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Abstract

We present aN -dimensional quantizationa la Berezin-Klauder or frame quantization of the
complex plane based on overcomplete families of states (cefent states) generated by theN
rst harmonic oscillator eigenstates. The spectra of positon and momentum operators are nite
and eigenvalues are equal, up to a factor, to the zeros of Herite polynomials. From numerical
and theoretical studies of the largeN behavior of the product u (N) 5 (N) of largest and non

null smallest positive eigenvalues, we infer the inequalif n(Q) n(Q) = « NI!I 2 (resp.

N(P) N(P)= N NI!I 2 ) involving, in suitable units, the maximal ( y (Q)) and minimal
( N (Q)) sizes of regidns of space (resp. momentum) which are acs@de to exploration within

this nite-dimensional quantum framework. Interesting is sues on the measurement process are
discussed.

Pacs03.65.Bz, 03.65.Ca
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1  General setting: quantum processing of a measure space

In this introductive section, we present the method of quanization we will apply in the sequel to

a simple model, for instance the motion of a particle on the lne, or more generally a system with
one degree of freedom, like the vibration of a linear molecel The method, which is based on
coherent states [1, 2] orframes [3] in Hilbert spaces is inspired by previous approaches ppmosed
by Klauder [4, 5] and Berezin [6]. More details and examplesancerning the method can be found
in the references [7, 8, 9, 10].



Let us start with an arbitrary measure space (X; ). This set might be a classical phase space, but
actually it can be any set of data accessible to observation.The existence of a measure provides
us with a statistical reading of the set of measurable real- bcomplex-valued functionsf (x) on X:
computing for instance average values on subsets with bouredl measure. Actually, both approaches
deal with quadratic mean values and correlation/convolution involving signal pairs, and the natural
framewggk of studies is the complex (Hilbert) spacesL?(X; ) of square integrable functionsf (x)
on X:  |f (x)j> (dx) < 1. One will speak of nite-energy signal in Signal Analysis and of
(pure) quantum state in Quantum Mechanics. However, it is precisely at this stage that \quantum
processing" of X di ers from signal processing on at least three points:

1. not all square integrable functions are eligible as quanim states,
2. a quantum state is de ned up to a nonzero factor,

3. those ones among function$ (x) that are eligible as quantum states with uni, norm,

y (x)j? (dx) = 1, give rise to a probability interpretation : X ! if (x)j2 (dx)
is a probability measure interpretable in terms of localisdion in the measurable . This is
inherent to the computing of mean values of quantum observales, (essentially) self-adjoint
operators with domain included in the set of quantum states.

The rst point lies at the heart of the quantization problem: what is the more or less canonical
procedure allowing to select quantum states among simple ghals? In other words, how to select
the right (projective) Hilbert space H, a closed subspace df2(X; ), (resp. some isomorphic copy
of it) or equivalently the corresponding orthogonal projedeur |y (resp. the identity operator)?

In various circumstances, this question is answered throug the selection, among elements of
L2(X; ), of an orthonormal set Sy = f n(x)gr'}'zol, N being nite or in nite, which spans, by
de nition, the separable Hilbert subspaceH H . The crucial point is that these elements have
to ful Il the following condition :

X
N (x) i n(x)j>< 1 almost everywhere 1)
n

Of course, ifN 1 is nite the above condition is trivially checked.

We now consider the family of statesfj xigxox in Hy obtained through the following linear super-

itions:
positions . X

iXi — LX) ni; 2

J pm ] n(X)] n )
in which the ket j i designates the element ,(x) in a \Fock" notation and ,(x) is the complex
conjugate of ,(x). This de nes an injective map

X 3x!j xi2H y; 3)

and the above Hilbertian superposition makes sense providethat set X is equipped of a mild
topological structure for which this map is continuous. It is not di cult to check that states (2)
are coherent in the sense that they obey the following two conditions:



Normalisation
hx jxi = 1; (4)

Resolution of the unity in Hn
Z
jxihxj  (dx) = Ty, ; (5)
X

where (dx) = N (x) (dx) is another measure onX, absolutely continuous with respect to
(dx). The coherent states (2) form in general an overcomplete @ntinuous) basis ofHy .
Actually, the term of frame [3] is more appropriate for designating the total family fj Xigx2x -

The resolution of the unity in Hy can alternatively be understood in terms of the scalar produt
hx jx4 of two states of the family. Indeed, (5) implies that, to any vector j i in Hy one can
isometrically associate the function

p
(x) N (X)hj i (6)

in L2(X; ), and this function obeys
Z
P
(x) = . N OON (9hjxd (x9  (dx9: (7

Hence,Hy is isometric to a reproducing Hilbert space with kernel
P
Kx;x% =" NN ) jxY; (8)
and the latter assumes nite diagonal values @.e.), K(x;x) = N (x), by construction.

