm for some constant
c > 0. The best value known for c is a little smaller than 3.82, and Tao [7, 2] showed that
the Maynard-Tao technique cannot be (directly) used to obtain a constant smaller than 2.
So we deduce that

∆(m) ≥ δ(m, km) ≥ e−(c+o(1))m
2 � e−4m

2

,

and that this can, at most, be improved to � e−2m
2

using the currently available methods.
A de Polignac number is an integer h for which there are infinitely many pairs of primes

p and p + h (the twin prime conjecture is the special case h = 2). A positive proportion
of integers are de Polignac numbers, as follows from both results above, but we wish to
determine the best explicit lower bounds possible. In Section 2, using quite elementary
arguments, we will show that

(1.2) ∆(2) ≥ δ(2, k2) ≥
1

49

∏
p≤50

(
1− 1

p

)
≈ 0.002830695767 . . . >

1

354
,

and that this cannot be improved dramatically without improving the value of k2 = 50. We
remark that this bound is surprisingly good in light of the fact that we can only deduce that
there is some h ≤ 246 for which there are infinitely many prime pairs p, p+ h.

Finally, we note that it would perhaps be more natural to consider the proportion ∆ad(m)
of admissible m-tuples that are Dickson m-tuples, rather than the proportion of all m-
tuples. To this end, in Section 4, we determine the proportion ρad(m) of all m-tuples that
are admissible. Surprisingly, this question has seemingly not been addressed in the literature,
and we prove that

(1.3) ρad(m) =
eo(m)

(eγ logm)m

as m→∞.

2. The density of de Polignac numbers

To prove a lower bound on the density of de Polignac numbers, we consider admissible
sets B of integers that do not contain a Dickson pair. If the prime k-tuplets conjecture is
true, then necessarily |B| = 1, while Zhang’s theorem implies that |B| ≤ k2 − 1. Because of
this upper bound, there must be maximal such sets, in that, for any t 6∈ B such that B ∪{t}
is admissible, B ∪ {t} contains a Dickson pair. This condition implies that t − B contains
a de Polignac number, and we will obtain a lower bound on δ(2, k2) by varying t. To this
end, for an admissible set B, define η(B) to be the minimal lower density of sets A with the
property that t−B contains an element of A whenever B ∪ {t} is admissible. Moreover, for
any integer `, set η(`) to be the infimum of η(B) as B runs over admissible sets of size `.
We thus have that

∆(2) ≥ δ(2, k2) ≥ min
1≤`≤k2−1

η(`),

and we will prove the following.

Proposition 2.1. For any integer `, we have that η(`) ∼ e−γ/` log `, and explicitly that

1

`

∏
p≤`+1

(
1− 1

p

)
≤ η(`) ≤ 1

`− y
∏
p≤y

(
1− 1

p

)
for any positive integer y ≤ `− 1.
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For the particular application to ∆(2), we take ` ∈ {1, . . . , 49} in Proposition 2.1 to find
that

δ(2, k2) ≥ min
1≤`≤49

η(`) > 0.002830695767 >
1

354
,

while taking y = 13 yields that η(49) < 0.005328005328 < 1
187

, so that, using our techniques,
we can hope for an improvement in our lower bound for δ(2, k2) by a factor of at most about
two. However, we can do better: the explicit upper bound given in Lemma 3.1 below shows
that δ(2, 50) ≤ 1

210
< 0.0048.

Proof of Proposition 2.1. We begin with the lower bound for η(`). Suppose that B is admis-
sible of size `, so that for each prime p ≤ `+ 1 there exists a residue class np (mod p) such
that p - np+ b for each b ∈ B. If t 6≡ −np (mod p) for all p ≤ `+1 then B∪{t} is admissible
and so contains a Dickson pair, and, as remarked above, t must be one of that pair, else B
would have contained a Dickson pair. If x is large then the number of such integers t ≤ x is

∼
∏
p≤`+1

(
1− 1

p

)
x

and we know that, for some b ∈ B, t − b is a de Polignac number. Given t ∈ Z, an integer
can be written in at most ` ways as t− b for b ∈ B, since |B| = `. Hence,

η(B) ≥ 1

`

∏
p≤`+1

(
1− 1

p

)
∼ e−γ

` log `

as `→∞.
We now turn to the upper bound. We will construct sets A and B with the properties that

B is admissible and that if t is such that B ∪ {t} is admissible, then there exists b = bt ∈ B
such that t− bt ∈ A.

