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1. Introduction

Mn — smooth compact manifold

gij — Riemannian metric

Laplace operator: ∆ = −div grad

In local coordinates (x1, . . . , xn):

∆f = −
1
√

g

n∑
i,j=1

∂(
√

ggij(∂f/∂xi))

∂xj
,

where (gij) = (gij)
−1, g = det gij.

If the metric gij is Euclidean, then

∆f = −
n∑

i=1

∂2f

∂x2
i
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The Laplace operator on a compact manifold

has discrete spectrum:

∆φi = λ2
i φi

{φi} — orthonormal basis of eigenfunctions

0 < λ2
1 ≤ λ2

2 ≤ . . . — eigenvalues

Spectral function:

Nx,y(λ) =
∑

λi<λ

φi(x)φi(y)

Counting function:

N(λ) = #{λi < λ} =
∫
M

Nx,x(λ)
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Spectral function bounds

Off-diagonal:

Nx,y(λ) = O(λn−1), x 6= y. (1)

On-diagonal (pointwise Weyl’s law):

Nx,x(λ) =
λn

(4π)
n
2 Γ(n

2 + 1)
+ Rx(λ),

where

Rx(λ) = O(λn−1). (2)

Estimates are sharp and attained on a round

sphere (Avakumovič (’52,’56), Levitan (’52),

Hörmander (’68)).
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Eigenvalue asymptotics (Weyl’s law):

Integrating the pointwise Weyl’s law over the

manifold M we get:

N(λ) =
Vol(M)λn

(4π)
n
2 Γ(n

2 + 1)
+ R(λ),

where

R(λ) = O(λn−1). (3)

This bound is sharp and also attained on a

round sphere.
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Example: Weyl’s law on a flat square 2-torus

Eigenfunctions on a torus:

φj(x) = e2πi(n1x1+n2x2), x = (x1, x2), n1, n2 ∈ Z

Eigenvalues: λ2
j = 4π2(n2

1 + n2
2)

Weyl’s law:

N(λ) =
λ2

4π
+ R(λ), R(λ) = O(λ).

We recover Gauss’s asymptotics of the num-

ber of integer points in a circle of radius λ
2π.

Gauss’s circle problem: find optimal bound

on R(λ).
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Question: Can one improve the universal

estimates (1-3) under some conditions on M?

Bohr’s correspondence principle in quantum

mechanics: spectral data at high energies

“feels” the dynamics of the geodesic flow.

Problem: understand the influence of dynam-

ics on the error terms Rx(λ) and R(λ), and

the spectral function.

The standard tool to study this problem is the

wave equation:

∆u =
∂2u

∂t2
.
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2. Dynamical improvements

Consider the (even part) of the wave kernel

on M :

e(t, x, y) =
∞∑

j=0

cos(λj t)φj(x)φj(y)

Let ρ be an even non-negative Schwartz func-

tion with supp ρ̂ ⊂ [−1,1] and let T be a (large)

parameter. The following formula holds:∑
j

ρ(T (λ− λj))φj(x)φj(y) =

2

T

(
ρ̂

(
t

T

)
e(t, x, y)

)∨
(λ) + O(λ−∞),

where ∨ denotes the inverse Fourier transform.

This shows that the growth of the spectral

function is related to the singularities of the

wave kernel.
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Singularities of the wave equation propagate

along geodesics. One can observe that the

following spectral and dynamical objects are

closely related as λ→∞:

Nx,y(λ)←→ geodesic segments joining x and y

Rx(λ)←→ geodesic loops at x

R(λ)←→ closed geodesics

The next result illustrates this correspondence.
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Duistermaat-Guillemin (’75), Safarov (’87):

Let the measure of points corresponding to

• geodesic segments from x to y

•• geodesic loops at x

• • • closed geodesics

be zero in the unit cotangent space/bundle.

Then

• Nx,y(λ) = o(λn−1)

•• Rx(λ) = o(λn−1)

• • • R(λ) = o(λn−1)
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Euclidean domains

The results of Duistermaat–Guillemin and Sa-

farov could be generalized to manifolds with

boundary.

In particular, we have the following important

Conjecture 1. (Ivrii, Safarov–Vassiliev) Let

D be a Euclidean domain with piecewise–smooth

boundary. Then the measure of points in the

unit cotangent bundle S∗D corresponding to

closed billiard trajectories is zero.

Conjecture 1 holds for certain classes of do-

mains: convex analytic domains, domains with

piecewise concave boundary, polyhedra, etc.
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Ivrii and Melrose proved independently in 1980

that Conjecture 1 implies the two–term asymp-

totic formula for the counting function con-

jectured by Weyl in 1911:

N(λ) =
Voln(D)λn

(4π)
n
2 Γ(n

2 + 1)
±

Voln−1(∂D)λn−1

(2
√

π)n−1 Γ(n+1
2 )

+ o(λn−1).

