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Abstract: Linear regression is ubiquitous in statistical analysis. It is well
understood that conflicting sources of information may contaminate the
inference when the classical normality of errors is assumed. The contami-
nation caused by the light normal tails follows from an undesirable effect:
the posterior concentrates in an area in between the different sources with
a large enough scaling to incorporate them all. The theory of conflict res-
olution in Bayesian statistics (O’Hagan and Pericchi (2012)) recommends
to address this problem by limiting the impact of outliers to obtain con-
clusions consistent with the bulk of the data. In this paper, we propose
a model with super heavy-tailed errors to achieve this. We prove that it
is wholly robust, meaning that the impact of outliers gradually vanishes
as they move further and further away form the general trend. The super
heavy-tailed density is similar to the normal outside of the tails, which gives
rise to an efficient estimation procedure. In addition, estimates are easily
computed. This is highlighted via a detailed user guide, where all steps are
explained through a simulated case study. The performance is shown using
simulation. All required code is given.

Keywords and phrases: ANOVA, ANCOVA, built-in robustness, maxi-
mum likelihood estimation, super heavy-tailed distributions, variable selec-
tion, whole robustness.
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1. Introduction

The distribution most commonly assumed on the error term in the linear regres-
sion model Y = xTβ + ε is without a doubt a normal, denoted ε/σ ∼ N (0, 1).
Estimating the regression coefficient vector β is in this case equivalent to using
ordinary least squares (OLS) method, whether Bayesian (setting the usual non-
informative prior on β) or maximum likelihood estimates (MLE) are computed.
Given the remarkable properties of OLS (under certain conditions) such as mini-
mum variance among unbiased estimators, the normal model is often considered
as a benchmark in terms of efficiency in the absence of outliers. However, it is
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well-known that resulting inferences is very sensitive to conflicting sources of in-
formation. From a Bayesian perspective, these conflicting sources may represent
the prior or outliers; we focus on the latter in this paper.

Box and Tiao (1968) were the first to propose a Bayesian solution. They
suggested to let the error term be distributed as a mixture of two normals: one
component for the nonoutliers and the other one, with a larger variance, for
the outliers. This approach has been generalised by West (1984) who modelled
errors with heavy-tailed distributions constructed as scale mixtures of normals,
which include the Student distribution. A different robust Bayesian approach
was introduced by Peña, Zamar and Yan (2009). From a frequentist perspective,
several methods have also been proposed, e.g., the M- (Huber (1973)), MM-
(Yohai (1987)), S- (Rousseeuw and Yohai (1984)), least trimmed squares (LTS,
Rousseeuw (1985)), and robust and efficient weighted least-square (REWLSE,
Gervini and Yohai (2002)) estimators.

The most popular Bayesian solution is modelling using the Student, a con-
sequence of the simplicity of the strategy, the rationale behind it (giving higher
probabilities to extreme values), and the required computations. The latter fol-
lows from the scale mixture representation of the Student that leads to a normal
conditional distribution for Y given β, σ and a latent variable, which in turn al-
lows a straightforward implementation of the Gibbs sampler (Geman and Geman
(1984)). This method took over that of Box and Tiao (1968) because the latter
is such that the conditional distribution is a mixture of normals and requires to
“complete” the data with auxiliary variables to implement the Gibbs sampler.
This may make computations much more arduous. On the frequentist side, the
most popular method to gain in robustness is arguably the MM-estimator.

Protection against outliers always comes at a price: a loss of efficiency when
the observations are normally distributed. The best robust alternatives manages
to offer a large protection at a low premium. This is especially true for the
estimation of β. In this regard, a new method can hardly do better; in fact
matching their performance is quite an achievement. However, the performance
of the existing robust approaches with respect to σ is far less optimal.

The main objective of this paper is to propose a solution that yields gold
standard performance, namely a large protection at a low premium, for the
estimation of both β and σ. The importance of good estimation for σ, in the
absence or presence of outliers, should not be overlooked. This parameter plays
a crucial role every time an assessment has to be made about uncertainty around
the regression coefficients (credible intervals, hypothesis testing, and so on). The
performance of the proposed approach, combined with its simplicity, will allow
to offer an appealing Bayesian alternative to the Student model.

The first step towards the objective is indeed to employ a strategy as simple
as that of West (1984), that is, to assume a distribution on the error term that
accommodates for the eventual presence of outliers without being a mixture. Our
approach differs in that the density has a slower tail decay. It is based on the
work of Desgagné (2015) about robust modelling of location and scale parame-
ters. The author proposed to use a super heavy-tailed distribution belonging to
the family of log-regularly varying distributions (LRVD) — with tails behaving
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like |z|−1(log |z|)−θ — to achieve whole robustness for both parameters. The
idea of using heavier tails than the Student came after the work of Andrade
and O’Hagan (2011) who, in the location-scale framework, achieved only partial
robustness for the scale by modelling with polynomial tails. As mentioned by
West (1984), an outlying observation is accommodated if the posterior distribu-
tion converges to that excluding the outlier as this one tends to infinity, which
corresponds to our definition of whole robustness. In contrast, partial robustness
translates into a significant (but limited as the outliers approach plus or minus
infinity) impact on the estimation of the parameter.

The second step towards the objective is therefore to generalise the results of
Desgagné (2015) to linear regression. In fact, it is a generalisation of the results
of Desgagné and Gagnon (2019), which are essentially an application of those
of Desgagné (2015) in simple linear regression through the origin for robust es-
timation of ratios. This second step represents our key theoretical contribution.
We provide two sufficient conditions that lead to whole robustness. The first one
is to assume a super-heavy tailed distribution on the error. The other specifies
the breakdown point, which tends to the optimal value of 0.5 as the sample
size goes to infinity. The validity of our robust method is thus supported by
theoretical results. While these are similar to those of Desgagné and Gagnon
(2019), a more sophisticated proof technique is required given that the location
parameter of the conditional distribution of Y is now an inner product of a
known vector and β containing p unknown parameters. Throughout the paper,
we focus on continuous explanatory variables to simplify explanation and no-
tation. The results are nonetheless valid in ANOVA and ANCOVA (analyses
of variance and covariance), and for variable selection where joint posteriors of
models and parameters are considered. The corresponding sufficient conditions
are given as remarks after the theoretical results. The price to pay to achieve
whole robustness for all parameters is that the use of super heavy-tailed distri-
butions prevents us from obtaining normal conditional distributions. There is
therefore a computational cost, in the sense that we cannot implement a Gibbs
sampler; it will however be noticed that easy-to-use samplers can be used, which
makes the cost negligible.

The third and final step towards the objective is to carefully select the super
heavy-tailed distribution in the wholly robust model. To achieve this, we start
with the premise that applied statisticians are satisfied with the normal model
in the absence of outliers and we specifically design a robust solution from
that. We set the distribution of the error as a log-Pareto-tailed normal (LPTN),
a super heavy-tailed distribution introduced by Desgagné (2015). Its density
exactly matches the standard normal on the central part having a mass of
ρ. The parameter ρ is thus the single one to be chosen by the user, and is
typically set to a value between 0.80 and 0.98. The resulting model produces
robust estimates exhibiting a similar behaviour to OLS in the absence of outliers,
where the trade-off between high degree of similarity with OLS and high degree
of robustness is controlled through ρ. The model has built-in robustness that
resolves conflict in a sensitive way (see Figure 1). It completely considers the
nonoutliers (from 30 to 32.5 in Figure 1), essentially excludes the observations
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Figure 1. Posterior mean of the slope in a simple linear regression as an observation yi∗ →
∞.

that are clearly outlying (beyond 38 in Figure 1), and between these two clear
cases, contains and bounds their impact. The first two cases correspond to the
strategy commonly applied in practice, where an observation is either kept or
discarded. In the last case, the method reflects that in the gray area there is
a level of uncertainty about the fact that those observations really are outliers
or not. Our main practical contribution is therefore to provide an efficient and
robust model that automatically deals with this type of uncertainty, which is
especially valuable in high-dimensional problems and when several analyses have
to be performed.

This rest of the article is organised as follows. The linear regression model
is detailed in Section 2.1, the LRVD family is presented in Section 2.2 and the
theoretical results are provided in Section 2.3. More practically, efficient and
robust regression is investigated in Section 3. The LPTN distribution is first
presented in Section 3.1. A discussion about efficiency of the robust model with
LPTN errors is provided in Section 3.2. Practical details of our approach are ad-
dressed in Section 3.3 through a simulated case study on the modelling of house
market values. Numerical methods such as Markov chain Monte Carlo (MCMC)
are discussed for the computation of different posterior quantities: means, medi-
ans, credible intervals, prediction of future observations and hypothesis testing
via Bayes factors. A powerful tool for outlier identification is also proposed.
In Section 3.4, a simulation study is conducted to compare the performance of
our approach with different Bayesian alternatives. Note that even though our
approach is Bayesian, it is possible to use it in a frequentist setting through
maximum a posteriori probability (MAP) estimates, which correspond to MLE
when the prior is set to 1. We thus also include in our study the frequentist
methods mentioned above.

2. Conflict Resolution in Linear Regression via LRVD

We henceforth assume that f is a strictly positive continuous probability density
function (PDF) on R that is symmetric with respect to the origin, for which
all parameters are known and such that there exists a threshold above which
g(z) = zf(z) is monotonic. Examples of such PDF are the normal, logistic,
Laplace, Student (with prespecified degrees of freedom) and the LPTN (see
Section 3.1).
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2.1. Linear Regression Model

(i) Let Y1, . . . , Yn ∈ R be n random variables representing data points from the
dependent variable and xT1 := (1, x12, . . . , x1p), . . . ,x

T
n := (1, xn2, . . . , xnp)

be n vectors of observations from the explanatory variables, where p ∈
{2, 3, . . .}, n ≥ p+1 and xij ∈ R are assumed to be known. As mentioned in
the introduction, we focus on the situation where all explanatory variables
are continuous. The linear regression model is given by

Yi = xTi β + εi, i = 1, . . . , n, (2.1)

where the n random variables ε1, . . . , εn ∈ R and the p-dimensional ran-
dom variable β := (β1, . . . , βp)

T ∈ Rp represent the errors and the vector
containing the regression coefficients, respectively. These n + 1 random
variables are conditionally independent given σ > 0, a scale parameter,
with a conditional density for εi given by

εi | β, σ
D
= εi | σ

D∼ (1/σ)f (εi/σ) , i = 1, . . . , n.

(ii) We assume that the joint prior density of β and σ, denoted π(β, σ), is
bounded by max(C, σ−1C), where C > 0 can be any constant.

A large variety of priors fits within the structure assumed in (ii). This is the
case for non-informative priors such as π(β, σ) ∝ 1/σ and π(β, σ) ∝ 1, and
practically all proper densities. Informative priors shall however be used with
caution, especially when they translate into light tailed densities. They may
indeed contaminate the inference if they are in conflict with the information
carried by the data. Establishing the conditions that guarantee robustness to
informative priors in linear regression is not trivial.

We study robustness of the estimation of β and σ in the presence of outliers.
In this paper, an observation (xi, yi) is considered as an outlier if its error εi =
yi − xTi β is relatively far from 0, where β defines the probable hyperplanes for
the bulk of the data. Note that robustness against outlying errors is a different
concept than robustness against outlying xi or yi. They are generally equivalent
though, except for the unusual case where an observation is outlying in xi and
yi but still manages to lie in the general trend, and consequently, be a nonoutlier
in error. From a theoretical perspective, we study the asymptotic behaviour in
the sense that we let outliers’ errors εi approach +∞ or −∞. Our strategy to
mathematically represent this situation is to let their yi approach +∞ or −∞
while their vector xi remains fixed. We thus specify a particular path along
which the outliers move away from the general trend.

We assume that each outlier goes to −∞ or +∞ at its own specific rate, to
the extent that the ratio of two outliers is bounded. More precisely, we assume
that

yi = ai + biω, (2.2)

for i = 1, . . . , n, where ai, bi ∈ R are constants such that bi = 0 if the point is
a nonoutlier and bi 6= 0 if it is an outlier, and then, we let ω → ∞. We math-
ematically distinguish the outliers from the nonoutliers through the following.
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Among the n observations (y1, . . . , yn) =: yn, we assume that k of them form a
group of nonoutlying observations, that we denote yk, while ` = n− k of them
are considered as outliers. For i = 1, . . . , n, we define the binary functions ki
and `i as follows: if yi is a nonoutlying value ki = 1, and if it is an outlier `i = 1.
These functions take the value of 0 otherwise. Therefore, we have ki + `i = 1
for i = 1, . . . , n, with

∑n
i=1 ki = k, and

∑n
i=1 `i = `.

Let the joint posterior density of β and σ be denoted by π(β, σ | yn) and the
marginal density of (Y1, . . . , Yn) be denoted by m(yn), where

π(β, σ | yn) = [m(yn)]−1π(β, σ)

n∏
i=1

(1/σ)f((yi − xTi β)/σ), β ∈ Rp, σ > 0.

(2.3)
Let the joint posterior density of β and σ arising from the nonoutlying observa-
tions only be denoted by π(β, σ | yk) and the corresponding marginal density
be denoted by m(yk), where

π(β, σ | yk) = [m(yk)]−1π(β, σ)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

]ki
, β ∈ Rp, σ > 0.

Proposition 2.1 (Tail behaviour of the posteriors).

(i) If n > p+ 1, the density π(β, σ | yn) is proper.
(ii) If k > p + 1 (stronger than n > p + 1), the density π(β, σ | yk) is also

proper.
(iii) If n > p+ 1 +M , then E[βMj | yn] for any j ∈ {1, . . . , p} and E[σM | yn]

exist.
(iv) If k > p+ 1 +M , then E[βMj | yk] for any j ∈ {1, . . . , p} and E[σM | yk]

exist.

Proof. See Section 5. �

Remark 2.1. When any type of explanatory variables is considered (contin-
uous, discrete as in ANOVA or a mix of both as in ANCOVA), the densities
are proper if we additionally assume that the design matrix (comprised of n or
k observations) has full rank. In variable selection, when the joint posterior of
the models and parameters is considered, this joint posterior is proper if the as-
sumptions are verified for the “complete” model (the model with all variables).
The assumptions are more technical for the moments and are not provided here.
We essentially need enough of “different” xi vectors. In the proof, it is made
clear what is required.

2.2. Log-Regularly Varying Distributions

We now provide an overview of the class of log-regularly varying functions
(LRVF), as introduced in Desgagné (2013) and Desgagné (2015), following the
idea of regularly varying functions developed by Karamata (1930). They form
an interesting class of functions with useful properties for robustness.
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Definition 2.1 (LRVF). We say that a measurable function g is log-regularly
varying at ∞ with index θ ∈ R, written g ∈ Lθ(∞), if

lim
z→∞

g(zν)/g(z) = ν−θ,

uniformly in any set ν ∈ [1/η, η] (for any η ≥ 1). If θ = 0, g is said to be
log-slowly varying at ∞.

In Desgagné (2015), it is shown that Definition 2.1 is equivalent to the fol-
lowing: there exists a constant A > 1 and a function s ∈ L0(∞) such that for
z ≥ A, g can be written as

g(z) = (log z)−θs(z).

