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Abstract. In this paper, we analyse the dynamics encoded in the spectral sequence (Er , dr )

associated with certain Conley theory connection maps in the presence of an ‘action’ type
filtration. More specifically, we present an algorithm for finding a chain complex C and
its differential; the method uses a connection matrix 1 to provide a system that spans Er

in terms of the original basis of C and to identify all of the differentials dr
p : E

r
p→ Er

p−r .
In exploring the dynamical implications of a non-zero differential, we prove the existence
of a path that joins the singularities generating E0

p and E0
p−r in the case where a direct

connection by a flow line does not exist. This path is made up of juxtaposed orbits of the
flow and of the reverse flow, and proves to be important in some applications.

1. Introduction
The role played by algebraic-topological tools in the study of dynamical systems has
always been quite significant. This is exemplified by classical topics such as Lusternik–
Schnirelmann theory and Morse theory, as well as by more recent advances such as the
theory developed by Conley [Co].

A key concept in Conley’s theory is the notion of Morse decomposition; this provides,
by means of appropriate attractor–repeller pairs, a decomposition of an invariant set inside
a flow into smaller and smaller components. The basic idea is that if one can understand
the smallest invariant sets in the flow, then one can proceed to investigate slightly more
complex ones consisting of attractor–repeller pairs that are given by a pair of invariant sets
of the first type together with all the flow lines joining them. The process can then be
continued to deal with invariant sets of the next level of complexity, and so on, by taking
into account ‘longer’ and ‘longer’ flow lines.

From an algebraic-topological point of view, this process bears a strong resemblance
to that which is encoded algebraically by the concept of spectral sequence. After
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Leray introduced them in the 1950s, spectral sequences have been used extensively in
homological algebra, algebraic topology and geometry as an efficient tool for computation.
One version of this concept is defined when one has a chain complex (C, ∂) endowed with
an increasing filtration F pC so that ∂(F pC)⊂ F pC (here we assume that F−1C = 0).
The associated spectral sequence is a (generally infinite) sequence of chain complexes
(Er , dr ) so that, roughly, each successive stage contains information about longer and
longer parts of the differential: the differential d0 at the first stage in the complex is the
part of ∂ which does not decrease filtration, while d1 concerns the part of ∂ which reduces
filtration by no more than 1, and so on. Moreover, H(Er , dr )= Er+1.

The two points of view come together in the presence of a flow with an associated
Lyapunov function or action functional which provides an appropriate filtration. The
simplest such case is that of negative gradient flow associated to a Morse function on a
finite-dimensional manifold, where the level sets of the function provide a filtration of
the associated Morse complex. More refined spectral sequences appear in Morse theory;
see [C3]. See also [BaC] for spectral sequences in the context of Floer theory. The key
point here is that these spectral sequences are not merely computational tools, but are also
interesting objects in themselves: their higher differentials encode algebraically significant
information on ‘long’ trajectories of the system. Therefore, it is important to gain as
deep an understanding as possible of the algebra–geometry dictionary in this setting. The
purpose of this paper is precisely to start exploring this issue systematically.

We address two main issues. The first concerns the detection of cycles. More precisely,
in practice, the generators of the complex C mentioned above are very specific: they are
singularities in the Morse case (or periodic orbits in the Floer case). The domain Er of dr is
a certain quotient of a subgroup of C . Elements in this domain are represented by elements
of C , called (r − 1)-cycles, whose appropriate classes are in the kernels of all previous
differentials ds with s < r . Finding a system of (r − 1)-cycles that span Er in terms of
the original basis of C is a non-trivial matter; however, it is a necessity in applications,
such as in investigations relating to spectral numbers in symplectic topology (see [L]). We
shall provide an algorithm, which we refer to as the sweeping method, that produces such
a system. Theorem 1.1 makes the construction explicit, that is, the Er are determined and
the long differentials identified.

An application of this algorithm brings up a second, very natural, problem: assuming
that a long differential can be identified in such a ‘dynamical spectral sequence’, what
geometric consequences can one infer from it? Is it true that there are ‘long orbits’ that
relate some invariant set to another, distant one? This is an important question because,
in applications, long orbits have high energy, in the sense that the variation of the action
functional along such an orbit is large, and detecting high-energy orbits is geometrically
significant; see [BaC]. It is not hard to see that the existence of long orbits relating distant
invariant sets does not hold in general. Nevertheless, we show here that there exists a path
joining two invariant sets which is made up of curves that geometrically coincide with flow
lines, where some of these arcs in the path are flow-reversing; this is Theorem 1.2, which
we call the ‘zig-zag theorem’.
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1.1. The spectral sequence for a Morse complex. Let M be an n-dimensional compact
Riemannian manifold and let D(M)= {Mp}

m
p=1 be a Morse decomposition† of M . In this

article, we focus on the case in which a filtered Conley chain complex‡ with finest filtration
is, in fact, a Morse complex, i.e. each Morse set Mp is a non-degenerate singularity of the
gradient flow ϕ of a Morse function f : M→ R.

Given non-degenerate singularities x and y of indices k and k − 1, respectively, the
set of connecting orbits is finite. By orienting the unstable and stable manifolds, we
define the intersection number n(x, y) to be the number of connecting orbits counted
with orientation. To count orbits with orientation, choose a regular value c of f so
that f (y) < c < f (x); then n(x, y) is the number of intersections between the spheres
Sk−1
=W u(x) ∩ f −1(c) and Sn−k

=W s(y) ∩ f −1(c).
Let C = {Ck} be the Z-module generated by the singularities and graded by their

indices, that is,
Ck =

⊕
x∈critk f

Z〈x〉,

where critk( f ) is the set of index-k critical points of f .
The connection matrix 1 : C→ C associated to D(M) is defined to be the differential

of the graded Morse chain complex C = Z〈crit f 〉, i.e. it is determined by the maps
1k : Ck→ Ck−1 via

1k(x)=
∑

y∈critk−1 f

n(x, y)〈y〉,

where n(x, y) is the intersection number. Moreover, 1 is an upper triangular matrix with
1 ◦1= 0.

We use the same notation for the map 1k as for the associated submatrices of 1; see
Figure 1.

The columns of the matrix 1 need not be ordered with respect to k. We only require
that the map 1k be filtration preserving.

We denote this filtered graded Morse chain complex by

(C, 1)= (Z〈crit f 〉, 1).

We will write the boundary operator ∂ and its matrix 1 interchangeably.
Note that the r th auxiliary diagonal of 1 that intersects 1k has entries 1p+1−r,p+1,

which represent the intersection numbers of the unstable and stable spheres determined
by connections between the unstable and stable manifolds of Mp+1 and Mp+1−r for
p ∈ {r, . . . , m − 1}. Clearly, if the (p + 1)st column intersects the submatrix 1k , then
Mp+1 and Mp+1−r are, respectively, singularities of Morse indices k and k − 1, which
we shall denote by hk and hk−1. These singularities are in the filtrations Fp \ Fp−1 and
Fp−r \ Fp−r−1, respectively. Hence we say that the pair (hk, hk−1) has gap r . In summary,

† A Morse decomposition of M is a collection D(M)= {Mp}
m
p=1 of mutually disjoint compact invariant subsets

of M such that if γ ∈ M \
⋃m

p=1 Mp , then there exists p < p′ with γ ∈ C(Mp, Mp′ ). In other words, D(M)
contains the recurrent behavior of the flow. A subset of M which belongs to some Morse decomposition is called
a Morse set.
‡ A filtration F = {Fp} on a chain complex C is a sequence of subcomplexes FpC , p ∈ Z, such that FpC ⊂
Fp+1C for each p.
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FIGURE 1. The connection matrix.

the r th auxiliary diagonal, when intersected with 1k , registers information on numerically
consecutive singularities of Morse indices k and k − 1 with gap r . We will use the same
notation to indicate an elementary chain of C .

It will be helpful to associate with the (p + 1)st column of 1 the elementary chain hk

such that† hk ∈ FpC \ Fp−1C .
In this paper we will explain how the connection matrix 1 determines the spectral

sequence, i.e. how it determines the spaces Er and induces the differentials dr .
A bigraded module Er over a principal ideal domain‡ R is an indexed collection of

R-modules Er
p,q , for p, q ∈ Z. A differential dr of bidegree (−r, r − 1) is a collection

of homomorphisms dr
: E p,q → E p−r,q+r−1, for p, q ∈ Z, such that dr

◦ dr
= 0. The

homology module H(Er ) is the bigraded module

Hp,q(E
r )=

Ker dr
: Er

p,q → Er
p−r,q+r−1

Im dr : Er
p+r,q−r+1→ Er

p,q
.

A spectral sequence {Er , dr
}, r ≥ 0, is a sequence of chain complexes where each chain

complex Er is the homology module of the previous one, that is:
• Er is bigraded module, and dr is a differential with bidegree (−r, r − 1) in Er ;
• for each r ≥ 0 there exists an isomorphism H(Er )≈ Er+1.

In general, we will omit reference to q throughout this section. Its role will be important
when considering more general Morse sets of a Morse decomposition; but in our case,
when the Morse set is a singularity of index k, the only q for which Er

p,q is non-zero is
q = k − p. Hence, it will be understood that Er

p is, in fact, Er
p,k−p.

† Note that the numbering on the columns is shifted by one with respect to the subindex p of the filtration Fp .
‡ Throughout this article we work with R = Z.
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For a filtered graded chain complex (C, ∂), we can define a spectral sequence

Er
p = Zr

p/(Z
r−1
p−1 + ∂Zr−1

p+r−1)

where
Zr

p = {c ∈ FpC | ∂c ∈ Fp−r C}.

Hence the module Zr
p consists of chains in FpC with boundary in Fp−r C . Thus it is

natural to look at chains associated to the columns of the connection matrix to the left of
and including the (p + 1)st column. This guarantees that any linear combination of chains
will respect the filtration. Furthermore, since the boundary of the chains must be in Fp−r ,
we must consider columns or linear combinations which respect the filtration and have the
property that the entries in rows i > (p − r + 1) are all zeros. Therefore, the significant
entry in the connection matrix is determined by the element on the r th auxiliary diagonal
in the (p − r + 1)st row and (p + 1)st column. This will be made precise later.

However, as r increases, the Z-modules Er
p change generators. Our main result will

connect this algebraic change of generators of the Z-modules of the spectral sequence to a
particular family of changes of basis overQ of the connection matrix1. We will make use
of a recursive sweeping method in §2 that singles out important non-zero entries, which
we will refer to as primary pivots and change-of-basis pivots, of the r th auxiliary diagonal
of 1r , in order to define a matrix 1r+1. At each step, 1r+1 is a change of basis of 1r .
Hence, all of the 1r ‘represent’, in some sense, the initial connection matrix (that is, they
all represent the same linear transformation). We will also show how the r th auxiliary
diagonal of 1r induces dr .

THEOREM 1.1. The matrices 1r obtained by applying the sweeping method to 1

determine the spectral sequence (Er
p, dr ). Moreover, if Er

p and Er
p−r are both non-zero,

then the map dr
p : E

r
p→ Er

p−r is induced by 1r ; specifically, it is multiplication by the
entry 1r

p−r+1,p+1 whenever this entry is a primary pivot, a change-of-basis pivot or a
zero with a column of zero entries below it.

For clarity, we subdivide Theorem 1.1 into Theorems 4.4 and 5.7.
In §6 we prove a theorem on the existence of a path of flow lines in ϕ connecting

consecutive singularities. Given a non-zero entry 1p−r+1,p+1 in 1, there exists a
connecting orbit that joins two singularities. On the other hand, if 1p−r+1,p+1 is zero,
we will prove in the zig-zag theorem that there exists a path† joining the singularities
hk ∈ Fp and hk−1 ∈ Fp−r whenever 1p−r+1,p+1 corresponds to a non-zero dr

p.

THEOREM 1.2. (Zig-zag theorem) Let (Er , dr ) be a spectral sequence induced by a
Morse Conley chain complex (C1, 1) of a flow ϕ, where 1 is a connection matrix over
Z. Given a non-zero dr

: Er
p,q → Er

p−r,q+r−1, there exists a path of connecting orbits of ϕ
joining hk ∈ Fp \ Fp−1 to hk−1 ∈ Fp−r \ Fp−r−1.

Take hk ∈ Fs and hk−1 ∈ Fs−`, with p > s and r > `, such that there exist connecting
orbits between hk and hk−1, hk and hk−1, and hk and hk−1. Furthermore, suppose that
there are no singularities between hk and hk−1. See Figure 2.

† See Definition 6.2.
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FIGURE 2. The perturbed flow ϕ after cancellation.

A particular case of interest occurs when the map d`s is an isomorphism and corresponds
to an entry ±1 which is a primary pivot (or change-of-basis pivot) in the connection
matrix. Since these maps are isomorphisms, they imply algebraic cancellations in the
spectral sequence. On the other hand, they also correspond to dynamical cancellation of
consecutive index singularities hk and hk−1 in ϕ. By Reineck’s theorem [R3], there is a
continuation of the flow ϕ to ϕ which corresponds to the dynamical cancellation associated
to the primary pivot 1`s−`+1,s+1 =1s−`+1,s+1 on the `th auxiliary diagonal of 1`.