Here “–” in front of the second term corre-

sponds to the Dirichlet boundary conditions

and “+” — to the Neumann boundary con-

ditions.
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3. Spectral asymptotics in

the integrable case

Conjecture 2. (cf. Steiner ’94) Let M be a

Liouville torus or a generic surface of revolu-

tion. Then

R(λ) = O(λ
1
2+ε)

for any ε > 0.

On a flat square torus, Conjecture 2 is the

celebrated Hardy conjecture (1915) for the

Gauss’s circle problem.

In the integrable case one can approximate

the eigenvalue count by the lattice count.

Generically, one gets R(λ) = O(λ2/3). For flat

tori, Huxley ’03 slightly improved this bound.
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Hardy–Landau lower bound

and its generalizations

The exponent 1
2 + ε in Conjecture 2 can not

be improved. For flat tori this follows from the

classical Hardy–Landau lower bound (1915):

R(λ) = Ω
(√

λ (logλ)1/4
)

,

where f1(x) = Ω(f2(x)) means:

lim sup
x→∞

∣∣∣∣∣f1(x)f2(x)

∣∣∣∣∣ > 0.
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Sarnak ’95 suggested the following dynamical

interpretation and generalization of the Hardy–

Landau bound.

Let M be a surface and Gt be the geodesic

flow on S∗M . Assume that there exists T > 0

such that

dim{v ∈ S∗M |GTv = v} = 2.

In other words, there is a 2-dim family of tra-

jectories in S∗M with a common period. Then

1

λ

∫ 2λ

λ
|R(µ))|dµ >> λ1/2, (4)

where f1(x) >> f2(x) means that there exists

a constant c0 > 0 and a number x0, such that

f1(x) > c0f2(x) for any x > x0.
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Estimate (4) follows from the Duistermaat–

Guillemin wave trace formula. A 2-dimensional

family of trajectories with a common period

produces a bigger singularity in the wave trace.

Such a family always exists on a surface with

integrable geodesic flow.

The Hardy-Landau bound can be interpreted

as a lower bound not only on R(λ), but also

on Rx(λ), since R(λ) = Rx(λ) on a flat torus.

Lapointe–P.–Safarov ’08 proved that on any

surface

1

λ

∫ 2λ

λ
|Rx(µ))|dµ >> λ1/2, (5)

provided that x is not conjugate to itself along

any shortest geodesic. This assumption is purely

technical and, most likely, (5) is always true.
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4. Spectral asymptotics on

negatively curved manifolds

Geodesic flow on a manifold of negative cur-

vature is ergodic which is dynamically “oppo-

site” to the integrable case.

Conjecture 3. (cf. Steiner ’94) On a generic

negatively curved surface R(λ) = O(λε) for any

ε > 0.

Conjecture 3 looks quite surprising if compared

with the pointwise lower bound (5) on Rx(λ).

The two estimates are compatible only if sub-

stantial cancellations occur when Rx(λ) is in-

tegrated over a negatively curved surface.
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The genericity assumption can not be omitted

from the formulation of Conjecture 2. Indeed,

on arithmetic surfaces of constant negative

curvature

R(λ) = Ω

( √
λ

logλ

)
(Selberg, Hejhal ’76). Randol ’81 conjec-

tured that on any negatively curved surface

R(λ) = O(λ
1
2+ε)

for any ε > 0. Note the same exponent as in

Hardy’s conjecture.

Arithmetic surfaces have exceptionally high mul-

tiplicities in the length spectrum. From the

dynamical viewpoint this explains the faster

growth of the remainder.
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The following estimate due to Jakobson–P.–

Toth ’07 is in agreement with Conjecture 3.

Let M be a surface of negative curvature K

satisfying −K2
1 ≤ K ≤ −K2

2. Then

R(λ) = Ω
(
(logλ)C−δ

)
, (6)

for any δ > 0, where

C =
P (−H/2)

h
≥

K2

2K1

The exponent C is expressed in terms of dy-

namical characteristics of the geodesic flow:

topological entropy h, topological pressure P

and Sinai–Ruelle–Bowen potential H.

On surfaces of constant negative curvature

(C = 1/2) this bound was proved in 1976 inde-

pendently by Randol and Hejhal using meth-

ods of analytic number theory.
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The “dynamical” exponent C appears also in

the pointwise lower bounds. Jakobson-P. ’07

proved that at any point x on a negatively

curved surface

Rx(λ) = Ω
(√

λ (logλ)C−δ
)

(7)

for any δ > 0. This estimate sharpens the lower

bound (5) in the negatively curved case.