Let y ∈ {1, . . . , ` − 1} and set v = ` − y. Moreover, define r =
∏

p≤y p and m =
∏

p≤` p,
and select h large so that q := hv+1 is a prime > `. We define A to be the set of all integers
a for which (a+ 1, r) = 1 and a ≡ 0, 1, 2, . . . , or h− 1 (mod q). The density δ(A) of A is

h

q

∏
p≤y

(
1− 1

p

)
≤ 1

`− y
∏
p≤y

(
1− 1

p

)
.

Our set B will be constructed as the union of two sets, B1 and B2. For B1, we take
B1 := {b0, b1, . . . , bv} where each bi is chosen to satisfy bi ≡ ih (mod q) and bi ≡ 1 (mod m),
and we choose B2 to be a set of y − 1 integers covering the residue classes 2, . . . , p − 1
(mod p) for each prime p ≤ y. We note that B := B1 ∪B2 has ` elements and is admissible:
it occupies the congruence classes 1, . . . , p − 1 (mod p) for all p ≤ y and covers at most y
classes modulo p for p > y.

If t is such that B ∪ {t} is admissible, then t 6≡ 0 (mod p) for all primes p ≤ y. We can
write t ≡ ih+ j (mod q) for some i and j satisfying 0 ≤ i ≤ v and 0 ≤ j ≤ h− 1. Consider
t − bi. This is ≡ j (mod q) and 6≡ −1 (mod p) for all primes p ≤ y. Hence t − bi ∈ A, so
that η(`) ≥ δ(A), and the result follows. �

Remark. Pintz [5] showed that there is an ineffective constant C such that every interval of
length C contains a de Polignac number. The proof of the lower bound above furnishes a
different proof of this result: the values of t that appear are periodic modulo r :=

∏
p≤k2 p,

so, given a maximal set B, we obtain Pintz’s result with C = r + maxb∈B b−minb∈B b.
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3. Proof of Theorem 1.2

We begin with a strong version of the upper bound of Theorem 1.2.

Lemma 3.1. If k ≥ m ≥ 2 with k/m→∞, then

δ(m, k) ≤

(
e−γ + o(1)
k

m−1 log log k
m−1

)m−1

.

Proof. Pick q as large as possible so that (m− 1)ϕ(q) < k. We claim that

A = {(x1, . . . , xm) : x1 ≡ x2 ≡ . . . ≡ xm (mod q)}
is (m, k)-plausible. This is because any admissible set with k elements may take at most
ϕ(q) distinct values modulo q, so by the pigeonhole principle, at least m of these values must
be congruent modulo q, giving an m-tuple contained in A. On the other hand, q is of size
≥ (eγ + o(1)) k

m−1 log log k
m−1 as k/m → ∞, and A has density 1/qm−1. This completes the

proof. �

The proof of the lower bound is somewhat more involved. A key ingredient is the Lovász
Local Lemma:

Lovász Local Lemma. Suppose that E1, . . . , En are events, each of which occurs with
probability ≤ p and depends on no more than d of the others. If d ≤ 1/(4p) then the
probability that no Ej occurs is at least e

−2pn.

The input for the Lovász Local Lemma will come from the following technical result.

Lemma 3.2. Let k ≥ m ≥ 1. Consider a translation and permutation invariant set A ⊂
((−2x, 2x] ∩ Z)m, and set N = {n ∈ (−x, x] ∩ Z : (n,

∏
p≤k p) = 1}. If

|A ∩Nm|
|Nm|

>
1

8m
(
k−1
m−1

) ,
and x is large enough in terms of m and k, then

|A| ≥ (log 3m)O(m)

( k
m

log log k
m

)m−1
· xm.