A certain choice of path in ϕ will admit a reversal of the flow along the orbit which will
cancel hk and hk−1, creating a new orbit that connects hk and hk−1 in the perturbed flow ϕ.
Hence, the orbit connecting hk and hk−1 can be viewed as a bridge responsible for the
creation of the orbit connecting hk and hk−1 in ϕ. Since the bridge, i.e. orbit connecting
hk and hk−1, ceases to exist in ϕ, we are justified in allowing this orbit to be traversed in
the reverse direction when we construct the path connecting hk and hk−1 in the flow ϕ. In
this case, the path in ϕ indicates the birth of an orbit in ϕ.

On the other hand, connecting orbits of a flow ϕ` that correspond to non-zero d` are
associated with a path of connecting orbits in ϕ by the zig-zag theorem. By the same
arguments as above, the connecting orbits in ϕ` associated with isomorphisms d`s which
correspond to primary pivots±1 in the connection matrix are algebraic cancellations in the
spectral sequence; hence they also correspond to dynamical cancellation of consecutive
index singularities in ϕ`. By Reineck’s theorem, there is a continuation of the flow ϕ`

to ϕ` which corresponds to the dynamical cancellation associated with the primary pivot
1`s−`+1,s+1 on the `th auxiliary diagonal of 1`. Once again, this justifies why we allow
this orbit in ϕ` that corresponds to a path in ϕ to be traversed in the reverse direction.

Inspired by this particular case of algebraic–dynamical correspondence, we consider
more general paths in 1r where traversal in the reverse direction will be allowed
along orbits that correspond to primary as well as change-of-basis pivots which are not
necessarily equal to ±1. Our idea is motivated by the fact that, owing to the zig-zag
theorem, certain change-of-basis pivots correspond to non-zero differentials in the spectral
sequence.
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Although, in this case, it is not clear what a dynamical counterpart to the algebraic
behavior is, the zig-zag theorem suggests a correspondence between orbits in the flow ϕ`

associated to a non-zero differential d` of the spectral sequence and paths in the flow ϕ.

2. Sweeping method

In this section we present the sweeping method, which constructs recursively a family of
matrices {1r

}r≥0, with 10
=1, by considering at each stage the r th auxiliary diagonal.

This family of matrices will be used to determine the spectral sequence (Er , dr ).

We remark that the sweeping method and all the other theorems in this article do not
require that the columns of the matrix 1 be ordered with respect to k or, equivalently, that
the singularities hk be ordered with respect to the filtration. Without loss of generality, we
will assume the singularities to be ordered with respect to the filtration so as to simplify
notation and permit the indices that refer to the columns to increase by increments of one.
Otherwise, in a more general setting, we would have to introduce subsequence notation
for the columns in order to consider the intersection of the auxiliary diagonals with the
index-k columns. For clarity, in our examples we will also keep the singularities ordered
with respect to the filtration.

For a fixed auxiliary diagonal r , the method described below must be applied for all k
simultaneously.

A: Initial step.

(1) Consider all columns hk together with all rows hk−1 in 1. Let 1ki, j be the entries in
1 for which the i th row is hk−1 and the j th column is hk .
Let ξ1 be the first auxiliary diagonal of1 that contains non-zero entries1ki, j , which
will be called index-k primary pivots. It follows that for each non-zero 1ki, j on ξ1,
the entries 1ks, j for s > i will all be zero. These entries must be zero, or else they
would have been detected as primary pivots on a ξ auxiliary diagonal for ξ < ξ1.
We end this first step by defining 1ξ1 to be 1 with the index-k primary pivots on the
ξ1th auxiliary diagonal marked.

(2) Consider the matrix 1ξ1 , and let 1ξ1
ki, j

be the entries in 1ξ1 for which the i th row is
hk−1 and the j th column is hk . Let ξ2 be the first auxiliary diagonal greater than ξ1

which contains non-zero entries 1ξ1
ki, j

. We now construct a matrix 1ξ2 following the
procedure below.
Given a non-zero entry 1ξ1

ki, j
on the ξ2th auxiliary diagonal of 1ξ1 :

(a) if there are no primary pivots in the i th row and the j th column, mark the given
entry as an index-k primary pivot and keep the same numerical value, i.e. let
1
ξ2
ki, j
=1

ξ1
ki, j

;
(b) if case (a) does not hold, then consider the entries in the j th column and in the

sth row, with s > i , of 1ξ1 .
(b1) If there is an index-k primary pivot in an entry in the j th column and in a

row s with s > i , then the numerical value of the entry remains the same,
i.e. 1ξ2

ki, j
=1

ξ1
ki, j

, and the entry is left unmarked.
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FIGURE 3. Auxiliary diagonals ξ1 and ξ2.

(b2) If there are no primary pivots in the j th column below 1
ξ1
ki, j

, then there
must be an index-k primary pivot in the i th row, say in the t th column of
1ξ1 , where t < j . In this case, the numerical value of the entry remains
the same, i.e. 1ξ2

ki, j
=1

ξ1
ki, j

, but the entry 1ξ1
ki, j

is marked as a change-of-
basis pivot.

Note that we have defined a matrix 1ξ2 which is actually equal to 1ξ1 except that
the ξ2th diagonal is marked with primary and change-of-basis pivots. See Figure 3.

B: Intermediate step. Consider a matrix 1r with the primary and change-of-basis pivots
marked on the ξ th auxiliary diagonal, for all ξ ≤ r . We now describe how1r+1 is defined.
Without loss of generality, we can suppose that there is at least one change-of-basis pivot
on the r th auxiliary diagonal. If this is not the case, then let 1r+1

=1r with the (r + 1)st
auxiliary diagonal marked with primary and change-of-basis pivots as in B.2.

B.1: Change of basis. Suppose that 1r
ki, j

is a change-of-basis pivot. Then perform a
change of basis on 1r by adding a linear combination over Q of all the hk columns `
of 1r with κ ≤ ` < j where κ is the first column of 1r associated with a k-chain, to a
positive integer multiple u 6= 0 of the j th column of1r , in order to zero out the entry1r

ki, j

without introducing non-zero entries in 1r
ks, j

for s > i . Moreover, the resulting linear

combination should be of the form βκh(κ)k + · · · + β
j−1h( j−1)

k + β j h( j)
k where β` are

integers for `= κ, . . . , j . We use h(`)k to denote the elementary k-chain associated to
the `th column of 1.
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The integer u is called leading coefficient of the change of basis. If more than one linear
combination is possible, we will choose the one which minimizes u. Let u be the minimal
leading coefficient of a change of basis. Once the change of basis has been performed, we
obtain a k-chain associated to the j th column of1r+1. This is a linear combination overQ
of the `th hk columns, κ ≤ ` < j , of1r plus an integer multiple u of the j th column of1r

such that 1r+1
ki, j
= 0. It is also an integer linear combination of hk columns of 1 on and to

the left of the j th column.
Observe that if the `th column of1r is an hk column, it corresponds to an integer linear

combination σ (`),rk =
∑`
`=κ c`,r` h(`)k of hk columns of 1, where the κth hk column is the

first column in 1 associated to a k-chain. The expression σ (`),rk stands for the `th column
of 1r with Morse index k. Hence, if the j th column of 1r+1 is an hk column, it will be

σ
( j),r+1
k = u

j∑
`=κ

c j,r
` h(`)k︸ ︷︷ ︸

σ
( j),r
k

+q j−1

j−1∑
`=κ

c j−1,r
` h(`)k︸ ︷︷ ︸
σ
( j−1),r
k

+ · · ·

+ qκ+1 (c
κ+1,r
κ h(κ)k + cκ+1,r

κ+1 h(κ+1)
k )︸ ︷︷ ︸

σ
(κ+1),r
k

+ qκ cκ,rκ h(κ)k︸ ︷︷ ︸
σ
(κ),r
k

(1)

or, equivalently,

(uc j,r
κ + q j−1c j−1,r

κ + · · · + qκcκ,rκ )h(κ)k

+ (uc j,r
κ+1 + q j−1c j−1,r

κ+1 + · · · + qκ+1cκ+1,r
κ+1 )h(κ+1)

k + · · ·

+ (uc j,r
j−1 + q j−1c j−1,r

j−1 )h( j−1)
k + uc j,r

j h( j)
k (2)

with cκ,rκ = 1 and

c j,r+1
κ = uc j,r

κ + q j−1c j−1,r
κ + · · · + qκcκ,rκ ∈ Z, (3)

c j,r+1
κ+1 = uc j,r

κ+1 + q j−1c j−1,r
κ+1 + · · · + qκ+1cκ+1,r

κ+1 ∈ Z, (4)

...

c j,r+1
j−1 = uc j,r

j−1 + q j−1c j−1,r
j−1 ∈ Z, (5)

c j,r+1
j = uc j,r

j ∈ Z. (6)

It is clear that the first column of any1k cannot undergo any change of basis since there is
no column to its left, and this explains why cκ,rκ = 1.

Note that q` = 0 in q`
∑`
`=1 c`,r` h(`)k whenever the `th column has a primary pivot in a

row s with s > i .
If the primary pivot of the i th row is in the t th column, then the rational number qt is

non-zero in qt
∑t
`=1 ct,r

` h(`)k and is such that

1r+1
ki, j
= u1r

ki, j
+ qt1

r
ki,t
= 0.

Since u ≥ 1 is unique, qt is uniquely defined.
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FIGURE 4. Sweeping method: 1r .

After the above procedure has been performed for all change-of-basis pivots of the r th
diagonal of 1r , we can define a change-of-basis matrix.

Therefore, the matrix 1r+1 has numerical values determined by the change of basis
over Q of 1r . In particular, all the change-of-basis pivots on the r th auxiliary diagonal 1r

are zero in 1r+1. See Figures 4 and 5.

B.2: Marking the (r + 1)th auxiliary diagonal of 1r+1. Consider the matrix 1r+1

defined in the previous step. We will now mark the (r + 1)st auxiliary diagonal with
primary and change-of-basis pivots as follows.

Given a non-zero entry 1r+1
ki, j

:

(1) if there are no primary pivots in the i th row and the j th column, mark this entry as
an index-k primary pivot;

(2) if case (1) does not hold, consider the entries in the j th column and in the sth row,
with s > i , of 1r+1.
(b1) If there is an index-k primary pivot in the entries in the j th column below

1r+1
ki, j

, then leave the entry unmarked.

(b2) If there are no primary pivots in the j th column below 1r+1
ki, j

, then there must

be an index-k primary pivot in the i th row, say in the t th column of1r+1, with
t < j . Mark it as a change-of-basis pivot; see Figure 5.

C: Final step. We repeat the above procedure until all auxiliary diagonals have been
considered.
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FIGURE 5. Sweeping method: 1r+1.

FIGURE 6. 1: the matrix for Example 2.1.

Example 2.1. Let 1 be as in Figure 6. Applying the sweeping method to 1, we obtain the
matrices 11, 12, 13, 14, 15, 16, 17 and 18 given by Figures 7–14.
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FIGURE 7. 11: marking primary pivots.

As is easily perceived, the computation of the family of matrices produced by the
sweeping method is laborious. Hence, we will illustrate several of our results in this paper
using this one example.

3. Properties of 1r

The propositions in this section describe basic properties of the 1r ’s produced by the
sweeping method and will be used in the proof of the main theorems. More specifically,
our attention will be directed towards characterizing properties associated with the primary
and change-of-basis pivots which are essential in determining the spectral sequence.

It is easy to see that all the 1r ’s are upper triangular and that 1r
◦1r
= 0, since they

are obtained recursively from the initial connection matrix 1 via changes of basis over Q.
It is also straightforward to see that if1r

ki, j
is a primary pivot, then there can be no linear

combination of columns to the left of the j th column which, added to the j th column,
would zero that entry while maintaining all entries 1r

ks, j
equal to zero for s > i . This is

because there are three kinds of columns to the left of the j th column. The primary pivot
is either above the i th row or below it, or the column does have not a primary pivot in 1r .
In the latter case, the column has all entries below the r th diagonal equal to zero. This is
also true when the primary pivot is above the i th row, since all entries below it are zero.
Hence, these three types of columns cannot contribute to a linear combination that aims to
zero the entry 1r

ki, j
.
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FIGURE 8. 12: marking primary and change-of-basis pivots.

FIGURE 9. 13: change of basis and marking pivots.
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FIGURE 10. 14 for Example 2.1.

FIGURE 11. 15 for Example 2.1.

In order to simplify notation, reference to the index k of the matrix 1r
k will be omitted

whenever this is unlikely to cause confusion.

PROPOSITION 3.1. If the entry 1r
p−r+1,p+1 has been identified by the sweeping method

as a primary pivot or a change-of-basis pivot, then 1r
s,p+1 = 0 for all s > p − r + 1.

Proof. By the sweeping method, 1r
s,p+1 cannot be a primary pivot for all s > p − r + 1.

Since non-zero entries below the r th diagonal of 1r which are not primary pivots occur
only in columns above a primary pivot, we have that 1r

s,p+1 = 0 for all s > p − r + 1. 2
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FIGURE 12. 16 for Example 2.1.

FIGURE 13. 17 for Example 2.1.

