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ABSTRACT

In this paper, we develop a method to estimate the two parameters of the
discrete stable distribution. By minimizing the quadratic distance between
transforms of the empirical and theoretical probability generating functions,
we obtain estimators simple to calculate, asymptotically unbiased and nor-
mally distributed. We also derive the expression for their variance-covariance
matrix. We simulate several samples of discrete stable distributed datasets
with different parameters, to analyze the effect of truncation on the right tail
of the distribution.

1 Introduction

The discrete two-parameter stable distribution introduced by Steutel and
van Harn in 1979 can be obtained as a certain mixture of Poisson distribu-
tions. It allows skewness and a heavy right tail and has many interesting
mathematical properties. However, the lack of a closed form expression for
the probability mass function makes it difficult to estimate its parameters,
and to compute probabilities or quantiles and has been a major drawback to
its use by practitioners.

When no explicit expression for the probability function exists, an estima-
tion method like maximum likelihood can not be used. We will develop an al-
ternative estimation procedure based on minimizing numerically the quadratic
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distance between the empirical and theoretical probability generating func-
tions. Using the classical linear regression model, we study the properties
of the estimators, such as their consistency and asymptotic normality. Nu-
merical examples are provided, using Devroye’s (1993) simulation method to
generate observations from the discrete stable distribution. We observe that
the bias of the estimators is little affected by truncation of observations in
the right tail.

The paper is organized as follows. In section 2, we review some properties
of the discrete stable distribution and in section 3, some statistical results
used later. We define our model, give the algorithm and obtain the aymp-
totic properties of the estimators in section 4. Using simulations, we present
numerical examples to illustrate the estimation method in section 5 and give
some recommendations for the algorithm. Finally, we draw some conclusions.

2 Properties of the distribution

Steutel and van Harn (1979) introduced the discrete stable distribution
for integer valued random variables (the discrete stable family), and analyzed
some of the properties of this distribution (see also Steutel and van Harn
(2004)); we review them briefly here.

Let X be a discrete random variable taking values on some subset of the
non-negative integers {0, 1, ...}; its probability generating function (pgf) is
defined as

PX(z) = E(zX) =
∞
∑

i=0

piz
i, where pi = P [X = i].

For a discrete stable random variable X with parameters α ∈ (0, 1] and
λ > 0, its pgf is given by

PX(z) = exp[−λ(1 − z)α], |z| ≤ 1.

With α = 1, we obtain the pgf of a Poisson(λ) distribution,

PX(z) = exp[λ(z − 1)], |z| ≤ 1, λ > 0.

a) Stability of a random variable
A random variable X is stable if for X1 and X2, two independent random

variables with the same distribution as X, and any positive constants a and
b, the equality

aX1 + bX2
D
= cX + d

holds for some positive constant c and d ∈ R, where the symbol
D
= means

equality in distribution. The random variable is strictly stable if this equation
holds with d = 0 for all choices of a and b.
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Stability of a random variable means its shape is unchanged under summa-
tions of the above type. Examples of stable distributions include the normal,
Cauchy and Lévy distributions.

b) Compound Poisson distribution
The discrete stable random variable can be represented as

X
D
= M1 + M2 + . . . + MY ,

where Y ∼ Poisson(λ), Y is independent of Mi, and the Mi’s are i.i.d. random
variables following a Sibuya (see Sibuya (1979)) distribution with parameter
α and pgf

PMi
(z) = 1 − (1 − z)α.

See also Christoph and Schreiber (2000) for properties of the Sibuya(α) dis-
tribution. Hence the discrete stable distribution is a compound Poisson dis-
tribution.

Pakes (1998) and Bouzar (2002) presented some distributions derived from
the discrete stable distribution, such as the discrete Linnik distribution.

c) Mixed Poisson
Devroye (1993) showed that a discrete stable random variable with pa-

rameters λ and α is a conditional Poisson random variable with parameter
λ1/αSα,1, where Sα,1 follows a continuous positive stable distribution with
parameter α and Laplace transform equal to

E(e−sSα,1) = e−sα

, s > 0.

