Statistical modelling in insurance and finance

Sichuan University

July 2016

LOUIS G. DORAY, Ph.D., ASA

UNIVERSITÉ DE MONTRÉAL

Prerequisite course: 1 course in statistics

Reference: Loss Models: from data to decisions

Course objectives: the student will learn the various steps in modelling for problems in P/C insurance
- hypothesize an appropriate model for a data set
- estimate the parameters of the model and variance
- test goodness-of-fit of model to data.

The model can then be applied to calculate premiums and measure impact of policy modifications (deductible, limit, coinsurance)

Preparation to exam C of SOA and CAS
Construction and evaluation of actuarial models.

Do problems (many)!
Plan of course

1. Introduction

2. Functions describing a random variable (r.v.)

3. Measures characterizing a r.v.

4. Classification of distributions

5. Creation of new distributions

6. Estimation of parameters

7. Quality of estimators
1 - Introduction

- Main difference between P/C insurance and life insurance.
 P/C: Property/Casualty ins. (fire, home, automobile...) also called general ins. in UK.
 - Life ins: amount (death benefit) is fixed at policy issue
 P/C ins: claim amount is random.

- Life ins: time until death is random (long-term discount)
 P/C ins: also random but short-term, renewable contracts
 No discounting - Premiums adjusted based on experience of policyholder (e.g., automobile ins).

- P/C ins: amount paid by ins. may be smaller than losses incurred by policyholder.

- Definitions

 - Accident: event leading to a loss by th (policyholder). The th incurs damages potentially covered by his policy.

 - Loss: amount of damages incurred by th following the accident.

 - Claim: amount paid to th following following the accident (may be smaller than loss).
• Why amount paid may be smaller than loss?
 - Loss adjustment expenses
 (amount incurred to determine amount paid, legal fees)
 - Policy modifications
 • Deductible: if loss smaller than deductible, no amount paid; otherwise, amount paid equals loss minus deductible.
 • Limit: if loss exceeds limit, amount paid = limit.
 • Coinsurance: percentage of loss (after deductible and limit) paid by insurer.

Ex: Group dental policy
Currently policy has a deductible of 50 for claim. Investigate:
a) Elimination of deductible to encourage more frequent visits to dentist by users
b) Raising deductible to 100 to reduce premiums.

10 claims chosen at random:
141 16 46 40 351 259 317 1511 107 567
• Parametric models

 Advantages:
 - we can answer questions like elimination of deductables; imposing policy limits
 - calculation of confidence intervals
 - simplicity (1 distribution + 2 parameters).
 - smoothness

 Estimation of parameters
 - joint estimation
 - by interval

 Hypothesis testing.

• Hypothesis

 - loss and amount to be paid are known as accident occurs.
 - in practice, there may be a long delay between time of accident and time of final payment by insurer. The claim could also be paid in many small instalments.
Random variable
- Loss in automobile insurance
- Claim in automobile ins.
- Number of claims in a year by a policyholder (k)
- Total number of claims by all jk in company
- Total claim amounts by all jk in auto. ins.

2- Functions describing a r.v. X

a) Cumulative distribution function (cdf)
\[F_X(x) = \Pr [X \leq x] \]

Properties:
- Non-decreasing
- Continuous to the right
- \(\lim_{x \to -\infty} F_X(x) = 0 \) \(\lim_{x \to \infty} F_X(x) = 1 \)

b) Probability density function (pdf)
\[f_X(x) = \frac{df}{dx} F_X(x) \text{ for continuous r.v.} \]

Properties:
- Positive
- \(\Pr [a < X \leq b] = \int_a^b f_X(x) \, dx \)
 (if X discrete, \(F_X(x) = \sum_{y \leq x} \Pr [X = y] \))

c) Survival function
\[\delta(x) = 1 - F_X(x) \]

d) Hazard rate
\[h_X(x) = \frac{f_X(x)}{\delta(x)} = -\frac{d}{dx} \ln \delta(x) \]

Properties:
- \(h_X(x) \geq 0 \) \(\forall x \)
Fig. 2.1 Empirical distribution function of individual dental loss amounts