A classical observable is a functionf (x) on X having speci ¢ properties in relationship with some
supplementary structure allocated to X, topology, geometry or something else. Its quantization
simply consists in associating tof (x) the operator
Z
As = f (x)jxihxj (dx): 9)
X

In this context, f (x) is said upper (or contravariant) symbol of the operator A; and denoted by
f = A;, whereas the mean valuehxjAjxi is said lower (or covariant) symbol of an operator A
acting on Hy [6] and denoted by A . Through this approach, one can say that a quantization of
the observation set is in one-to-one correspondence with t choice of a frame in the sense of (4)
and (5). To a certain extent, a quantization scheme consistsn adopting a certain point of view in
dealing with X. This frame can be discrete, continuous, depending on the fmology furthermore
allocated to the set X, and it can be overcomplete, of course. The validity of a preise frame
choice with regard to a certain physical context is assertedby comparing spectral characteristics of
quantum observablesAs with experimental data.

In order to illustrate the process, we shall rst recall the well-known Bargman-Berezin quantization
of the complex plane, the latter being viewed as the phase spa of a particle moving on the real line
or more generally a system with one degree of freedom. The dronormal setS; = f ,(x)gi, is
chosen to be the set of eigenstates, in the so-called Fock-Banann representation, of the harmonic
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oscillator with N = 1 . We next study quantizations resulting from the choice, within S; , of
increasing subsetsSy = f n(x)g,':‘zol;N = 1,;2;3;::: . After working out the algebras of these
nite-dimensional quantizations, we shall explore their respective physical meaning in terms of lower
symbols, localisation and momentum range properties. Fronthe existence of a nite spectrum of
the position and momentum operators in nite-dimensional quantization, we nd that there exists
an interesting correlation between the size y of the minimal \forbidden" cell and the width N
of the spectrum (\size of the universe" accessible to measements from the point of view of the
speci ¢ system being quantized). This correlation reads inappropriate units N = N,and
numerical explorations, validated by theoretical argumerns, indicate that the strictly increasing
sequence y ! i 2 . A similar result holds for the spectra of the momentum operdors.

2 The standard case

Let us illustrate the above construction with the well-known Klauder-Glauber-Sudarshan coherent
. . . 0t - 1
states [1]. The observation setX is the classical phase spacR C=fx z= 972mlu (m!q +
U A

ip)g (in complex notations) of a system with one degree of freedorand experiencing a motion with
characteristic time ! 1 and action ua. Note that the characteristic length and momentum of this

u . .
system arel; = m—? and p; = P mlu A respectively, whereas the phase-space variable can be

expressed in units of square root of actionp Ua. Now, we could as well deal with an oscillating
system like a biatomic molecule. Of course, in the domain of alidity of quantum mechanics, it is

izj? .
natural to chooseua = ~. The measure onX is gaussian, (dx) = 1e va d?z where d?z is the
Lebesgue measure of the plane. In the sequel, we shall work guitable units, i.e. with m = 1,
I =1, and up = 1.

The functions ,(x) are the normalised powers of the complex variablez, ,(x) pz% so that
the Hilbert subspaceH is the so-called Fock-Bargmann space of all anti-entire fuations that are
square integrable with respect to the gaussian measure. The states ge eiggnvec_tqrs of the number
operator N which is identical to the dilation operator N = z@@z Since | % = &2 the coherent
states read 2 X

1z n

izize '3 g=jni (10)
N
where we have adopted the usual notationjini = j ,i.