Sα,1 can be generated by the method given by Kanter (1975),

Sα,1
D
=

(

sin((1 − α)πU)

E × sin(απU)

)(1−α)/α (
sin(απU)

sin(πU)

)1/α

,

where U ∼ Uniform(0,1), E ∼ Exponential(1), and U and E are independent.
Note that for α = 1, Sα,1 becomes the degenerate distribution with mass at
x = 1 and Laplace transform equal to e−s, s > 0.

This algorithm will be used in section 5 to generate observations from the
discrete stable distribution.

d) Infinite divisibility
A discrete stable random variable X is infinitely divisible since its pgf

PX(z) can be written as

PX(z) = exp[λ(G(z) − 1)],
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where λ > 0 and G(z) = 1 − (1 − z)α is the pgf of a Sibuya(α) distribution
with G(0) = 0 (see Steutel and van Harn (1979)).

e) Discrete self-decomposability
The discrete stable distribution is self-decomposable since its pgf satisfies

PX(z) = PX(1 − α + αz)Pα(z), |z| ≤ 1, α ∈ (0, 1),

where Pα(z) is a probability generating function. Discete self-decomposable
distributions are unimodal. See Steutel and van Harn (1979) for a necessary
and sufficient condition to have discrete self-decomposability.

f) Probabilities
Expanding the pgf PX(z) of the discrete stable random variable X in a

power series, Christoph and Schreiber (1998) obtain for pk the series

pk = (−1)ke−λ
k
∑

m=0

m
∑

j=0

(

m
j

)(

αj
k

)

(−1)j λm

m!
.

However, this formula is difficult to use in practice, since it grows very fast in
length as k increases.

In figure 1, we evaluated the expression for the probability function of the
discrete stable distribution with various values of α and λ to see the effect of
the parameters on the shape of the probability function.

g) Moments
For α ∈ (0, 1), the moment E(Xr) is finite only for 0 ≤ r < α < 1. For

r > α, α < 1, the moments E(Xr) do not exist (see Christoph and Schreiber
(1998)). For α = 1, the Poisson distribution, all moments exist.

3 Statistical Review

3.1 Moments of multinomial distribution

Johnson, Kotz and Balakrishnan (1997) give some properties of the multi-
nomial distribution. Let f1, . . . , fk be the random variables denoting the num-
bers of occurrences of k mutually exclusive events in n independent trials,
with corresponding probability of occurrence of an event in any trial equal to
p1, . . . , pk, with p1 + . . .+ pk = 1. The joint distribution of f1, . . . , fk is multi-
nomial (n, p1, . . . , pk) and the marginal distribution of fi is binomial (n, pi);
we have E(fi) = npi, V ar(fi) = npi(1 − pi) and Cov(fi, fj) = −npipj.
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3.2 Empirical probability generating function

Nakamura and Pérez-Abreu (1993) define the empirical probability gen-
erating function following the idea of Press (1972) who defines empirical char-
acteristic functions.

Let X1, . . . , Xn be a random sample from a discrete distribution over
0, 1, 2, ..., with probabilities pk, k = 0, 1, 2, .... The empirical pgf, equal to

Pn(z) =
1

n

n
∑

i=1

zXi , is estimated by
h
∑

j=0

nj

n
zj

for |z| ≤ 1, where nj is the number of observations in the sample equal to j
(observed frequency), and h is the largest observation. Pn(z) is an estimator
of the theoretical pgf

PX(z) = E(zX) =
∞
∑

k=0

pkz
k, |z| ≤ 1.

Rémillard and Theodorescu (1991) have proved that, as n → ∞,
supz∈(0,1]|Pn(z) − PX(z)| converges to zero almost surely, i.e.

P
(

lim
n→∞

supz∈(0,1] |Pn(z) − PX(z)| = 0
)

= 1.