Examples of LRVF are g(z) = (log z)−θ (with s(z) = 1) and g(z) = (log z)−θ log(log z).

Definition 2.2 (LRVD). A random variable Z and its distribution are said to
be log-regularly varying with index θ ≥ 1 if their density f is such that zf(z) ∈
Lθ(∞).

Definition 2.2 implies that any density f with tails behaving like |z|−1(log |z|)−θ
with θ > 1 is a LRVD. Some examples like the LPTN distribution are given in
Desgagné (2015). The most important property of this class of distributions
follows from Definition 2.1: the asymptotic location-scale invariance of their
density, as stated in Proposition 2.2.

Proposition 2.2 (Location-scale invariance). If zf(z) ∈ Lθ(∞), then we have

(1/σ)f((z − µ)/σ)/f(z)→ 1 as z →∞,

uniformly on (µ, σ) ∈ [−ϑ, ϑ]× [1/η, η], for any ϑ ≥ 0 and η ≥ 1.

Proof. See Desgagné (2015). �

Proposition 2.2 essentially implies that the conditional density of an outlier
(1/σ) f((y−xTβ)/σ) asymptotically behaves like f(y) as y →∞. The densities
of the outliers at the numerator of posterior densities cancel each other out
with those at the denominator in the marginal, provided that the integral can
be interchanged with the limit. This is the idea of the proof of our robustness
result presented in the next section. The greatest challenge is however to prove
that we can indeed interchange the limit and the integral. This part leads to
the condition about the maximum number of outliers to guarantee robustness.

2.3. Resolution of Conflicts

We now present Theorem 2.1, the main theoretical contribution of this paper.

Theorem 2.1. If

(i) zf(z) ∈ Lθ(∞) with θ ≥ 1, i.e. f is a LRVD,
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(ii) ` ≤ n/2− (p− 1/2), i.e. #outliers ≤ half the sample − (p− 1/2),
⇔ k ≥ n/2 + (p− 1/2), i.e. #nonoutliers ≥ half the sample + (p− 1/2),
⇔ k − ` ≥ 2(p− 1/2), i.e. #nonoutliers − #outliers ≥ 2(p− 1/2),

then, as ω →∞ (where ω is defined in (2.2)), we obtain the following results:

(a)
m(yn)∏n
i=1[f(yi)]`i

→ m(yk),

(b)
π(β, σ | yn)→ π(β, σ | yk),

uniformly on (β, σ) ∈ [−ϑ, ϑ]p × [1/η, η], for any ϑ ≥ 0 and η ≥ 1,
(c)

β, σ | yn
D→β, σ | yk,

and in particular

βj | yn
D→βj | yk, j = 1, . . . , p, and σ | yn

D→σ | yk,

(d) if additionally k ≥ n/2 + (p− 1/2) +M , then

E[βMj | yn]→ E[βMj | yk], j = 1, . . . , p, and E[σM | yn]→ E[σM | yk].

Proof. See Section 5. �

The two sufficient conditions of Theorem 2.1 are remarkably simple. Condi-
tion (i) indicates that modelling must be performed using a super heavy-tailed
density f , more precisely using a LRVD, e.g. a LPTN as proposed. Condition
(ii) gives in fact the breakdown point, generally defined as the proportion of
outliers (`/n) that an estimator can handle. We have `/n ≤ 1/2− (p− 1/2)/n,
which translates into a breakdown point of 50% as n → ∞ (for fixed p), usu-
ally considered as the maximum and best desired value. Condition (ii) is thus
generally satisfied in practice.

Results (a) to (d) are different representations of whole robustness. Essen-
tially, the posterior inference arising from the whole sample converges towards
the posterior inference based on the nonoutliers only. The impact of outliers
then gradually vanishes as they approach plus or minus infinity.

In Result (a), the asymptotic behaviour of the marginal m(yn) is described.
This result is used in Section 3.3 to assess robustness of Bayes factors for testing
H0 : βi = 0 versus H0 : βi 6= 0 (when i ≥ 2). Result (a) is in fact the centrepiece
of Theorem 1; its demonstration requires considerable work, and leads relatively
easily to the other results of the theorem.

The convergence of the posterior density in Result (b) enables to assess that
the MAP estimates of β and σ are wholly robust. Given that these estimators
correspond to the MLE when the prior is proportional to 1, the frequentist esti-
mates are, as a result, also wholly robust. This allows establishing a connection
between Bayesian and frequentist robustness.
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Result (c) indicates that any estimation of β and σ based on posterior quan-
tiles (e.g. using posterior medians and Bayesian credible intervals) is robust to
outliers. Note that in fact we obtain the stronger result of L1 convergence:∫ ∞

0

∫
Rp

∣∣π(β, σ | yn)− π(β, σ | yk)
∣∣ dβ dσ → 0,

which in turn implies that P(β, σ ∈ E | yn) → P(β, σ ∈ E | yk) as ω → ∞,
uniformly for all sets E ⊂ Rp×R+, a slightly stronger than convergence in
distribution given in Result (c) which requires only pointwise convergence.

Posterior expectations are wholly robust as well, as indicated by Result (d).
It is interesting to notice that all these results guarantee the robustness of a
variety of Bayes estimators.

Remark 2.2. When any type of explanatory variables is considered, the same
results as in Theorem 2.1 hold under the following additional assumption: it is
possible to choose n/2 + (p− 1/2) (or n/2 + (p− 1/2) +M) nonoutliers — the
required number of nonoutliers depending on which results we target (Results (a)
to (c) or Results (a) to (d)) — that have p-wise linearly independent xi vectors.
This means that any p vectors xi1 , . . . ,xip among the chosen subgroup must be
linearly independent. In variable selection, the convergence of the joint poste-
rior of the models and their parameters, and of the expectations, hold if the
assumptions are verified for the complete model.

Remark 2.3. We prove that modelling with f having tails behaving like |z|−1(log |z|)−θ
is sufficient to obtain the results in Theorem 2.1. It seems “almost” necessary be-
cause, on one hand, a tail behaviour of z−2 (corresponding to a Student density)
is not sufficient, and on the other hand, |z|−1 is not integrable.

3. Efficient and Robust Regression Using LPTN

In Section 2.3, we stated theoretical results which essentially indicate that using
a LRVD for the errors ensures a high breakpoint of 1/2 − (p − 1/2)/n with a
whole rejection of the outliers as their error goes to +∞ or −∞. The conflict
is thus resolved and the linear regression is in agreement with the bulk of the
data.

In this section, we build on these results to propose a solution in the realistic
situation where a statistician satisfied with the normal model in the absence of
outliers seeks protection in the eventuality of contamination by outliers. Mathe-
matically, we consider the context where the errors have a mixture distribution,
with a normal component for the bulk of the data and another component F0

for the outliers, that is

εi/σ ∼ αN (0, 1) + (1− α)F0, i = 1, . . . , n, (3.1)

where 0 < α ≤ 1 represents the proportion of normal observations in the sam-
ple. We thus look for efficient estimators that perform well in the absence of
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outliers, that is when ω = 1 and the model is the pure normal. As mentioned in
the introduction, OLS (or equivalently the normal model) is considered as the
benchmark in this situation. Our efficient estimators must also be robust and
perform in the presence of outliers, and this, for as many scenarios of α < 1 and
F0 as possible.

3.1. LPTN Distribution

The solution we propose consists in assuming that the errors have a LPTN
distribution with a prespecified parameter ρ ∈ (2Φ(1) − 1, 1) ≈ (0.6827, 1),

denoted LPTN(ρ). More precisely, we still have εi | σ
D∼ (1/σ)f (εi/σ), but the

density f is now assumed to be

f(z) =

{
ϕ(z) if |z| ≤ τ,

ϕ(τ) τ
|z|

(
log τ
log |z|

)λ+1

if |z| > τ,
(3.2)

where z ∈ R, and τ > 1 and λ > 0 are functions of ρ with

τ = Φ−1((1 + ρ)/2) := {τ : P(−τ ≤ Z ≤ τ) = ρ for Z
D∼ N (0, 1)}, (3.3)

λ = 2(1− ρ)−1ϕ(τ) τ log(τ),

ϕ(·), Φ(·) and Φ−1(·) being the PDF, cumulative distribution function (CDF)
and inverse CDF of a standard normal, respectively.

The LPTN distribution was introduced by Desgagné (2015), who in fact
presents a more general version than that shown here. The parameter λ that
controls the tail decay was originally free and a multiplicative normalising con-
stant K(ρ, λ) was needed. For example, the center of the density (the area
|z| ≤ τ) was given by K(ρ, λ)ϕ(z). In order to pursue our efficiency objective,
we set the constant to 1, which in return forces λ to be automatically set as a
function of ρ. The parameter ρ, chosen by the user, thus represents the mass of
the central part that exactly matches the N (0, 1) density.

As ρ increases, f approaches the normal. An increase in ρ also implies an
increase in λ and τ , which translates into a density f with lighter tails. Effi-
ciency is also expected to increase, but robustness to decrease. A compromise
has therefore to be made and it is controlled by the statistician through the pa-
rameter ρ. In other words, this parameter represents the tolerance to (bounded)
impact from outliers at the benefit of efficiency when the data set is not con-
taminated. The user can also select its value based on prior opinion about the
probable proportion of outliers, by setting it to 1 minus this proportion.

The rationale behind proposing the LPTN is thus that, in addition to ex-
actly matching the normal density on the part with highest probability, this
distribution has log-Pareto tails ensuring that our theoretical robustness result
hold, and this for any value of ρ. This type of tails consequently accommo-
dates for a large spectrum of α and F0 in the mixture (3.1) when α < 1 and
generates efficient inference when α = 1 as well (this latter characteristic is
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Figure 2. Densities of the LPTN(0.80), LPTN(0.90) and LPTN(0.95).

discussed in Section 3.2). A comparison between different LPTN densities is
shown in Figure 2. Note that, as required for our theoretical results of Sec-
tion 2, the LPTN distribution has a strictly positive continuous PDF on R that
is symmetric with respect to the origin and such that zf(z) is monotonic for
z > τ .

3.2. Efficiency of the LPTN Model

To theoretically study the efficiency of the LPTN Model, we consider the sit-
uation where the data are generated from a normal and evaluate the perfor-
mance of the robust estimators in the asymptotic situation n → ∞. We start
by providing evidences that the estimators for β are consistent, while it de-
pends on ρ for σ. We consider that the generative normal model has β0 ∈ Rp
and σ0 > 0 as true parameter values, and denote the associated density of one
data point g := N (xTi β0, σ

2
0). Denote that associated with the LPTN model

p(β,σ)(yi) := (1/σ)f((yi − xTi β)/σ), where f is a LPTN(ρ). In Bunke et al.
(1998), it is proved that if the divergence

KL(β, σ) :=

∫
log(g(yi)/p(β,σ)(yi)) g(yi) dyi (3.4)

is minimised at a unique (β∗, σ∗) and some regularity conditions are satisfied,
then

lim
n→∞

E[(β, σ) | yn] = (β∗, σ∗) with probability 1,

where the expectation is with respect to the posterior arising from the LPTN
model. This is proved through the strong consistency of the MAP.

In the supplementary material (Section 7), we prove that the first derivative of
(3.4) with respect to β equals 0 at β0, and this for any value of σ. While setting
β = β0 in (3.4), we show that it is minimised at σ∗ which depends on ρ (see
Figure 3). We also show that most of the regularity conditions in Bunke et al.
(1998) are satisfied. This analysis suggests that the true values for the regression
coefficients are recovered even though the LPTN model is misspecified. For σ,
the closer ρ is to 1, the more similar are σ∗ and σ0. For instance, when ρ = 0.9,
σ∗/σ0 = 1.03, and beyond ρ = 0.95, this ratio is essentially 1.
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Figure 3. Minimiser of the divergence σ∗ when β = β0, as a function of ρ.

When the data are generated from the normal model, estimators arising from
it are certainly more efficient. We however numerically verified that the learn-
ing rate for the robust estimators is the same as the normal ones, suggesting
that the efficiency is bounded away from 0 for all n. Some additional details
are needed to rigorously prove the consistency of the Bayes estimates and to
accurately conclude about efficiency.

3.3. Simulated Case Study

We carry out in this section a linear regression analysis on a given data set using
our robust approach and also the classical method with the normal assumption
for comparison. In doing so, we address all practical considerations, resulting
in a straightforward implementation by users. In this regard, all R code used
to produce numerical results is provided at https://arxiv.org/abs/1612.06198,
which also allows reproducing these results.

For a given city, we want to model the market value of a house in thousands
of dollars using the average home value in its residential sector in thousands of
dollars, the living area in square metre (sq.m.) and the land area in sq.m. We
consider a simulated sample of size n = 50 that contains 3 outliers (it is given in
detail in the provided R code). To give an overview of it, we present in Table 1
the data for Home 2 and for the outliers: Homes 1, 3 and 49.

Characteristics Home 2 Home 1 Home 3 Home 49
Home value (in $1,000) 326 137 20 1,000
Value of the sector (in $1,000) 343 670 350 560
Living area (in sq.m) 205 149 222 269
Land area (in sq.m) 345 372 434 655

Table 1. Data from the studied sample.

Home 2 has a value of $326,000 (the sample mean is $504,900), is located in
a residential sector where houses are valued at $343,000 in average (the sample
mean is $508,880), has a living surface of 205 sq.m. (the sample mean is 200
sq.m) and a land of 345 sq.m. (the sample mean is 500 sq.m). Homes 1 and
3 both have aberrantly low values, while it is the opposite for Home 49. They
are meant to represent a damaged house, a data entry error and an eco-friendly
house, respectively.

https://arxiv.org/abs/1612.06198
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To improve the interpretation of the linear regression, the explanatory vari-
ables are centred around their respective sample mean. Therefore, for each
house, we define xi2 as the average value in its residential sector (in $1,000)
minus 508.88, xi3 as the living area minus 200 and xi4 as the land area minus
500. Note that centring affects only the constant of the model, β1, which can
now be interpreted as the predicted value of the typical house with average fea-
tures xi2 = xi3 = xi4 = 0. The model used to generate the data (except the

outliers) is Yi = xTi β+εi with β := (508.88, 1, 1, 0.5)T and εi | σ
D∼(1/σ)f(εi/σ),

where f = N (0, 1) and σ = 40.
In Figure 4, we plot the dependent variable against each explanatory variable

to depict their respective linear relation. The pairwise correlations between the
explanatory variables are all below 0.10, suggesting that these graphs provide a
fair representation of the multivariate relation. The parameters of the generative
model have been set to create the expected situation in which an increase in
any feature is associated with an increase in home value.

Figure 4. The dependent variable versus each of the covariates.