Fig. 2.2 Ogive of grouped dental loss amounts

Fig. 2.3 Histogram of grouped dental loss amounts

- **Mode**: value maximizing the pdf \(f_X(x) \) or \(P_X[X=x] \).
 - Mode at 0 or positive

- **Median**: measure of central tendency (symmetric dist.?)
 - Value \(m \) satisfying \(P_X[X \leq m] = \frac{1}{2} \) (if \(X \) continuous, \(m \) unique)

- **Mean**: measure of central tendency (moment matching)
 - \(E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx \) if \(X \) continuous r.v.
 - \(E(X) = \sum_{x} x \cdot P_X[X=x] \) if \(X \) discrete r.v.

 What is \(E(X) \) if \(X \) is a mixed r.v.

- **Variance**: \(\text{Var}(X) = E[X - \mu]^2 = E(X^2) - E^2(X) \).
 - Measure of variability
 - N.B. \(E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx \) if \(X \) continuous
 - \(E[g(X)] = \sum_{x} g(x) \cdot P_X[X=x] \) if \(X \) discrete.

 *If integral or sum does not converge, \(E[g(X)] \) does not exist.

- **\(k^{th} \) moment** (\(k \in \mathbb{N} \)) \(E[X^k] \).

- **Coefficient of variation**: measure of standardized variability, \(\sqrt{\text{Var}(X)} / E(X) \).

- **Coefficient of asymmetry**: \(E[(X-E(X))^3] / (\text{Var}(X))^{3/2} \)

 If equal to 0, symmetric dist.; if > 0, asymmetric to the right.

 Verify: \(E[X \cdot E(X)^2] = E[X^3] - 3E(X^2)E(X) + 2E^3(X) \)

- **Kurtosis**: measure thickness of tails (compared to normal dist.)
 - \(E[(X-E(X))^4] / \text{Var}(X)^2 \).

- **Percentile**: \(f_X(x) > 0 \); for \(0 < p < 1 \), unique \(x_p \) s.t. \(F_X(x_p) = p \).
• Moment generating function $M_x(t)$

$$M_x(t) = E(e^{tx})$$ for all t for which $E(\cdot)$ exists.

$$E[X^k] = \frac{d^k}{dt^k} M_x(t)\bigg|_{t=0}, \quad k = 1, 2, \ldots$$

Since

$$M_x(t) = E\left[\sum_{m=0}^{\infty} \frac{t^m X^m}{m!}\right] = \sum_{m=0}^{\infty} \frac{t^m E(X)^m}{m!}$$

- Find $M_x(t)$ if $X \sim E(\lambda)$.

If X_1, \ldots, X_n are independent r.v.s, s.t. $M_{X_i}(t)$ exists for all i, then for $Y = \sum_i X_i$

$$M_Y(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

if X_i are i.i.d., then $M_Y(t) = (M_{X_i}(t))^n$.

- Proof: ...

- mgf uniquely characterizes a r.v.

 Use this to find dist. of $\sum_i X_i$, $X_i \sim E(\lambda)$.

4- Classification of distributions:

• Complexity of model (number of parameters)

• Shape of distribution (asymmetry, tails, mode).

Complexity of models

Arguments for a simple model

- Few elements to specify
- Model more stable in time

Arguments for a complex model: better fit to data

Parsimony: the simplest model reflecting well the reality should be used.

C. Box: "All models are wrong, but certain are useful".
Class of parametric distributions
- set of distributions where each member is specified by 1 or more parameters.
- Number of parameters is fixed and finite.
- If the values of all parameters are specified, the dist. is completely known.

Scale family:
- let \(a \) be a positive constant.
- A family is closed under a scale transformation if \(Y = aX \) belongs to the same family of dist. as \(X \).
- ex: 1. \(X \sim N(\mu, \sigma^2) \Rightarrow Y \sim N(a\mu, a^2\sigma^2) \)
- 2. \(X \sim \text{Exp}(\theta) \Rightarrow Y \sim \text{Exp}(a\theta) \).