For a discrete random variable X, with a fixed z0 where |z0| ≤ 1, we have

E(Pn(z0)) =
∞
∑

j=0

E(fj/n)zj
0 =

∞
∑

j=0

pjz
j
0 = PX(z0).

Evaluated at z0, the empirical pgf is an unbiased estimator of the theoretical
pgf. By the central limit theorem, the standardized empirical pgf evaluated
at z0 will converge to a standard normal distribution N(0, 1).

In section 4, to estimate the two parameters λ and α of the discrete stable
distribution, we minimize the quadratic distance between its empirical and
theoretical pgf.

4 Estimation of the parameters

4.1 The model

In order to define the linear regression model, we define the function
g(x) = ln(− ln(x)); we obtain

g(PX(z)) = ln [− ln (PX(z))]
= ln [λ(1 − z)α]
= ln λ + α ln (1 − z)
= β + α ln (1 − z),

5



where β = ln λ. It is a linear function of the parameters β and α. We can
define a linear model in terms of parameters β, α, and an error term ǫ, with
the empirical probability generating function.

The model is the following:

g(Pn(zs)) = g(PX(zs)) + ǫs, s = 1, 2, ..., k
= β + α ln (1 − zs) + ǫs,

where z1, z2, ..., zk are k selected points in the interval (−1, 1).
From the model, we get

ǫs = ln [− ln Pn(zs)] − β − α ln (1 − zs), s = 1, 2, ..., k.

Using the method of statistical differentials, we have, asymptotically,

E(ǫs) ≃ ln[− ln E(Pn(zs))] − ln [− ln PX(zs)]
= ln [− ln PX(zs)] − β − α ln (1 − zs)
= 0.

With vector and matrix notation, the model becomes

Y = Xθ + ǫ,

where

Yk×1 =
(

ln (− ln Pn(z1)) ln (− ln Pn(z2)) ... ln (− ln Pn(zk))
)

′

Xk×2 =











1 ln (1 − z1)
1 ln (1 − z2)
... ...
1 ln (1 − zk)











θ2×1 =
(

β α
)

′

ǫk×1 =
(

ǫ1 ǫ2 ... ǫk

)

′

.

Let us represent the asymptotic variance-covariance matrix of ǫ by Σ =
V ar(ǫ) = E(ǫǫ′), since E(ǫ) → 0 as n → ∞. In subsection 4.2, we derive the
expression for Σ, which will be a function of the unknown parameters β and
α.
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4.2 The variance-covariance matrix

By the method of statistical differentials, we have, as n → ∞,

V ar(ǫs) = V ar[ln (− ln Pn(zs)] = (1/ lnPX(zs))
2 × V ar[− ln Pn(zs)]

where V ar[− ln Pn(zs)] = (1/PX(zs))
2 × [PX(zs · zs) − PX(zs) · PX(zs)],

so that the asymptotic variance of ǫs is given by

V ar(ǫs) =
[PX(zs · zs) − PX(zs) · PX(zs)]

[PX(zs) lnPX(zs)]2

where s = 1, 2, ..., k.
Similarly, we can find the asymptotic covariances of the error terms,

Cov(ǫr, ǫs) = Cov[ln(− ln Pn(zr)), ln(− ln Pn(zs))], for r 6= s

=
[PX(zr · zs) − PX(zr) · PX(zs)]

[PX(zr) ln PX(zr)][PX(zs) lnPX(zs)]
.

These terms can be estimated with Pn(·) replacing PX(·).
We have the expressions to evaluate all the elements of the asymptotic

variance-covariance matrix Σ. Let us define the matrix Σ∗ = nΣ. These
variance and covariance elements are also given by the matrix W in Theorem
3.5 of Rémillard and Theodorescu (2001).