For the analysis, the density f is assumed to be a LPTN(ρ = 0.95) for the
robust model and a N (0, 1) under the classical model. We also set π(β, σ) ∝
1/σ, the usual noninformative prior. The estimation of the parameters is done
through the posterior density as expressed in (2.3). The posterior means, me-
dians and credible intervals are computed through a random walk Metropo-
lis (RWM) algorithm, one of the easiest to implement Metropolis–Hastings
(Metropolis et al. (1953) and Hastings (1970)) algorithms. More sophisticated
methods like the Hamiltonian Monte Carlo (HMC, see, e.g., Neal (2011)) could
be used given that the likelihood function is differentiable almost everywhere.
The MAP and MLE are computed through optimisation procedures; we use the
general-purpose optim function in R based on Nelder–Mead algorithm. It is of
common knowledge that maximisers (MAP and MLE) may not provide a pos-
terior summary as good as posterior means, for instance. The advantage is that
they can be computed quickly. We find them particularly useful for directly
giving starting points for the RWM algorithm and for conducting simulation
studies as in Section 3.4.

These estimates are presented in Table 2, in which the numbers in square
brackets are those based on the 47 nonoutliers only (the sample without Homes
1, 3 and 49). The lower and upper bounds of the credible intervals (CI – LB and
CI – UB) are computed from the regions with highest posterior density using the
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coda package. Some interesting observations are now made. First, in the absence
of outliers (results in brackets), the results of the robust LPTN model are very
similar to those of the nonrobust normal model. As mentioned in Section 3.1,
the LPTN(0.95) is very similar to the N (0, 1), in fact identical except for the 5%
tails. The normal model is the benchmark in terms of efficiency. All presented
point estimators of β under the normal model indeed correspond to OLS, which
are known to produce the best estimates (in a frequentist sense) when the errors
are uncorrelated with zero mean and homoscedastic with finite variance. This is
the case for the nonoutliers. Our example thus suggests that the choice between
the posterior means, medians, MAP or MLE is not crucial for the robust model
as well. Second, we observe that in the presence of the 3 outliers (i.e. using the
whole sample of size n = 50), the results of the LPTN model are barely affected,
showing similar results to those excluding the outliers, while the normal model
is clearly contaminated by the outliers. This is consistent with our theoretical
asymptotic results which indicate agreement with the bulk of the data under the
robust model. In particular, the estimate for σ under the LPTN model is about
half that arising from the normal model, resulting in much shorter credibility
intervals for the robust model. Those patterns in the estimates are typical of
the normal and LPTN models. That is reflected in the thorough performance
evaluation presented in the next section.

Posterior estimates for
β1 β2 β3 β4 σ

Means LPTN 514.0 [514.5] 1.03 [1.03] 1.12 [1.09] 0.39 [0.36] 47.9 [43.8]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 96.5 [43.1]

Medians LPTN 514.0 [514.6] 1.03 [1.03] 1.12 [1.09] 0.39 [0.36] 47.4 [43.5]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 95.6 [42.7]

MAP LPTN 513.0 [513.7] 1.00 [1.01] 1.11 [1.10] 0.40 [0.37] 44.3 [40.8]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 90.1 [40.1]

MLE LPTN 513.1 [513.8] 1.00 [1.01] 1.11 [1.10] 0.40 [0.37] 44.7 [41.1]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 91.0 [40.5]

CI – LB LPTN 500.3 [501.9] 0.86 [0.87] 0.81 [0.81] 0.22 [0.21] 36.9 [34.5]
N 478.1 [501.8] 0.66 [0.87] 0.81 [0.82] 0.38 [0.21] 77.3 [34.4]

CI – UB LPTN 527.7 [527.0] 1.20 [1.19] 1.42 [1.37] 0.56 [0.52] 59.8 [53.7]
N 532.2 [526.8] 1.29 [1.18] 2.00 [1.37] 1.02 [0.51] 117.1 [52.7]

Table 2. Posterior means and medians, MAP, MLE and credible intervals (CI – LB and CI
– UB), under the LPTN(ρ = 0.95) and N (0, 1) assumptions for f ; the numbers in square
brackets are the estimates based on the 47 nonoutliers only.

With the posterior in hand, one can take the inference one step further
with outlier identification and prediction. The former is first discussed. For
each observation i = 1, . . . , n, one can estimate the value fitted by the hyper-
plane xTi β, the realisation of the error yi − xTi β and its standardised version
zi := (yi − xTi β)/σ. This can be achieved through their MAP estimates (or
MLE) by simply plugging in the MAP estimates (or MLE) of β and σ (as given
in Table 2) in their expression. Or possibly better, they can be estimated by
their posterior mean or median. For this purpose, samples can be directly gen-
erated from their posterior distribution through the values of β and σ already
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generated from the RWM algorithm (or obviously, it can be done at the same
time the algorithm runs). Consider for instance Home 49, which is valued at
y49 = 1,000, the posterior means give fitted values of 704.0 (LPTN) and 759.7
(normal), errors of 296.0 (LPTN) and 240.3 (normal) and standardised errors
of 6.28 (LPTN) and 2.52 (normal). We note that the hyperplane is attracted
towards the outlier under the normal model, which leads to an estimated error
less extreme than that under the LPTN model.

Naturally, large estimates for standardised errors |zi| indicate strong evidence
of outlyingness. A threshold of 2.5 is sometimes recommended to differentiate
outliers from nonoutliers, see, e.g., Gervini and Yohai (2002). On this basis,
Home 49 appears clearly as an outlier under the LPTN model, while the con-
clusion is unclear for the normal model.

To provide a measure of outlyingness, we evaluate the probability for a (un-
realised) standardised error εi0/σ — which density is f — to be more extreme
than |zi|:

%(zi) := P(|εi0/σ| > |zi|) = P
(
|εi0/σ| > |yi − xTi β|/σ

)
.

Under the normal model, we have

%N (zi) := 2(1− Φ(|zi|)),

whereas under the LPTN(ρ) it is

%LPTN(zi) :=

{
2(Φ(τ)− Φ(|zi|)) + 2ϕ(τ)τ(log τ)λ−1 if |zi| ≤ τ,

2ϕ(τ)τ(log τ)λ−1
(

log τ
log |zi|

)λ
if |zi| > τ,

where τ = 1.96 and λ = 3.08 when ρ = 0.95, as computed with (3.3).
The measure %(zi) is a random variable as it is a function of the unknown

parameters β and σ, and can be estimated a posteriori using the same technique
as above. In the same spirit as Gervini and Yohai (2002), one can flag obser-
vations with estimates for %(zi) lesser than a chosen threshold. A reasonable
threshold, in our opinion, should lie between 0.01 and 0.02. This corresponds to
a range of 2.47 to 3.11 of MAP estimates for |zi| under the LPTN model if % is
estimated through its MAP (because this is achieved by plugging in the MAP
of |zi|).

If we look again at results of Home 49, the posterior means for %(zi) give
0.0024 and 0.0208 for the LPTN and normal models, respectively. Home 49 ap-
pears again clearly as an outlier under the LPTN model, whereas it is much less
convincing for the normal model. At a threshold of 0.02 or less, this observa-
tion would not be considered as an outlier. Outlier detection using the wholly
robust LPTN model is effective; outliers do not mask each other, a well-known
phenomenon arising with nonrobust models typically due to overestimation of
the scale σ, and sometimes because of attraction of hyperplanes. The posterior
means for the standardised errors zi are plotted in Figure 5, along with the
posterior means for %(zi) for the three outliers.

For predicting a future observation, say Yn+1 = xTn+1β + εn+1, we estimate
its posterior predictive density by sampling from it through the RWM algorithm
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Figure 5. Posterior mean for the standardised errors zi and outlier identification measures
%(zi), under the LPTN and normal models.

as before. For each realisation of (β, σ) in the Markov chains, we generate εn+1

from an LPTN (or a normal for the nonrobust model) centred at 0 with a scale
parameter σ, to which we add xTn+1β. We can thus easily compute posterior
predictive quantities such as the median, credible intervals, probabilities and so
on. Note that the expectation does not exist under the LPTN (because it does
not exist for εn+1). MAP can be approximated from the sample, but because it
requires extra work, we suggest using the median for prediction.

If for example we consider the future observation of the typical house with
xn+1,2 = xn+1,3 = xn+1,4 = 0, the posterior predictive medians for Yn+1 are
514.0 and 504.9 under the LPTN and normal models, respectively; they are as
expected around the posterior medians of the intercept β1. The credible intervals
are (417.4, 611.6) and (313.7, 698.6) for the LPTN and normal models, respec-
tively. We note the shorter length for the robust model, which is attributable to
the robust estimation of the scale σ.

Finally, we easily perform statistical hypothesis testing through Bayes fac-
tors. For this, we implement a reversible jump algorithm (Green (1995)) with
two models and uniform prior on these. If, for instance, we want to test for hy-
potheses H0 : β4 = 0 versus H1 : β4 6= 0, the implementation essentially requires
the tuning of an additional RWM algorithm; that for sampling the parameters
of the model without x4. In our example, the Bayes factors are 1.68× 103 and
1.74×103 for the LPTN and normal models, respectively. If we exclude the out-
liers, they become 2.80× 103 and 2.12× 103 for the LPTN and normal models,
respectively.

The Bayes factor is a robust measure under the model with a LPTN dis-
tribution on the error term. Indeed, Result (a) of Theorem 2.1 states that the
marginal m(yn) behaves like m(yk)

∏n
i=1[f(yi)]

`i . Furthermore, the marginal
m(yn | H0) behaves like m(yk | H0)

∏n
i=1[f(yi) ]`i , because when the assump-

tions of Theorem 2.1 are satisfied for the larger model, they are automatically
satisfied for the smaller. As a result, the Bayes factor m(yn)/m(yn | H0) behaves
like m(yk)/m(yk | H0).
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3.4. Performance Evaluation

In this section, we evaluate the performance of the robust LPTN model through
a simulation study. We consider the same data set and model as in Section 3.3,
but get rid of yn which are generated. Several values for ρ are considered:
ρ = 0.80, 0.84, 0.90, 0.93, 0.95, and 0.98. As in the last Section, it is compared
with the nonrobust normal model. We add the Bayesian approach of Box and
Tiao (1968) with normal mixtures and the model with the Student distribution.
For the latter, we consider different degrees of freedom (df): 1, 2, 4, 6, and 10.
We set π(β, σ) ∝ 1 and estimate the parameters using the MAP, which therefore
corresponds to the MLE. The Bayesian methods thus become direct competitors
to the frequentist robust estimators like the popular M- and S-estimators. These
as well as MM-, REWLSE (the two best frequentist methods according to the
recent review by Yu and Yao (2017)) and LTS estimators are included in the
simulation study.

The data yn are generated through the errors εi | σ
D∼ (1/σ)f(εi/σ) under

the following scenarios:

• Scenario 0: f = N (0, 1),

• Scenario 1: f = 95%N (0, 1) + 5%N (7, 1),

• Scenario 2: f = 90%N (0, 1) + 10%N (7, 1),

• Scenario 3: f = 95%N (0, 1) + 5%N (3, 1), where the xi of the outliers are
modified to make them high-leverage points (the procedure is explained
in detail below),

• Scenario 4: f = 90%N (0, 1) + 10%N (3, 1), where the xi of the outliers are
modified to make them high-leverage points.

Nonoutliers are generated from the first mixture component, whereas outliers
are generated from the second one. The choice of locations for the outliers aims
at producing challenging and interesting situations, where a vast spectrum of
behaviours are observed for especially the LPTN and Student models with their
different sets of parameters ρ and df. Scenarios 2 and 4 are studied to show how
performance varies when the number of outliers is doubled, from 5% to 10% of
the sample size. For each scenario, we consider two sample sizes: n = 50 and
n = 100. The case n = 50 corresponding to the original x1, . . . ,x50, 50 additional
observations from the explanatory variables are generated in the same fashion
as the original ones for the case n = 100.

For Scenarios 3 and 4, when an error is generated from the second mixture
component (that generating extreme values), say εi0 , we modify one of the
coordinates of the associated xi0 to make the observation an high-leverage point.
More precisely, we randomly choose a covariable number, say j0 ∈ {2, 3, 4}, and
set xi0j0 = 1.5 maxi xij0 .

The performance of each model/estimator is evaluated through the premium
versus protection approach of Anscombe and Guttman (1960). This approach
consists in computing the premium to pay for using a robust alternative R
to the normal N when there are no outliers (Scenario 0), and the protection
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provided by this alternative when the data sets are contaminated (which is likely
in the other scenarios). The premium and protections associated with a robust
alternative R are evaluated through the following:

Premium(R, β̂) :=
MR(β̂)−MN (β̂)

MN (β̂)
,

Protection(R, β̂ | S) :=
MN (β̂ | S)−MR(β̂ | S)

MN (β̂ | S)
,

where S represents the scenario under which the protection is evaluated (1, 2, 3

or 4), andMN (β̂ | S), for instance, denotes an error measureM for estimating

β by β̂ using the normal model N , in Scenario S. The scenario is not specified
for the premium because it does not vary; it is Scenario 0. The premiums and
protections with respect to σ̂ — Premium(R, σ̂) and Protection(R, σ̂ | S) —
have the analogous definitions.

We consider two distinct error measures (MR(β̂ | S) and MR(σ̂ | S)) to
highlight the difference between them, and also because there is no natural
way of combining them. We propose to define MR(β̂ | S) as the square root of
the expectation with respect to Yn (and therefore the estimates associated with
each realisation) of the average squared vertical distances between the estimated
and true hyperplanes measured at each observation xi:

MR(β̂ | S) :=

(
E

[
1

n

n∑
i=1

(xTi β̂ − xTi β)2

])1/2

=

(
1

n
E
[
(β̂ − β)TXTX(β̂ − β)

])1/2

,

where X is the design matrix with rows xT1 , . . . ,x
T
n . The expression after the

second equality provides us with another interpretation. The measure represents
an alternative to (E[(β̂ − β)T (β̂ − β)])1/2, the square root of the trace of the

mean square error (MSE) matrix for β̂. Given that under the normal model

σ2(XTX)−1 is the covariance matrix of β̂, standardisation is applied to β̂ in our
measure. For σ̂, we simply use the square root of its MSE:MR(σ̂ | S) := (E[(σ̂−
σ)2])1/2. Note that the expectations are approximated through the simulation
of 250,000 vectors yn.

The premium and protection for a given robust alternative R in a given
scenario S are therefore the relative increase and decrease in MR(· | S) due to
the use of the robust alternative instead of the normal (the benchmark model),
respectively. For each robust alternative, there are four premiums to compute:
one for the measure for β̂ and one for the measure for σ̂, in the cases n = 50
and n = 100. There are sixteen protections to compute given that we also do
this for Scenarios 1, 2, 3, and 4. The idea is to graphically present the results
by plotting the couples (Premium(R, β̂),Protection(R, β̂ | S)) for all robust
alternatives. The results for Scenarios 1 and 2 are shown in Figure 6, and those
for Scenarios 3 and 4 in Figure 7.

