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Abstract

We present aN -dimensional quantization �a la Berezin-Klauder or frame quantization of the
complex plane based on overcomplete families of states (coherent states) generated by theN
�rst harmonic oscillator eigenstates. The spectra of position and momentum operators are �nite
and eigenvalues are equal, up to a factor, to the zeros of Hermite polynomials. From numerical
and theoretical studies of the largeN behavior of the product � M (N ) � m (N ) of largest and non
null smallest positive eigenvalues, we infer the inequality � N (Q) � N (Q) = � N

<!
N!1

2� (resp.

� N (P) � N (P) = � N
<!

N!1
2� ) involving, in suitable units, the maximal (� N (Q)) and minimal

(� N (Q)) sizes of regions of space (resp. momentum) which are accessible to exploration within
this �nite-dimensional quantum framework. Interesting is sues on the measurement process are
discussed.

Pacs03.65.Bz, 03.65.Ca

Keywords Quantization, coherent states, quantum localisation

1 General setting: quantum processing of a measure space

In this introductive section, we present the method of quantization we will apply in the sequel to
a simple model, for instance the motion of a particle on the line, or more generally a system with
one degree of freedom, like the vibration of a linear molecule. The method, which is based on
coherent states [1, 2] orframes [3] in Hilbert spaces is inspired by previous approaches proposed
by Klauder [4, 5] and Berezin [6]. More details and examples concerning the method can be found
in the references [7, 8, 9, 10].
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Let us start with an arbitrary measure space (X; � ). This set might be a classical phase space, but
actually it can be any set of data accessible to observation.The existence of a measure provides
us with a statistical reading of the set of measurable real- or complex-valued functions f (x) on X :
computing for instance average values on subsets with bounded measure. Actually, both approaches
deal with quadratic mean values and correlation/convolution involving signal pairs, and the natural
framework of studies is the complex (Hilbert) spaces,L 2(X; � ) of square integrable functionsf (x)
on X :

R
X jf (x)j2 � (dx) < 1 . One will speak of �nite-energy signal in Signal Analysis and of

(pure) quantum state in Quantum Mechanics. However, it is precisely at this stage that \quantum
processing" ofX di�ers from signal processing on at least three points:

1. not all square integrable functions are eligible as quantum states,

2. a quantum state is de�ned up to a nonzero factor,

3. those ones among functionsf (x) that are eligible as quantum states with unit norm,R
X jf (x)j2 � (dx) = 1, give rise to a probability interpretation : X � � !

R
� jf (x)j2� (dx)

is a probability measure interpretable in terms of localisation in the measurable �. This is
inherent to the computing of mean values of quantum observables, (essentially) self-adjoint
operators with domain included in the set of quantum states.

The �rst point lies at the heart of the quantization problem: what is the more or less canonical
procedure allowing to select quantum states among simple signals? In other words, how to select
the right (projective) Hilbert space H , a closed subspace ofL 2(X; � ), (resp. some isomorphic copy
of it) or equivalently the corresponding orthogonal projecteur I H (resp. the identity operator)?

In various circumstances, this question is answered through the selection, among elements of
L 2(X; � ), of an orthonormal set SN = f � n (x)gN � 1

n=0 , N being �nite or in�nite, which spans, by
de�nition, the separable Hilbert subspaceH � H N . The crucial point is that these elements have
to ful�ll the following condition :

N (x) �
X

n

j� n (x)j2 < 1 almost everywhere: (1)

Of course, if N � 1 is �nite the above condition is trivially checked.

We now consider the family of statesfj xigx2 X in H N obtained through the following linear super-
positions:

jxi �
1

p
N (x)

X

n

� n (x)j� n i ; (2)

in which the ket j� n i designates the element� n (x) in a \Fock" notation and � n (x) is the complex
conjugate of � n (x). This de�nes an injective map

X 3 x ! j xi 2 H N ; (3)

and the above Hilbertian superposition makes sense provided that set X is equipped of a mild
topological structure for which this map is continuous. It i s not di�cult to check that states (2)
are coherent in the sense that they obey the following two conditions:
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� Normalisation
hx jxi = 1 ; (4)

� Resolution of the unity in H N

Z

X
jxihxj � (dx) = I H N ; (5)

where � (dx) = N (x) � (dx) is another measure onX , absolutely continuous with respect to
� (dx). The coherent states (2) form in general an overcomplete (continuous) basis of H N .
Actually, the term of frame [3] is more appropriate for designating the total family fj xigx2 X .