If \(X \) has pdf \(f_X(x) \), then \(f_Y(y) = f_X(y/a) \cdot \frac{1}{a} \).

A scale parameter is such that:
- the parameter is multiplied by \(a \).
- the other parameters are unchanged.

ex: Do the \(N + \text{Exp} \) have a scale parameter?
- \(X \sim \Gamma(\alpha, \beta) \) Scale parameter: \(\alpha \) depends
- The lognormal represents a scale family, w/o scale param.
Change of monetary unit: Can \(\# \) \(\Rightarrow \) US \(\# \)
\[Y = 10.289 \times X \]
• Mixing of distributions

R.V. Y is a mixing of r.v. X₁, ..., Xₖ (k ∈ ℕ) if its cdf is

\[F_Y(y) = a_1 F_{X_1}(y) + a_2 F_{X_2}(y) + \ldots + a_k F_{X_k}(y) \]

where \(0 < a_i < 1 \) and \(\sum_{i=1}^{k} a_i = 1 \)

To model Y when there are two or more subpopulations behaving differently (ex: medical insurance: \(k = 20 \): M + F. car insurance: new drivers, experienced, old).
- it may be difficult to estimate parameters \(a_1, \ldots, a_k \)
- \(k \) could be a parameter itself (compare models with \(k = 20, k = 3 \))
- also called semi-parametric models.
- if all r.v. have the same dist. (e.g. Exp.),
 it is a mixing of Exponential distributions

Continuous mixing
- the limit of the mixing of dist. as \(k \to \infty \)
 is a continuous mixing of distributions.
- let \(\Theta \) \(\in \mathbb{R} \) a r.v. with density \(f_{\Theta} \)
- after realization of \(\Theta \), r.v. \(X \) has conditional density \(f_{\Theta}(x) \).
- the unconditional distribution of \(X \)

\[f_X(x) = \int_{-\infty}^{\infty} f_{X|\Theta}(x|\theta) f_{\Theta}(\theta) d\theta. \]

Ex: If \(X \sim \text{Exp}() \) (\(\lambda = \text{mean} \)) and

\(X|\Theta \sim \text{Exp}(\lambda \Theta) \), then \(X \sim \text{Pareto}(1, \lambda) \).

Proof:
• Length of tails
 - Interesting classification systems, because tails contain information on extreme events.
 - Important for financial health of insurers.
 - Can order distributions according to length of tails: light, heavy, extremely heavy.

Measures of tail length:
 - Existence of moments
 - If $E[X^k]$ exists for all k, light tail (Normal).
 - If $E[X^k]$ exists $\forall k < N$, heavy tail (Student).
 - If $E[X^k]$ does not exist $\forall k$, extremely heavy (Cauchy).
 - Existence of mgf
 - If mgf does not exist, heavier tail.
 - Limit of ratio of pdf

\[
\lim_{n \to \infty} \frac{f(x)}{g(x)} = \begin{cases}
\infty & \text{if } f \text{ has lighter tail} \\
0 & \text{if } g \text{ has lighter tail} \\
\text{const: similar behavior} & \text{if } g \text{ has heavier tail}
\end{cases}
\]

Proposition: If $g(x) > 0$ and $\lim_{n \to \infty} \frac{f(x)}{g(x)} = \infty \in [0, \infty)$,

\[
\lim_{n \to \infty} \frac{S_n(x)}{S_n(x)} = 1
\]

Ex: 1 $\Gamma(2, \theta)$ lighter right tail than $Exp(\theta)$.

Ratio of pdf.