From this premium versus protection perspective, a robust alternative dom-
inates another if its premium is smaller and protection larger. This means that
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Figure 6. Premiums vs protections in Scenarios 1 and 2, and lines premium = protection to
identify the robust alternatives that offer better protections than their premium.

in Figures 6 and 7, we are looking for points in the upper left parts. It is no-
ticed that the robust alternatives are all excellent candidates, except maybe for
S -estimator that we choose not to show because of its large premium for β̂ and
its same behaviour as MM -estimator for σ̂. In particular, the presented robust
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Figure 7. Premiums vs protections in Scenarios 3 and 4, and lines premium = protection to
identify the robust alternatives that offer better protections than their premium.

alternatives all handle high-leverage points.
By looking at Figures 6 and 7, we notice that the LPTN curve (in green) dom-

inates the Student curve (in orange), more remarkably for σ̂, but also for β̂. We
also notice that the optimal values for ρ for the LPTN are around the nonout-
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lier percentages, i.e. around 0.95 (the second point starting from the lower left
corner) in Scenarios 1 and 3, and around 0.90 (the fourth point starting from
the lower left corner) in Scenarios 2 and 4. This justifies our suggestion in Sec-
tion 3.1 for selecting ρ based on prior knowledge about probable proportions of
outliers, if users do not have other preferences. The best LPTN models in all
scenarios essentially dominate all the other alternatives with respect to σ̂. As
for β̂, the performance of these LPTN models is among the best. The mixture
model appears better in this case, but often by little. The difference varies de-
pending on the number of outliers and the sample size. For instance, look at the
LPTN(0.95) in Scenarios 1 and 3 (and also at the scale of the x axis), and notice
how the LPTN(0.98) gets closer to the mixture model in these scenarios when
doubling the sample size, which makes this model almost the best. This allows
to make an interesting remark: for a given percentage of outliers (and therefore
of nonoutliers), a larger sample size translates into enhanced protection, because
there are more nonoutliers. This is especially true for LPTN models with ρ close
to 1.

4. Conclusion

The goal of this paper, which was to provide a solution that reaches gold stan-
dards in terms of premium versus protection for all parameters, is now achieved.
The foundations for great protection were established through our main theo-
retical contribution: the proof of whole robustness results for linear regression.
The key result is the convergence of the posterior distribution towards that
based on the nonoutliers only when the outliers approach plus or minus infinity
(Result (c), Theorem 2.1). The robustness results hold under two simple and
intuitive conditions. Firstly, the error term must follow a super heavy-tailed
distribution, namely a LRVD, to accommodate for the presence of outliers. Sec-
ondly, the number of outliers must not exceed half the sample n/2 minus p−1/2
(the number of regression coefficients minus 1/2). This last condition translates
into a limiting breakdown point of 0.5 as n→∞.

Although the whole robustness results are theoretical and asymptotic, their
practical relevance has been shown through a comprehensive study of the LPTN
model. This specific choice of super heavy-tailed distribution represented our
main practical contribution as the resulting model is remarkably efficient and
deals with outlying observations in an automatic and sensitive manner, succeed-
ing in achieving low premium in addition to large protection. The procedure for
analysing data sets to which it gives rise is also easy to use. These characteristics
of the LPTN model make it a particularly appealing Bayesian alternative to the
partially robust Student model.

5. Proofs

We in fact provide in this section sketches of the proofs of Proposition 2.1 and
Theorem 2.1 for space considerations. The detailed proofs can be found in the
supplementary material in Section 7.
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5.1. Proof of Proposition 2.1

Let us pretend for now that the scale parameter is known and that its value is σ0.
To simplify, we denote the posterior density as π(β | yn) := π(β, σ = σ0 | yn).
To prove that it is proper, we show that the marginal m(yn) is finite. We have
that ∫

Rp
π(β, σ0)

n∏
i=1

1

σ0
f

(
yi − xTi β

σ0

)
dβ

≤ Bn−p+1 max

(
1,

1

σ0

)
1

σn−p0

∫
Rp

p∏
i=1

1

σ0
f

(
yi − xTi β

σ0

)
dβ

≤ Bn−p+1 max

(
1,

1

σ0

)
1

σn−p0

∣∣∣∣∣∣∣det

 xT1
...

xTp


∣∣∣∣∣∣∣
−1

p∏
i=1

∫
R
f(ui) dui,

using π(β, σ0) ≤ Bmax(1, 1/σ0) (by assumption) and f ≤ B (because of the
assumptions on this PDF), and the changes of variables ui = (yi−xTi β)/σ0, i =
1, . . . , p, B being a positive constant. The last quantity above is finite given
that the determinant is different from 0 because all explanatory variables are
continuous. Note that this justifies also the assumption mentioned in Remark 2.1
about the full rank of the design matrix when any type of explanatory variables
is considered.

An additional integral with respect to σ is added in front when π(β, σ | yn)
is considered. For σ not too small (bounded from below), it is easy to see that
the additional integral is finite because max(1, 1/σ) is bounded and σ−(n−p) is
integrable if n − p ≥ 2. This is the case because n > p + 1 by assumption. For
small σ, the proof is more technical and requires to bound more carefully the
densities f than above. See the supplementary material for details.

Proving that π(β, σ | yk) is proper is similar. For the moments, we use that

E[σM | yn] =

∫
σMπ(β, σ | yn) dβ dσ

≤ [m(yn)]−1BM
∫
π(β, σ)

n∏
i=M+1

1

σ
f

(
yi − xTi β

σ

)
dβ dσ,

using f ≤ B. This is finite given that m(yn) < ∞ and the integral is finite
because it corresponds to the marginal of n−M observations, and n−M > p+1
by assumption.

For the moments of βj , it is more technical. Consider the first moment. We
would like to compute instead the first moment of |yi − xTi β| because (|yi −
xTi β|/σ)f(|yi−xTi β|/σ) ≤ B (because of the assumptions on f), and as for the
moments of σ, it would be easy to show that the integral is finite. The strategy is
to write βj as eTj β, where ej is a vector of size p having 1 at the j-th position and

0’s elsewhere, and to write eTj as a linear combination of p vectors xi1 , . . . ,xip
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to essentially retrieve what we were looking for. See the supplementary material
for details.

5.2. Proof of Theorem 2.1

Proof of Result (a). To prove this result, we use that

m(yn)

m(yk)
∏n
i=1[f(yi)]`i

=
m(yn)

m(yk)
∏n
i=1[f(yi)]`i

∫
Rp

∫ ∞
0

π(β, σ | yn) dσ dβ

=

∫
Rp

∫ ∞
0

π(β, σ)
∏n
i=1

[
(1/σ)f((yi − xTi β)/σ)

]ki+`i
m(yk)

∏n
i=1[f(yi)]`i

dσ dβ

=

∫
Rp

∫ ∞
0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ,

and show that this integral converges towards 1 as ω → ∞. Assuming that we
can interchange the limit and the integral, we have that

lim
ω→∞

∫
Rp

∫ ∞
0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ

=

∫
Rp

∫ ∞
0

lim
ω→∞

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ

=

∫
Rp

∫ ∞
0

π(β, σ | yk) dσ dβ = 1,

using Proposition 2.2 in the second equality, and next Proposition 2.1. Note that
the conditions of Proposition 2.1 are satisfied given that k ≥ `+ 2p− 1⇒ k ≥
p+ 2, assuming that ` ≥ 1 (otherwise the proof is trivial) and because p ≥ 2.

To interchange the limit and the integral, we need to prove that the integrand
is bounded by an integrable function of β and σ that does not depend on ω. As
in Section 5.1, let us set for now the scale parameter to a positive value σ0. We
know that

π(β, σ0 | yk)

n∏
i=1

[
(1/σ0)f((yi − xTi β)/σ0)

f(yi)

]`i
= [m(yk)]−1π(β, σ0)

n∏
i=1

[(1/σ0)f((yi − xTi β)/σ0)]ki
[

(1/σ0)f((yi − xTi β)/σ0)

f(yi)

]`i
.

(5.1)

Consider that β ∈ F , a set such that the hyperplanes pass (relatively) close
to the nonoutliers (fixed observations), and therefore, (relatively) far to the
outliers. In this case, for large enough ω, we have that

n∏
i=1

[
(1/σ0)f((yi − xTi β)/σ0)

f(yi)

]`i



Gagnon P., Desgagné A. and Bédard M./A New Bayesian Robust Linear Regression 24

is bounded above using Proposition 2.2 because xTi β is bounded (recall that
yi = ai + biω), and the remaining terms on the right-hand side (RHS) in (5.1)
give π(β, σ0 | yk) which is integrable.

Consider now that β ∈ O, a set such that the hyperplanes pass (relatively)
close to the outliers. The difference is that we are not sure that these hyperplanes
do not pass close to the nonoutliers (see Figure 8). In this example, n = 5,
k = 4 and ` = 1, which satisfy the assumptions in Theorem 2.1: k − ` = 3 ≥
2(p− 1/2) = 3. We also have that

(1/σ0)f((y4 − xT4 β)/σ0)

f(y5)

is bounded above using again Proposition 2.2 but now because |y4 − xT4 β| is
close to ω (this is explained in greater detail in the supplementary material).
Note that it would not be true if x1 = x4, which is why we require to have
enough of different vectors xi in Remark 2.2. The remaining terms on the RHS
in (5.1) are

[m(yk)]−1π(β, σ0)

n∏
i=1(i 6=4)

[(1/σ0)f((yi − xTi β)/σ0)],

which after multiplying and dividing by the right marginal is proportional to
the posterior density based on y1, y2, y3, y5, which is integrable given that 4 =
n− ` ≥ p+ 2 = 2p+ `− 1 = 4. This justifies the assumption on the number of
nonoutliers in Theorem 2.1 given by k = n− ` ≥ 2p+ `− 1.

The strategy to do the proof in general is to rewrite the domain of β (which is
Rp) as a finite number of mutually exclusive sets, in which it is always possible to
proceed as above. The function to bound thus becomes a finite sum, where each
term is bounded above by integrable function. When σ is free, an additional level
of technicalities is added because |yi−xTi β| can be large, but not |yi−xTi β|/σ.
See the supplementary material for all the details. �

Proof of Result (b). We have that

|π(β, σ | yn)− π(β, σ | yk)| = π(β, σ | yk)

∣∣∣∣∣m(yk)

m(yn)

n∏
i=1

[(1/σ)f((yi − xTi β)/σ)]`i − 1

∣∣∣∣∣ .
The absolute value on the RHS converges to 0 as ω →∞ uniformly on (β, σ) ∈
[−ϑ, ϑ]p× [1/η, η] using Proposition 2.2 and Result (a), for any ϑ ≥ 0 and η ≥ 1.

Figure 8. Example of a case where the line passes close to a nonoutlier and an outlier.
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On this set, π(β, σ | yk) is bounded using the assumptions on the prior and f
and the fact that m(yk) is finite. This concludes the proof. �

Proof of Result (c). Result (c) is a direct consequence of Result (b) using Scheffé’s
theorem (see Scheffé (1947)). See the supplementary material for details. �

Proof of Result (d). Result (d) is proved through a mix of the strategies used
to show Result (a) and that the moments exist in Proposition 2.1. Assuming
that we can interchange the limit and the integral, we have

lim
ω→∞

E[σM | yn] = lim
ω→∞

∫ ∞
0

∫
Rp
σMπ(β, σ | yn) dβ dσ

=

∫ ∞
0

∫
Rp

lim
ω→∞

σMπ(β, σ | yn) dβ dσ

=

∫ ∞
0

∫
Rp
σMπ(β, σ | yk) dβ dσ = E[σM | yk],

using Result (b). Again, we have to prove the integrand is bounded by an in-
tegrable function of β and σ that does not depend on ω. To achieve this, we
bound above σMπ(β, σ | yn) by a constant times a function similar to the one
that is shown to be bounded by an integrable function of β and σ in the proof
of Result (a). See the supplementary material for details. We proceed with the
same strategy for E[βMj | yn]. �
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Scheffé, H. (1947). A Useful Convergence Theorem for Probability Distribu-
tions. Ann. Math. Statist. 434–438.

West, M. (1984). Outlier Models and Prior Distributions in Bayesian Linear
Regression. J. R. Stat. Soc. Ser. B. Stat. Methodol. 46 431-439.

Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates
for regression. Ann. Statist. 15 642-656.

Yu, C. and Yao, W. (2017). Robust linear regression: A review and compari-
son. Comm. Statist. B – Simulation Comput. 46 6261-6282.

6. Acknowledgements

The authors acknowledge support from NSERC (Natural Sciences and Engineer-
ing Research Council of Canada), FRQNT (Le Fonds de recherche du Québec
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7. Supplementary Material

Proposition 2.1 and Theorem 2.1 are proved in detail in Sections 7.1.1 and 7.1.2,
respectively. In Section 7.2, we complete Section 3.2 regarding the claims about
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the divergence and the regularity conditions in Bunke et al. (1998). Finally, we
provide a result in Section 7.3 that was used to verify that all point estimators
of β under the normal model correspond to OLS, as mentioned in Section 3.3.

7.1. Proofs

Recall the assumptions on f : f is a strictly positive continuous PDF on R that
is symmetric with respect to the origin, and such that both tails of |z|f(z)
are monotonic, which implies that the tails of f(z) are also monotonic. The
monotonicity of the tails of f(z) and |z|f(z) implies that there exists a constant
M > 0 such that

|y| ≥ |z| ≥M ⇒ f(y) ≤ f(z) and |y|f(y) ≤ |z|f(z). (7.1)

All these assumptions on f imply that f(z) and |z|f(z) are bounded on the real
line, and both converge to 0 as |z| → ∞. We can therefore define the constant
B > 0 as follows:

B := max

{
sup
z∈R

f(z), sup
z∈R
|z|f(z), sup

β∈Rp, σ>0
π(β, σ)/max(1, 1/σ)

}
.

7.1.1. Proof of Proposition 2.1

To prove that π(β, σ | yn) is proper (the proof for π(β, σ | yk) is omitted because
it is similar), it suffices to show that the marginal m(yn) is finite. Recall that
we require that n > p+ 1. The reader will notice that only n ≥ p+ 1 is required
if π(β, σ) is bounded by B/σ for all σ > 0 and β ∈ Rp (instead of π(β, σ) is
bounded by Bmax(1, 1/σ)).

We first show that the function is integrable on the area where the ratio 1/σ
is bounded. More precisely, we consider β ∈ Rp and δM−1 ≤ σ < ∞, where δ
is a positive constant that can be chosen as small as we want (upper bounds
are provided in the proof). We next show that the function is integrable on the
area where the ratio 1/σ approaches infinity, that is 0 < σ < δM−1. We have∫ ∞

δM−1

∫
Rp
π(β, σ)

n∏
i=1

(1/σ)f((yi − xTi β)/σ) dβ dσ

a
≤ Bn−p+1

∫ ∞
δM−1

max

(
1,

1

σ

)
1

σn−p

∫
Rp

p∏
i=1

1

σ
f

(
yi − xTi β

σ

)
dβ dσ

b
≤ max

(
1,
M

δ

)
Bn−p+1

∣∣∣∣∣∣∣det

 xT1
...

xTp


∣∣∣∣∣∣∣
−1 ∫ ∞

δM−1

1

σn−p
dσ

p∏
i=1

∫ ∞
−∞

f(ui) dui

∝
∫ ∞
δM−1

1

σn−p
dσ

c
= (M/δ)n−p−1/(n− p− 1) <∞.
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In Step a, we use π(β, σ) ≤ Bmax(1, 1/σ) and we bound each of n−p densities f
by B. In Step b, we use the change of variables ui = (yi−xTi β)/σ for i = 1, . . . , p.
The determinant is non-null because all explanatory variables are continuous.
Indeed, consider the case p = 2 for instance (i.e. the simple linear regression);
the determinant is different from 0 provided that x12 6= x22, and this happens
with probability 1. When any type of explanatory variables is considered, we
need to be able to select p observations, say those with xi1 , . . . ,xip , such that
the matrix with rows xTi1 , . . . ,x

T
ip

has a non-null determinant. This is possible
when the design matrix has full rank, which is specified in Remark 2.1. In Step
c, we use n > p + 1. Note that if, instead, we bound π(β, σ) by B/σ in Step
a, one can verify that the condition n ≥ p + 1 is sufficient to bound above the
integral.