One easily checks the normalisation and unityzresolution:
. 1
tejzi =1; = jzihzjd?z = I1y; (11)
c
Note that the reproducing kernel is simply given by e?2°, The quantization of the observation set
is hence achieved by selecting in the original Hilbert spacé 2(C; 1e! 2j? d?z) all anti-holomorphic

entire functions, which geometric quantization specialiss would call a choice of polarization. Quan-
tum operators acting on H arze yielded by using (9). We thus have for the most basic one,

1 o, X p— .
— zjzihzjd“z = n+1ljnihn+1j a; (12)
c



which is the lowering operator, ajni = P njn  1li. Its adjoint a@¥ is obtained by replacingz by z in

(12), and we get the factorisation N = a¥a together with the commutation rule [a;aY] = Iy. Also
note that @’ and a realize onH as multiplication operator and derivation operator respedively,

a¥f (z) = zf (2); af (z) = & (z)=dz From q = pl—z(z +z)etp= ijul—z(z z), one easily infers by
linearity that g and p are upper symbols forpl—i(a+ a') Qand i4;1—5(61 a¥) P respectively. In
consequence, the self-adjoint operator® and P obey the canonical commutation rule RQ;P] =il 4,
and for this reason fully deserve the name of position and moentum operators of the usual
(galilean) quantum mechanics, together with all localisaion properties speci ¢ to the latter.

These standard states have many interesting properties. Ueus recall two of them: they are
eigenvectors of the lowering operatorajzi = zjzi, and they saturate the Heisenberg inequalities :

Q P= % It should be noticed that they also pertain to the group theoretical construction since
they are obtained from unitary Weyl-Heisenberg transport o the ground state: jzi = exp(za’
za)j0i.

3 Lowest-dimensional cases

In order to better understand the quantization scheme in the nite-dimensional case, let us examine
the simplest situations in whichN =2 and N = 3 (the caseN = 1 yields zero values for everything).

3.1 Two-dimensional case

The measure spacé is the same as in the previous section :X; )=(C;d (z;z)= lel 2j? d?z).
Let us now start out by selecting the two rst elements of the orthonormal Fock-Bargmann basis ,
namely

ox)=1; 1(x)=z (13)

Then we have,
N(x)=1+ jzj® ae: (14)

The corresponding coherent states read as

izi = p—_[jOi + 2 j1i]: (15)
1+jzj

To any integrable function F(z;z) on C there corresponds the linear operatorAg on C? in its

matrix form :
V4

d (z:2)(1+ jzj®) F(2;2) jzihz]
c I

R o R L :
oo dzel Zf F(z;2) A cdzel '2212 zF(z;2)
1 dzel @ zF(z;2) 1 .d’zel ¥ jzj?F(z;2)

Af

(16)



In particular, with the choice F(z;z) = 1 we recover the identity, as expected, whereas foF (z;z) =
z and for F(z;z) = z, we get the projectors

01 00
— . — y.
Ar= o o &A= | o @ (17)
They obey the commutation rule
1 0
- aYT = — .
[aal= 45 4 3; (18)

the third Pauli matrix. For the most general monomial choice F(z;z) = zYzY, u;v 2 N, one gets

Azizv = Ul w et 19
2 (U+1) v 1 (U+D) yy (19)
Hence, we easily check to what extent this two-dimensional gantization of the complex plane is
degenerate since most of the classical observables go to thall operator. We should also compare
upper symbol z"z" of (19) with the lower symbol of the latter :

1+ jzj?
Like in the standard case, fromq = pl—é(z +2)etp= i43“—5(2 z), we nd that g and p are upper
symbols for the position and momentum operators:

1 1 01 1
p = B — )
1 1 0 i 1
P P, p=(a a)= p= . = p— o 22

where we note the appearance of the two Pauli matrices 1 and , respectively. In consequence,

the self-adjoint operators Q and P obey the spin commutation rule [Q;P] = i 3 and realize a
two-dimensional representation of the spin algebra. Theirrespective lower symbols read
lejQjzi = — 3+ 1jPjzi = P 23)

1+ 3(P2+ @) 1+ 3(P2+ @)
As functions of phase-space variables they give rise to swfes which are displayed in Fig. 1. In this
two-dimensional representation the harmonic oscillator Hamiltonian reduces to a multiple of the

identity : Ho= 1 P2+ Q? = %I 2. all quantum states are stationary. For a generlgl Hamiltonian
of the type H = §P2+ \{1(Q) in WFl)ﬂCh the potenti%l is som%(Laurent) seriesV(Q) = ;GQ' we get
1

the two-level spectrum %1 + Zin n Con . Con+1 . Moreover, the spectra of the position

1=z
and momentum operators are both equal to % , which means for instance that two position
values only, % are accessible to observation within the context of this paticular choice of frame,
of course.

3.2 Three-dimensional case

We now deal with the orthonormal set :
2

o) =1; 1(X) =z, 2(X) = %: (24)
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Figure 1. Behavior in function of z = pl—i(q+ ip) of the meanvaluestzjQjzi and hzjPjzi of position
and momentum operators in the two-dimensional quantization case. One should notice the existence
of two peaks illustrating two-level system concerning podion and momentum.