Proposition 3.2 asserts that we cannot have more than one primary pivot in a fixed row
or column. Moreover, if there is a primary pivot in row i , then there is no primary pivot in
column i .

PROPOSITION 3.2. Let {1r
} be the family of matrices that results from applying the

sweeping method to a connection matrix1. Given any two primary pivots1r
ki, j

and1r
km,`

,

we have that {i, j} ∩ {m, `} = ∅.

Proof. The only non-trivial case that needs to be considered is where k = k + 1, and we
have to prove that j 6= m in this case. Suppose that there exists a primary pivot in the j th
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FIGURE 14. 18 for Example 2.1.

column and another primary pivot in the j th row of 1r , i.e. 1r
ki, j

and 1r
k+1 j,`

are primary
pivots. Therefore, 1r

ks, j
= 0 for all s > i and 1r

k+1s,`
= 0 for all s > j .

Let σ ( j),r
k , σ (i),rk−1 and σ (`),rk+1 be chains associated to the j th, i th and `th columns of 1r ,

respectively.
Since 1r

◦1r
= 0, V1 = {σ

(i),r
k−1 , σ

( j),r
k , σ

(`),r
k+1 } cannot be an interval because

1r (V1)
2
6= 0. Hence there must exist σ ( j2),r

k , associated to the j2th column of 1r , such

that σ ( j2),r
k 6= σ

( j),r
k , 1r

ki, j2
6= 0 and 1r

k+1 j2,`
6= 0. Note that j2 < j , since σ ( j2),r

k 6= σ
( j),r
k

and all entries below a primary pivot are zero.
The entry 1r

ki, j2
cannot be a primary pivot, since the i th row already has a primary

pivot. Thus, the primary pivot of the j2th column must be below the entry 1r
ki, j2

, i.e. there

exists σ (i2),r
k−1 associated to the i2th row of 1r , with i2 > i , such that 1r

ki2, j2
is a primary

pivot. Therefore, 1r
ks, j2
= 0 for all s > i2. See Figure 15.

Once again, since 1r
◦1r
= 0 and 1r (V2)

2
6= 0 for V2 = {σ

(i2),r
k−1 , σ

( j2),r
k , σ

(`),r
k+1 }, it

follows that V2 cannot be an interval, i.e. there exists σ ( j3),r
k in the j3th column of1r , with

j3 ≤ j , such that σ ( j3),r
k 6= σ

( j2),r
k , 1r

ki2, j3
6= 0 and 1r

k+1 j3,`
6= 0.

We must show that σ ( j3),r
k 6= σ

( j),r
k . By the construction of σ ( j3),r

k we have that
1r

ki2, j3
6= 0 where i2 > i . Thus, if j3 were equal to j , then we would have the entry

1r
ki2, j
6= 0 lying below the primary pivot 1r

ki, j
; this contradicts the fact that 1r

ks, j
= 0 for

all s > i .
Upon repeating the above steps and always using the fact that 1r

◦1r
= 0, we

eventually run out of rows or columns to continue the above arguments; see Figure 16.
If there are no more hk columns, we will have an interval V with 1(V )2 6= 0, which
contradicts the fact that 1r

◦1r
= 0. On the other hand, if there are no more hk−1

columns, we will have a non-zero entry in 1r below the r th auxiliary diagonal which
is neither a primary pivot nor an entry above a primary pivot; this contradicts the fact that
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FIGURE 15. Impossibility of primary pivots occurring simultaneously in the j th row and the j th column.

FIGURE 16. Construction of a finite sequence of singularities to ensure that there are no intervals 1r (V ) in 1r

with 1r (V )2 = 0.

the only non-zero entries in 1r below the r th auxiliary diagonal are primary pivots and
entries above primary pivots. 2

4. The modules Er
p of the spectral sequence

In this section, we show how the Z-modules Er
p are determined when we apply the

sweeping method to a matrix 1. The primary and change-of-basis pivots of 1r produced
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by the sweeping method play an important role in determining the generators of Zr
p, hence

the necessity of proving that the pivots are always integers.
Recall that

Er
p = Zr

p/(Z
r−1
p−1 + ∂Zr−1

p+r−1),

where
Zr

p = {c ∈ FpC | ∂c ∈ Fp−r C}.

Each hk column of the connection matrix1 represents the connections of an elementary
chain hk of Ck to an elementary chain hk−1 of Ck−1.

The Z-module Zr
p,k−p = {c ∈ FpCk | ∂c ∈ Fp−r Ck−1} is generated by k-chains

contained in Fp with boundaries in Fp−r . In the matrix 1, this corresponds to all hk

columns to the left of the (p + 1)st column, or linear combinations thereof, such that their
boundaries (non-zero entries) are above the (p − r + 1)st row†.

Similarly, in the matrix 1,

Zr−1
p−1,k−(p−1) = {c ∈ Fp−1Ck | ∂c ∈ Fp−r Ck−1}

corresponds to all hk columns to the left of the pth column, or linear combinations thereof,
such that their boundaries are above the (p − r + 1)st row.

Finally,

∂Zr−1
p+r−1,(k+1)−(p+r−1) = ∂{c ∈ Fp+r−1Ck+1 | ∂c ∈ FpCk}

is the set of all the boundaries of elements in Zr−1
p+r−1,(k+1)−(p+r−1), which, in the matrix1,

corresponds to all hk columns to the left of the (p + 1)st column (or, equivalently, all hk

rows above the (p + 1)st row) that are boundaries of hk+1 columns to the left of the
(p + r)th column.

The index-k singularity in Fp \ Fp−1 corresponds to the k-chain associated to the

(p + 1)st column of 1. Hence we denote this singularity by h(p+1)
k .

The next proposition establishes a formula for Zr
p,k−p.

PROPOSITION 4.1.

Zr
p,k−p = Z[µ

(p+1),rσ
(p+1),r
k , µ(p),r−1σ

(p),r−1
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ],

where κ is the first column in 1 associated to a k-chain, and µ( j),ζ
= 0 whenever the

primary pivot of the j th column is below the (p − r + 1)st row and µ( j),ζ
= 1 otherwise.

Proof. Note that σ (p+1−ξ),r−ξ
k is associated to the (p + 1− ξ)th column of the matrix1ξ .

By definition, µ(p+1−ξ),r−ξ
= 1 if and only if the primary pivot on the (p + 1− ξ)th

column is above the row (p + 1− ξ)− (r − ξ)= p − r + 1. It is easy to verify that chains
associated to columns with primary pivots below the (p − r + 1)st row do not correspond
to generators of Zr

p,k−p. Consider a k-chain σ (p+1−ξ),r−ξ
k , with ξ ∈ {0, . . . , p + 1− κ},

associated to the (p + 1− ξ)th column of 1r−ξ such that the primary pivot of the

† The expressions ‘above the row’ and ‘to the left of the column’ shall include the row or column in question,
whereas the expressions ‘below the row’ and ‘to the right of the column’ do not include the row or column in
question.
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(p + 1− ξ)th column of 1r−ξ is above the (p − r + 1)st row. For the latter primary
pivots, we show that σ (p+1−ξ),r−ξ

k is a k-chain which corresponds to a generator of Zr
p. It

is easy to see that σ (p+1−ξ),r−ξ
k is in FpCk for ξ ≥ 0. Furthermore, the (r − ξ)th step

in the sweeping method has zeroed out all change-of-basis pivots below the (r − ξ)th
auxiliary diagonal. In other words, all non-zero entries of the (p + 1− ξ)th column
of 1r−ξ are above the (p + 1− ξ)− (r − ξ)= (p − r + 1)st row. Hence the boundary
of σ (p+1−ξ),r−ξ

k is in Fp−r Ck−1.
We now show that any element in Zr

p is a linear integer combination of

µ(p+1−ξ),r−ξσ
(p+1−ξ),r−ξ
k for ξ = 0, . . . , p + 1− κ . This is achieved by multiple

induction on p and r .
• Consider Fκ−1, where κ is the first column of 1 associated to a k-chain. Let ξ be

such that the boundary of h(κ)k is in Fκ−1−ξCk \ Fκ−1−ξ−1Ck .
(1) Zr

κ−1 is generated by a k-chain in Fκ−1Ck with boundaries in Fκ−1−r Ck−1.

Note that there exists only one chain h(κ)k in Fκ−1Ck . Hence we have the
following possibilities.
(a) If ξ < r , then ∂h(κ)k /∈ Fκ−1−r Ck−1; thus Zr

κ−1 = 0.

(b) If ξ > r , then ∂h(κ)k ∈ Fκ−1−r Ck−1; thus Zr
κ−1 = [h

(κ)
k ].

(2) On the other hand, σ (κ),rk is a k-chain associated to the κth column of1r . Since
there is no change of basis caused by the sweeping method that affects the first
column of 1k , we have that σ (κ),rk = h(κ)k . Furthermore, µ(κ),r = 1 if and only

if the boundary of h(κ)k = σ
(κ),r
k is above the r th auxiliary diagonal. Hence the

following hold.
(a) If ξ < r , then µ(κ),r = 0; thus [µ(κ),rσ (κ),rk ] = 0.

(b) If ξ > r , then µ(κ),r = 1; thus [µ(κ),rσ (κ),rk ] = [σ
(κ),r
k ] = [h(κ)k ].

Hence Zr
κ−1 = [µ

(κ),rσ
(κ),r
k ].

• Let the ξ1th auxiliary diagonal be the first in 1 that intersects 1k . All the columns
of 1 corresponding to the chains h(p+1)

k , . . . , h(κ)k have non-zero entries above the
ξ1th auxiliary diagonal and, thus, above the (p − ξ1 + 1)st row of 1.
(1) By definition, Z ξ1

p is generated by k-chains contained in FpCk with
boundary in Fp−ξ1Ck−1. Since the columns of 1 associated to the chains

h(p+1)
k , . . . , h(κ)k have non-zero entries above the (p − ξ1 + 1)st row, this

implies that the boundaries are in Fp−ξ1Ck−1, that is,

Z ξ1
p = [h

(p+1)
k , . . . , h(κ)k ].

(2) Since non-zero entries in the columns of 1 associated to the chains
h(p+1)

k , . . . , h(κ)k are all above the ξ1th auxiliary diagonal, it follows that

σ
( j),ξ1
k = h( j)

k for j = κ, . . . p + 1 and µ( j),ξ1 = 1 for j = κ, . . . p + 1.
Hence,

[µ(p+1),ξ1σ
(p+1),ξ1
k , . . . , µ(κ),κ−p+1+ξ1σ

(κ),κ−p+1+ξ1
k ] = [h(p+1)

k , . . . , h(κ)k ].

Therefore,

Z ξ1
p = [µ

(p+1),ξ1σ
(p+1),ξ1
k , . . . , µ(κ),κ−p+1+ξ1σ

(κ),κ−p+1+ξ1
k ].



1028 O. Cornea et al

• We assume that the generators of Zr−1
p−1 correspond to k-chains associated to

σ
(p+1−ξ),r−ξ
k , ξ = 1, . . . , p + 1− κ , whenever the primary pivot of the (p + 1−
ξ)th column is above the (p − r + 1)st row. If the primary pivot of the (p + 1)st
column is below the (p − r + 1)st row, then Zr

p = Zr−1
p−1, and this is the case when

µ(p+1),r
= 0. Suppose now that the primary pivot of the (p + 1)st column is above

the (p − r + 1)st row. Let

hk = bp+1h(p+1)
k + · · · + bκh(κ)k

be a k-chain corresponding to an element of Zr
p,k−p. We know that hk is in Fp and

that its boundary is above the (p − r + 1)st row. If bp+1
= 0, then hk ∈ Zr−1

p−1 and
the result follows from the induction hypothesis. So, from now on, suppose that
bp+1

6= 0.
By the sweeping method, σ (p+1),r

k has cp+1,r
p+1 as the minimal leading coefficient. We

will show that since cp+1,r
p+1 is the minimal leading coefficient, we have

bp+1
= α1cp+1,r

p+1 , α1 ∈ Z.

Suppose that bp+1 is not an integer multiple of cp+1,r
p+1 . Let υ > 0 be an integer such

that υcp+1,r
p+1 is the largest multiple of cp+1,r

p+1 with υcp+1,r
p+1 < bp+1. Hence

υcp+1,r
p+1 < bp+1 < (υ + 1)cp+1,r

p+1 ,

i.e. 0< bp+1
− υcp+1,r

p+1 < cp+1,r
p+1 . It follows that the k-chain hk − υσ

(p+1),r
k has

leading coefficient bp+1
− υcp+1,r

p+1 < cp+1,r
p+1 , which contradicts the fact that cp+1,r

p+1

is the minimal leading coefficient. Therefore bp+1
= α1cp+1,r

p+1 for α1 ∈ Z.
Thus we can rewrite hk as

hk = α1σ
(p+1),r
k + (bp

− α1cp+1,r
p )h(p)k + · · · + (b

κ
− α1cp+1,r

κ )h(κ)k .

Note that

hk − α1σ
(p+1),r
k = (bp

− α1cp+1,r
p )h(p)k + · · · + (b

κ
− α1cp+1,r

κ )h(κ)k ∈ Fp−1.