We now show that the integral is finite on β ∈ Rp and 0 < σ < δM−1. In
this area, the ratio (1/σ) approaches infinity. We have to carefully analyse the
subareas where yi − xTi β is close to 0 in order to deal with the 0/0 form of the
ratios (yi−xTi β)/σ. In order to achieve this, we split the domain of β as follows:

Rp =
[
∩ni1=1Rci1

]
∪
[
∪ni1=1

(
Ri1 ∩

(
∩ni2=1(i2 6=i1)R

c
i2

))]
∪
[
∪ni1,i2=1(i1 6=i2)

(
Ri1 ∩Ri2 ∩

(
∩ni3=1(i3 6=i1,i2)R

c
i3

))]
∪ · · · ∪

[
∪ni1,i2,...,ip=1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Ri1 ∩Ri2 ∩ . . . ∩Rip

)]
,(7.2)

where Ri := {β : |yi − xTi β| < δ}, i ∈ {1, . . . , n}. The set Ri represents the
hyperplanes y = xTi β characterised by the different values of β that satisfy |yi−
xTi β| < δ. In other words, it represents the hyperplanes passing near the point
(xi, yi), and more precisely, at a vertical distance of less than δ. The set ∩ni1=1Rci1
is therefore comprised of the hyperplanes that are not passing close to any point.
The set ∪ni1=1(Ri1 ∩ (∩ni2=1(i2 6=i1)R

c
i2

)) represents the hyperplanes passing near

one (and only one) point. The set ∪ni1,i2=1(i1 6=i2)(Ri1 ∩Ri2 ∩(∩ni3=1(i3 6=i1,i2)R
c
i3

))

represents the hyperplanes passing near two (and only two) points, and so on.
We choose δ small enough to ensure that Ri1 ∩Ri2 ∩ . . . ∩Rip ∩Rip+1

= ∅
when i1, . . . , ip+1 are all different. It is possible to do so because an hyperplane
passes through no more than p points. This implies that[
∪ni1,i2,...,ip=1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Ri1 ∩Ri2 ∩ . . . ∩Rip

)]
=
[
∪ni1,i2,...,ip=1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Ri1 ∩Ri2 ∩ . . . ∩Rip

∩
(
∩nip+1=1(ip+1 6=i1,i2,...,ip)R

c
ip+1

))]
.

Note that all sets Ri1 ∩ Ri2 ∩ . . . ∩ Rip are nonempty when i1, . . . , ip are all
different, because all explanatory variables are continuous (which implies that
the p×p matrix with rows given by xTi1 , . . . ,x

T
ip

has a determinant different from

0). As mentioned above, if they are not all continuous, we have to select them
in order to have to have a matrix with a non-null determinant. Note also that
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Ri1 ∩ (∩ni2=1(i2 6=i1)R
c
i2

) is nonempty for all i1, Ri1 ∩ Ri2 ∩ (∩ni3=1(i3 6=i1,i2)R
c
i3

)
is nonempty for all i1, i2 such that i1 6= i2, and so on. Finally note that the
decomposition of Rp given in (7.2) is comprised of

∑p
i=0

(
n
i

)
mutually exclu-

sive sets given by ∩ni1=1Rci1 , Ri1 ∩ (∩ni2=1(i2 6=i1)R
c
i2

), i1 = 1, . . . , n, Ri1 ∩ Ri2 ∩
(∩ni3=1(i3 6=i1,i2)R

c
i3

), i1, i2 = 1, . . . , n with i1 6= i2, and so on.

We now consider 0 < σ < δM−1 and β in one of the
∑p
i=0

(
n
i

)
mutually

exclusive sets given in (7.2). As explained above, the difficulty lies in dealing
with the hyperplanes β that are such that |yi−xTi β| < δ for some points (xi, yi).
The strategy is essentially to use the product of (1/σ)f((yi − xTi β)/σ) of these
points to integrate over β, and to bound the other terms of m(yn). Therefore, if
β ∈ Ri1∩Ri2∩. . .∩Rip , we consider the points (xi1 , yi1), (xi2 , yi2), . . . , (xip , yip)
to integrate over β. If β ∈ Ri1 ∩ Ri2 ∩ . . .Rip−1

∩ (∩nip=1(ip 6=i1,...,ip−1)
Rcip), we

consider the points (xi1 , yi1), (xi2 , yi2), . . . , (xip−1
, yip−1

), and any other point
(xip , yip) (leading to a matrix with a non-null determinant) to integrate over β,
and so on. We have

π(β, σ)

n∏
i=1

(1/σ)f((yi − xTi β)/σ)
a
≤ (B/σ) max(δM−1, 1)

n∏
i=1

(1/σ)f((yi − xTi β)/σ)

∝ (1/σ)
∏

i∈{i1,...,ip}

(1/σ)f((yi − xTi β)/σ)
∏

i/∈{i1,...,ip}

(1/σ)f((yi − xTi β)/σ)

b
≤ (1/σ)[(1/σ)f (δ/σ)]n−p

∏
i∈{i1,...,ip}

(1/σ)f((yi − xTi β)/σ)

c
≤ [B/δ]n−p−1(1/σ2)f (δ/σ)

∏
i∈{i1,...,ip}

(1/σ)f((yi − xTi β)/σ).

In Step a, we use π(β, σ) ≤ Bmax(1, 1/σ) = (B/σ) max(σ, 1) ≤ (B/σ) max(δM−1,
1). In Step b, for all i /∈ {i1, . . . , ip} we use f((yi − xTi β)/σ) ≤ f(δ/σ) by the
monotonicity of the tails of f because |yi − xTi β|/σ ≥ δ/σ ≥ δδ−1M = M . In
Step c, we bound n− p− 1 terms (1/σ)f(δ/σ) by B/δ.

Finally, we bound the integral of (1/σ2)f (δ/σ)
∏
i∈{i1,...,ip}(1/σ)f((yi−xTi β)/σ)

by∫ ∞
0

(1/σ2)f (δ/σ)

∫
Rp

∏
i∈{i1,...,ip}

(1/σ)f((yi − xTi β)/σ) dβ dσ

a
=

∣∣∣∣∣∣∣det

 xTi1
...

xTip


∣∣∣∣∣∣∣
−1 ∫ ∞

0

(1/σ2)f (δ/σ) dσ
b
=

∣∣∣∣∣∣∣det

 xTi1
...

xTip


∣∣∣∣∣∣∣
−1 ∫ ∞

0

f (σ′) dσ′ <∞.

In Step a, we use the same change of variables as above: uj = (yij − xTijβ)/σ

for j = 1, . . . , p. In Step b, we use the change of variable σ′ = δ/σ.
We now prove that the M -moments exist if n > p+ 1 +M (considering the

whole data set, the proof for the posterior expectations based on the nonoutliers
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only is omitted because it is similar). It is easy to prove that E[σM | yn] <∞,
from what has been demonstrated above. Indeed,

E[σM | yn] = [m(yn)]−1
∫ ∞
0

∫
Rp
σMπ(β, σ)

n∏
i=1

(1/σ)f((yi − xTi β)/σ) dβ dσ

≤ BM [m(yn)]−1
∫ ∞
0

∫
Rp
π(β, σ)

n∏
i=M+1

(1/σ)f((yi − xTi β)/σ) dβ dσ,

where M densities f have been bounded by B. We know that m(yn) is finite
because n > p + 1. We also know that the last integral above is finite because
it corresponds to the marginal of n−M observations, which is finite given that
n−M > p+ 1.

For the expectations E[|βj |M | yn], we detail the proof for the cases M = 1
and M = 2. From these, it will be clear that the result holds in general, with
further technicalities. For the proof, we use that βj can be rewritten as eTj β,
where ej is a vector of size p having 1 at the j-th position and 0’s elsewhere.
This vector can be expressed as a linear combination of p vectors xi1 , . . . ,xip ,
i1, . . . , ip ∈ {1, . . . , n}, because these vectors are linearly independent and form
a basis of Rp (given that all explanatory variables are continuous). Using the
triangle inequality, we have

E[|βj | | yn] = E[|eTj β| | yn] = E

[∣∣∣∣∣
p∑
s=1

asx
T
isβ

∣∣∣∣∣ | yn

]
≤

p∑
s=1

|as|E
[∣∣xTisβ∣∣ | yn

]
≤

p∑
s=1

|as|
(
|yis |+ E

[∣∣yis − xTisβ
∣∣ | yn

])
,

where a1, . . . , ap ∈ R. We can prove that E[|yis − xTisβ| | yn] < ∞ in the same

way that we proved that E[σM | yn] <∞, using instead that

(|yis − xTisβ|/σ)f((yis − xTisβ)/σ) ≤ B.

Therefore, E[|βj | | yn] < ∞ if n > p + 2. For the second moment, using again
the triangle inequality we have

E
[∣∣β2

j

∣∣ | yn

]
= E

∣∣∣∣∣∣
(

p∑
s=1

asx
T
isβ

)2
∣∣∣∣∣∣ | yn


= E

∣∣∣∣∣∣
p∑
s=1

(asx
T
isβ)2 +

∑
s,t(s6=t)

asx
T
isβ atx

T
itβ

∣∣∣∣∣∣ | yn


≤ E

[
p∑
s=1

(asx
T
isβ)2 | yn

]
+ E

∣∣∣∣∣∣
∑

s,t(s6=t)

asx
T
isβ atx

T
itβ

∣∣∣∣∣∣ | yn

 .
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We analyse the two last terms separately, starting with the second one. Using
again the triangle inequality we have,

E

∣∣∣∣∣∣
∑

s,t(s6=t)

asx
T
isβ atx

T
itβ

∣∣∣∣∣∣ | yn

 ≤ ∑
s,t(s6=t)

|asat|E
[∣∣xTisβ∣∣ ∣∣xTitβ∣∣ | yn

]
≤

∑
s,t(s6=t)

|asat|
(
E
[∣∣yis − xTisβ

∣∣ ∣∣yit − xTitβ
∣∣ | yn

]
+ |yis |E

[∣∣yit − xTitβ
∣∣ | yn

]
+|yit |E

[∣∣yis − xTisβ
∣∣ | yn

]
+ |yisyit |

)
.

All the terms in the sum are finite if n > p+ 3. Also,

E

[
p∑
s=1

(asx
T
isβ)2 | yn

]
=

p∑
s=1

a2sE
[∣∣xTisβ xTisβ

∣∣ | yn

]
=

p∑
s=1

a2sE

[∣∣∣∣∣
p∑
t=1

btx
T
itβ xTisβ

∣∣∣∣∣ | yn

]

≤
p∑
s=1

a2s

p∑
t=1

btE
[∣∣xTitβ xTisβ

∣∣ | yn

]
,

and we proceed as before. In the second equality, we write xis as a linear com-
bination of xi1 , . . . ,xip , i1, . . . , ip ∈ {1, . . . , n} \ {is}. To be able to do this, we
need to select p linearly independent vectors among the remaining n − 1 ≥ p.
It is possible given that n > p+ 3 and all explanatory variables are continuous.
Therefore, E[|βj |2 | yn] <∞ if n > p+ 3.

7.1.2. Proof of Theorem 2.1

Recall that we assume that ` ≤ n/2− (p− 1/2)⇔ k ≥ n/2 + (p− 1/2)⇔ k ≥
` + 2p − 1. In addition, we will assume that ` ≥ 1, i.e. that there is at least
one outlier, otherwise the proof is trivial. A proposition and a lemma that are
used in the proof are first given, and the proofs of Results (a) to (d) follow. The
proofs of this proposition and this lemma can be found in Desgagné (2015).

Proposition 7.1 (Dominance). If s ∈ L0(∞) and g ∈ Lρ(∞), then for all
δ > 0, there exists a constant A(δ) > 1 such that z ≥ A(δ) implies that

(log z)−δ < s(z) < (log z)δ and (log z)−ρ−δ < g(z) < (log z)−ρ+δ.

Lemma 7.1. For all λ ≥ 0, ∀τ ≥ 1, there exists a constant D(λ, τ) ≥ 1 such
that z ∈ R and (µ, σ) ∈ [−λ, λ]× [1/τ, τ ] implies that

1/D(λ, τ) ≤ (1/σ)f((z − µ)/σ)/f(z) ≤ D(λ, τ).

Note that Lemma 7.1 is a corollary of Proposition 2.2.
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Proof of Result (a). We first observe that

m(yn)

m(yk)
∏n
i=1[f(yi)]`i

=
m(yn)

m(yk)
∏n
i=1[f(yi)]`i

∫
Rp

∫ ∞
0

π(β, σ | yn) dσ dβ

=

∫
Rp

∫ ∞
0

π(β, σ)
∏n
i=1

[
(1/σ)f((yi − xTi β)/σ)

]ki+`i
m(yk)

∏n
i=1[f(yi)]`i

dσ dβ

=

∫
Rp

∫ ∞
0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ.

We show that the last integral converges towards 1 as ω → ∞ to prove
Result (a). If we use Lebesgue’s dominated convergence theorem to interchange
the limit ω →∞ and the integral, we have

lim
ω→∞

∫
Rp

∫ ∞
0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ

=

∫
Rp

∫ ∞
0

lim
ω→∞

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ

=

∫
Rp

∫ ∞
0

π(β, σ | yk) dσ dβ = 1,

using Proposition 2.2 in the second equality, since x1, . . . ,xn are fixed, and
then Proposition 2.1. Note that the conditions of Proposition 2.1 are satisfied
because k ≥ ` + 2p − 1 ⇒ k ≥ p + 2 (because ` ≥ 1 and p ≥ 2). When any
type of explanatory variables is considered, we select p observations, say those
with xi1 , . . . ,xip , such that the matrix with rows xTi1 , . . . ,x

T
ip

has a non-null
determinant. This is possible given the assumption mentioned in Remark 2.2.
Note also that pointwise convergence is sufficient, for any value of β ∈ Rp and
σ > 0, once the limit is inside the integral. However, in order to use Lebesgue’s
dominated convergence theorem, we need to prove that the integrand is bounded
by an integrable function of β and σ that does not depend on ω, for any value of
ω ≥ y, where y is a constant. The constant y can be chosen as large as we want,
and minimum values for y will be given throughout the proof. In order to bound
the integrand, we divide the domain of integration into two areas: 1 ≤ σ < ∞
and 0 < σ < 1. Again, we want to separately analyse the area where the ratio
1/σ approaches infinity.