Accordingly we nd

o jz*
N(x)=1+ jzjc+ 7: (25)
Coherent states read :
. 1 . N I
2l = §———— j0i+ zjli+ p5j2 : (26)
1+jzj2+ 1 2
Position and momentum matrix operators read
0 1 0 1
0 pl—i 0 0 > 0
Q Q=@ 0 |K:;P P= i A 0 1K: 27)
0O 1 0 0 10
Their commutator is given by: 0 1
10 O
[Q;P]=i@0 1 0 A
00 2
n q-o
The spectra of Q and P are the same : 0; 3
Their respective lower symbols are given by
(?+ p?) (g?+p?)
o g+ == —q o pt =—=—p )
hZJQJZ| - 1+ (g2+ p?) + (q2+p?)2’ hZJPJZI - 1+ (g2+ p?) + (2+p?)2 * (28)
2 8 2 8
The Hamiltonian Hz = 1 P2+ Q? is not any more multiple of the identity :
0, 1
5 00
H=@0 % 0A; (29)
0 01



and its lower symbol is given by

1 + 3i '2+ jZ_j4
rejHjzi = 2= 29 7 2. (30)
1+jzj? + 35jzj*

4 The N-dimensional case

Let us now consider the generic orthonormal set withN elements:

Zz(N 1)
X)=1; X)= z;::: X)= p—nr: 31
o(X) 1(x) N 1(X) Pﬁ (31)
The coherent states read :
. 1 Xt oo
jzi = p—= p=jni; (32)
N(X) oo nN!
with ¥ 1
N (x) = 2. (33)
n!
n=0

Matrix elements of the position operator Q Qy and momentum operatorP Py are given by

1 P pP——
Qn(k;1) = p—z( K 1+ Kk 1 +1);1 kil N: (34)
.1 P- pP——
Pn (ki 1) = 'P—z( K ki1 K 1w+a)l kN (35)
Their commutator is \almost" canonical:
[Qn;Pn]=iln  INEN; (36)
where Ey is the orthogonal projector on the last basis element,
0 1
0O ::: 0
En=@: . K
0O ::: 1

The appearing of such a projector in (36) is clearly a consegnce of the truncation at the N™
level. We shall study the spectra of these operators in the nd section.

The corresponding truncated harmonic oscillator hamiltonian is diagonal with matrix elements :
1
Hu(kil)= 5@k 1 N i) i (37)

SinceH is diagonal, its eigenvalues are trivially% (2k 1 N nxk) and are identical to the lowest

. . . . L N 1.
eigenenergies of the harmonic oscillator, except for thél th one which is equal to instead of



N > One should notice that its nature di ers according to the parity of N: it is degenerate ifN
. . N 1. . . . .
is even since thenE > is already present in the spectrum whereas it assumes the iatmediate

N ar
value > between two expected values ilN is odd.

Let us now consider the mean values or lower symbols of the pit®n and momentum operators.
We nd:
tejQjzi = C(jzj)q; hejPjzi = C(jzj)p; (38)
where the corrective factor
X (izi)?0 Y
N@ ., ( 1

C(jzj) = (39)
goestolatN !1

Lower symbols of the operatorsQ?, P2 and H are given by:

2
hej Sz jzi = A(jz)) B(jzj); hejHjzi = A(jzj); (40)
where
A(izi) = Xz D 2k 1 N k.
NG, & D 2 !
. X 2jzj2 1) 724 22
B(jzj) = 1z :

N@ ., k D 2

The behavior of these lower symbols in (40) in function of §; p), with the particular value N =12,
is shown in Fig. 2. One can see that these mean values are idédl, albeit the lower symbol of P2
is obtained from that of Q? through a rotation by » in the complex plane.

From all these meanvalues we can deduce the productQ P,where Q= P hejQ?jzi  (hzjQjzi)Z2.
Due to rotational invariance, it is enough to consider its behavior in function of g, at p=0, as is
shown in Fig. 3 for dierent values of N, N = 2;5;10;15. One can observe that Q P =1=2,

i.e. the product assumes, at the origin of the phase space the mimial value it would have in the

in nite-dimensional case (with ~=1). Note that, for N = 2, the value 1=2 is a supremum (!), and
the latter is reached for almost all values ofz except in the rangejzj . 10. For higher values of
N, there exists around the origin a range of values ofzj, where the product is equal to % This

range increases withN as expected since the Heisenberg inequalities are saturatevith standard

coherent states N = 1 ).