Moreover, since hk and σ (p+1),r
k have their boundaries above the (p − r + 1)st row,

the boundary of hk − α1σ
(p+1),r
k is above the (p − r + 1)st row. It follows that

hk − α1σ
(p+1),r
k ∈ Zr−1

p−1. By the induction hypothesis,

hk − α1σ
(p+1),r
k = α2µ

(p),r−1σ
(p),r−1
k + · · · + ακµ

(κ),r−p−1+κσ
(κ),r−p−1+κ
k ,

that is,

hk = α1σ
(p+1),r
k + α2µ

(p),r−1σ
(p),r−1
k + · · · + ακµ

(κ),r−p−1+κσ
(κ),r−p−1+κ
k . 2

Note that the matrices 1r can have some entries which are not integers. However, the
following proposition shows that pivots in 1r are always integers.
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PROPOSITION 4.2. Suppose that 1r
p−r+1,p+1 is either a primary pivot or a change-of-

basis pivot. Then 1r
p−r+1,p+1 is an integer.

Proof. Since 1r
p−r+1,p+1 is either a primary pivot or a change-of-basis pivot, we have

1r
s,p+1 = 0 for all s > p − r + 1. Hence σ (p+1),r

k ∈ Zr
p and

∂σ
(p+1),r
k =1r

p−r+1,p+1σ
(p−r+1),r
k−1 + · · · +1r

κ∗,p+1σ
(κ∗),r
k−1 ,

where κ∗ is the first column associated to a (k − 1)-chain. It follows that

∂σ
(p+1),r
k ∈ ∂Zr

p ⊂ Zr+1
p−r

= Z[µ(p−r+1),r+1σ
(p−r+1),r+1
k , µ(p−r),rσ

(p−r),r
k , . . . , µ(κ),2r−p+κσ

(κ),2r−p+κ
k ].

Thus the coefficient 1r
p−r+1,p+1cp−r+1,r

p−r+1 of h(p−r+1)
k−1 in ∂σ (p+1),r has to be a multiple of

the coefficient cp−r+1,r+1
p−r+1 of h(p−r+1)

k−1 ∈ Zr+1
p−r , that is,

1r
p−r+1,p+1cp−r+1,r

p−r+1 = αcp−r+1,r+1
p−r+1 ,

where α ∈ Z \ {0}. Hence we have

1r
p−r+1,p+1 =

αcp−r+1,r+1
p−r+1

cp−r+1,r
p−r+1

.

It follows from (6) that 1r
p−r+1,p+1 is an integer. 2

The next lemma will be used in Theorem 4.4; it detects torsion in the spectral sequence.

LEMMA 4.3. Suppose that ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1). Then

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1)

= Z[`σ (p+1),r
k , µ(p),r−1σ

(p),r−1
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ],

where

`= gcd
{
µ(r+p),r−1cp+1,r−1

p+1 1r−1
p+1,r+p, . . . , µ

(κ),κ−p−1cp+1,κ−p−1
p+1 1

κ−p−1
p+1,κ

}/
cp+1,r

p+1 ,

κ is the first column associated to a k-chain and κ is the first column associated to a
(k + 1)-chain.

Proof. Since ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), we have that

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1)

is a submodule of

Zr
p,k−p = Z[µ

(p+1),rσ
(p+1),r
k , µ(p),r−1σ

(p),r−1
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ]

but is not a submodule of

Zr−1
p−1,k−(p−1)

= Z[µ(p),r−1σ
(p),r−1
k , µ(p−1),r−2σ

(p−1),r−2
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ].
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Then µ(p+1),r
= 1 and Zr−1

p−1 + ∂Zr−1
p+r−1,(k+1)−(p+r−1) contains an integer multiple of

σ
(p+1),r
k , i.e. Zr−1

p−1 + ∂Zr−1
p+r−1,(k+1)−(p+r−1) is equal to

Z[`σ (p+1),r
k , µ(p),r−1σ

(p),r−1
k , µ(p−1),r−2σ

(p−1),r−2
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ]

for some integer `. We will now find the integer `. We have

Zr−1
p+r−1,(k+1)−(p+r−1) = Z[µ

(p+r),r−1σ
(p+r),r−1
k+1 , . . . , µ(κ),κ−p−1σ

(κ),κ−p−1
k+1 ]

where µ(p+r−ξ),r−1−ξ
= 0 whenever the primary pivot of the (p + r − ξ)th column is

below the (p + 1)st row. Hence

∂Zr−1
p+r−1,(k+1)−(p+r−1)

= Z[µ(p+r),r−1∂σ
(p+r),r−1
k+1 , µ(p+r−1),r−2∂σ

(p+r−1),r−2
k+1 , . . . , µ(κ),κ−p−1∂σ

(κ),κ−p−1
k+1 ].

(7)

For ξ = 0, . . . , p + r − κ with µ(p+r−ξ),r−1−ξ
= 1, we have 1r−1−ξ

i,p+r−ξ = 0 for all
i > p + 1 and hence

∂σ
(p+r−ξ),r−1−ξ
k+1 =1

r−1−ξ
p+1,p+r−ξσ

(p+1),r−1−ξ
k + · · · +1

r−1−ξ
κ,p+r−ξσ

(κ),r−1−ξ
k .

In fact, the boundaries ∂σ (p+r−ξ),r−1−ξ
k+1 with1r−1−ξ

i,p+r−ξ 6= 0 for some i > p + 1 correspond
exactly to those columns which have the primary pivots below the (p + 1)st row, and
therefore µ(p+r−ξ),r−1−ξ

= 0.
Hence, for ξ = 0, . . . , p + r − κ , when µ(p+r−ξ),r−1−ξ

= 1 we have

Zr−1
p−1 + [∂σ

(p+r−ξ),r−1−ξ
k+1 ]

= Zr−1
p−1 + [1

r−1−ξ
p+1,p+r−ξσ

(p+1),r−1−ξ
k + · · · +1

r−1−ξ
κ,p+r−ξσ

(κ),r−1−ξ
k ]. (8)

On the other hand, Zr−1
p−1 + [∂σ

(p+r−ξ),r−1−ξ
k+1 ] ⊂ Zr−1

p−1 + ∂Zr−1
p+r−1,(k+1)−(p+r−1) implies

that

Zr−1
p−1 + [∂σ

(p+r−ξ),r−1−ξ
k+1 ]

= [`ξσ
(p+1),r
k , µ(p),r−1σ

(p),r−1
k , µ(p−1),r−2σ

(p−1),r−2
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ].

(9)

The coefficient of h(p+1)
k on the set of generators of the Z-module in (8) is

1
r−1−ξ
p+1,p+r−ξ cp+1,r−1−ξ

p+1 . On the other hand, the coefficient of h(p+1)
k on the set of the

generators of the Z-module in (9) is `ξ cp+1,r
p+1 . Hence

`ξ =1
r−1−ξ
p+1,p+r−ξ cp+1,r−1−ξ

p+1 /cp+1,r
p+1 .

Thus we have that
`= gcd{µ(p+r−ξ),r−1−ξ`ξ }

where ξ = 0, . . . , p + r − κ , that is,

`= gcd{µ(r+p),r−1cp+1,r−1
p+1 1r−1

p+1,r+p, . . . , µ
(κ),κ−p−1cp+1,κ−p−1

p+1 1
κ−p−1
p+1,κ }/c

p+1,r
p+1 . 2
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THEOREM 4.4. The matrix 1r obtained by applying the sweeping method to 1

determines Er
p.

Proof. We will prove that

Er
p,k−p =

Zr
p,k−p

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1)

is either zero or a finitely generated module whose generator corresponds to a k-chain
associated to the (p + 1)st column of 1r .

Note that 1r
p−r+1,p+1 is on the r th diagonal and plays a crucial role in

determining Er
p,k−p.

We now proceed to identify the effect that entries on the r th auxiliary diagonal of 1r

have on determining the generators of the Z-modules Er
p.

A non-zero entry on the r th auxiliary diagonal can be either a primary pivot, a change-
of-basis pivot or in a column above a primary pivot. A zero entry can be in a column above
a primary pivot, or all entries below it will also be zero.

(1) Suppose the entry 1r
p−r+1,p+1 has been identified by the sweeping method as a

primary pivot. It follows from Proposition 3.1 that1r
s,p+1 = 0 for all s > p − r + 1.

Therefore, the chain associated to the (p + 1)st column in 1r corresponds to a
generator of Zr

p,k−p. This chain is a linear combination over Q of the chains

associated to the hk columns of1r−1 on and to the left of the (p + 1)st column such
that the coefficient of the (p + 1)st hk column is a non-zero integer. By the sweeping
method, this chain is also a linear combination over Z of the hk columns of 1 to the
left of the (p + 1)st column. This chain is σ (p+1),r

k and, since the coefficient of the

(p + 1)st hk column is a non-zero integer, σ (p+1),r
k is not contained in the generators

of Zr−1
p−1,k−(p−1).

Claim. If 1r
p−r+1,p+1 has been identified by the sweeping method as a primary

pivot, then ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1).

The generators of Zr−1
p+r−1,(k+1)−(p+r−1) must correspond to (k + 1)-chains

associated to hk+1 columns with the property that their boundaries are above the
(p + 1)st row; consequently, all entries below the (p + 1)st row are zero. Hence the
entries of these hk+1 columns in the (p + 1)st row must, by the sweeping method,
be either a primary pivot or a zero entry. See Figure 17.
By Proposition 3.2, the (p + 1)st row cannot contain a primary pivot since we
have assumed that the (p + 1)st column has a primary pivot. Therefore, the
entries of these hk+1 columns in the (p + 1)st row must be zeros. It follows that
∂Zr−1

p+r−1,(k+1)−(p+r−1) does not contain in its set of generators a multiple of the

generator σ (p+1),r
k . The claim is thus verified.

By Proposition 4.1 we have that Er
p,k−p = Z[σ

(p+1),r
k ].

(2) If the entry 1r
p−r+1,p+1 is identified by the sweeping method as a change-of-basis

pivot, then the sweeping method guarantees that 1r+1
p−r+1,p+1 = 0. Furthermore,

1r
s,p+1 = 0 for all s > p − r + 1 by Proposition 3.1.
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FIGURE 17. ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1).

FIGURE 18. ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1).

Therefore, as in the previous case, the generator corresponding to the k-chain
associated to the (p + 1)st column σ (p+1),r

k in 1r is a generator of Zr
p,k−p.

Thus we have to analyze the (p + 1)st row. There are two possibilities.
(a) ∂Zr−1

p+r−1,(k+1)−(p+r−1) ⊆ Zr−1
p−1,k−(p−1), i.e. all the boundaries of the elements

in Zr−1
p+r−1,(k+1)−(p+r−1) are above the pth row. In this case, as before,

Er
p,k−p = Z[σ

(p+1),r
k ] by Proposition 4.1.

(b) ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), i.e. there exists an element in

Zr−1
p+r−1,(k+1)−(p+r−1) whose boundary has a non-zero entry in the (p + 1)st

row, which is then necessarily a primary pivot.
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By Proposition 4.1 and Lemma 4.3,

Er
p,k−p =

Z
`Z
[σ
(p+1),r
k ].

(3) If the entry 1r
p−r+1,p+1 is non-zero but is not a primary pivot or a change-of-basis

pivot, then it must be an entry above a primary pivot. In other words, there exists
s > p − r + 1 such that 1r

s,p+1 is a primary pivot. It follows that σ (p+1),r
k is not in

Zr
p,k−p. Thus, Zr−1

p−1,k−(p−1) = Zr
p,k−p and hence Er

p,k−p = 0.
(4) If the entry 1r

p−r+1,p+1 is a zero entry, we have the following possibilities.
(a) There is a primary pivot below 1r

p−r+1,p+1, i.e. there exists s > p − r + 1
such that 1r

s,p+1 is a primary pivot. In this case, the generator corresponding

to the k-chain associated to the (p + 1)st column σ (p+1),r
k is not a generator

of Zr
p, and hence Zr−1

p−1,k−(p−1) = Zr
p,k−p. It follows that Er

p,k−p = 0.
(b) 1r

s,p+1 = 0 for all s > p − r + 1. In this case, the generator corresponding to

the k-chain associated to the (p + 1)st column σ (p+1),r
k in 1r is a generator

of Zr
p,k−p. Thus we must analyze the (p + 1)st row. We have the following

possibilities.
(i) ∂Zr−1

p+r−1,(k+1)−(p+r−1) ⊆ Zr−1
p−1,k−(p−1), i.e. all the boundaries of the

elements in Zr−1
p+r−1,(k+1)−(p+r−1) are above the pth row. In this case, as

before, Er
p,k−p = Z[σ

(p+1),r
k ] by Proposition 4.1.

(ii) ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), i.e. there exists an element in

Zr−1
p+r−1,(k+1)−(p+r−1) whose boundary has a non-zero entry in the

(p + 1)st row. By Proposition 4.1 and Lemma 4.3,

Er
p,k−p =

Z
`Z
[σ
(p+1),r
k ], ` ∈ Z.