Before we prove Lemma 3.2, we use it to deduce the lower bound in Theorem 1.2.

Proof of the lower bound in Theorem 1.2. Fix a large positive x and suppose thatA ⊂ [−2x, 2x]m

is an (m, k)-plausible set, yet |A| ≤ (log 2m)−cmxm
/

( k
m

log log k
m

)m−1 for some c > 0. If c is
large enough, then Lemma 3.2 implies that

|A ∩Nm|
|Nm|

≤ 1

8m
(
k−1
m−1

) ,(3.1)

where N := {n ∈ (−x, x] ∩ Z : (n,
∏

p≤k p) = 1}. Now select integers n1, . . . , nk uniformly
at random from N . We claim that there is a positive probability that the ni are distinct
and that there is no m-element subset of {n1, . . . , nk} in A, which implies that A is not
(m, k)-plausible. We use the Lovász Local Lemma, in which we wish to avoid the events
ni = nj for 1 ≤ i < j ≤ k and (x1, . . . , xm) ∈ A for any choice of m elements x1, . . . , xm
among the integers n1, . . . , nk. There are

(
k
2

)
+
(
k
m

)
such events. Each event depends on

no more than m of the ni, and so depends on no more than m
(
k−1
1

)
+ m

(
k−1
m−1

)
≤ 2m

(
k−1
m−1

)
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other events. If x1, . . . , xm are m out of the k random variables, then the probability that
(x1, . . . , xm) ∈ A is≤ 1/(8m

(
k−1
m−1

)
) by (3.1). We finally note that the probability that ni = nj

is 1/|N | ∼ R/(2xϕ(R)) as x→∞, which is certainly ≤ 1/(8m
(
k−1
m−1

)
) for x sufficiently large.

The Lovász Local Lemma now implies that there exists a subset n1, . . . , nk of distinct
elements of N for which (x1, . . . , xm) 6∈ A for all subsets {x1, . . . , xm} of {n1, . . . , nk}. (In

fact, the Lovász Local Lemma implies that this is true for a proportion ≥ e−k/2m
2

of the
k-subsets of N .) Hence, A is not an (m, k)-plausible set, a contradiction. �

To prove Lemma 3.2, we first need another result. Given an m-tuple h = (h1, . . . , hm), we
denote by np(h) the number of congruence classes mod p covered by h1, . . . , hm. Note that
1 ≤ np(h) ≤ min{p,m} and that both upper and lower bounds are easily obtained for some
m-tuple h.

Lemma 3.3. Let k ≥ m ≥ 1. There is an absolute constant c > 0 such that if h is a
randomly selected m-tuple from N = {n ∈ (−x, x] ∩ Z : (n,

∏
p≤k p) = 1} and x is large

enough in terms of m and k, then the probability that∏
p≤k

(
1− np(h)

p

)(
1− 1

p

)−m
> (log 3m)cm(log log k)m−1

is

≤ 1

16m
(
k−1
m−1

) .
Proof. The result is trivial if k ≤ m2, so we will assume that k > m2. Similarly, we may
assume that k is large enough. Moreover, note that there are �k |N |m−1 = ox→∞(|N |m)
m-tuples (h1, . . . , hm) with non-distinct elements. So it suffices to show that if we randomly
select a subset B = {b1, . . . , bm} of distinct elements of N , then the probability that∏

p≤k

(
1− np(B)

p

)(
1− 1

p

)−m
> (log 3m)cm(log log k)m−1

is

≤ 1

17m
(
k−1
m−1

) .
By Mertens’ Theorem, the contribution of the small primes is∏

p≤m2

(
1− np(B)

p

)(
1− 1

p

)−m
≤
∏
p≤m2

(
1− 1

p

)−m
≤ (log 3m)c1m

for some absolute constant c1 > 0. If c ≥ 2c1 and we set

f(B) =
∏

m2<p≤k

(
1− np(B)

p

)(
1− 1

p

)−m
,

then we are left to show that

P
(
f(B) > (log 3m)cm/2(log log k)m−1

)
≤ 1

17m
(
k−1
m−1

) .
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Taking logarithms, we have

log f(B) ≤
∑

m2<p≤k

(
m− np

p
+O

(
m2

p2

))
≤

∑
m2<p≤k

m− np
p

+O

(
1

logm

)