We assumed that yi can be written as yi = ai + biω, where ω → ∞, and ai
and bi are constants such that ai ∈ R and bi 6= 0 if `i = 1 (if the observation is
an outlier). Therefore, the ranking of the elements in the set {|yi| : `i = 1} is
primarily determined by the values |b1|, . . . , |bn|, and we can choose the constant
y larger than a certain threshold to ensure that this ranking remains unchanged
for all ω ≥ y. Without loss of generality, we assume for convenience that

ω = min
{i: `i=1}

|yi| and consequently min
{i: `i=1}

|bi| = 1.
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We now bound above the integrand on the first area.
Area 1: Consider 1 ≤ σ < ∞ and assume without loss of generality that

y1, . . . , y`+2p−1 are ` + 2p − 1 nonoutliers (therefore k1 = . . . = k`+2p−1 = 1).
We have

π(β, σ | yk)

n∏
i=1

[
(1/σ)f

(
(yi − xTi β)/σ

)
f(yi)

]`i
∝ π(β, σ)

σn

n∏
i=1

f((yi − xTi β)/σ)

[f(yi)]
`i

a
≤ B

σn

n∏
i=1

D(|ai|, 1)f((biω − xTi β)/σ)

[f(yi)]
`i

b
≤ 1

[f(ω)]`
B

σn

n∏
i=1

D(|ai|, 1)f((biω − xTi β)/σ) [|bi|D(|ai|, |bi|)]`i

∝ 1

[f(ω)]`
1

σn

n∏
i=1

f((biω − xTi β)/σ)

c
=

1

[f(ω)]`
1

σn

n∏
i=1

[
f(xTi β/σ)

]ki [
f((biω − xTi β)/σ)

]`i
d
=

∏p
i=1(1/σ)f(xTi β/σ)

σk−p−1/2

[
ω/σ

ωf(ω)

]`
1

σ1/2

n∏
i=p+1

[
f(xTi β/σ)

]ki [
f((biω − xTi β)/σ)

]`i
.

In Step a, we use yi = ai + biω and Lemma 7.1 to obtain

f((yi − xTi β)/σ) = f((biω − xTi β)/σ + ai/σ) ≤ D(|ai|, 1)f((biω − xTi β)/σ),

because |ai/σ| ≤ |ai| for all i. We also use π(β, σ) ≤ Bmax(1, 1/σ) = B. In
Step b, we use again Lemma 7.1 to obtain f(ω)/f(yi) = f((yi− ai)/bi)/f(yi) ≤
|bi|D(|ai|, |bi|). In Step c, we set bi = 0 if ki = 1 and we use the symmetry
of f to obtain f(−xTi β/σ) = f(xTi β/σ). In Step d, we use the assumption
k1 = . . . = kp = 1.

Now it suffices to demonstrate that[
ω/σ

ωf(ω)

]`
1

σ1/2

n∏
i=p+1

[
f(xTi β/σ)

]ki [
f((biω − xTi β)/σ)

]`i
(7.3)

is bounded by a constant that does not depend on ω,β and σ since
∏p
i=1(1/σ)f(xTi β/σ)

×(1/σ)k−p−1/2 is an integrable function on area 1. Indeed, since k > p+ 1, we
have ∫ ∞

1

(1/σ)k−p−1/2
∫
Rp

p∏
i=1

(1/σ)f(xTi β/σ) dβ dσ

=

∣∣∣∣∣∣∣det

 xT1
...

xTp


∣∣∣∣∣∣∣
−1 ∫ ∞

1

1

σk−p−1/2
dσ <∞,
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using the following change of variables: ui = xTi β/σ, i = 1, . . . , p. The deter-
minant is different from 0 because all the explanatory variables are continuous.
When any type of explanatory variables is considered, we assume without loss
of generality that x1, . . . ,xp are additionally linearly independent. Note that if
instead, in Step a above, we bound π(β, σ) by B/σ, one can verify that the
condition k ≥ p+ 1 is sufficient to bound above the integral.

In order to bound the function in (7.3), we split Area 1 into three parts:
1 ≤ σ < ω1/2, ω1/2 ≤ σ < ω/(γM) and ω/(γM) ≤ σ <∞, where M is defined
in (7.1) and γ is a positive constant that can be chosen as large as we want
(lower bounds are provided in the proof). Note that this split is well defined if
y > max(1, (γM)2) because ω ≥ y.

First, consider ω/(γM) ≤ σ <∞. We have[
ω/σ

ωf(ω)

]`
1

σ1/2

n∏
i=p+1

[
f(xTi β/σ)

]ki [
f((biω − xTi β)/σ)

]`i a
≤ Bn−p

σ1/2

[
ω/σ

ωf(ω)

]`
b
≤ Bn−p(γM)`+1/2 (1/ω)1/2

[ωf(ω)]`
c
≤ Bn−p(γM)`+1/2 (1/ω)1/2

(logω)−(ρ+1)`

d
≤ Bn−p(γM)`+1/2[2(ρ+ 1)`/e](ρ+1)` <∞.

In Step a, we use f ≤ B. In Step b, we use ω/σ ≤ γM and 1/σ ≤ γM/ω. In
Step c, we use ωf(ω) > (logω)−ρ−1 if ω ≥ y ≥ A(1), where A(1) comes from
Proposition 7.1. For Step d, it is purely algebraic to show that the maximum of
(logω)ξ/ω1/2 is (2ξ/e)ξ for ω > 1 and ξ > 0, where ξ = (ρ+1)` in our situation.

Now, consider the two other parts combined (we will split them in the next
step), that is 1 ≤ σ ≤ ω/(γM). We have[

ω/σ

ωf(ω)

]`
1

σ1/2

n∏
i=p+1

[
f(xTi β/σ)

]ki [
f((biω − xTi β)/σ)

]`i
=

1

σ1/2

[
(ω/σ)f(ω/σ)

ωf(ω)

]` n∏
i=p+1

[
f(xTi β/σ)

]ki [f((biω − xTi β)/σ)

f(ω/σ)

]`i
a
≤ 1

σ1/2

[
(ω/σ)f(ω/σ)

ωf(ω)

]`
Bk−p[D(0, γ)γ]`.

In Step a, we use

n∏
i=p+1

[
f(xTi β/σ)

]ki [f((biω − xTi β)/σ)

f(ω/σ)

]`i
≤ Bk−p[D(0, γ)γ]`. (7.4)

The proof of this inequality is substantial. Therefore, to ease the reading, it is
deferred after the demonstration that the remaining term, i.e.

1

σ1/2

[
(ω/σ)f(ω/σ)

ωf(ω)

]`
,
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is bounded.
We first consider ω1/2 ≤ σ ≤ ω/(γM). We have

1

σ1/2

[
(ω/σ)f(ω/σ)

ωf(ω)

]`
a
≤ B` (1/ω)1/4

[ωf(ω)]`
b
≤ B` (1/ω)1/4

(logω)−(ρ+1)`

c
≤ B`[4(ρ+ 1)`/e](ρ+1)` <∞.

In Step a, we use (ω/σ)f(ω/σ) ≤ B and (1/σ)1/2 ≤ (1/ω)1/4. In Step b, we use
ωf(ω) > (logω)−ρ−1 if ω ≥ y ≥ A(1), where A(1) comes from Proposition 7.1.
In Step c, it is purely algebraic to show that the maximum of (logω)ξ/ω1/4 is
(4ξ/e)ξ for ω > 1 and ξ > 0, where ξ = (ρ+ 1)` in our situation.

We now consider 1 ≤ σ ≤ ω1/2. We have

1

σ1/2

[
(ω/σ)f(ω/σ)

ωf(ω)

]`
a
≤
[
ω1/2f(ω1/2)

ωf(ω)

]`
b
≤ 2(ρ+1)` <∞.

In Step a, we use 1/σ ≤ 1 and (ω/σ)f(ω/σ) ≤ ω1/2f(ω1/2) by the monotonicity
of the tails of |z|f(z) since ω/σ ≥ ω1/2 ≥ y1/2 ≥M if y ≥M2. In Step b, we use
ω1/2f(ω1/2)/(ωf(ω)) ≤ 2(1/2)−ρ = 2ρ+1 if ω ≥ y ≥ A, where A is a positive
constant, see the definition of log-regularly varying functions (Definition 2.1).

Finally, we prove the inequality in (7.4). Recall that we assumed without loss
of generality that the first ` + 2p − 1 observations are nonoutliers (therefore
k1 = . . . = k`+2p−1 = 1). We know that x1, . . . ,xp have been used earlier
to integrate over β and σ. We also know that there are at least p remaining
nonoutliers among observations 1 to `+2p−1 because `+2p−1−p = `+p−1 ≥ p
(because we assume that ` ≥ 1).

In order to prove the result, we split the domain of β as follows:

Rp = [∩iOci ] ∪
[
∪i
(
Oi ∩

(
∩i1Fci1

))]
∪
[
∪i,i1

(
Oi ∩ Fi1 ∩

(
∩i2 6=i1Fci2

))]
∪ · · · ∪

[
∪i,i1,...,ip−1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Oi ∩ Fi1 ∩ · · · ∩ Fip−1 ∩

(
∩ip 6=i1,...,ip−1Fcip

))]
∪
[
∪i,i1,...,ip(ij 6=is ∀ij ,is s.t. j 6=s)

(
Oi ∩ Fi1 ∩ · · · ∩ Fip

)]
, (7.5)

where

Oi := {β : |biω − xTi β| < ω/2},∀i ∈ IO, (7.6)

Fi := {β : |xTi β| < ω/γ},∀i ∈ IF , (7.7)

IO := {i : i ∈ {`+ 2p− 1, . . . , n} and `i = 1} and IF := {p+ 1, . . . , `+ 2p− 1}
are the sets of indexes of outliers and remaining fixed observations (nonoutliers)
among observations 1 to `+ 2p− 1, respectively.

The set Oi represents the hyperplanes y = xTi β characterised by the different
values of β that satisfy |biω−xTi β| < ω/2. In other words, it represents the hy-
perplanes that pass at a vertical distance of less than ω/2 of the point (xi, biω),
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which is considered as an outlier since ω →∞ (recall that biω = yi− ai). Anal-
ogously, the set Fi represents the hyperplanes that pass at a vertical distance of
less than ω/γ of the point (xi, 0), which is considered as a nonoutlier. Therefore,
the set ∩iOci represents the hyperplanes that pass at a vertical distance of at
least ω/2 of all the points (xi, biω) (all the outliers). The set ∪i(Oi ∩ (∩i1Fci1))
represents the hyperplanes that pass at a vertical distance of less than ω/2 of
at least one point (xi, biω) (an outlier), but at a vertical distance of at least
ω/γ of all the points (xi, 0) (all the nonoutliers). For each i1 ∈ IF , the set
∪i(Oi ∩ Fi1 ∩ (∩i2 6=i1Fci2)) represents the hyperplanes that pass at a vertical
distance of less than ω/2 of at least one point (xi, biω) (an outlier), at a vertical
distance of less than ω/γ of the point (xi1 , 0) (a nonoutlier), but at a vertical
distance of at least ω/γ of all the other nonoutliers, and so on.

Now, we claim that Oi ∩ Fi1 ∩ · · · ∩ Fip = ∅ for all i, i1, . . . , ip with ij 6=
is,∀ij , is such that j 6= s, meaning that there is no hyperplane that passes at a
vertical distance of less than ω/2 of the point (xi, biω) (an outlier) and at the
same at a vertical distance of less than ω/γ of p points (xij , 0) (nonoutliers). To
prove this, we use the fact that xi (a vector of size p) can be expressed as a linear
combination of xi1 , . . . ,xip . This is true because all explanatory variables are
continuous, and therefore, linearly independent with probability 1. When any
type of explanatory variables is considered, we select observations 1 to `+2p−1
to be such that any p vectors xi1 , . . . ,xip , with {i1, . . . , ip} ⊂ {1, . . . , `+2p−1},
are linearly independent. This is possible given the assumption mentioned in
Remark 2.2. As a result, considering that β ∈ Fi1∩· · ·∩Fip and xi =

∑p
s=1 asxis

for some a1, . . . , ap ∈ R, we have

|biω − xTi β| =

∣∣∣∣∣∣biω −
(

p∑
s=1

asxis

)T
β

∣∣∣∣∣∣ a≥ |biω| −
∣∣∣∣∣
p∑
s=1

asx
T
isβ

∣∣∣∣∣ b≥ ω − ω

γ

p∑
s=1

|as|

c
≥ ω − ω

2
.

In Step a, we use the reverse triangle inequality. In Step b, we use that |bi| ≥ 1
and |

∑p
s=1 asx

T
is
β| ≤

∑p
s=1 |as||xTisβ| ≤

∑p
s=1 |as|ω/γ because β ∈ Fi1 ∩ · · · ∩

Fip , which means that |xTi β| < ω/γ for all i ∈ {i1, . . . , ip}. In Step c, we define
the constant γ such that γ ≥ 2

∑p
s=1 |as| (we choose γ such that it satisfies

this inequality for any combination of i and i1, . . . , ip). Therefore, we have that
β /∈ Oi. This proves that Oi ∩ Fi1 ∩ · · · ∩ Fip = ∅ for all i, i1, . . . , ip with
ij 6= is,∀ij , is such that j 6= s. This in turn implies that (7.5) can be rewritten
as

Rp = [∩iOci ] ∪
[
∪i
(
Oi ∩

(
∩i1Fci1

))]
∪
[
∪i,i1

(
Oi ∩ Fi1 ∩

(
∩i2 6=i1Fci2

))]
∪ · · · ∪

[
∪i,i1,...,ip−1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Oi ∩ Fi1 ∩ · · · ∩ Fip−1 ∩

(
∩ip 6=i1,...,ip−1Fcip

))]
.

This decomposition of Rp is comprised of 1 +
∑p−1
i=0

(
`+p−1
i

)
mutually exclusive

sets given by ∩iOci , ∪i(Oi ∩ (∩i1Fci1)), ∪i(Oi ∩ Fi1 ∩ (∩i2 6=i1Fci2)) for i1 ∈ IF ,
and so on.
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We are now ready to bound the function on the left-hand side in (7.4). We
first show that the function is bounded on β ∈ ∩iOci and 1 ≤ σ ≤ ω/(γM). For
all i ∈ IO, we have

f((biω − xTi β)/σ)

f(ω/σ)
≤ f(ω/(2σ))

f(ω/σ)
≤ 2D(0, 2) ≤ D(0, γ)γ,

using the monotonicity of f because |biω − xTi β|/σ ≥ ω/(2σ) ≥ γM/2 ≥ M
(we choose γ ≥ 2), and then Lemma 7.1. Therefore, on β ∈ ∩iOci and 1 ≤ σ ≤
ω/(γM),

n∏
i=p+1

[
f(xTi β/σ)

]ki [f((biω − xTi β)/σ)

f(ω/σ)

]`i
≤ Bk−p[D(0, γ)γ]`,

using f ≤ B.
Now, we consider the area defined by: 1 ≤ σ ≤ ω/(γM) and β belongs to

one of the
∑p−1
i=0

(
k−p
i

)
mutually exclusive sets ∪i(Oi ∩ (∩i1Fci1)), ∪i(Oi ∩Fi1 ∩

(∩i2 6=i1Fci2)) for i1 ∈ IF , etc. We have

n∏
i=p+1

[
f(xTi β/σ)

]ki [f((biω − xTi β)/σ)

f(ω/σ)

]`i a
≤ B`

n∏
i=p+1

[
f(xTi β/σ)

]ki
[f(ω/σ)]

`i

b
≤ B`+(k−p)−`[D(0, γ)γ]` = Bk−p[D(0, γ)γ]`.