The resolution of the unity in H N can alternatively be understood in terms of the scalar product
hx jx0i of two states of the family. Indeed, (5) implies that, to any vector j� i in H N one can
isometrically associate the function

� (x) �
p

N (x)hx j� i (6)

in L 2(X; � ), and this function obeys

� (x) =
Z

X

p
N (x)N (x0)hxjx0i � (x0) � (dx0): (7)

Hence,H N is isometric to a reproducing Hilbert space with kernel

K(x; x 0) =
p

N (x)N (x0)hx jx0i ; (8)

and the latter assumes �nite diagonal values (a.e.), K(x; x ) = N (x), by construction.

A classical observable is a functionf (x) on X having speci�c properties in relationship with some
supplementary structure allocated to X , topology, geometry or something else. Its quantization
simply consists in associating tof (x) the operator

A f :=
Z

X
f (x)jxihxj � (dx): (9)

In this context, f (x) is said upper (or contravariant) symbol of the operator A f and denoted by
f = Â f , whereas the mean valuehxjAjxi is said lower (or covariant) symbol of an operator A
acting on H N [6] and denoted by �A f . Through this approach, one can say that a quantization of
the observation set is in one-to-one correspondence with the choice of a frame in the sense of (4)
and (5). To a certain extent, a quantization scheme consistsin adopting a certain point of view in
dealing with X . This frame can be discrete, continuous, depending on the topology furthermore
allocated to the set X , and it can be overcomplete, of course. The validity of a precise frame
choice with regard to a certain physical context is assertedby comparing spectral characteristics of
quantum observablesA f with experimental data.

In order to illustrate the process, we shall �rst recall the well-known Bargman-Berezin quantization
of the complex plane, the latter being viewed as the phase space of a particle moving on the real line
or more generally a system with one degree of freedom. The orthonormal set S1 = f � n (x)g1

n=0 is
chosen to be the set of eigenstates, in the so-called Fock-Bargmann representation, of the harmonic
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oscillator with N = 1 . We next study quantizations resulting from the choice, within S1 , of
increasing subsetsSN = f � n (x)gN � 1

n=0 ; N = 1 ; 2; 3; : : : : After working out the algebras of these
�nite-dimensional quantizations, we shall explore their respective physical meaning in terms of lower
symbols, localisation and momentum range properties. Fromthe existence of a �nite spectrum of
the position and momentum operators in �nite-dimensional quantization, we �nd that there exists
an interesting correlation between the size� N of the minimal \forbidden" cell and the width � N

of the spectrum (\size of the universe" accessible to measurements from the point of view of the
speci�c system being quantized). This correlation reads inappropriate units � N � � N = � N , and
numerical explorations, validated by theoretical arguments, indicate that the strictly increasing
sequence� N ����!

N !1
� � 2� . A similar result holds for the spectra of the momentum operators.

2 The standard case

Let us illustrate the above construction with the well-known Klauder-Glauber-Sudarshan coherent
states [1]. The observation setX is the classical phase spaceR2 ' C = f x � z =

1
p

2m!u A
(m!q +

ip)g (in complex notations) of a system with one degree of freedomand experiencing a motion with
characteristic time ! � 1 and action uA . Note that the characteristic length and momentum of this

system arelc =
r

uA

m!
and pc =

p
m!u A respectively, whereas the phase-space variablez can be

expressed in units of square root of action
p

uA . Now, we could as well deal with an oscillating
system like a biatomic molecule. Of course, in the domain of validity of quantum mechanics, it is

natural to choose uA = ~. The measure onX is gaussian,� (dx) = 1
� e

� j z j 2

u A d2z where d2z is the
Lebesgue measure of the plane. In the sequel, we shall work insuitable units, i.e. with m = 1,
! = 1, and uA = 1.

The functions � n (x) are the normalised powers of the complex variablez, � n (x) � �zn
p

n!
, so that

the Hilbert subspaceH is the so-called Fock-Bargmann space of all anti-entire functions that are
square integrable with respect to the gaussian measure. Those states are eigenvectors of the number
operator N which is identical to the dilation operator N = z @

@z. Since
P

n
jzj2n

n! = ejzj2 , the coherent
states read

jzi = e� j z j 2

2

X

n

zn
p

n!
jni ; (10)

where we have adopted the usual notationjni = j� n i .