(5) The entry1r
p−r+1,p+1 is not in1r

k . This includes the case where p − r + 1< 0, i.e.
where 1r

p−r+1,p+1 is not in the matrix 1r .
The analysis for Er

p is very similar to that in the previous case, i.e. we have two
possibilities to consider.
(a) There is a primary pivot in the (p + 1)st column on an auxiliary diagonal

r < r . In this case, the generator corresponding to the k-chain associated to
the (p + 1)st column σ (p+1),r

k is not a generator of Zr
p,k−p. Hence

Zr−1
p−1,k−(p−1) = Zr

p,k−p and Er
p,k−p = 0.

(b) All entries of 1r in the (p + 1)st column on auxiliary diagonals lower than r
are zero, i.e. the generator corresponding to the k-chain associated to the
(p + 1)st column σ (p+1),r

k in 1r is a generator of Zr
p,k−p. We then have to

analyze the (p + 1)st row.
(i) If ∂Zr−1

p+r−1,(k+1)−(p+r−1) ⊆ Zr−1
p−1,k−(p−1), then, by Proposition 4.1,

Er
p,k−p = Z[σ

(p+1),r
k ].

(ii) If ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), then, by Proposition 4.1 and
Lemma 4.3,

Er
p,k−p =

Z
`Z
[σ
(p+1),r
k ]. 2
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5. The differentials of the spectral sequence
In this section we will show how the sweeping method applied to 1 induces the
differentials dr

p : E
r
p→ Er

p−r in the spectral sequence. Whenever Er
p and Er

p−r are both
non-zero, the entry1r

p−r+1,p+1 in1r will be a primary pivot, a change-of-basis pivot or a
zero with a column of zero entries below it, and it induces dr

p. We will denote by κ the first
column of a connection matrix associated to a k-chain and by κ the first column associated
to a (k + 1)-chain.

In §2 we defined σ (p+1),r+1
k as a linear integer combination of hk’s, with cp+1,r

p+1 being

the smallest leading coefficient. The next proposition shows that σ (p+1),r+1
k is also a linear

combination of σ ( j),ξ
k ∈1ξ , with j = κ, . . . , p + 1 and ξ = r − p − 1+ κ, . . . , r such

that j − ξ = p − r + 1. In each case, the linear combination minimizes u.

PROPOSITION 5.1. Given a change-of-basis pivot 1r
p−r+1,p+1, there exist integers

bp+1, bp, . . . , bκ such that the boundary of

bp+1σ
(p+1),r
k + bpµ

(p),r−1σ
(p),r−1
k + · · · + bκµ

(κ),r−p−1+κσ
(κ),r−p−1+κ
k

is above the (p − r)th row. Moreover, the smallest bp+1 which satisfies this is u.

Proof. Since1r
p−r+1,p+1 is a change-of-basis pivot,1r

s,p+1 = 0 for all s > p − r + 1 and

1r+1
p−r+1,p+1 = 0. Hence σ (p+1),r+1

k ∈ Zr+1
p ⊂ Zr

p. By Proposition 4.1,

Zr
p = Z[µ

(p+1),rσ
(p+1),r
k , µ(p),r−1σ

(p),r−1
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ].

In other words,

σ
(p+1),r+1
k = bp+1µ

(p+1),rσ
(p+1),r
k + bpµ

(p),r−1σ
(p),r−1
k

+ · · · + bκµ
(κ),r−p−1+κσ

(κ),r−p−1+κ
k

where bp+1, . . . , bκ are integers. Since cp+1,r+1
p+1 = ucp+1,r

p+1 , we deduce that in this case
bp+1 = u. It follows that the integers bp+1, bp, . . . , bκ exist and that u is a possible value
for bp+1.

Finally, we will show that u is the smallest positive integer for which bp, . . . , bκ exist,
i.e. that the smallest bp+1 is u. Suppose that u < u is a positive integer such that there exist
bp, . . . , bκ with

σ
(p+1),r+1
k = uµ(p+1),rσ

(p+1),r
k + bpµ

(p),r−1σ
(p),r−1
k

+ · · · + bκµ
(κ),r−p−1+κσ

(κ),r−p−1+κ
k .

Then

σ
(p+1),r+1
k = uµ(p+1),r cp+1,r

p+1 h(p+1)
k + (uµ(p+1),r cp+1,r

p + bpµ
(p),r−1cp,r−1

p )h(p)k

+ · · · + (uµ(p+1),r cp+1,r
κ + bpµ

(p),r−1cp,r−1
κ

+ · · · + bκµ
(κ),r−p−1+κcκ,r−p−1+κ

κ )h(κ)k ,

which contradicts the minimality property of u as defined in (2). Therefore u is the smallest
positive integer such that bp, . . . bκ exist. 2
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The next proposition establishes a formula for the u in Proposition 5.1 in the case where
the entry 1r

p−r+1,p+1 is a change-of-basis pivot. In all other cases, u = 1.

PROPOSITION 5.2. Suppose that 1r
p−r+1,p+1 is a change-of-basis pivot and let u =

cp+1,r+1
p+1 /cp+1,r

p+1 be the integer defined in (1). If

v = gcd
{
µ(p),r−1cp−r+1,r−1

p−r+1 1r−1
p−r+1,p, . . . ,

µ(κ),κ−p+r−1cp−r+1,κ−p+r−1
p−r+1 1

κ−p+r−1
p−r+1,κ

}/
cp−r+1,r

p−r+1

and λ= v/gcd{1r
p−r+1,p+1, v}, then u = λ.

Proof. We know by Proposition 5.1 that u in (1) is the smallest positive integer such that
there exist integers bp, . . . , bκ with

σ
(p+1),r+1
k = uµ(p+1),rσ

(p+1),r
k + bpµ

(p),r−1σ
(p),r−1
k

+ · · · + bκµ
(κ),r−p−1+κσ

(κ),r−p−1+κ
k .

Since 1r
p−r+1,p+1 is a change-of-basis pivot, 1r

s,p+1 = 0 for all s > p − r + 1 and hence

µ(p+1),r
= 1. Calculating the boundary of both sides of the equation gives

∂σ
(p+1),r+1
k = u∂σ (p+1),r

k + bpµ
(p),r−1∂σ

(p),r−1
k

+ · · · + bκµ
(κ),r−p−1+κ∂σ

(κ),r−p−1+κ
k . (10)

Since 1r
p−r+1,p+1 is a change-of-basis pivot, 1r+1

p−r+1,p+1 = 0. Hence the coefficient of

h(p−r+1)
k−1 in ∂σ (p+1),r+1

k is zero. Moreover,

∂σ
(p+1),r
k =1r

p−r+1,p+1cp−r+1,r
p−r+1 h(p−r+1)

k−1 + · · · ,

∂σ
(p),r−1
k =1r−1

p−r+1,pcp−r+1,r−1
p−r+1 h(p−r+1)

k−1 + · · · ,

...

∂σ
(κ),r−p−1+κ
k =1

r−p−1+κ
p−r+1,κ cp−r+1,r−p−1+κ

p−r+1 h(p−r+1)
k−1 + · · · .

Equating the coefficients of h(p−r+1)
k−1 on both sides of equation (10) yields

0 = u1r
p−r+1,p+1cp−r+1,r

p−r+1 + bpµ
(p),r−11r−1

p−r+1,pcp−r+1,r−1
p−r+1

+ · · · + bκµ
(κ),r−p−1+κ1

r−p−1+κ
p−r+1,κ cp−r+1,r−p−1+κ

p−r+1 .

Thus,

u1r
p−r+1,p+1cp−r+1,r

p−r+1 = −
[
bpµ

(p),r−11r−1
p−r+1,pcp−r+1,r−1

p−r+1 + · · ·

+ bκµ
(κ),r−p−1+κ1

r−p−1+κ
p−r+1,κ cp−r+1,r−p−1+κ

p−r+1

]
u1r

p−r+1,p+1 = −
[
bpµ

(p),r−11r−1
p−r+1,pcp−r+1,r−1

p−r+1 + · · ·

+ bκµ
(κ),r−p−1+κ1

r−p−1+κ
p−r+1,κ cp−r+1,r−p−1+κ

p−r+1 ]
/

cp−r+1,r
p−r+1 .



1036 O. Cornea et al

It follows from Proposition 5.1, which asserts the minimality property of u, that

u1r
p−r+1,p+1cp−r+1,r

p−r+1

= gcd
{
µ(p),r−11r−1

p−r+1,pcp−r+1,r−1
p−r+1 , . . . , µ(κ),r−p−1+κ1

r−p−1+κ
p−r+1,κ cp−r+1,r−p−1+κ

p−r+1

}
,

that is,
u1r

p−r+1,p+1 = v.

Hence
lcm{u1r

p−r+1,p+1, 1
r
p−r+1,p+1} = lcm{1r

p−r+1,p+1, v}.

Equivalently,
u1r

p−r+1,p+1 = lcm{1r
p−r+1,p+1, v}.

Upon dividing both sides of the equality by the product 1r
p−r+1,p+1 · v, the equation

becomes
u

v
=

lcm{1r
p−r+1,p+1, v}

1r
p−r+1,p+1 · v

,

which is equivalent to
u

v
=

1
gcd{1r

p−r+1,p+1, v}
,

that is,
u =

v

gcd{1r
p−r+1,p+1, v}

= λ. 2

LEMMA 5.3. Let Er
p = Zt [σ

(p+1),r
k ] where

t =
gcd{µ(r+p),r−1cp+1,r−1

p+1 1r−1
p+1,r+p, . . . , µ

(κ),κ−p−1cp+1,κ−p−1
p+1 1

κ−p−1
p+1,κ }

cp+1,r
p+1

,

and suppose that 1r
p−r+1,p+1 is a change-of-basis pivot.

(1) If 1r
p+1,p+r+1 is a change-of-basis pivot, then

Er+1
p,k−p =

uZ[σ (p+1),r+1
k ]

gcd{1r
p+1,p+r+1, t}Z[σ (p+1),r+1

k ]

.

(2) If 1r
p+1,p+r+1 is a zero entry with a column of zeros below it, i.e. 1r

s,p+r+1 = 0 for
s > p + 1, then

Er+1
p,k−p =

uZ[σ (p+1),r+1
k ]

tZ[σ (p+1),r+1
k ]

.

Similarly, if 1r
p−r+1,p+1 is a zero entry with a column of zeros below it, then the formulas

above hold for u = 1.

Proof. Since 1r
p−r+1,p+1 is a change-of-basis pivot or a zero entry with a column of

zeros below it, we have that 1r+1
p−r+1,p+1 = 0 and hence σ (p+1),r+1

k ∈ Zr+1
p . Therefore,

by Lemma 4.3,

Er+1
p,k−p =

Z[σ (p+1),r+1
k ]

sZ[σ (p+1),r+1
k ]

,
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where

s = gcd{µ(p+r+1),r cp+1,r
p+1 1r

p+1,p+r+1, µ
(r+p),r−1cp+1,r−1

p+1 1r−1
p+1,r+p, . . . ,

µ(κ),κ−p−1cp+1,κ−p−1
p+1 1

κ−p−1
p+1,κ }

/
cp+1,r+1

p+1

= gcd
{
µ(p+r+1),r cp+1,r

p+1 1r
p+1,p+r+1

cp+1,r
p+1

,

gcd{µ(r+p),r−1cp+1,r−1
p+1 1r−1

p+1,r+p, . . . , µ
(κ),κ−p−1cp+1,k−p−1

p+1 1
κ−p−1
p+1,κ }

cp+1,r
p+1

}
× cp+1,r

p+1

/
cp+1,r+1

p+1 .

Since 1r
p+1,p+r+1 is a change-of-basis pivot or a zero entry with a column of zeros below

it, we have that µ(p+r+1),r
= 1. Hence

s = cp+1,r
p+1

gcd{1r
p+1,p+r+1, t}

cp+1,r+1
p+1

.

If 1r
p−r+1,p+1 is a change-of-basis pivot, then

cp+1,r
p+1

cp+1,r+1
p+1

=
1
u
.

On the other hand, it is trivial to see that if 1r
p−r+1,p+1 is a zero entry with a column of

zeros below it, then there is no change of basis and hence cp+1,r
p+1 = cp+1,r+1

p+1 , i.e. u = 1. 2

Remark 5.4. As a direct consequence of the proof of Lemma 5.3, we have that whenever
1r

p−r+1,p+1 is a change-of-basis pivot, u ≤ gcd{1r
p+1,p+r+1, t} ≤ t .

LEMMA 5.5. Let Er
p = Z[σ

(p+1),r
k ] and suppose that 1r

p−r+1,p+1 is a change-of-basis
pivot. Then the following hold.
(1) If 1r

p+1,p+r+1 is a primary pivot, then

Er+1
p,k−p =

uZ[σ (p+1),r+1
k ]

1r
p+1,p+r+1Z[σ

(p+1),r+1
k ]

.

(2) If 1r
p+1,p+r+1 is a zero entry with a column of zeros below it, then

Er+1
p,k−p = uZ[σ (p+1),r+1

k ].

Similarly, if 1r
p−r+1,p+1 is a zero entry with a column of zeros below it, then the formulas

above hold for u = 1.