In Step a, we use f ≤ B for all i ∈ IO. In Step b, we use the fact that in
any of the sets in which β can belong, there are at least ` nonoutlying points
(xi, 0) such that |xTi β| ≥ ω/γ. Indeed, the case in which there are the least
nonoutliers such that |xTi β| ≥ ω/γ corresponds to β ∈ ∪i(Oi ∩ Fi1 ∩ · · · ∩
Fip−1

∩ (∩ip 6=i1,...,ip−1
Fcip)). In this case there are p − 1 nonoutliers such that

|xTi β| < ω/γ (observations i1 to ip−1), which leaves ` + p − 1 − (p − 1) = `
nonoutliers such that |xTi β| ≥ ω/γ (i.e. that there are ` sets in the intersection
∩ip 6=i1,...,ip−1

Fcip). Therefore, for ` nonoutliers such that |xTi β| ≥ ω/γ, we use

f(xTi β/σ)/f(ω/σ) ≤ f(ω/(γσ))/f(ω/σ) ≤ D(0, γ)γ,

by the monotonicity of f because |xTi β|/σ ≥ ω/(γσ) ≥M , and then Lemma 7.1.
For the remaining k − p − ` nonoutlying points, we use f ≤ B. Note that this
argument justifies the need of the assumption k ≥ `+ 2p− 1.

Area 2: Consider 0 < σ < 1. We actually need to show that

lim
ω→∞

∫
Rp

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ

=

∫
Rp

∫ 1

0

π(β, σ | yk) dσ dβ.
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For Area 2, we proceed in a slightly different manner than for Area 1. We begin
by dividing the first integral above into two parts as follows:

lim
ω→∞

∫
Rp

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ

= lim
ω→∞

∫
Rp

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
1∩iOci (β) dσ dβ

+ lim
ω→∞

∫
∪iOi

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ,

where

Oi := {β : |yi − xTi β| < ω/2},∀i ∈ IO,

with IO := {i : i ∈ {1, . . . , n} and `i = 1}. Note that the definition of Oi is very
similar as that of the set defined in (7.6) (this is why we use the same notation);
its interpretation is also very similar. We show that the first part above is equal

to the integral
∫
Rp
∫ 1

0
π(β, σ | yk) dσ dβ and that the second part is equal to 0.

For the first part, we again use Lebesgue’s dominated convergence theorem
in order to interchange the limit ω →∞ and the integral. We have

lim
ω→∞

∫
Rp

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
1∩iOci (β) dσ dβ

=

∫
Rp

∫ 1

0

π(β, σ | yk) lim
ω→∞

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
1∩iOci (β) dσ dβ

=

∫
Rp

∫ 1

0

π(β, σ | yk)× 1× 1Rp(β) dσ dβ =

∫
Rp

∫ 1

0

π(β, σ | yk) dσ dβ,

using Proposition 2.2 in the second equality since x1, . . . ,xn are fixed, and
limω→∞ 1∩iOci (β) = 1Rp(β) = 1 ⇔ limω→∞ 1∪iOi(β) = 0. Indeed, if `i = 1

and bi > 0 (which implies that yi > 0), β ∈ Oi implies that |yi − xTi β| <
ω/2 ≤ yi/2, which in turn implies that yi/2 < xTi β < 3yi/2, and in the limit,
no β ∈ Rp satisfies this (we have the same conclusion if bi < 0). Note that
pointwise convergence is sufficient, for any value of β ∈ Rp and σ > 0, once the
limit is inside the integral. We now demonstrate that the integrand is bounded,
for any value of ω ≥ y, by an integrable function of β and σ that does not
depend on ω.

Consider β ∈ ∩iOci , that is {β : |yi − xTi β| ≥ ω/2 for all i ∈ IO}, and
0 < σ < 1. Note that the integrand is equal to 0 if β /∈ ∩iOci . For all i ∈ IO, we
have

(1/σ)f((yi − xTi β)/σ) ≤ f(yi − xTi β) ≤ f(ω/2) ≤ 2|bi|D(|ai|, 2|bi|)f(yi),

by the monotonicity of the tails of |z|f(z) and then the monotonicity of the
tails of f(z), because |yi − xTi β|/σ ≥ |yi − xTi β| ≥ ω/2 ≥ y /2 ≥ M , if we
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choose y ≥ 2M . Lemma 7.1 is used in the last inequality with ω = (yi − ai)/bi.
Therefore,

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
1∩iOci (β)

≤ π(β, σ | yk)

n∏
i=1

[2|bi|D(|ai|, 2|bi|)]`i ,

which is an integrable function.
We now prove that

lim
ω→∞

∫
∪iOi

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ = 0.

We first bound above the integrand and then we prove that the integral of the
upper bound converges towards 0 as ω → ∞. In the same manner as in the
proof of the inequality in (7.4), we split the domain of β as follows:

∪i Oi =
[
∪i
(
Oi ∩

(
∩i1Fci1

))]
∪
[
∪i,i1

(
Oi ∩ Fi1 ∩

(
∩i2 6=i1Fci2

))]
∪ · · · ∪

[
∪i,i1,...,ip−1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Oi ∩ Fi1 ∩ · · · ∩ Fip−1

∩
(
∩ip 6=i1,...,ip−1

Fcip
))]

∪
[
∪i,i1,...,ip(ij 6=is ∀ij ,is s.t. j 6=s)

(
Oi ∩ Fi1 ∩ · · · ∩ Fip

)]
,

where

Fi := {β : |xTi β| < ω/γ},∀i ∈ IF ,

and IF := {1, . . . , `+ 2p− 1} (we assume as previously that y1, . . . , y`+2p−1 are
`+ 2p− 1 nonoutliers, and therefore k1 = . . . = k`+2p−1 = 1). The definition of
Fi is the same as that of the set defined in (7.7). For an interpretation of this
set and of the sets involve in the decomposition of ∪iOi, see the proof of (7.4).
Given that |yi| ≥ ω for all i ∈ Oi, we can use the same mathematical arguments
as in the proof of (7.4) to show that Oi ∩ Fi1 ∩ · · · ∩ Fip = ∅ for all i, i1, . . . , ip
with ij 6= is, ∀ij 6= is such that j 6= s. Therefore,

∪i Oi =
[
∪i
(
Oi ∩

(
∩i1Fci1

))]
∪
[
∪i,i1

(
Oi ∩ Fi1 ∩

(
∩i2 6=i1Fci2

))]
∪ · · · ∪

[
∪i,i1,...,ip−1(ij 6=is ∀ij ,is s.t. j 6=s)

(
Oi ∩ Fi1 ∩ · · · ∩ Fip−1

∩
(
∩ip 6=i1,...,ip−1

Fcip
))]

.

This decomposition of ∪iOi is comprised of
∑p−1
i=0

(
`+2p−1

i

)
mutually exclusive

sets given by ∪i(Oi ∩ (∩i1Fci1)), ∪i(Oi ∩ Fi1 ∩ (∩i2 6=i1Fci2)) for i1 ∈ IF , and so
on. We now consider the area defined by: 0 < σ < 1 and β belongs to one of
these

∑p−1
i=0

(
`+2p−1

i

)
mutually exclusive sets. We have

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i



Gagnon P., Desgagné A. and Bédard M./A New Bayesian Robust Linear Regression 40

a
≤ π(β, σ | yk)

n∏
i=1

[
|bi|D(|ai|, |bi|)(1/σ)f((yi − xTi β)/σ)

f(ω)

]`i
∝ π(β, σ)

n∏
i=1

[
(1/σ)f((ai − xTi β)/σ)

]ki [ (1/σ)f((yi − xTi β)/σ)

f(ω)

]`i
b
≤ (B/σ) [2γD(0, 2γ)(1/σ)f(ω/σ)]

`+1
n∏

i=1(i6=ip,...,i`+p)

[
(1/σ)f((ai − xTi β)/σ)

]ki
×
[

(1/σ)f((yi − xTi β)/σ)

f(ω)

]`i
∝ (1/σ) [(1/σ)f(ω/σ)]

`+1
n∏

i=1(i 6=ip,...,i`+p)

[
(1/σ)f((ai − xTi β)/σ)

]ki
×
[

(1/σ)f((yi − xTi β)/σ)

f(ω)

]`i
c
≤ (1/σ)(1/σ)f(ω/σ)

n∏
i=1(i6=ip,...,i`+p)

[
(1/σ)f((ai − xTi β)/σ)

]ki
×
[
(1/σ)f((yi − xTi β)/σ)

]`i
d
≤ (B/ω)(1/σ)

n∏
i=1(i 6=ip,...,i`+p)

(1/σ)f((yi − xTi β)/σ).

In Step a, we use Lemma 7.1 to obtain f(ω)/f(yi) = f((yi − ai)/bi)/f(yi) ≤
|bi|D(|ai|, |bi|) for all i ∈ IO. In Step b, we use π(β, σ) ≤ Bmax(1, 1/σ) = B/σ.
We also use that in any of the sets in which β can belong, there are at least
` + 1 nonoutlying points such that |xTi β| ≥ ω/γ (corresponding to β ∈ Fci
for at least ` + 1 nonoutlying points). Indeed, the case in which there are the
least nonoutliers such that |xTi β| ≥ ω/γ corresponds to β ∈ ∪i(Oi ∩Fi1 ∩ · · · ∩
Fip−1 ∩ (∩ip 6=i1,...,ip−1Fcip)). In this case there are p − 1 nonoutliers such that

|xTi β| < ω/γ (say observations i1 to ip−1), which leaves at least `+2p−1−(p−1)
nonoutliers such that |xTi β| ≥ ω/γ (i.e. that there are `+2p−1−(p−1) sets in the
intersection ∩ip 6=i1,...,ip−1

Fcip), and we know that `+2p−1−(p−1) = `+p > `+1
because we only consider the models with p ≥ 2. This implies that there exists
a set of `+1 indices, say {ip, . . . , i`+p} ⊂ IF , such that for all i ∈ {ip, . . . , i`+p},

f((ai − xTi β)/σ) ≤ f(ω/(2γσ)) ≤ 2γD(0, 2γ)f(ω/σ),

using the monotonicity of the tails of f in the first inequality because, if we
define the constant a(k) := maxi∈{1,...,k} |ai| with ω ≥ y ≥ (2γ)a(k), we have
|ai − xTi β|/σ ≥ (|xTi β| − |ai|)/σ ≥ (ω/γ − a(k))/σ ≥ ω/(2γσ) ≥ ω/(2γ) ≥
y /(2γ) ≥M if we choose y ≥ 2γM . In the second inequality, we use Lemma 7.1
(as mentioned in the proof of (7.4), we choose γ ≥ 2). In Step c above, we use
the monotonicity of the tails of |z|f(z) to obtain (ω/σ)f(ω/σ) ≤ ωf(ω) for `
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terms, because ω/σ ≥ ω ≥ y ≥ M if we choose y ≥ M . In Step d, we use
(1/σ)f(ω/σ) ≤ B/ω.

The integral of (B/ω)(1/σ)
∏n
i=1(i 6=ip,...,i`+p)(1/σ)f((yi−xTi β)/σ) is bounded

by

(B/ω)

∫
Rp

∫ ∞
0

(1/σ)

n∏
i=1(i6=ip,...,i`+p)

(1/σ)f((yi − xTi β)/σ) dσ dβ = (B/ω)m(yIR),

where m(yIR) is the marginal density arising from a prior proportional to 1/σ
and n−(`+1) = k−1 observations (xi, yi), i ∈ IR := {1, . . . , n}\{ip, . . . , i`+p}.
In order to prove that (B/ω)m(yIR) → 0 as ω → ∞, it suffices to prove that
m(yIR) is bounded by a constant that does not depend on ω, because 1/ω → 0.
In Section 7.1.1, we proved that a marginal, as m(yIR), is bounded by a constant
that does not depend on ω if the number of observations (which is k − 1 in our
case) is greater than or equal to p + 1 if the prior divided by 1/σ is bounded
(which is the case for m(yIR)). Because we assume that k ≥ `+2p−1 and ` ≥ 1
(the proof for the case ` = 0 is trivial), and because we only consider the models
with p ≥ 2, m(yIR) is the marginal of k − 1 ≥ `+ 2p− 2 ≥ p+ 1 observations.
As a result,

(B/ω)

∫
Rp

∫ ∞
0

(1/σ)

n∏
i=1(i 6=ip,...,i`+p)

(1/σ)f((yi−xTi β)/σ) dσ dβ → 0 as ω →∞.

We therefore have that∫
∪iOi

∫ 1

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
dσ dβ → 0 as ω →∞.

�

Proof of Result (b). Consider (β, σ) such that π(β, σ) > 0 (the proof for the
case (β, σ) such that π(β, σ) = 0 is trivial). We have, as ω →∞,

π(β, σ | yn)

π(β, σ | yk)
=
m(yk)

m(yn)
×

π(β, σ)
∏n
i=1(1/σ)f((yi − xTi β)/σ)

π(β, σ)
∏n
i=1

[
(1/σ)f((yi − xTi β)/σ)

]ki
=
m(yk)

m(yn)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

]`i
=
m(yk)

∏n
i=1[f(yi)]

`i

m(yn)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
→ 1.

The first ratio in the last equality does not depend on β and σ and converges
towards 1 as ω → ∞ using Result (a). Also, the product converges towards
1 uniformly in any set (β, σ) ∈ [−ϑ, ϑ]p × [1/η, η] using Proposition 2.2 given
that x1, . . . ,xn are fixed. Furthermore, since f and π(β, σ)/max(1, 1/σ) are
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bounded, π(β, σ | yk) is also bounded on any set (β, σ) ∈ [−η, η]p × [1/η, η].
Then, we have

∣∣π(β, σ | yn)− π(β, σ | yk)
∣∣ = π(β, σ | yk)

∣∣∣∣π(β, σ | yn)

π(β, σ | yk)
− 1

∣∣∣∣→ 0 as ω →∞.