One easily checks the normalisation and unity resolution:

hz jzi = 1 ;
1
�

Z

C
jzihzj d2z = I H ; (11)

Note that the reproducing kernel is simply given by e�zz0
. The quantization of the observation set

is hence achieved by selecting in the original Hilbert spaceL 2(C; 1
� e�j zj2 d2z) all anti-holomorphic

entire functions, which geometric quantization specialists would call a choice of polarization. Quan-
tum operators acting on H are yielded by using (9). We thus have for the most basic one,

1
�

Z

C
z jzihzj d2z =

X

n

p
n + 1 jnihn + 1 j � a; (12)
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which is the lowering operator, ajni =
p

njn � 1i . Its adjoint ay is obtained by replacing z by �z in
(12), and we get the factorisation N = aya together with the commutation rule [ a; ay] = I H . Also
note that ay and a realize on H as multiplication operator and derivation operator respectively,
ayf (z) = zf (z); af (z) = df (z)=dz. From q = 1p

2
(z + �z) et p = 1

i
p

2
(z � �z), one easily infers by

linearity that q and p are upper symbols for 1p
2
(a + ay) � Q and 1

i
p

2
(a � ay) � P respectively. In

consequence, the self-adjoint operatorsQ and P obey the canonical commutation rule [Q; P ] = iI H ,
and for this reason fully deserve the name of position and momentum operators of the usual
(galilean) quantum mechanics, together with all localisation properties speci�c to the latter.

These standard states have many interesting properties. Let us recall two of them: they are
eigenvectors of the lowering operator,ajzi = zjzi , and they saturate the Heisenberg inequalities :
� Q � P = 1

2 . It should be noticed that they also pertain to the group theoretical construction since
they are obtained from unitary Weyl-Heisenberg transport of the ground state: jzi = exp( zay �
�za)j0i .

3 Lowest-dimensional cases

In order to better understand the quantization scheme in the�nite-dimensional case, let us examine
the simplest situations in which N = 2 and N = 3 (the caseN = 1 yields zero values for everything).

3.1 Two-dimensional case

The measure spaceX is the same as in the previous section : (X; � ) = ( C; d � (z; �z) = 1
� e�j zj2 d2z).

Let us now start out by selecting the two �rst elements of the orthonormal Fock-Bargmann basis ,
namely

� 0(x) = 1 ; � 1(x) = �z: (13)

Then we have,
N (x) = 1 + jzj2 a.e.: (14)

The corresponding coherent states read as

jzi =
1

p
1 + jzj2

[j0i + z j1i ] : (15)

To any integrable function F (z; �z) on C there corresponds the linear operatorAF on C2 in its
matrix form :

AF =
Z

C
d � (z; �z) (1 + jzj2) F (z; �z) jzihzj

=

 
1
�

R
C d2z e�j zj2 F (z; �z) 1

�

R
C d2z e�j zj2 �zF (z; �z)

1
�

R
C d2z e�j zj2 zF (z; �z) 1

�

R
C d2z e�j zj2 jzj2F (z; �z)

! (16)
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In particular, with the choice F (z; �z) = 1 we recover the identity, as expected, whereas forF (z; �z) =
z and for F (z; �z) = �z, we get the projectors

Az =
�

0 1
0 0

�
� a; A �z =

�
0 0
1 0

�
� ay: (17)

They obey the commutation rule

[a; ay] =
�

1 0
0 � 1

�
= � 3; (18)

the third Pauli matrix. For the most general monomial choice F (z; �z) = zu �zv , u; v 2 N, one gets

Azu �zv = u!
�

� u;v � u;v+1

(u + 1) � u;v � 1 (u + 1) � u;v

�
: (19)

Hence, we easily check to what extent this two-dimensional quantization of the complex plane is
degenerate since most of the classical observables go to thenull operator. We should also compare
upper symbol zu �zv of (19) with the lower symbol of the latter :

hzjAzu �zv jzi =
u!