2. With ratio of survival functions, compare right tail of $\text{Bern}(\alpha=1, \theta)$ with Pareto $(\alpha=1, \theta)$.

\[
P_B(n) = \frac{\theta^n}{\theta^n + n} \quad P_P(n) = \frac{\theta}{\theta + n}.
\]
- hazard rate: increasing vs decreasing
 non-shortfall, shortfall

5. Creation of new distributions
a) Multiplication by a positive constant
 \[Y = ax \quad , \quad a > 0 \] Change of scale.
 \[F_Y(y) = F_X(y/a) \]

b) Raising to a power
 \[Y = x^\tau \quad , \quad \tau \in \mathbb{R} \quad , \quad x > 0. \]
 \[F_Y(y) = P_X(x \leq y) = \begin{cases} 1 & \text{if } \tau = 0 \\ P_X \left(\frac{y}{x} \right) & \text{if } \tau > 0 \\ 1 - P_X \left(\frac{y}{x} \right) & \text{if } \tau < 0. \end{cases} \]
 \[\tau > 0 : \text{transformed dist.} \]
 \[\tau = -1 : \text{inverse dist.} \]
 \[\tau < 0 : \text{transformed inverse dist.} \]

Ex. \(X \sim \text{Exp}(1) \)
Distribution of \(Y = X^\tau \).

c) Exponentiation \(Y = e^X \)
 cdf of \(Y \)?
 1. \(X \sim \text{Normal} \Rightarrow Y \sim \text{LN} \)
 2. \(X \sim \text{Exp}(1) \Rightarrow Y \sim \text{Pareto} (\alpha = 1, \theta = 1) \).

d) Slicing: join 2 or more jdf.
 \[f_X(x) = \begin{cases} a_i f_i(x) & \text{if } c_i \leq x < c_{i+1} \\ a_k f_k(x) & \text{if } c_{k-1} < x < c_k, \end{cases} \]
 where \(f_i(x) \) is a jdf, \(\sum_{i=1}^{k} a_i = 1 \)
"Transformed Beta" Family of Distributions

Two parameters
- Lognormal

Three parameters
- Inverse transformed gamma
- Transformed gamma

Four parameters
- Transformed beta

Inverse gamma
- Inverse Weibull
- Inverse Burr
- Inverse Pareto
- Loglogistic

Gamma
- Weibull
- Burr
- Pareto

Mean and higher moments always exist

Mode > 0

Mean and higher moments never exist

Mode = 0

Special case
Limiting case (parameters approach zero or infinity)

Figure 5.4 Distributional relationships and characteristics.

N.B. 1- f might not necessarily be continuous.
2- k, c₀, ..., cₖ are usually known.
3- Interpretation similar to mixing

Ex: Positive return vs negative return of a stock.

\[f_X(x) = \begin{cases}
0.01 & \text{if } 0 < x \leq 10 \\
0.05 & \text{if } 10 < x \\
2x & \text{if } x > 10.
\end{cases} \]

Join \(U[0,10] \) with \(g_X(x) = e^{-(x-10)}, x > 10 \)

(multiply by \(\frac{10}{11} \))

6- Estimation of parameters

A- Method of moments

Equate the first \(k \) empirical moments to those of the theoretical distribution \(X_1, ..., X_n \) \(i.i.d. \) from parameter \(\theta \in \mathbb{R}^d \).

Solve system of equations

\[E(X_i^k) = \frac{1}{m} \sum_{i=1}^{m} X_i^k, \quad k = 1, ..., d. \]

Difficulty with large values of \(k \) (extreme values!)
you could use negative or fractional moments.

Ex: 1- \(X_1, ..., X_n \) \(i.i.d. \) \(\text{Exp}(\theta) \) moment estimator?

... of moment estimator?

2- \(X_i \) \(i.i.d. \) \(\text{LN}(M, \sigma^2) \).

3- \(X_i \) \(i.i.d. \) \(\text{Gamma}(\alpha, \beta) \).
B- Percentile matching

\[X_1, \ldots, X_n \text{ i.i.d. with same dist. } F. \]

\[F \text{ depends on } \theta \in \Theta. \]

Objective: estimate parameters using a percentile of distribution \(F \) equal to percentiles of empirical dist. \(F_n(x) \)

Method: find \(j \) percentiles representing well the dist. \(F \).

例: for \(j = 2 \), use 25th and 75th percentiles.

\[F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x). \]

The empirical cdf could be smoothed.