Proof. Since1r
p−r+1,p+1 is a change-of-basis pivot or a zero with a column of zero entries

below it, 1r+1
p−r+1,p+1 = 0 and thus σ (p+1),r+1

k ∈ Zr+1
p,k−p. It follows that Zr

p−1,k−(p−1)  
Zr+1

p,k−p. Moreover, Er
p = Z[σ

(p+1),r
k ] implies that

∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1),
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FIGURE 19. The difference between ∂Zr−1
p+r−1,(k+1)−(p+r−1) and ∂Zr

p+r,(k+1)−(p+r).

i.e. for all σ
(p+r−ξ),r−1−ξ
k+1 with ξ = 0, . . . , p + r − κ , either ∂σ

(p+r−ξ),r−1−ξ
k+1 ∈

Zr−1
p−1,k−(p−1) and hence 1

r−1−ξ
p+1,p+r−ξ = 0 or σ

(p+r−ξ),r−1−ξ
k+1 has a primary pivot

below the (p + 1)st row and hence µ(p+r−ξ),r−1−ξ
= 0. The difference between

∂Zr−1
p+r−1,(k+1)−(p+r−1) and ∂Zr

p+r,(k+1)−(p+r) is that the latter includes the boundary of
the (p + r + 1)st column; see Figure 19. But the hypothesis is that the element in the
(p + r + 1)st column and (p + 1)st row is1r

p+1,p+r+1. If1r
p+1,p+r+1 is a primary pivot,

then

Er+1
p,k−p =

Z[σ (p+1),r+1
k ]

sZ[σ (p+1),r+1
k ]

,

where

s = gcd
{
µ(p+r+1),r cp+1,r

p+1 1r
p+1,p+r+1, . . . ,

µ(p+r−ξ),r−1−ξ cp+1,r−1−ξ
p+1 1

r−1−ξ
p+1,p+r−ξ , . . . ,

µ(κ),κ−p−1cp+1,κ−p−1
p+1 1

κ−p−1
p+1,κ

}/
cp+1,r+1

p+1

= µ(p+r+1),r cp+1,r
p+1 1r

p+1,p+r+1

/
cp+1,r+1

p+1

=
1r

p+1,p+r+1

u
.

If 1r
p+1,p+r+1 = 0, then ∂Zr

p+r,(k+1)−(p+r) ⊆ Zr
p−1,k−(p−1) and, therefore, Er+1

p =

uZ[σ (p+1),r
k ]. 2

We will use the following result, which follows from elementary algebra.

LEMMA 5.6. Suppose that m represents multiplication by a non-zero integer m, and let
λ= v/gcd{m, v}.
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FIGURE 20. Change-of-basis pivot 1r
p−r+1,p+1 6= 0.

(1) If Z m // Zv , then

Ker m= λZ and Im m=
Z
λZ
=

gcd{m, v}Z
vZ

.

(2) If Zt //m // Zv and t ≥ λ, then

Ker m=
λZ
tZ

and Im m=
Z
λZ
=

gcd{m, v}Z
vZ

.

THEOREM 5.7. If Er
p and Er

p−r are both non-zero, then the map dr
p : E

r
p→ Er

p−r is
induced by δr

p, i.e. multiplication by the entry 1r
p−r+1,p+1, whenever this entry is either a

primary pivot, a change-of-basis pivot or a zero with a column of zero entries below it.

Proof. Suppose that Er
p and Er

p−r are both non-zero. By definition,

Er+1
p =

Ker dr
p

Im dr
p+r

.

We must show in each of the following cases that

Ker δr
p

Im δr
p+r
= Er+1

p .

We need to analyze the cases where both Er
p and Er

p−r are non-zero, because otherwise dr
p

would be zero. By Theorem 4.4 this we will lead us to consider three main cases for the
entry 1r

p−r+1,p+1, namely when it is a primary pivot, a change-of-basis pivot or a zero
with a column of zeros below it.
(1) 1r

p−r+1,p+1 is a primary pivot. In this case we know from Theorem 4.4 that

Er
p = Z[σ

(p+1),r
k ]. Moreover, Er

p−r = Z[σ
(p−r+1),r
k−1 ]. In fact, Er

p−r cannot be

Zt [σ
(p−r+1),r
k−1 ], because this would imply the existence of a primary pivot in the

(p − r + 1)st row on a diagonal below the r th auxiliary diagonal.
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We have the sequence

· · · Z[σ (p−r+1),r
k−1 ]oo Z[σ (p+1),r

k ]

δr
poo Er

p+r
δr

p+roo · · ·oo . (11)

(a) Suppose Er
p+r = 0.

Since δr
p : Z[σ

(p+1),r
k ] → Z[σ (p−r+1),r

k−1 ] is multiplication by1r
p−r+1,p+1 6= 0,

we have Ker δr
p = 0. Hence Ker δr

p/Im δr
p+r = 0.

(b) Suppose Er
p+r 6= 0. As in the previous case, δr

p : Z[σ
(p+1),r
k ] → Z[σ (p−r+1),r

k−1 ]

is multiplication by 1r
p−r+1,p+1 6= 0, hence Ker δr

p = 0.
Since Er

p+r 6= 0, let us consider the three possibilities for 1r
p+1,p+r+1: it is

either a primary pivot, a change-of-basis pivot or a zero entry with a column
of zero entries below it. However, since 1r

p−r+1,p+1 is a primary pivot, by
Proposition 3.2 there can be no primary pivot in the (p + 1)st row. Hence
1r

p+1,p+r+1 cannot be a primary pivot or a change-of-basis pivot. Thus,
1r

p+1,p+r+1 is a zero. It follows that Ker δr
p/Im δr

p+r = 0.
On the other hand, for both of the above cases, because 1r

p−r+1,p+1 is a primary

pivot we have σ (p+1),r+1
k = σ

(p+1),r
k . Note that its boundary in the (p − r + 1)st

row is1r
p−r+1,p+1 6= 0; hence it does not lie above the (p − r)th row. It follows that

σ
(p+1),r+1
k /∈ Zr+1

p and thus Zr+1
p = Zr

p−1 and Er+1
p = 0.

(2) 1r
p−r+1,p+1 is a change-of-basis pivot. See Figure 20. Then there exists a primary

pivot in the (p − r + 1)st row on a diagonal below the r th auxiliary diagonal. It
follows from Theorem 4.4 case (2)(b) that Er

p−r = Zv[σ
(p−r+1),r
k−1 ], where

v = gcd
{
µ(p),r−1cp−r+1,r−1

p−r+1 1r−1
p−r+1,p, . . . , µ

(κ),κ−p+r−1

× cp−r+1,κ−p+r−1
p−r+1 1

κ−p+r−1
p−r+1,κ

}/
cp−r+1,r

p−r+1 .

Let
λ=

v

gcd{1r
p−r+1,p+1, v}

.

By Proposition 5.2, we have λ= u.
(a) If 1r

p+1,p+r+1 6= 0 is a primary pivot, it follows from Proposition 3.2 that
there is no primary pivot either in the (p + 1)st row and column or in the
(p + r + 1)st row and column on a diagonal below the r th auxiliary diagonal.
Hence, by Theorem 4.4 cases (2)(a) and (1), Er

p = Z[σ
(p+1),r
k ] and Er

p+r =

Z[σ (p+r),r
k+1 ]. In this case, we have the sequence

· · · Zv[σ
(p−r+1),r
k−1 ]oo Z[σ (p+1),r

k ]

δr
poo Z[σ (p+r),r

k+1 ]

δr
p+roo · · ·oo .

(12)
Then

Im δr
p+r =1

r
p+1,p+r+1Z[σ

(p+1),r
k ]

and, by Lemma 5.6,
Ker δr

p = λZ[σ
(p+1),r
k ].
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Hence

Ker δr
p

Im δr
p+r
=

λZ[σ (p+1),r
k ]

1r
p+1,p+r+1Z[σ

(p+1),r
k ]

=
uZ[σ (p+1),r

k ]

1r
p+1,p+r+1Z[σ

(p+1),r
k ]

.

On the other hand, since 1r
p+1,p+r+1 is a primary pivot, it follows from

Lemma 5.5 that

Er+1
p =

uZ[σ (p+1),r+1
k ]

1r
p+1,p+r+1Z[σ

(p+1),r+1
k ]

.

(b) If 1r
p+1,p+r+1 = 0 with a column of zero entries below it, then Im δr

p+r = 0.
Hence

Ker δr
p

Im δr
p+r
= Ker δr

p.

(i) Er
p = Z[σ

(p+1),r
k ]. In this case Lemma 5.6 gives

Ker δr
p = λZ[σ

(p+1),r
k ] = uZ[σ (p+1),r

k ].

On the other hand, it follows from Lemma 5.5 that

Er+1
p = uZ[σ (p+1),r+1

k ].

(ii) Er
p = Zt [σ

(p+1),r
k ]. We have from Lemma 5.6 that

Ker δr
p =

λZ[σ (p+1),r
k ]

tZ[σ (p+1),r
k ]

=
uZ[σ (p+1),r

k ]

tZ[σ (p+1),r
k ]

.

On the other hand, it follows from Lemma 5.3 that

Er+1
p = uZt [σ

(p+1),r+1
k ].

(c) If1r
p+1,p+r+1 6= 0 is a change-of-basis pivot, then there exists a primary pivot

in the (p + 1)st row on a diagonal below the r th auxiliary diagonal. It follows
from Theorem 4.4 case (2)(b) that Er

p,k−p = Zt [σ
(p+1),r
k ] where

t = gcd
{
µ(r+p),r−1cp+1,r−1

p+1 1r−1
p+1,r+p, . . . ,

µ(κ),κ−p−1cp+1,κ−p−1
p+1 1

κ−p−1
p+1,κ

}/
cp+1,r

p+1 .

Let λ= t/gcd{1r
p+1,p+r+1, t}. We have the sequence

· · · Zv[σ
(p−r+1),r
k−1 ]oo Zt [σ

(p+1),r
k ]

δr
poo Er

p+r
δr

p+roo · · ·oo .

(13)
Either Er

p+r = Z[σ
(p+r),r
k ] or Er

p+r = Zw[σ
(p+r),r
k ]. However, we know from

Remark 5.4 and Proposition 5.2 that

λ= u ≤ t and λ= cp+r
p+r,r+1

/
cp+r

p+r,r+1 ≤ w.
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It follows from Lemma 5.6 that

Ker δr
p =

λZ[σ (p+1),r
k ]

tZ[σ (p+1),r
k ]

and

Im δr
p+r =

Z[σ (p+1),r
k ]

λZ[σ (p+1),r
k ]

=
gcd{1r

p+1,p+r+1, t}Z[σ (p+1),r
k ]

tZ[σ (p+1),r
k ]

.

Then
Ker δr

p

Im δr
p+r
=

λZ[σ (p+1),r
k ]

gcd{1r
p+1,p+r+1, t}Z[σ (p+1),r

k ]

.

On the other hand, since1r
p+1,p+r+1 is a change-of-basis pivot, by Lemma 5.3

we have that

Er+1
p =

uZ[σ (p+1),r+1
k ]

gcd{1r
p+1,p+r+1, t}Z[σ (p+1),r+1

k ]

,

where u = λ by Proposition 5.2.
(d) If 1r

p+1,p+r+1 is an entry above a primary pivot, then there exists a primary

pivot in the (p + r + 1)st column below 1r
p+1,p+r+1. Hence µ(p+r+1),r

= 0

and σ (p+r+1),r
k+1 /∈ Zr

p+r . It follows that Er
p+r = 0 and hence Im δr

p+r = 0.
Then

Ker δr
p

Im δr
p+r
= Ker δr

p.

(i) If Er
p,k−p = Z[σ

(p+1),r
k ], we have the sequence

· · · Zv[σ
(p−r+1),r
k−1 ]oo Z[σ (p+1),r

k ]

δr
poo 0

δr
p+roo · · ·oo

(14)
and, by Lemma 5.6,

Ker δr
p = λZ[σ

(p+1),r
k ] = uZ[σ (p+1),r

k ].

(ii) If Er
p,k−p = Zt [σ

(p+1),r
k ], we have the sequence

· · · Zv[σ
(p−r+1),r
k−1 ]oo Zt [σ

(p+1),r
k ]

δr
poo 0

δr
p+roo · · ·oo

(15)
and, by Lemma 5.6,

Ker δr
p =

λZ[σ (p+1),r
k ]

tZ[σ (p+1),r
k ]

= uZt [σ
(p+1),r
k ].

On the other hand, we know from Lemma 4.3 that

Er+1
p,k−p =

Z[σ (p+1),r+1
k ]

sZ[σ (p+1),r+1
k ]

,
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where

s = gcd
{
µ(p+r+1),r c p+1,r

p+1 1r
p+1,p+r+1, µ

(r+p),r−1c p+1,r−1
p+1 1r−1

p+1,r+p, . . . ,

µ(κ),κ−p−1c p+1,κ−p−1
p+1 1

κ−p−1
p+1,κ

}/
c p+1,r+1

p+1

= gcd
{µ(p+r+1),r c p+1,r

p+1 1r
p+1,p+r+1

c p+1,r
p+1

,

gcd{µ(r+p),r−1c p+1,r−1
p+1 1r−1

p+1,r+p, . . . , µ
(κ),κ−p−1c p+1,k−p−1

p+1 1
κ−p−1
p+1,κ }

c p+1,r
p+1

}
× c p+1,r

p+1
/

c p+1,r+1
p+1 .