≤ (m− 1)
∑

m2<p≤k

Xp(B)

p
+O

(
1

logm

)
,

where Xp(B) = 1 if np(B) < m, and Xp(B) = 0 if np(B) = m. Therefore, if we set
X(B) =

∑
m2<p≤kXp(B)/p and we assume that c is large enough, then it suffices to show

that

P
(
X(B) >

c

3
log log(3m) + log log log k

)
≤ 1

17m
(
k−1
m−1

) .
In turn, the above inequality is a consequence of the weaker estimate

P
(
X(B) > log log(max{m2,m log k}) + c′

)
≤ 1

17m
(
k−1
m−1

) ,(3.2)

where c′ is a sufficiently large constant.
The Xp can be viewed as independent random variables as we run over all possible sets

B. As in the birthday paradox, the probability that Xp = 0 is(
1− 1

p− 1

)(
1− 2

p− 1

)
. . .

(
1− m− 1

p− 1

)
= exp

(
−m

2 +O(m)

2p

)
= 1 +O

(
m2

p

)
.

For any r, if p ≤ r, then we trivially have that E[erXp/p] ≤ er/p, and otherwise

E[erXp/p] = P(Xp = 0) + P(Xp = 1)er/p = 1 + P(Xp = 1)(er/p − 1)

≤ exp

(
O

(
m2r

p2

))
.

Therefore, for any values of s and r, we have that

ersP (X ≥ s) ≤ E[erX ] =
∏
p≤k

E[erXp/p] ≤
∏
p≤r

er/p
∏
p≥r

eO(m2r/p2)

≤ exp
(
r log log r +O(r) +O(m2/ log r)

)
.

Thus, if r ≥ m2, then setting s = log log r + c′ for c′ sufficiently large, we find that

P (X ≥ log log r + c′) ≤ e−r.

Substituting r = max{m2,m log k} establishes (3.2) for k large enough, thus completing the
proof of the lemma. �

Proof of Lemma 3.2. We partition the elements of [−2x, 2x]m into translation classes, putting
two elements in the same class if and only if they differ by (`, `, . . . , `) for some integer `.
Each translation class T intersecting [−x, x]m contains at least 2x elements of [−2x, 2x]m

(and at most 6x). The main idea of the proof is that if we can find at least U elements of
A ∩Nm whose translation class has at most M elements inside Nm, then |A| ≥ 2x · U/M .

Note that np(h) is fixed over all h ∈ T , so we denote it by np(T ). The number of integers

` for which h + (`, `, . . . , `) ∈ Nm is ≤ 3x
∏

p≤k

(
1− np(T )

p

)
for x large enough. If we set
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R =
∏

p≤k p, then Lemma 3.3 implies that the proportion of elements of Nm for which∏
p≤k

(
1− np(B)

p

)
≤
(
ϕ(R)

R

)m
(log 3m)cm(log log k)m−1(3.3)

is ≤ 1
/

16m
(
k−1
m−1

)
, provided that x is large enough, with c being an absolute constant. Since

A contains at least |Nm|
/

8m
(
k−1
m−1

)
elements in Nm by assumption, we find that A contains

at least |Nm|
/

16m
(
k−1
m−1

)
for which (3.3) holds. Therefore, we conclude that

|A| ≥ |Nm|
24m

(
k−1
m−1

) /{(ϕ(R)

R

)m
(log 3m)cm(log log k)m−1

}
>

xm(log 3m)O(m)