4.3 Initial values of the parameters

To estimate the parameter vector θ, we first need to calculate initial values
of the parameters, denoted θ̂0 = (β̂0, α̂0)

′, where β̂0 = ln λ̂0, using either of
the following two methods.
Method 1. By replacing Σ by the identity matrix, we obtain a consistent
estimator of the parameter vector θ,

θ̂0 = (X ′X)−1X ′Y.

However, it is a less efficient estimator of θ than the weighted version one
given in subsection 4.4.
Method 2. See Rémillard and Theodorescu (2001).

Since Pn(z0)
P−→ PX(z0), as n → ∞, and g(x) = ln x is bounded and

continuous for |z0| ≤ 1, then ln(Pn(z0))
P−→ ln(PX(z0)) (see Roussas (1997)).

We can therefore estimate ln(PX(z0)) by ln(Pn(z0)). Using two distinct
points z1 and z2, we obtain two equations in two unknowns:

ln Pn(z1) = −λ(1 − z1)
α
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ln Pn(z2) = −λ(1 − z2)
α.

Solving this system of equations, we obtain the estimators

α̂0 =
ln [ln(Pn(z1))/ ln(Pn(z2))]

ln
(

1−z1

1−z2

) ,

and

λ̂0 = − ln(Pn(z1))

(1 − z1)α0

.

In order to get good initial values for the two parameters, we should select
the two values of z far apart. A more general version based on q points is
also given in their paper. The estimator can be viewed as a moments-type
estimator which was introduced in Press (1972).

4.4 The algorithm

The quadratic distance estimator (QDE) of the parameter vector θ =
(β, α)′, denoted by θ̂, is obtained by minimizing the quadratic form

(Y − Xθ)′Σ−1(Y − Xθ).

with respect to θ. Explicily, θ̂ can be expressed as

θ̂ = (X ′Σ−1X)−1X ′Σ−1Y. (4.1)

However, since Σ is a function of pi and therefore of the parameters, the
following iterative algorithm must be used to evaluate θ̂.
1. Calculate the initial value of θ̂0 = (β̂0, α̂0), using one of the methods of
subsection (4.3).
2. With the estimated values of the parameters, estimate the probabilities pi

using the series expansion of the pgf in terms of z

PX(z) = exp[−λ(1 − z)α] =
∞
∑

i=0

piz
i.

3. Estimate the variance-covariance matrix Σ using the estimated values of
pi from step 2 and the formulas of section (4.2) for V ar(ǫs) and Cov(ǫr, ǫs).
4. Reestimate λ̂ and α̂ from equation (4.1).
5. Redo steps 2, 3 and 4 to estimate new values for pi, Σ and θ̂, to the level
of accuracy desired.

The estimator of λ will be λ̂ = eβ̂ , with variance equal to e2βV ar(β̂). Note
that in the formulas for V ar(ǫs) and Cov(ǫr, ǫs), we could also estimate pi and
pj by fi/n and fj/n. Only one iteration is then required.
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4.5 Properties of the estimator

Luong and Doray (2009) studied the asymptotic properties of the quadratic
distance estimator θ̂. They showed that:
1. θ̂ is a consistent estimator and is aymptotically unbiased.
2.

√
n(θ̂−θ) has an asymptotic normal distribution with mean 0 and variance-

covariance matrix (X ′Σ∗−1X)−1.
3. For certain parametric families, θ̂ has high efficiency if the score function
can be approximated by linear combinations of zX

1 , . . . , zX
k using the mean

square error criterion.
4. A simple goodness-of-fit statistic for testing the model is

n(Y − Xθ̂)′Σ̂−1(Y − Xθ̂),

which converges to a χ2
k−2 distribution, where θ̂ is the QDE given by (4.1).

Comparing our quadratic distance method to the weighted L2-distance
method of Marcheselli, Baccini and Barabesi (2008), it can be viewed as
based on a form which is a discretized version. The quadratic form of our
discretized version with appropriate weights leads to test statistics with a chi-
square distribution across the composite hypothesis; however, no numerical
integrations are required, which make the method easy to apply in practice.
These weights are based on the variances and covariances of the empirical
probability generating function at various points. The weights of the con-
tinuous version of the L2 method do not take into account the covariance
structure.