Since µ(p+r+1),r
= 0, we have s = t/u. When Er

p,k−p = Zt [σ
(p+1),r
k ] as in

(ii),

Er+1
p,k−p =

uZ[σ (p+1),r+1
k ]

tZ[σ (p+1),r+1
k ]

.

When Er
p,k−p = Z[σ

(p+1),r
k ] as in (i), we take t = 0 and obtain

Er+1
p = uZ[σ (p+1),r+1

k ].

(3) 1r
p−r+1,p+1 = 0 with a column of zeros below it. In this case, Ker δr

p = Er
p.

Moreover, σ (p+1),r
k = σ

(p+1),r+1
k and hence u = 1.

(a) If 1r
p+1,p+r+1 is an entry above a primary pivot, then, as in (2)(d), we have

µ(p+r+1),r
= 0 and Er

p+r = 0. Hence Im δr
p+r = 0 and thus

Ker δr
p

Im δr
p+r
= Er

p.

On the other hand, since µ(p+r+1),r
= 0, we have Er+1

p = Er
p.

(b) If 1r
p+1,p+r+1 = 0 with a column of zero entries below it, then Im δr

p+r = 0
and

Ker δr
p

Im δr
p+r
= Er

p.

On the other hand, it follows from Lemmas 5.3 and 5.5 that Er+1
p = Er

p.
(c) If 1r

p+1,p+r+1 6= 0 is a primary pivot, then there is neither a primary pivot
in the (p + 1)st row nor a primary pivot in the (p + r + 1)st column on
a diagonal below the r th auxiliary diagonal. Hence Er

p = Z[σ
(p+1),r
k ] and

Er
p+r = Z[σ

(p+r+1),r
k ]. We have

· · · Er
p−roo Z[σ (p+1),r

k ]

δr
poo Z[σ (p+r+1),r

k+1 ]

δr
p+roo · · ·oo (16)

and therefore
Ker δr

p

Im δr
p+r
=

Z[σ (p+1),r
k ]

1r
p+1,p+r+1Z[σ

(p+1),r
k ]

.
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On the other hand, since 1r
p+1,p+r+1 is a primary pivot, Lemma 5.5 gives

Er+1
p,k−p =

Z[σ (p+1),r+1
k ]

1r
p+1,p+r+1Z[σ

(p+1),r+1
k ]

.

(d) If 1r
p+1,p+r+1 is a change-of-basis pivot, then there is a primary pivot in

the (p + 1)st row on a diagonal below the r th auxiliary diagonal. Hence
Er

p = Zt [σ
(p+1),r
k ]. We have

· · · Er
p−roo Zt [σ

(p+1),r
k ]

δr
poo Er

p+r
δr

p+roo · · ·oo (17)

and Er
p+r can be either Z[σ (p+r+1),r

k+1 ] or Zw[σ
(p+r+1),r
k+1 ]. Let

λ=
t

gcd{1r
p+1,p+r+1, t}

and ũ =
cp+r+1,r

p+r+1

cp+r+1,r+1
p+r+1

.

Since 1r
p+1,p+r+1 is a change-of-basis pivot, by Proposition 5.2 and

Remark 5.4 for (p + r) we have

λ= ũ ≤ gcd{1r
p+1,p+r+1, w} ≤ w.

By Lemma 5.6,

Im δr
p+r =

gcd{1r
p+1,p+r+1, t}Z[σ (p+1),r

k ]

tZ[σ (p+1),r
k ]

.

Then
Ker δr

p

Im δr
p+r
=

Z[σ (p+1),r
k ]

gcd{1r
p+1,p+r+1, t}Z[σ (p+1),r

k ]

.

On the other hand, since 1r
p+1,p−r+1 is a zero entry with only zero entries

below it, we have by Lemma 5.3 that

Er+1
p,k−p =

Z[σ (p+1),r+1
k ]

gcd{1r
p+1,p+r+1, t}Z[σ (p+1),r+1

k ]

.

Thus we have seen that, in all cases,

Ker dr
p

Im dr
p+r
= Er+1

p,k−p =
Ker δr

p

Im δr
p+r

. 2

6. Spectral sequence analysis for the existence of connecting orbits
In the next theorem, we analyze the non-zero differentials dr in a spectral sequence
associated to a Morse flow ϕ. We show that, although we may not always have a connecting
orbit in the flow ϕ associated to dr , there is always a path formed by connecting orbits of ϕ
which is determined by dr .
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THEOREM 6.1. Let (Er , dr ) be a spectral sequence induced by a Morse Conley chain
complex (C1, 1) of a flow ϕ, where 1 is a connection matrix over Z. Given a non-
zero dr

: Er
p,q → Er

p−r,q+r−1, there exists a path of connecting orbits of ϕ joining the

singularity h(p+1)
k which generates E1

p,q to the singularity h(p−r+1)
k−1 which generates

E1
p−r,q+r−1.

We adopt a loose definition of a path in a flow.

Definition 6.2. A path associated to dr is a juxtaposition of connecting orbits where the
orbits that are represented in the matrices by primary pivots or change-of-basis pivots 1ξi, j
for ξ < r may be considered as having reverse orientation.

More precisely, let γi, j be a path between the singularities h( j)
k and h(i)k−1. If γi, j

corresponds to a connecting orbit in the flow, we will say that γi, j is an elementary path
and define the length of γi, j as `(γi, j )= ( j − i). However, when γi, j does not correspond
to a connecting orbit in the flow, γi, j can be written as a sequence of elementary paths. The
construction of this sequence is done recursively by defining

γi, j = [γ i, j ,−γ i, j , γi, j ]

where j < j and i > i , i.e. h( j)
k is associated to a column of 1 to the left of h( j)

k and h(i)k−1

is associated to a row of 1 below h(i)k−1.
The negative sign indicates that γ i, j is considered with reverse orientation. If γ i, j

is an elementary path, the corresponding connecting orbit is considered to be in reverse
orientation. If γ i, j does not correspond to a connecting orbit, then it is a path

γ i, j = [γ i, j
,−γ

i, j
, γ

i, j
]

where j < j and i > i , and we define

−γ i, j =−[γ i, j
,−γ

i, j
, γ

i, j
] = [−γ

i, j
, γ

i, j
,−γ

i, j
].

The length of γi, j = [γ i, j ,−γ i, j , γi, j ] is defined as

`(γi, j )= `(γ i, j )+ `(γ i, j )+ `(γi, j ).

In the next lemma we prove that certain columns need not be considered when changing
basis in the sweeping method.

LEMMA 6.3. Let 1r
p−r+1,p+1 be a change-of-basis pivot. In the sweeping method, the

choice of columns associated to σ (p+1−ξ),r−ξ
k that will zero out1r

p−r+1,p+1 in1r+1 need
not take into consideration columns which have non-zero entries above the (p − r)th row.

Proof. We show that if there is a linear combination in the sweeping method that uses
columns with non-zero entries above the (p − r)th row, then there exists another linear
combination that does not use these columns.

We know that

Er+1
p,k−p =

Zr+1
p,k−p

Zr
p−1,k−(p−1) + ∂Zr

p+r,(k+1)−(p+r)
,
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where

Zr+1
p,k−p = Z[µ

(p+1),r+1σ
(p+1),r+1
k , µ(p),rσ

(p),r
k , . . . , µ(κ),r−p+κσ

(κ),r−p+κ
k ],

Zr
p−1,k−p+1 = Z[µ

(p),rσ
(p),r
k , µ(p−1),r−1σ

(p−1),r−1
k , . . . , µ(κ),r−p+κσ

(κ),r−p+κ
k ].

Moreover, from Proposition 5.1 we have that

σ
(p+1),r+1
k = uµ(p+1),rσ

(p+1),r
k + bpµ

(p),r−1σ
(p),r−1
k

+ · · · + bκµ
(κ),r−p−1+κσ

(κ),r−p−1+κ
k .

Suppose that for some ξ ∈ {1, 2, . . . , p + 1− κ}, σ
(p+1−ξ),r−ξ
k is such that

∂σ
(p+1−ξ),r−ξ
k is zero in the (p − r + 1)th row and µ(p+1−ξ),r−ξ

= 1, that is,

1
r−ξ
p−r+1,p+1−ξ = 0 and 1

r−ξ
s,p+1−ξ = 0 for all s > p + r − 1.

In this case, ∂σ (p+1−ξ),r−ξ
k is above the (p − r)th row and hence

σ
(p+1−ξ),r−ξ
k = σ

(p+1−ξ),r−ξ+1
k ∈ Zr

p−1,k−(p−1).

By the formula we have that

Er+1
p,k−p

=
Z[µ(p+1),r+1σ

(p+1),r+1
k , . . . , σ

(p+1−ξ),r+1−ξ
k , . . . , µ(κ),r−p+κσ

(κ),r−p+κ
k ]

Z[µ(p),rσ (p),rk , . . . , σ
(p+1−ξ),r+1−ξ
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ] + ∂Zr

p+r,(k+1)−(p+r)

=
Z[µ(p+1),r+1σ

(p+1),r+1
k − σ

(p+1−ξ),r+1−ξ
k , . . . , σ

(p+1−ξ),r+1−ξ
k , . . . , µ(κ),r−p+κσ

(κ),r−p+κ
k ]

Z[µ(p),rσ (p),rk , . . . , σ
(p+1−ξ),r+1−ξ
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ] + ∂Zr

p+r,(k+1)−(p+r)

=
Z[µ(p+1),r+1σ

(p+1),r+1
k − σ

(p+1−ξ),r−ξ
k , . . . , µ(κ),r−p+κσ

(κ),r−p+κ
k ]

Z[µ(p),rσ (p),rk , . . . , µ(κ),r−p−1+κσ
(κ),r−p−1+κ
k ] + ∂Zr

p+r,(k+1)−(p+r)

.

The last equality above holds because the generator σ (p+1−ξ),r−ξ+1
k can be replaced by

the generator σ (p+1−ξ),r−ξ
k .

Consequently, there is no loss of generality in choosing a change of basis that does not
sum the columns which have a zero entry in the (p − r + 1)st row and zeros below it. 2

Let 10
=1. We have shown that the sweeping method produces a sequence of

matrices 1r in which the matrix 1r+1 is obtained from a change of basis of 1r ; in other
words, there exists a sequence of change-of-basis matrices M0, . . . , Mm−1 such that

1r+1
= M−1

r 1r Mr = M−1
r M−1

r−1 · · · M
−1
0 1M0 · · · Mr−1 Mr

for r = 0, . . . , m − 1.
For each r ∈ {0, . . . , m − 1}, we define1r to be the matrix1M0 . . . Mr−1 Mr . Hence,

if κ∗ is the first hk−1 column and κ̃ is the last hk−1 column, then we can write

∂σ ( j),r
=1

r
κ̃, j h

(̃κ)
k−1 + · · · +1

r
κ∗, j h

(κ∗)
k−1

where 1
r
s, j ∈ Z for s = κ∗, . . . , κ̃ .
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PROPOSITION 6.4. 1
r
s, j = 0 for all s > i if and only if 1r

s, j = 0 for all s > i .

Proof. We know that

∂σ ( j),r
=1

r
κ̃, j h

(̃κ)
k−1 + · · · +1

r
κ∗, j h

(κ∗)
k−1

and
∂σ ( j),r

=1r
κ̃, jσ

(̃κ),r
k−1 + · · · +1

r
κ∗, jσ

(κ∗),r
k−1 .

Suppose that 1
r
s, j = 0 for all s > i , that is,

∂σ ( j),r
=1

r
i, j h

(i)
k−1 + · · · +1

r
κ∗, j h

(κ∗)
k−1.

Since the coefficient of h(s)k−1 is always non-zero in σ (s),rk−1 , we have 1r
s, j = 0 for all s > i ,

that is,
∂σ ( j),r

=1r
i, jσ

(i),r
k−1 + · · · +1

r
κ∗, jσ

(κ∗),r
k−1 .

The proof of the converse is completely analogous. 2

As a direct consequence of Proposition 6.4, we have that 1r
p−r,p is a pivot if and only

if 1
r
p−r,p 6= 0 and 1

r
s,p = 0 for all s > p − r .

It is clear that the square of 1
r

is not necessarily equal to zero; however, it will be used
as an auxiliary matrix to prove the main result in §6.

The proof of Theorem 6.1 is a direct consequence of the following lemma.

LEMMA 6.5. Let 1 be a connection matrix. Applying the sweeping method to 1, let 1r

be the matrix obtained after the rth diagonal has been swept. If 1
r
j−ξ, j 6= 0 for some ξ ,

then there is a path γ j−ξ, j = [γ j−r , j ,−γ j−r , j−ζ , γ j−ξ, j−ζ ], for some r and ζ less than r,

in the flow ϕ formed by connecting orbits joining the singularity h( j)
k to the singularity

h( j−ξ)
k−1 .

Proof. We will prove this result by induction on r and ξ .

(1) Consider the r = 1 case. Since σ
( j),1
k = h( j)

k , we have 1
1
s, j =1s, j for s =

κ∗, . . . , κ̃ , where κ∗ and κ̃ are the first and last columns associated to a (k − 1)-
chain. Hence non-zero entries 1

1
j−ξ, j for all ξ represent the existence of connecting

orbits between h( j)
k and h( j−ξ)

k−1 . For each ξ , we have a path in the flow ϕ which is a
connecting orbit.