1 + jzj2
��

1 + ( u + 1) jzj2
�

� u;v + z� u;v+1 + �z� u;v � 1
�

: (20)

Like in the standard case, fromq = 1p
2
(z + �z) et p = 1

i
p

2
(z � �z), we �nd that q and p are upper

symbols for the position and momentum operators:

Q � Q2 �
1

p
2

(a + ay) =
1

p
2

�
0 1
1 0

�
=

1
p

2
� 1; (21)

P � P2 �
1

i
p

2
(a � ay) =

1
p

2

�
0 � i
i 0

�
=

1
p

2
� 2; (22)

where we note the appearance of the two Pauli matrices� 1 and � 2 respectively. In consequence,
the self-adjoint operators Q and P obey the spin commutation rule [Q; P ] = i� 3 and realize a
two-dimensional representation of the spin algebra. Theirrespective lower symbols read

hzjQjzi =
q

1 + 1
2(p2 + q2)

; hzjP jzi =
p

1 + 1
2(p2 + q2)

: (23)

As functions of phase-space variables they give rise to surfaces which are displayed in Fig. 1. In this
two-dimensional representation the harmonic oscillator Hamiltonian reduces to a multiple of the
identity : H2 = 1

2

�
P2 + Q2

�
= 1

2 I 2: all quantum states are stationary. For a general Hamiltonian
of the type H = 1

2P2 + V(Q) in which the potential is some (Laurent) seriesV (Q) =
P

i ci Qi we get

the two-level spectrum
n

1
4 + 1

2n

P
n c2n � 1

2n +1 =2

P
n c2n+1

o
. Moreover, the spectra of the position

and momentum operators are both equal to
�

� 1
2

	
, which means for instance that two position

values only, � 1
2 , are accessible to observation within the context of this particular choice of frame,

of course.

3.2 Three-dimensional case

We now deal with the orthonormal set :

� 0(x) = 1 ; � 1(x) = �z; � 2(x) =
�z2
p

2
: (24)
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Figure 1: Behavior in function of z = 1p
2
(q+ ip) of the meanvalueshzjQjzi and hzjP jzi of position

and momentum operators in the two-dimensional quantization case. One should notice the existence
of two peaks illustrating two-level system concerning position and momentum.

Accordingly we �nd

N (x) = 1 + jzj2 +
jzj4

2
: (25)

Coherent states read :

jzi =
1

q
1 + jzj2 + jzj4

2

�
j0i + z j1i +

z2
p

2
j2i

�
: (26)

Position and momentum matrix operators read

Q � Q3 =

0

B
@

0 1p
2

0
1p
2

0 1
0 1 0

1

C
A ; P � P3 = � i

0

B
@

0 1p
2

0
� 1p

2
0 1

0 � 1 0

1

C
A : (27)

Their commutator is given by:

[Q; P ] = i

0

@
1 0 0
0 1 0
0 0 � 2

1

A :

The spectra of Q and P are the same :
n

0; �
q

3
2

o
.

Their respective lower symbols are given by

hzjQjzi =
q + (q2+ p2)

2 q

1 + (q2+ p2)
2 + (q2+ p2)2

8

; hzjP jzi =
p + (q2+ p2)

2 p

1 + (q2+ p2)
2 + (q2+ p2)2

8

: (28)

The Hamiltonian H3 = 1
2

�
P2 + Q2

�
is not any more multiple of the identity :

H =

0

@
1
2 0 0
0 3

2 0
0 0 1

1

A ; (29)
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and its lower symbol is given by

hzjH jzi =
1
2 + 3

2 jzj2 + jzj4

2

1 + jzj2 + 1
2 jzj4

: (30)

4 The N-dimensional case

Let us now consider the generic orthonormal set withN elements:

� 0(x) = 1 ; � 1(x) = �z; : : : � N � 1(x) =
�z(N � 1)

p
(N � 1)!

: (31)

The coherent states read :

jzi =
1

p
N (x)

N � 1X

n=0

zn
p

n!
jni ; (32)

with

N (x) =
N � 1X

n=0

jzj2n

n!
: (33)

Matrix elements of the position operator Q � QN and momentum operator P � PN are given by

QN (k; l ) =
1

p
2

(
p

k � k;l � 1 +
p

k � 1 � k;l +1 ); 1 � k; l � N: (34)

PN (k; l ) = � i
1

p
2

(
p

k � k;l � 1 �
p

k � 1 � k;l +1 ) 1 � k; l � N: (35)

Their commutator is \almost" canonical:

[QN ; PN ] = iI N � iNE N ; (36)

where EN is the orthogonal projector on the last basis element,

EN =

0

B
@

0 : : : 0
...