5 Numerical Examples

Using the algorithm mentioned in section 2c), we generated samples of
discrete stable random variables and used the estimation method developed
in section 4 to analyze the effects of the choice of points zs and of truncating
the sample, on the bias of the estimators.

5.1 Selection of the points z

We first generated 5000 observations from the discrete stable distribution
with parameters λ = 1 and α = 0.9. With those parameter values, the
distribution is not too heavy-tailed. We wanted to determine the number of
points k and the values of the points zs, |zs| ≤ 1, s = 1, . . . , k we should use
to calculate the QDE θ̂.

We considered the following values:
A- k = 19 (no negative values)
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z = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65,
0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

B- k = 18
z = {−0.9,−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9}

C- k = 10
z = {−0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 0.9}

D- k = 9 (no negative values)
z = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

E- k = 4
z = {−0.9,−0.3, 0.3, 0.9}

F- k = 2
z = {−0.5, 0.5}

G- k = 2
z = {−0.9, 0.9}

In case A, at the second iteration, because the selected values of z are too
close, the variance-covariance matrix Σ is singular and its inverse does not
exist (rank(Σ)= 12). The same thing happens in case B (rank(Σ)=15), and
in case D (rank(Σ)=8). In these situations, we use the pseudo-inverse (see
Golub and Van Loan (1989)) of Σ to obtain the results. Those results have
been marked with a ∗ in Table 1.

The algorithm converged in only 2 iterations, except when we had to
use the pseudo-inverse of Σ, which made the calculations much more time-
consuming. Since the relative errors of the parameters do not decrease much
with increasing value of k, it is suggested not to use too many values for z.
On the other hand, using only 2 values for z may cause a large bias for the
estimators of λ. See F and G in Table 1.

We therefore recommend the choice of C (k = 10) or E (k = 4), because
the relative errors are smaller and the calculation speed is much faster.

Using more points for zs does not change much the estimated value of Σ.
In case B, we obtain

V ar(θ̂) =

(

0.000251019 0.0000283142
0.0000283142 0.000034218

)

;
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Table 1: Effect of the selection of the points z

Values of z QDE relative error
A∗ α̂ = 0.916731 1.859%

λ̂ = 0.997756 -0.224%
B∗ α̂ = 0.91825 2.028%

λ̂ = 0.99742 -0.258%
C α̂=0.916447 1.827%

λ̂ =0.996336 -0.366%
D∗ α̂ = 0.916731 1.859%

λ̂ = 0.997725 -0.227%
E α̂=0.914694 1.633%

λ̂=0.996986 -0.301%
F α̂ =0.910087 1.121%

λ̂=0.99298 -0.707%
G α̂=0.910871 1.208%

λ̂= 0.987717 -1.228%

in case C,

V ar(θ̂) =

(

0.000251444 0.0000288046
0.0000288046 0.0000354222

)

,

and in case E,

V ar(θ̂) =

(

0.00025702 0.000029364
0.000029364 0.0000388233

)

.

5.2 Effect of truncation

When the dataset has some extreme values, truncating it speeds up the
calculations of the QDE.

We used the parameters α=0.4 and λ=4.5 to generate samples of discrete
stable random variables with different sample sizes. The samples contain
some very large values (the largest value with n = 2000 is 446,630,588; it is
47,287,674 with n = 1000, 1.24×108 with n = 500 and 149,289 with n = 100).

Table 2 contains the QDE of α and λ. To calculate them, we used k = 4
and z = {−0.9,−0.3, 0.3, 0.9}.

In Tables 3 to 6, we compare the effect of truncating different percentages
of the largest observations on the relative errors of the parameters. Note that

11



Table 2: Estimates and standard errors for α and λ (z ∈ C)

n α̂ (s.e.) λ̂ (s.e.)