Smoothing: order sample: \(X_1, \ldots, X_n \)

Interpolation between 2 observations:

\[\hat{X}_{ij} = (1-h)X_{(i)} + hX_{(i+1)} \]

Find the 25th percentile with 5 obs. \((1.1, 1.75, 2.3, 3.7, 4.2) \)

例: \(X \sim \text{Pareto} (\alpha = 1, \theta). \)

\[F_x(x) = 1 - \frac{x}{\theta} \]

Find \(\hat{\theta} \) with median matching.

C- Maximum likelihood est (MLE)

Advantages of A and B: easy to find estimates.

Problems with A and B:

- does not use all the information available
- arbitrary decision for choice of percentiles
- moments may not exist

MLE will correct these problems.

- give dist. of \(g(\theta). \)
\[X_1, \ldots, X_n \text{i.i.d.} \quad \theta \in \mathbb{R}^d. \]

we observe \(\gamma_1, \ldots, \gamma_n \).

Likelihood function
\[L(\theta) = \prod_{i=1}^n f_{X_i}(\gamma_i; \theta) \]

Find \(\hat{\theta} \) maximizing \(L(\theta) \)

Log likelihood function
\[l(\theta) = \ln L(\theta) = \sum_{i=1}^n \ln f_{X_i}(\gamma_i; \theta). \]

Ex: \(X_1, \ldots, X_n \) i.i.d. \(\text{Exp}(\theta). \) \(\hat{\theta} \) MLE

7. Quality of estimators:
- Performance of estimators
- Can we compare them?
- Measures permitting this

i) Bias: on average, does the estimator give the good value?

Definition: The bias of an estimator is equal to \(E(\hat{\theta}) - \theta \)

Def.: An estimator is unbiased if its bias equals 0 for all values of \(\theta \).
Def.: An estimator is asymptotically unbiased if \(\lim_{m \to \infty} E(\hat{\theta}_m) = \theta \) for all \(\theta \).

ii) Consistency
An estimator is consistent if, for \(\forall \delta > 0 \) and \(\forall \theta \)
\[\lim_{m \to \infty} P_n[|\hat{\theta}_m - \theta| > \delta] = 0. \]

If \(\hat{\theta}_m \) is asymptotically unbiased and its variance tends to 0, it is consistent.
Mean quadratic error. avg dist. between estimator of parameter
\[\text{MAE} = E[(\hat{\theta}_m - \theta)^2] = \text{Var}(\hat{\theta}_m) + (E[\hat{\theta}_m] - \theta)^2. \]

Ex. \(X_1, \ldots, X_n \sim \text{i.i.d. } \text{U}[0, \theta]. \)
Estimate \(\hat{\theta}_m \) by MLE.
Study properties of \(\hat{\theta}_m \).

PROPERTIES of MLE

Under certain regularity conditions
1. The probability that \(\ell(\theta) = 0 \) has a solution tends to 1 as \(n \to \infty \).
2. \(\sqrt{n} (\hat{\theta}_m - \theta) \xrightarrow{d} N(0, I^{-1}(\theta)) \) Min. variance estim.

where \(I(\theta) = -E(\frac{d^2}{d\theta^2} \ln f(x|\theta)) \) is the information m \(\theta \).

The expected information on \(\theta \) often estimated with the observed information calculated from the sample.

Method of statistical differentials: dist. of \(g(X) \).

\(X_\infty \): random vector of dimension \(g \).
\(g: \mathbb{R}^\theta \to \mathbb{R} \) s.t. \(g' \) exists at \(\theta \).

If \(\sqrt{n} (X_m - \theta) \xrightarrow{d} N(0, \Sigma) \), then
\[\sqrt{n} \left(g(X_m) - g(\theta) \right) \xrightarrow{d} N(0, g'(\theta)\Sigma g(\theta)). \]

Particular case: \(\theta = 1 \).

Examples.
Central limit theorem

Let \(X_1, \ldots, X_n \) be iid r.v. with \(E(X_i) = \mu \) and \(\text{Var}(X_i) = \sigma^2 \), then

\[
\frac{n \sum X_i - n \mu}{\sigma / \sqrt{n}} \xrightarrow{d} N(0,1).
\]