. . .
...

0 : : : 1

1

C
A :

The appearing of such a projector in (36) is clearly a consequence of the truncation at the N th

level. We shall study the spectra of these operators in the next section.

The corresponding truncated harmonic oscillator hamiltonian is diagonal with matrix elements :

HN (k; l ) =
1
2

(2k � 1 � N� k;N ) � k;l : (37)

SinceH is diagonal, its eigenvalues are trivially 1
2 (2k � 1 � N� N;k ) and are identical to the lowest

eigenenergies of the harmonic oscillator, except for theN th one which is equal to
N � 1

2
instead of

8



N �
1
2

. One should notice that its nature di�ers according to the parity of N : it is degenerate ifN

is even since then
N
2

�
1
2

is already present in the spectrum whereas it assumes the intermediate

value
�

N
2

�
between two expected values ifN is odd.

Let us now consider the mean values or lower symbols of the position and momentum operators.
We �nd:

hzjQjzi = C(jzj)q; hzjP jzi = C(jzj)p; (38)

where the corrective factor

C(jzj) =
1

N (z)

N � 1X

j =1

(jzj)2(j � 1)

(j � 1)!
(39)

goes to 1 atN ! 1 .

Lower symbols of the operatorsQ2, P2 and H are given by:

hzj
�

Q2

P2

�
jzi = A(jzj) � B (jzj); hzjH jzi = A(jzj); (40)

where

A(jzj) =
1

N (z)

NX

k=1

jzj2(k� 1)

(k � 1)!

�
2k � 1 � N� N;k

2

�
;

B (jzj) =
1

N (z)

N � 2X

k=1

jzj2(k� 1)

(k � 1)!
z2 + �z2

2
:

The behavior of these lower symbols in (40) in function of (q; p), with the particular value N = 12,
is shown in Fig. 2. One can see that these mean values are identical, albeit the lower symbol of P2

is obtained from that of Q2 through a rotation by �
2 in the complex plane.

From all these meanvalues we can deduce the product �Q � P, where � Q =
p

hzjQ2jzi � (hzjQjzi )2.
Due to rotational invariance, it is enough to consider its behavior in function of q, at p = 0, as is
shown in Fig. 3 for di�erent values of N , N = 2 ; 5; 10; 15. One can observe that �Q � P = 1=2,
i.e. the product assumes, at the origin of the phase space the minimal value it would have in the
in�nite-dimensional case (with ~ = 1). Note that, for N = 2, the value 1=2 is a supremum (!), and
the latter is reached for almost all values ofz except in the range jzj . 10. For higher values of
N , there exists around the origin a range of values ofjzj, where the product is equal to 1

2 . This
range increases withN as expected since the Heisenberg inequalities are saturated with standard
coherent states (N = 1 ).

Let us �nally consider the behavior in function of jzj of the lower symbol of the harmonic oscillator
Hamiltonian given in Eq. (40). From Figs. 4 and 5 in which are shown respectively the meanvalue
of H at N = 5, and the energy spectrum for di�erent values of N , one can see the in
uence of
truncating the dimension of the space of states.
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1

2

3

4

5

6

7

±30 ±20 ±10 0 10 20 30

q

Figure 3: Behavior of � Q � P in function of q, at p = 0, for di�erent values of N , N = 2 (lowest
curve), 5; 10; 15 (upper curve).

10



±10
±5

0
5

10q
±10

0

10

p

1

1.5

2

2.5

Figure 4: MeanvaluehzjH jzi of the harmonic oscillator hamiltonian as a function of z = 1p
2
(q+ ip)

for N = 5.

0

2

4

6

8

10

12

2 4 6 8 10 12 14

Figure 5: Spectrum of the harmonic oscillator Hamiltonian H in function of N . One clearly sees
the appearance of a degeneracy or an intermediate value instead, according to the parity of N .