2000 0.41506 (0.00896627) 4.63049 (0.133835)

1000 0.383514 (0.0190303) 4.32642 (0.205090)

500 0.380229 (0.014749) 4.24766 (0.179035)

100 0.39524 (0.0299940) 4.05186 (0.340105)

Table 3: Effect of truncation (n=2000)

Truncation QDE relative error
none α̂ =0.41506 3.765%

λ̂ =4.63049 2.90%
8% α̂= 0.424454 6.11%

λ̂=4.55938 1.320%
15% α̂=0.438582 9.646%

λ̂=4.49284 -0.159%
20% α̂=0.450093 12.523%

λ̂=4.44256 -1.276%

at the same percentage of truncation, the absolute value of the relative error
of estimator λ̂ increases when the sample size decreases. Also notice that the
sum of the absolute relative error of α̂ and λ̂ increases when the percentage
of truncation increases.

After using many different truncation percentages to estimate the param-
eters, we conclude that when it is less than 15% and the sample size n ≥ 500,
the relative errors of the parameters will be less then 10%.

6 Conclusion

Minimizing the quadratic distance between the empirical and theoretical
probability generating function is a powerful technique to estimate the param-
eters of a discrete distribution when no explicit expression for its probability
function exists.

For the discrete stable distribution, the estimators we obtained are con-
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Table 4: Effect of truncation (n=1000)

Truncation QDE relative error
none α̂ =0.383514 -4.122%

λ̂ =4.32642 -3.857%
9% α̂= 0.398745 -0.314%

λ̂=4.34436 -3.459%
15% α̂=0.410567 2.642%

λ̂=4.18573 -6.984%
20% α̂=0.421705 5.426%

λ̂=4.1342 -8.129%

Table 5: Effect of truncation (n=500)

Truncation QDE relative errors
none α̂ =0.380229 -4.943%

λ̂ =4.24766 -5.608%
10% α̂= 0.397106 -0.724%

λ̂=4.15322 -7.706%
15% α̂=0.406938 1.735%

λ̂=4.10246 -8.834%
20% α̂=0.417944 4.486%

λ̂=4.04903 -10.022%

Table 6: Effect of truncation (n=100)

Truncation QDE relative errors
none α̂ =0.39524 -1.19%

λ̂ =4.05186 -9.959%
10% α̂= 0.414054 3.515%

λ̂=3.95739 -12.058%
15% α̂=0.42508 6.27%

λ̂=3.90667 -13.185%
20% α̂=0.437482 9.371%

λ̂=3.85335 -14.37%
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sistent, asymptotically unbiased and normally distributed, with a variance-
convariance matrix easy to calculate .

We simulated several samples of discrete stable random variables with
different parameter values. We analyzed the effect of the choice of values of
zs, s = 1, . . . , k on the estimated parameters, and concluded that k = 4 or 10
is a good choice since the bias was smaller and the calculations were faster.
When the percentage of data truncation was less than 15% in the right tail
and the sample size n greater than 500, the bias of the QDE was small.

A method analogous to the one developed in this paper for the discrete
stable distribution could be applied to the discrete Linnik (DL) distribution
with pgf (see Bouzar (2002))

P (z) =

{

[1 + λ(1 − z)γ/β]−β for β > 0
exp[−λ(1 − z)γ ] for β = ∞,

since the DL distribution also does not possess a simple form for its proba-
bility function. The discrete stable distribution is a limiting case of the DL
distribution.

Minimizing the distance between the empirical and theoretical pgf’s with
a non-linear least-squares method would yield consistent estimators, with an
asymptotic normal distribution. However, no transformation of the pgf can
give a linear function of the 3 parameters for the DL distribution, contrarily
to the discrete stable distribution where we used the log-log transformation;
the expression for the variance-covariance matrix of the QDE would then be
more complicated. It would also be more difficult to find initial values for the
parameters.
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Figure 1: Probabilities with α=0.4 and different λ’s
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