Let us nally consider the behavior in function of jzj of the lower symbol of the harmonic oscillator
Hamiltonian given in Eq. (40). From Figs. 4 and 5 in which are $own respectively the meanvalue
of H at N = 5, and the energy spectrum for di erent values of N, one can see the in uence of
truncating the dimension of the space of states.



Figure 2: (q;p behavior of the meanvalues (lower symbols) of the operata Q? and P? in the
coherent statejzi for N = 12.

10 20 30

q

Figure 3: Behavior of Q P in function of g, at p = 0, for di erent values of N, N = 2 (lowest
curve), 5;10; 15 (upper curve).
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Figure 4: MeanvaluetejH jzi of the harmonic oscillator hamiltonian as a function ofz = pl—i(q+ ip)
for N = 5.
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Figure 5. Spectrum of the harmonic oscillator Hamiltonian H in function of N. One clearly sees
the appearance of a degeneracy or an intermediate value insad, according to the parity of N .
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5 Localization and momentum of the nite-dimensional quant um
system

We now examine the spectral features of the position and mom#um operators Q Qn, P Py
given in the N -dimensional case by Egs.(34) and (35)i.e. in explicit matrix form by:

0 1 0 1
0 pl—i 0 S 0 0 pl—§ 0 S 0
P01 o 0 s 0 1 . 0
= 0 1 = 0 1 :
Qn . q_ & PN : _ 49—
¢ 7 : > T
0 O 3 1 0 0 0 % 0
Their characteristic equations are the same. Indeedpy( )=det(Qn | ny)anddet(Py | n)
both obey the same recurrence equation:
N
pn+( )= pn() > PN 1( ); (41)
with po( ) =1 and pi( ) = . We have just to put Hy( ) =( 2)Npn( ) to ascertain that the

Hn's are the Hermite polynomials for obeying the recurrence riation [11]:
Hn+1( )=2 Hn( ) 2NHn 1( ) Ho( )=1; Hi( )=2: (42)

Hence the spectral values of the position operatorij.e. the allowed or experimentally measurable
guantum positions, are just the zeros of the Hermite polynomials! The same result hlas for the
spectral values of the momentum operator.

The non-null roots of the Hermite polynomial Hy () form the set

n )
Zu(N) = b%c(N); b c ((IND)soos a(ND); o(ND); oo b c 1(N); b%c(N) ; (43)
symmetrical with respect the origin, where 5§ = 5. if N is even and &% = N1 if N is odd;

moreover Hy (0) = 0 if and only if N is odd. A vast literature exists on the characterization and

properties of the zeros of the Hermite polynomials, and manyroblems concerning their asymptotic

behavior at large N are still open. Recent results can be found in [12] with prewus references

therein. Upper bounds [13] have been provided for ,(N) and nm (N) where (N)= 1(N) and
m(N) = bN?C(N) are respectively the smallest and largest positive zerosfdy .

WN)  w(N)="2N 28N> 1 (44)

P N 2

E - .

m(N) m(N)="2N 2cos N 3 8N even (45)
m(N)  S(N)= PN 2 cos 2’\111 3. 8N odd (46)
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However, it seems that the following observation is not knom. We have studied numerically the

behavior of the product
$n = m(N) m(N) (47)

The zeros of the Hermite polynomials have been computed by dgonalizing the matrix of the

position operator Qy ; since Qy is tridiagonal symmetric with positive real coe cients, we imple-

mented its diagonalization by using the QR algorithm [14]; sich a method enabled us to compute

the spectrum of the position operator up to the dimensionN = 10°8. The respective behaviors of
m(N) and  (N) are shown in Fig. 6 for N even and odd separately.

Now, it is a well-known property of the classical orthogonalpolynomials that +1 (N) i(N) >

1(N)forall i 1ifN is odd, whereas j+1(N) i(N)>2 y(N)foralli 1if N is even, and
that the zeros of the Hermite polynomials Hy and Hy+1 intertwine, as is shown in Fig. 7 in the
case of (N) for small values of N.