( k
m

log log k
m

)m−1

for x large enough, and the result follows. �

4. The number of admissible k-tuples

Our goal in this section is to show relation (1.3). Given a prime p, we say that an m-tuple
is admissible mod p if its elements do not occupy all of the residue classes mod p, so an m-
tuple is admissible if and only if it is admissible mod p for every prime p. By the pigeonhole
principle, any set of m integers is admissible mod p if p > m, so to test for admissibility we
need only work with the primes p ≤ m. This implies, using the Chinese Remainder Theorem,
that

ρad(m) =
∏
p≤m

ρad(m, p),

where ρad(m, p) denotes the proportion of m-tuples that are admissible mod p.
If m/ logm < p ≤ m, then we note the trivial bounds (1−1/p)m ≤ ρad(m, p) ≤ 1, with the

lower bound coming from counting m-tuples whose elements are not 0 (mod p). Therefore

1 ≥
∏

m/ logm<p≤m

ρad(m, p) ≥
∏

m/ logm<p≤m

(
1− 1

p

)m
= eO(m log logm

logm
).

It remains to compute the contribution of primes p ≤ m/ logm. It is not difficult to determine
an exact expression for ρad(m, p) using an inclusion-exclusion argument: the probability that
the elements of an m-tuple h belong to a given subset of p − 1 residue classes is (1 − 1

p
)m.

There are
(
p
1

)
choices of the p − 1 residue classes. If the elements of h belong to exactly

p − 2 residue classes mod p then h was just counted twice and so we need to subtract the
probability of this happening. That probability is (1− 2

p
)k, and there are

(
p
2

)
choices of the

p− 2 residue classes. Continuing in the way, we find that

ρad(m, p) =
m−1∑
j=1

(
p

j

)
(−1)j−1

(
1− j

p

)m
= p

(
1− 1

p

)m
−
(
p

2

)(
1− 2

p

)m
+ . . .

We note that ratio of two consecutive summands in absolute value is(
p
j

) (
1− j

p

)m
(
p
j+1

) (
1− j+1

p

)m =

(
1 +

1

p− j − 1

)m
j + 1

p− j
≥
(

1 +
1

p− 2

)m
1

p− 1

≥ 2 exp

{
m

p− 1
− log(p− 1)

}
≥ 2 logm
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for all p ≤ m/ logm. Therefore, we deduce that

ρad(m, p) = p

(
1− 1

p

)m(
1 +O

(
1

logm

))
,

which implies that

ρad(m) = eO(m log logm
logm

)
∏

p≤m/ logm

p

(
1− 1

p

)m
=
eO(m log logm

logm
)

(eγ logm)m
,

which proves (a quantitative version of) relation (1.3).

5. A better density in the continuous case

Analogous to the discrete question considered here, one can also ask about the continuous
version, i.e. the set of limit points L of the set of values of (pn+1 − pn)/ log pn, where pn is
the nth prime. One can deduce from a uniform version of Zhang’s Theorem that for any
0 ≤ β1 ≤ β2 ≤ . . . ≤ βk with k = k2 there exists 1 ≤ i < j ≤ k such that βj − βi ∈ L;
in fact, this was done by Banks, Freiberg, and Maynard [1]. By a small modification of
the argument used to prove Corollary 1.1, one can then show that L ∩ [0, T ] has Lebesgue
measure & T/(k−1). Somewhat remarkably, Banks, Freiberg, and Maynard were able to go
beyond this by showing that, given a sufficiently large k-tuple partitioned into 9 equal parts,
at least two of these parts must simultaneously represent a prime. From this, they deduce
that L ∩ [0, T ] has Lebesgue measure & T/8.

References

[1] W. D. Banks, T. Freiberg, J. Maynard, On limit points of the sequence of normalized prime gaps,
preprint.

[2] A. Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc., to appear
[3] J. Maynard, Small gaps between primes, Annals of Mathematics, to appear.
[4] J. Maynard, Dense clusters of primes in subsets, preprint.
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E-mail address: koukoulo@dms.umontreal.ca

RJLO: Department of Mathematics, Stanford University, Building 380, Stanford, CA
94305, USA

E-mail address: rjlo@stanford.edu