It is quite likely that (7) is sharp and

Rx(λ) = O(λ
1
2+ε)

for any ε. Note that this prediction is consis-

tent with Randol’s conjecture for R(λ).
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We are still very far from establishing conjec-

tured upper bounds for R(λ) and Rx(λ) in the

negatively curved case. The best result known

is due to Berard ’77:

Let M be a manifold of negative curvature of

dimension n. Then

Rx(λ) = O

(
λn−1

logλ

)
, R(λ) = O

(
λn−1

logλ

)
. (8)
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The proofs of estimates (6-8) use wave kernel

(or wave trace) asymptotics for long times.

Recall the formula∑
j

ρ(T (λ− λj))φj(x)φj(y) =

2

T

(
ρ̂

(
t

T

)
e(t, x, y)

)∨
(λ) + O(λ−∞),

Here ρ is a Schwartz function, and T is a pa-

rameter.

The idea is to take T → ∞ as λ → ∞. This

allows to capture a growing number of singu-

larities on the right–hand side as λ→∞.

For instance, to prove lower bounds (6) and

(7) we take T ∼ log logλ.
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How fast can T grow?

The number of closed geodesics (geodesic loops

at x, geodesic segments joining x and y) of

length ≤ T grows exponentially in T on a neg-

atively curved manifold (Margulis ’69).

Therefore, the formula on the previous slide

captures O(exp(O(T )) singularities.

Each singularity can be studied using the sta-

tionary phase method, yielding an error which

is polynomial in λ. We get accumulation of

errors!

This problem forces us to choose T ≤ α logλ

for a small enough constant α. In particular,

the Ehrenfest time scale T ∼ logλ gives Be-

rard’s bound (8). Getting over the logarithmic

time barrier would allow to obtain better re-

mainder estimates.
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5. Average growth and almost periodic

properties of the spectral function

The spectral function and the error terms in

Weyl’s law are oscillating functions of λ. Our

goal is to describe their behavior as λ→∞.

As we have seen, it is often hard to obtain

good bounds on individual amplitudes of the

oscillations.

Let us estimate the amplitudes on average

and find the frequencies of the oscillations.
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In Lapointe–P.–Safarov ’08 we study aver-

age growth of the spectral function off the

diagonal. The following result holds:

For every finite measure ν on R+ and each

fixed x ∈ M , there exists a subset Mx,ν ⊂ M

of full measure such that

∫ ∞
0

∣∣∣∣∣∣ Nx,y(λ)

1 + λ
n−1
2

∣∣∣∣∣∣
2

dν(λ) < ∞ , ∀y ∈Mx,ν . (9)

Note that (9) does not imply Nx,y(λ) = O

(
λ

n−1
2

)
for all x and almost all y: indeed, for all x, y

on a negatively curved manifold,

Nx,y(λ) = Ω
(
λ

n−1
2 (logλ)C−δ

)
, x 6= y

for any δ > 0 (Jakobson-P. ’07).
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What are the frequencies of oscillations of the

spectral function?

As Kosygin–Minasov–Sinai ’93 and Bleher ’94,

who studied R(λ) in the integrable case, we use

the notion of almost periodic functions.

The space Bp of Besicovitch almost periodic

functions is the completion of the space of all

finite trigonometric sums

N∑
k=1

akeiωkx,

ak ∈ C, ωk ∈ R, with respect to the seminorm

||f ||Bp = limsup
T→∞

(
1

2T

∫ T

−T
|f(x)|pdx

)1/p

, p ≥ 1

We write f ∼ g if ||f − g||Bp = 0.
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In Lapointe—P.–Safarov ’08 we formulate

the following question:

Let M be a surface. Does there exist p ≥ 1,

such that for all x ∈M and almost all y ∈M ,

Nx,y(λ)

1 + λ
1
2

∼
2

(2π)
3
2

∑
γ∈Γx,y

sin(λ l(γ)− π
4 −m(γ)π

2)

l(γ)
√
|J(l(γ)|

(10)

in the Besicovitch space Bp ?

Here Γx,y is the set of all geodesic segments

between x and y, l(γ) is the length of γ, m(γ)

is the Morse index of γ and J(t) is the or-

thogonal Jacobi field along γ with the initial

conditions J(0) = 0, J ′(0) = 1.

Formula (10) suggests that the frequencies

of the spectral function are the lengths of

geodesic segments joining x and y.
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Remarks

1. Formula (10) holds for round spheres and

flat tori with p = 2. We believe the same

is true for surfaces of revolution and Liouville

tori, as well as for negatively curved surfaces:

in the latter case, just a tiny improvement of the

Ehrenfest time scale would give the result.

2. The right–hand side of (10) is well-defined

for all x and y that are not conjugate along

any geodesic segment joining them, which is

true for all x and almost all y on any surface.

3. A positive answer to our question implies

that the rescaled spectral function has a

limit distribution.

4. A similar question could be formulated for

manifolds of any dimension.
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