Furthermore, the asymptotical behaviors of the products of the upper bounds provided by the
equations (44, 45, and 46) read respectively:

1 3 1
E - .
M(N) m(N) sanz T O N3 ¢ Neven (48)
(N) O(N) 2 }—3+o LN odd (49)
M m N1 3N? N3 '
Hence, we see thats y goes asymptotically to $ ¢ for large evenN andto $, 2%, for large

odd N. Therefore, if, at a given N, we dene by §(Q) =2 m(N) the \size" of the \universe"
accessible to exploration by the quantum system, and by (Q) = m(N) (resp. n(Q) =2 n(N))
for odd (resp. even)N, the \size" of the smallest \cell" forbidden to exploration by the same system,
we nd the following upper bound for the product of these two quantities:

4 n(N) m(N) for N even

NQ N @ N E o N W(N) for Noodd, 4 (50)

However numerical explorations show that this upper bound § not the lowest one. Indeed, consider
the behavior of the product y, as a function of N, as is given in Fig. 8.

This strictly increasing function clearly goes asymptotically to a limit which we shall name and
this limit has a value very close to 2, as is shown in Table 1 where some values ofy up to
N =106 are given.

Hence, we can assert the interesting inequality for the prodct (50):

N(Q) N(Q) 2 8N: (51)

13



10*
L ) //lM(N) |
1000 e An(N), N odd T
I * An(N), N even ]
100 | |
10,§ / ;
14
o1
0.01 _ |
0,001 |+l ‘\. N
1 10 100 1000 10* 10° 10°

Figure 6: Bottom : behaviors of the lowest positive zero ,(N) of the Hermite polynomial of
degreeN for N even and odd separately. Top : behavior of the largest positie zero  (N).

14



e An(N), N odd
= Au(N), N even |

i

1 10 100

Figure 7: Intertwining of the lowest positive zeros ,,(N) of the Hermite polynomials Hy and
Hn +1 for small values ofN .
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Figure 8: Behavior of the product §y = N (Q) N(Q), as a function of N.
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N n(Q) n(Q) 2

10 4:713054
55 5:774856
100 5:941534
551 6:173778
1 000 6:209670
5 555 6:259760

10 000 6:267356
55 255 6:278122
100 000 6:279776
500 555 6:282020
1 000 000| 6:282450 6.2831853

Table 1: Values of y = n(Q) ~n(Q)upto N =108 Compare with the value of 2 .

Identical result holds for the momentum, of course :

In order to fully perceive the physical meaning of such ineqalities, it is necessary to reintegrate
into them physical constants or scales proper to the consided physical system,i.e. characteristic
length I and momentum p. as was done at the beginning of Section 2:

N(Q) N(Q) 12 N(P) n(P) p2B8N; (53)

where N(Q) and  (Q) are now expressed in unitl;. Realistically, in any physical situation, N
cannot be in nite: there is an obvious limitation on frequencies or energies accessible to observa-
tion/experimentation. So it is natural to work with a nite a Ithough large value of N, which need
not be determinate. In consequence, there exists irreduclb limitations, namely y (Q) and n(Q)

in the exploration of small and large distances, and both linitations have the correlation (53).

Let us now suppose there exists, for theoretical reasons, aiidamental or \universal" minimal
length, say |, something like the Planck length, or equivalently an univesal ratio , = =l 1.
Then, from §(Q) |y and (53) we infer that there exists a universal maximal lengh |y given by

Im ule: (54)

Of course, if we chooséd,, = |, then the size of the \universe" is |y 21 m. Now, if we choose
a characteristic length proper to Atomic Physics, like the Bohr radius, Ic 10 ®m, and for the
minimal length the Planck length, I, 10 3°m, we nd for the maximal size the astronomical
quantity Iy 10'%m. On the other hand, if we consider the (controversial) estimate size of our
present universelL, = cTy, with T, 131 years [15], we get fromp,L, 21 2 a characteristic
length I 10 °m, i.e. a wavelength in the infrared electromagnetic spectrum...
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6 Conclusion

Of course, we should be very cautious about drawing sound plsjcal consequences from the existence
of the inequalities (53). Indeed, one can argue that our schae of quantization leading to such
inequalities is strongly dependent on the choice of orthonomal states used in constructing the
\quantizer" frame. For that matter, it would be interesting to consider other simple systems which
can be quantized through the same procedure, for instance #motion on a circle like in Ref.[10].
Moreover, the physical interpretation of the inequalities (53) appears to be rather enigmatic : is
it a matter of length standard ? Is it instead related to some wniversal constraint in dealing with
spatial degrees of freedom ? At the moment, we cannot providany reasonable answer to these
open questions which certainly deserve a deeper investigan.
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