(2) Let ξ be the first auxiliary diagonal which intersects1k such that1
r
j−ξ, j 6= 0. Then,

for all r , 1
r
s, j = 0 for all s < j − ξ and 1

r
j−ξ,` = 0 for ` < j . Since 1

r
j−ξ,` = 0

for all ` < j , the j th column has not altered via a change of basis, hence 1
r
j−ξ, j =

1
1
j−ξ, j . Since 1

r
s, j = 0 for all s < j − ξ , we have 1

r
j−ξ, j = c j−ξ,r

j−ξ 1r
j−ξ, j for r .

Therefore 1 j−ξ, j 6= 0 and hence there is a connecting orbit in the flow ϕ.
(3) Suppose that the lemma holds for all r ′ < r and ξ ′ < ξ , and let 1

r
j−ξ, j 6= 0. If there

is a connecting orbit between h( j)
k and h( j−ξ)

k−1 , then nothing needs to be shown. In

particular, this would be the case when 1
1
j−ξ, j 6= 0, since 1

1
j−ξ, j =1 j−ξ, j and in

this situation there is a connecting orbit between h( j)
k and h( j−ξ)

k−1 . Therefore, let us
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suppose that 1
1
j−ξ, j = 0 and that there are no connecting orbits between h( j)

k and

h( j−ξ)
k−1 . We will show that if 1

r
j−ξ, j 6= 0, then there is a ‘path’ of connecting orbits

that joins h( j)
k and h( j−ξ)

k−1 .

Since 1
r
j−ξ, j 6= 0 and 1

1
j−ξ, j = 0, there exists an r with r < r and r < ξ such that

1
r
j−ξ, j = 0 and 1

r+1
j−ξ, j 6= 0, i.e. σ ( j),r

k 6= σ
( j),r+1
k .

The sweeping method asserts that a change of basis will only be prompted in the j th
column of a matrix when a change-of-basis pivot is present in that column, which in
this case will happen precisely when the sweeping method is going through the r th
auxiliary diagonal of 1r .
Hence there exists a change-of-basis pivot in the j th column on the r th auxiliary
diagonal of 1r . This change-of-basis pivot is 1r

j−r , j , and it is on the ( j − r)th row

of 1r . By Proposition 6.4, 1
r
j−r , j 6= 0 and 1r

j−r , j has a column of zeros below it,
that is,

1
r
j−r , j = c j−r ,r

j−r 1r
j−r , j 6= 0.

By Proposition 5.1,

∂σ
( j),r+1
k = uµ( j),r∂σ

( j),r
k + b j−1µ

( j−1),r−1∂σ
( j−1),r−1
k

+ · · · + bκµ
(κ),r− j+κ∂σ

(κ),r− j+κ
k . (18)

Upon equating the coefficients of h( j−r)
k−1 on both sides of equation (18) (i.e.

restricting to the ( j − r)th row of 1), we obtain

0 = 1
r+1
j−r , j = uµ( j),r1

r
j−r , j + b j−1µ

( j−1),r−11
r−1
j−r , j−1

+ · · · + µ( j−ζ ),r−ζb j−ζ1
r−ζ
j−r , j−ζ

+ · · · + bκµ
(κ),r− j+κ1

r− j+κ
j−r ,κ .

We know that if the primary pivot of a σ ( j−ζ ),r−ζ is below the ( j − r)th row, then
µ( j−ζ ),r−ζ

= 0. Hence, µ( j−ζ ),r−ζ
= 1 only when there is either a primary pivot, a

change-of-basis pivot or a zero entry on the ( j − r)th row of 1r−ζ with a column
of zeros below it. However, Lemma 6.3 says that we can assume without loss of
generality that in a change of basis, columns having a zero entry in the ( j − r)th row
and zeros below it need not be considered. Hence µ( j−ζ ),r−ζ

= 1 and b j−ζ 6= 0 only

when 1r−ζ
j−r , j−ζ is a change-of-basis pivot or a primary pivot. By Proposition 6.4,

1
r−ζ
j−r , j−ζ 6= 0 and it has a column of zeros below it, that is,

1
r−ζ
j−r , j−ζ = c j−r ,r−ζ

j−r 1
r−ζ
j−r , j−ζ 6= 0.

Upon equating the coefficients of h( j−ξ)
k−1 on both sides of equation (18) (i.e.

restricting the equation to the ( j − ξ)th row of 1), we obtain

1
r+1
j−ξ, j = uµ( j),r1

r
j−ξ, j + b j−1µ

( j−1),r−11
r−1
j−ξ, j−1 + · · ·

+ µ( j−ζ ),r−ζb j−ζ1
r−ζ
j−ξ, j−ζ + · · · + bκµ

(κ),r− j+κ1
r− j+κ
j−ξ,κ .
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Since 1
r+1
j−ξ, j 6= 0 and 1

r
j−ξ, j = 0, there exists ζ ∈ {1, j − κ} such that

µ( j−ζ ),r−ζ
= 1, b j−ζ 6= 0 and 1

r−ζ
j−ξ, j−ζ 6= 0.

• Since 1
r−ζ
j−ξ, j−ζ 6= 0 is such that ξ − ζ < ξ and r − ζ < r , it follows from the

induction hypothesis that there is a path γ j−ξ, j−ζ of connecting orbits joining

h( j−ζ )
k to h( j−ξ)

k−1 .

• Since 1
r−ζ
j−r , j−ζ 6= 0 is such that r − ζ < ξ and r − ζ < r , it follows from the

induction hypothesis that there is a path γ j−r , j−ζ of connecting orbits joining

h
( j−ζ )
k to h( j−r)

k−1 .

• Since 1
r
j−r , j 6= 0 is such that r < ξ and r < r , it follows from the induction

hypothesis that there is a path γ j−r , j of connecting orbits joining h( j)
k to h( j−r)

k−1 .
Hence

γ j−ξ, j = [γ j−r , j ,−γ j−r , j−ζ , γ j−ξ, j−ζ ]

is a path joining h( j)
k to h( j−ξ)

k−1 .

Thus we have shown that 1
r
j−ξ, j 6= 0 corresponds to a path in the flow ϕ. 2

Proof of Theorem 6.1. Let dr
p 6= 0. It follows from Theorem 5.7 that every dr

6= 0 is
induced by multiplication by a1r

p−r+1,p+1 which is either a primary pivot or a change-of-

basis pivot. By Proposition 6.4, 1
r
p−r+1,p+1 6= 0 and all entries in the (p + 1)st column

below the (p − r + 1)st row are zero, that is,

1
r
p−r+1,p+1 = cp−r+1,r

p−r+1 1r
p−r+1,p+1 6= 0.

By Lemma 6.5, there is a path in the flow formed by connecting orbits joining the
singularity h(p+1)

k to the singularity h(p−r+1)
k−1 . 2

Example 6.6. Consider Example 2.1. Note that the entry 18
5,13 = 3 is a primary pivot

in 18 whose corresponding original entry in 1 was equal to zero, i.e. 15,13 = 0. Hence
there does not necessarily exist a connecting orbit between h(13)

k+1 and h(5)k . However, we
will now determine a path of connecting orbits between these two singularities.

Note that

∂σ
(13),4
k+1 =−h(9)k + h(8)k + 4h(7)k − 3h(6)k + h(4)k ,

∂σ
(13),5
k+1 =−h(7)k + h(6)k + h(5)k − 2h(4)k ,

and hence 1
4
5,13 = 0 and 1

5
5,13 = 1 6= 0. Thus, consider r = 4. We represent the path

schematically by using the matrix-type representation in Figure 21. Computing the entries
within the proof of Lemma 6.5, we get:

• 1
r
j−r , j =1

4
13−4,13 =1

4
9,13 6= 0;

• 1
r−ζ
j−r , j−ζ =1

4−3
13−4,13−3 =1

1
9,10 6= 0;

• 1
r−ζ
j−ξ, j−ζ =1

4−3
13−8,13−3 =1

1
5,10 6= 0.

Hence, by Lemma 6.5, a path between h(13)
k+1 and h(5)k is γ5,13 = [γ9,13,−γ9,10, γ5,10]. See

Figure 22.
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FIGURE 21. Schematic representation of the path γ5,13.

The length of γ5,13 is

`(γ5,13)= `(γ9,13)+ `(γ9,10)+ `(γ5,10)= 4+ 1+ 5= 10.

Note that we could choose the path to be composed of connections which correspond

to the entries 1
6
7,13 6= 0, 1

4
7,11 6= 0 and 1

4
5,11 6= 0, i.e. γ ′5,13 = [γ

′

7,13,−γ
′

7,11, γ
′

5,11]; see
Figure 23.

The entries 1
6
7,13 and 1

4
7,11 correspond to connecting orbits in ϕ, since 1

1
7,13 6= 0 and

1
1
7,11 6= 0. On the other hand, 1

1
5,11 = 0, i.e. there is not necessarily a connecting orbit

between h(11)
k+1 and h(5)k . However, there is a path γ ′5,11 between h(11)

k+1 and h(5)k made up of

connecting orbits corresponding to the entries 1
2
9,11 6= 0, 1

1
9,10 6= 0 and 1

1
5,10 6= 0, that is,

γ ′5,13 = [γ
′

7,13,−γ
′

7,11, [γ
′

9,11,−γ
′

9,10, γ
′

5,10]].

See Figure 24.
The length of γ ′5,13 is

`(γ ′5,13) = `(γ
′

7,13)+ `(γ
′

7,11)+ `(γ
′

9,11)+ `(γ
′

9,10)+ `(γ
′

5,10)

= 6+ 4+ 2+ 1+ 5= 18.

This shows that the path between two singularities is often not unique. Even for a fixed
length, the path need not be unique.
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FIGURE 22. The path γ5,13.

7. Conclusion

This work marks the beginning of a systematic study of the dynamical implications
associated with the algebraic behavior of a spectral sequence. We have shown that as r
increases, the Z-modules Er

p undergo a change of generators. In Theorems 4.4 and 5.7,
the sweeping method relates this change in generators of Er

p to a change of basis over Q
of the connection matrix 1. As we apply the sweeping method, important entries on
the r th auxiliary diagonal of 1r are singled out in order to determine 1r+1. These
entries are the primary and change-of-basis pivots, and it is worth noting that they remain
integers throughout the sweeping process, as shown in Proposition 4.2. The dynamical
interpretation of the intermediate matrices in this process is, as yet, not well understood
since many of the entries are non-integers.

A question that remains unanswered is what the relationship is between the initial
flow associated with 1 and the flow corresponding to the final matrix obtained from the
sweeping method. Several examples suggest that we may have a continuation.

Another open question is how to interpret the appearance of torsion in the spectral
sequence which may cancel algebraically before stabilization.
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FIGURE 23. Schematic representation of the path γ ′5,13.

In proving the zig-zag theorem, we drew a parallel between ‘long flow lines’ which
connect consecutive singularities hk ∈ Fp and hk−1 ∈ Fp−r that are far apart and higher-
order non-zero differentials dr in the spectral sequence. These long flow lines are paths
made up of connecting orbits, with some orbits being considered in the time-reversed flow.

In Theorem 6.1 we proved the existence of long flow lines ϕ. Some open problems that
remain are to minimize the time spent in the reverse flow and to characterize the connecting
orbits in which time-reversal is allowed.

The difficulty in determining minimal paths lies in the fact that zero entries 1i, j may

have connecting orbits joining h( j)
k and h(i)k−1; this is because each entry is an intersection

number (of attaching and belt spheres). Our interest is to determine, in this context,
minimal paths in the absence of connecting orbits for zero entries.

Let F(γi, j ) and R(γi, j ) be the sets of all elementary paths which correspond to a flow
line of ϕt and −ϕt , respectively, and which make up γi, j . Define

`+(γi, j )=
∑

γ∈F(γi, j )

`(γ ) and `−(γi, j )=
∑

γ∈R(γi, j )

`(γ ).

It is clear that `(γi, j )= `
+(γi, j )+ `

−(γi, j ) and `+(γi, j )− `
−(γi, j )= j − i .

In the presence of several paths between h( j)
k and h(i)k−1, we choose one whose `−(γi, j )

is minimal. We define Li j as the set of all paths between h( j)
k and h(i)k−1. Note that a path

γi, j ∈ Li j has minimum length if and only if `−(γi, j ) is minimal. In fact, γi, j has minimum
length in Li j , i.e. `(γi, j ) < `(θi j ) for all θi j ∈ Li j , if and only if

`+(γi, j )+ `
−(γi, j ) < `

+(θi j )+ `
−(θi j ) for all θi j ∈ Li j . (19)
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FIGURE 24. The path γ ′5,13.

Upon substituting `+(γi, j )= `
−(γi, j )+ j − i and `+(θi j )= `

−(θi j )+ j − i in (19), we
obtain `−(γi, j ) < `

−(θi j ) for all θi j ∈ Li j .
A natural extension of this work is to generalize the sweeping method in Theorems 4.4

and 5.7 to connection matrices associated with more general Morse decompositions.
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