11



5 Localization and momentum of the �nite-dimensional quant um
system

We now examine the spectral features of the position and momentum operators Q � QN , P � PN

given in the N -dimensional case by Eqs.(34) and (35),i.e. in explicit matrix form by:

QN =

0

B
B
B
B
B
B
B
B
@

0 1p
2

0 : : : 0
1p
2

0 1 : : : 0

0 1
. . . . . .

...
... : : :

. . . 0
q

N � 1
2

0 0 : : :
q

N � 1
2 0

1

C
C
C
C
C
C
C
C
A

; PN = � i

0

B
B
B
B
B
B
B
B
@

0 1p
2

0 : : : 0

� 1p
2

0 1 : : : 0

0 � 1
. . . . . .

...
... : : :

. . . 0
q

N � 1
2

0 0 : : : �
q

N � 1
2 0

1

C
C
C
C
C
C
C
C
A

:

Their characteristic equations are the same. Indeed,pN (� ) = det ( QN � �I N ) and det (PN � �I N )
both obey the same recurrence equation:

pN +1 (� ) = � �p N (� ) �
N
2

pN � 1(� ); (41)

with p0(� ) = 1 and p1(� ) = � � . We have just to put HN (� ) = ( � 2)N pN (� ) to ascertain that the
HN 's are the Hermite polynomials for obeying the recurrence relation [11]:

HN +1 (� ) = 2 � HN (� ) � 2N HN � 1(� ); H0(� ) = 1 ; H1(� ) = 2 �: (42)

Hence the spectral values of the position operator,i.e. the allowed or experimentally measurable
quantum positions, are just the zeros of the Hermite polynomials! The same result holds for the
spectral values of the momentum operator.

The non-null roots of the Hermite polynomial HN (� ) form the set

ZH(N ) =
n

� � bN
2 c(N ); � � bN

2 c� 1(N ); : : : ; � � 1(N ); � 1(N ); : : : ; � bN
2 c� 1(N ); � bN

2 c(N )
o

; (43)

symmetrical with respect the origin, where
� N

2

�
= N

2 if N is even and
� N

2

�
= N � 1

2 if N is odd;
moreover HN (0) = 0 if and only if N is odd. A vast literature exists on the characterization and
properties of the zeros of the Hermite polynomials, and manyproblems concerning their asymptotic
behavior at large N are still open. Recent results can be found in [12] with previous references
therein. Upper bounds [13] have been provided for� m (N ) and � M (N ) where � m (N ) = � 1(N ) and
� M (N ) = � bN

2 c(N ) are respectively the smallest and largest positive zeros of HN .

� M (N ) � � M (N ) =
p

2N � 2; 8N > 1 (44)

� m (N ) � � E
m (N ) =

p
2N � 2 cos

�
N � 2
2N � 2

�
�

; 8N even (45)

� m (N ) � � O
m (N ) =

p
2N � 2 cos

�
N � 3
2N � 2

�
�

; 8N odd (46)
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However, it seems that the following observation is not known. We have studied numerically the
behavior of the product

$ N = � m (N )� M (N ) (47)

The zeros of the Hermite polynomials have been computed by diagonalizing the matrix of the
position operator QN ; sinceQN is tridiagonal symmetric with positive real coe�cients, we imple-
mented its diagonalization by using the QR algorithm [14]; such a method enabled us to compute
the spectrum of the position operator up to the dimensionN = 106. The respective behaviors of
� m (N ) and � M (N ) are shown in Fig. 6 for N even and odd separately.

Now, it is a well-known property of the classical orthogonalpolynomials that � i +1 (N ) � � i (N ) >
� 1(N ) for all i � 1 if N is odd, whereas� i +1 (N ) � � i (N ) > 2� 1(N ) for all i � 1 if N is even, and
that the zeros of the Hermite polynomials HN and HN +1 intertwine, as is shown in Fig. 7 in the
case of� m (N ) for small values of N .

Furthermore, the asymptotical behaviors of the products of the upper bounds provided by the
equations (44, 45, and 46) read respectively:

� M (N ) � E
m (N ) �

N !1
� �

1
24

� 3

N 2 + O
�

1
N 3

�
; N even (48)

� M (N ) � O
m (N ) �

N !1
2� �

1
3

� 3

N 2 + O
�

1
N 3

�
; N odd (49)

Hence, we see that$ N goes asymptotically to $ e � � for large evenN and to $ o � 2$ e for large
odd N . Therefore, if, at a given N , we de�ne by � N (Q) = 2 � M (N ) the \size" of the \universe"
accessible to exploration by the quantum system, and by� N (Q) = � m (N ) (resp. � N (Q) = 2 � m (N ))
for odd (resp. even)N , the \size" of the smallest \cell" forbidden to exploration by the same system,
we �nd the following upper bound for the product of these two quantities:

� N (Q)� N (Q) � � N =
�

4� m (N )� M (N ) for N even;
2� m (N )� M (N ) for N odd;

� 4�: (50)

However numerical explorations show that this upper bound is not the lowest one. Indeed, consider
the behavior of the product � N , as a function of N , as is given in Fig. 8.

This strictly increasing function clearly goes asymptotically to a limit which we shall name � and
this limit has a value very close to 2� , as is shown in Table 1 where some values of� N up to
N = 106 are given.

Hence, we can assert the interesting inequality for the product (50):

� N (Q)� N (Q) � � � 2� 8N: (51)

13



Figure 6: Bottom : behaviors of the lowest positive zero� m (N ) of the Hermite polynomial of
degreeN for N even and odd separately. Top : behavior of the largest positive zero� M (N ).
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Figure 7: Intertwining of the lowest positive zeros � m (N ) of the Hermite polynomials HN and
HN +1 for small values ofN .
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Figure 8: Behavior of the product � N = � N (Q)� N (Q), as a function of N .
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N � N (Q)� N (Q) 2�
10 4:713054
55 5:774856
100 5:941534
551 6:173778

1 000 6:209670
5 555 6:259760
10 000 6:267356
55 255 6:278122
100 000 6:279776
500 555 6:282020

1 000 000 6:282450 6.2831853

Table 1: Values of � N = � N (Q)� N (Q) up to N = 106. Compare with the value of 2� .

Identical result holds for the momentum, of course :

� N (P)� N (P) � � � 2� 8N: (52)

In order to fully perceive the physical meaning of such inequalities, it is necessary to reintegrate
into them physical constants or scales proper to the considered physical system,i.e. characteristic
length lc and momentum pc as was done at the beginning of Section 2:

� N (Q)� N (Q) � �l 2
c ; � N (P)� N (P) � �p 2

c 8N; (53)

where � N (Q) and � N (Q) are now expressed in unitlc. Realistically, in any physical situation, N
cannot be in�nite: there is an obvious limitation on frequencies or energies accessible to observa-
tion/experimentation. So it is natural to work with a �nite a lthough large value of N , which need
not be determinate. In consequence, there exists irreducible limitations, namely � N (Q) and � N (Q)
in the exploration of small and large distances, and both limitations have the correlation (53).

Let us now suppose there exists, for theoretical reasons, a fundamental or \universal" minimal
length, say lm , something like the Planck length, or equivalently an universal ratio � u = lc=lm � 1.
Then, from � N (Q) � lm and (53) we infer that there exists a universal maximal length lM given by

lM � �� u lc: (54)

Of course, if we chooselm = lc, then the size of the \universe" is lM � 2�l m . Now, if we choose
a characteristic length proper to Atomic Physics, like the Bohr radius, lc � 10� 10m, and for the
minimal length the Planck length, lm � 10� 35m, we �nd for the maximal size the astronomical
quantity lM � 1016m. On the other hand, if we consider the (controversial) estimate size of our
present universeL u = cTu , with Tu � 13 109 years [15], we get fromlp L u � 2�l 2

c a characteristic
length lc � 10� 5m, i.e. a wavelength in the infrared electromagnetic spectrum...
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6 Conclusion

Of course, we should be very cautious about drawing sound physical consequences from the existence
of the inequalities (53). Indeed, one can argue that our scheme of quantization leading to such
inequalities is strongly dependent on the choice of orthonormal states used in constructing the
\quantizer" frame. For that matter, it would be interesting to consider other simple systems which
can be quantized through the same procedure, for instance the motion on a circle like in Ref.[10].
Moreover, the physical interpretation of the inequalities (53) appears to be rather enigmatic : is
it a matter of length standard ? Is it instead related to some universal constraint in dealing with
spatial degrees of freedom ? At the moment, we cannot provideany reasonable answer to these
open questions which certainly deserve a deeper investigation.
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