�

Proof of Result (c). Using Proposition 2.1, we know that π(β, σ | yk) and
π(β, σ | yn) are proper. Moreover, using Result (b), we have the pointwise
convergence π(β, σ | yn) → π(β, σ | yk) as ω → ∞ for any β ∈ Rp and σ > 0,
as a result of the uniform convergence. Then, the conditions of Scheffé’s theo-
rem (see Scheffé (1947)) are satisfied and we obtain the convergence in L1 of
π(β, σ | yn) towards π(β, σ | yk) as well as the following result:

lim
ω→∞

∫
E

π(β, σ | yn) dβ dσ =

∫
E

π(β, σ | yk) dβ dσ,

uniformly for all sets E ⊂ Rp×R+. Result (c) follows directly. �

Proof of Result (d). We prove that the moments converge through a mix of the
strategies used to show Result (a) and that the moments exist in Proposition 2.1.
For any M , a positive integer, we have

lim
ω→∞

E[σM | yn] = lim
ω→∞

∫ ∞
0

∫
Rp
σMπ(β, σ | yn) dβ dσ

=

∫ ∞
0

∫
Rp

lim
ω→∞

σMπ(β, σ | yn) dβ dσ

=

∫ ∞
0

∫
Rp
σMπ(β, σ | yk) dβ dσ = E[σM | yk],

assuming that we can interchange the limit and integral and using Result (b).
To interchange the limit and integral, we again use Lebesgue’s dominated con-
vergence theorem which requires that the integrand is bounded by an integrable
function of β and σ. We prove that it is the case using that

σMπ(β, σ | yn) = σM
π(β, σ)

∏n
i=1[(1/σ)f((yi − xTi β)/σ)]ki

m(yn)

×
n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i n∏
i=1

[f(yi)]
`i .

We have that m(yn) is bounded using Proposition 2.1,
∏n
i=1[f(yi)]

`i ≤ B`, and

σM
n∏
i=1

[(1/σ)f((yi − xTi β)/σ)]ki ≤ BM
n∏

i=M+1

[(1/σ)f((yi − xTi β)/σ)]ki ,
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using f ≤ B for the M first observations and assuming without loss of gener-
ality that these observations are nonoutliers (therefore k1 = . . . = kM = 1).
Therefore, we need to show that

π(β, σ)

n∏
i=M+1

[(1/σ)f((yi − xTi β)/σ)]ki
n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i

= m(y∗k)π(β, σ | y∗k)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
is bounded by an integrable function of β and σ, where y∗k := yk \ {y1, . . . , yM}
(the nonoutlier group without the first M nonoutliers). In the proof of Result
(a), it has been shown that it is the case under the assumptions of Theorem 2.1,
which are satisfied considering this modified data set with k−M ≥ n/2+(p−1/2)
(see the additional assumption for Result (d) of Theorem 2.1).

For the expectations E[βMj | yn], we proceed in the same way, we simply
additionally consider that, as in the proof of Proposition 2.1 (see Section 7.1.1),
βj can be rewritten as eTj β, and that next, ej can be expressed as a linear
combination of p vectors xi1 , . . . ,xip , where now these are selected among the
nonoutliers, i.e. i1, . . . , ip ∈ {i : ki = 1}. We detail the case M = 1. From it
and what has been done before, it will be clear the result holds in general, with
further technicalities. As above,

lim
ω→∞

E[βj | yn] = lim
ω→∞

∫ ∞
0

∫
Rp
βjπ(β, σ | yn) dβ dσ

=

∫ ∞
0

∫
Rp

lim
ω→∞

βjπ(β, σ | yn) dβ dσ

=

∫ ∞
0

∫
Rp
βjπ(β, σ | yk) dβ dσ = E[βj | yk],

assuming that we can interchange the limit and integral and using Result (b).
As above, we have to show that the integrand is bounded above by an integrable
function of β and σ. We beforehand use that

βj = eTj β =

p∑
s=1

asx
T
isβ =

p∑
s=1

as(yis − xTisβ)−
p∑
s=1

asyis ,

as mentioned, where a1, . . . , ap ∈ R and i1, . . . , ip ∈ {i : ki = 1}. The integrand
thus becomes a sum of 2p terms, and we prove that each one of them is bounded
above by an integrable function of β and σ, which will complete the proof. As
above

as(yis − xTisβ)π(β, σ | yn) ≤ |as||yis − xTisβ|
π(β, σ)

∏n
i=1[(1/σ)f((yi − xTi β)/σ)]ki

m(yn)

×
n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i n∏
i=1

[f(yi)]
`i .
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We have that m(yn) is bounded using Proposition 2.1,
∏n
i=1[f(yi)]

`i ≤ B`, and

|yis − xTisβ|
n∏
i=1

[(1/σ)f((yi − xTi β)/σ)]ki ≤ B
n∏

i=1(i 6=is)

[(1/σ)f((yi − xTi β)/σ)]ki ,

using
(|yis − xTisβ|/σ)f((yis − xTisβ)/σ) ≤ B.

Therefore, as(yis − xTisβ)π(β, σ | yn) is bounded above by a constant times

π(β, σ)

n∏
i=1(i 6=is)

[(1/σ)f((yi − xTi β)/σ)]ki
n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i

= m(y∗k)π(β, σ | y∗k)

n∏
i=1

[
(1/σ)f((yi − xTi β)/σ)

f(yi)

]`i
,

where y∗k := yk \ {yis} (the nonoutlier group without the is-th nonoutlier). As
mentioned above, in the proof of Result (a), it has been shown that it is the
case under the assumptions of Theorem 2.1, which are satisfied considering this
modified data set with k − 1 ≥ n/2 + (p− 1/2) (see the additional assumption
for Result (d) of Theorem 2.1). The proofs for the terms with asyisπ(β, σ | yn)
is similar. �

7.2. Complement of Section 3.2

In Section 3.2, we mention that the first derivative of the divergence

KL(β, σ) :=

∫
log(g(yi)/p(β,σ)(yi)) g(yi) dyi (7.8)

with respect to β equals 0 at β0, and this for any value of σ. We also mention
that while setting β = β0 in (7.8), it is minimised at σ∗ which depends on ρ.
Finally, we mention that most of the regularity conditions in Bunke et al. (1998)
are satisfied. We now show all this. We rewrite the divergence:

KL(θ) = Eg[log g(Y )]− Eg[log pθ(Y )],

where Eg denotes the expectation with respect to g, and omitting the index i.
The first term is computed exactly:

Eg[log g(Y )] = −1

2
log(2π)−log σ0−

1

2σ2
0

Eg[(Y−xTβ0)2] = −1

2
(log(2π)−1)−log σ0.

The second term is rewritten as:

Eg[log pθ(Y )] =

∫ (
log f

(
y − xTβ

σ

)
− log σ

)
1√

2πσ0
exp

(
− 1

2σ2
0

(y − xTβ0)2
)
dy
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=

∫
log f(zη + δη)ϕ(z) dz + log η − log σ0,

using the change of variable z = (y−xTβ0)/σ0, and denoting δ := xT (β0−β)/σ0
and η := σ0/σ. Therefore, minimising the divergence is equivalent to maximising∫

log f(zη + δη)ϕ(z) dz + log η.

We now show that we can interchange the derivative with respect to δ and the
integral. The first derivative of f is given by

f ′(z) =


−zϕ(z) if |z| < τ,

−ϕ(τ)τ(log τ)λ+1 sign(z)
z2

1
(log |z|)λ+1

(
1 + λ+1

log |z|

)
if |z| > τ,

does not exist if z equals −τ or τ ,

where sign(·) is the sign function. For completeness, we assign the values −zϕ(z)
to f ′(z) when |z| = τ . Note that we are allowed to do this because these points
have null measure. We thus consider that

f ′(z)

f(z)
=

{
−z if |z| ≤ τ,
− sign(z)

|z|

(
1 + λ+1

log |z|

)
if |z| > τ.

This function is bounded. Consequently,

∂

∂δ
log f(zη + δη) = η

f ′(zη + δη)

f(zη + δη)

is bounded for any value of η, which implies that we can interchange the deriva-
tive and the integral. If δ = 0, the integral is equal to 0, because f ′(−z)/f(z) =
−f ′(z)/f(z), and∫

f ′(zη)

f(zη)
ϕ(z) dz =

∫ 0

−∞

f ′(zη)

f(zη)
ϕ(z) dz +

∫ ∞
0

f ′(zη)

f(zη)
ϕ(z) dz

=

∫ ∞
0

f ′(−zη)

f(−zη)
ϕ(−z) dz +

∫ ∞
0

f ′(zη)

f(zη)
ϕ(z) dz

= −
∫ ∞
0

f ′(zη)

f(zη)
ϕ(z) dz +

∫ ∞
0

f ′(zη)

f(zη)
ϕ(z) dz.

Notice that this is true for any value of η. Analysing the second derivative may
allow to rigorously conclude that the divergence is (uniquely) minimised with
respect to β at β0. If it is strictly negative for any value of η, it is the case. We
now analyse ∫

log f(zη)ϕ(z) dz + log η. (7.9)
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In the same way as for δ, we show that we can interchange the derivative with
respect to η and the integral. We have

∂

∂η
log f(zη) = z

f ′(zη)

f(zη)
,

which is bounded by |z| times a constant. This is an integrable function with
respect to ϕ. Therefore, we can interchange the integral and the derivative:

∂

∂η

(∫
log f(zη)ϕ(z) dz + log η

)
=

∫
z
f ′(zη)

f(zη)
ϕ(z) dz +

1

η
.

Setting the derivative equals to 0 leads to∫
zη

f ′(zη)

f(zη)
ϕ(z) dz = −1.

We cannot solve this explicitly, but numerical calculations show that the solution
is unique. For instance, (7.9) as a function of η with ρ = 0.95 is shown in Figure 9
(a), with the maximiser η∗ as a function of ρ in Figure 9 (b). The previous
analysis suggests that (β∗, σ∗) = (β0, σ0/η

∗).
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Figure 9. (a) Value of (7.9) as a function of η with ρ = 0.95; (b) maximiser η∗ as a
function of ρ

We now show that most of the regularity conditions in Bunke et al. (1998)
are satisfied.

Condition 1. The parameter space Θ is a closed (possibly unbounded) convex
set in Rd with a nonempty interior. The density pθ(y) is bounded for all
θ and y, and its carrier {y : pθ(y) > 0} is the same for all θ.

This condition is not directly satisfied because the parameter space is open
(σ > 0). But it should not be a problem if we can show that it is possible
to choose ε > 0 such σ0 ∈ [ε,∞) and that the mass outside of this set goes
to 0 as the sample size increases. Indeed, we could “define” the parameter
space to be [ε,∞) × Rp which is a closed convex set and lose nothing
asymptotically. On this parameter space pθ(y) is bounded for all θ and y,
and its carrier {y : pθ(y) > 0} = R is the same for all θ.
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Condition 2. For all θ, there is a sphere S[θ, r] of center θ and radius r with

Eg[sup{| log[g(Y )/pt(Y )]| : t ∈ S[θ, r]}],

where Eg is the expectation with respect to g.

Lemma 7.1 implies that
p(β0,σ0)(y)

pt(y)

is bounded both from below and above on S[θ, r]. Also, g(y)/p(β0,σ0)(y)
does not depend on t. Therefore, there exists a positive constant c such
that

Eg[sup{| log[g(Y )/pt(Y )]| : t ∈ S[θ, r]}] ≤ cEg[| log[g(Y )/p(β0,σ0)(Y )]|]
= cEϕ[| log[ϕ(Z)/f(Z)]|],

where a change of variables has been used in the last equality and f is the
LPTN density. We also have that

ϕ(z)

f(z)
=

{
1 if |z| ≤ τ,
c2 exp(−z2/2)|z|(log |z|)λ+1 if |z| > τ,

where c2 is a positive constant. Consequently,

cEϕ[| log[ϕ(Z)/f(Z)]|] = cEϕ[| log[ϕ(Z)/f(Z)]|1(|Z| > τ)]

≤ c log(c2) + cEϕ[(Z2/2 + | log(|Z|(log |Z|)λ+1)|)1(|Z| > τ)] <∞.

Condition 3. For all fixed y, the density pθ(y) has a continuous derivative
p′θ(y) with respect to θ and there are positive constants c, b0 such that∫

‖[pθ(y)]−1p′θ(y)‖4(d+1) pθ(y) dy < c (1 + ‖θ‖b0),

for all θ, where ‖ · ‖ denotes a norm in Rd.

In our case, the density pθ(y) has an almost everywhere continuous deriva-
tive. We believe this should not cause fundamental problems for rigorously
prove the result.
We have that

∂
∂β

(
1
σf
(
y−xTβ

σ

))
1
σf
(
y−xTβ

σ

) = −xT

σ

f ′
(
y−xTβ

σ

)
f
(
y−xTβ

σ

) = −xT

σ

f ′(z)

f(z)
,

and

∂
∂σ

(
1
σf
(
y−xTβ

σ

))
1
σf
(
y−xTβ

σ

) = − 1

σ

f
(
y−xTβ

σ

)
f
(
y−xTβ

σ

)−y − xTβ

σ2

f ′
(
y−xTβ

σ

)
f
(
y−xTβ

σ

) = − 1

σ

(
1 +

f ′(z)

f(z)

)
,
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after the change of variable z = (y − xTβ)/σ. We use the traditional
Euclidian norm. The function f ′/f is bounded. Therefore,∫

‖[pθ(y)]−1p′θ(y)‖4(d+1) pθ(y) dy ≤ c0
1

σ4(p+2)
,

where c0 is a positive constant. If the parameter space is [ε,∞)×Rp, it is
easily seen that

c0
1

σ4(p+2)
< c (1 + ‖θ‖b0).

Condition 4. For some positive constant b1 the affinity

%(θ) :=

∫
[pθ(y)g(y)]1/2 dy

has the behaviour
%(θ) < c‖θ‖−b1 , θ ∈ Θ.

Condition 4 is, in our opinion, the condition that will require a careful
analysis.

Condition 5. There are positive constants b2, b3 so that for all θ and r > 0 it
holds that

π(S[θ, r]) ≤ crb2(1 + (‖θ‖+ r)b3),

where π(S[θ, r]) measure of S[θ, r] under the prior. Moreover, π(S[θ, r]) >
0 for all r > 0 and θ.

The last part is satisfied if the prior is strictly positive over the parameter
space, which is usually the case (it is true in our numerical analyses). The
first part essentially requires that the measure does not “explode” in some
areas. Under the assumption mentioned in Section 2.1 in our paper on the
prior and if the parameter space is [ε,∞)× Rp, we have that

π(S[θ, r]) =

∫
1S[θ,r] π(θ) dθ ≤ 1

ε

∫
1S[θ,r] dθ =

c

ε
rp+1,

implying that the first part holds.
Condition 6. Let L : Θ × Θ → R+ be a measurable loss function with

L(θ,θ) = 0, c1, c2, c3, b4, b5 be positive constants such that

(c1‖t− θ‖b4) ∧ c2 ≤ L(t,θ) ≤ c3‖t− θ‖b5 ,

for all t,θ ∈ Θ.

It is easily seen that the quadratic loss function satisfies this, pointing to-
wards the consistency of the posterior mean of β. Under Conditions 1 to 5,
a result in Bunke et al. (1998) indicates that the posterior density concen-
trates around θ∗ = (β0, σ

∗), pointing in this case towards the consistency
of the part of the posterior mode associated with β.
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7.3. Other Result

Proposition 7.2. If f = N (0, 1) and π(β, σ) ∝ π(σ)× 1, then

β | σ,yn ∼ N ((Xn
TXn)−1Xn

Tyn, σ
2(Xn

TXn)−1),

and

π(σ | yn) ∝ π(σ)
1

σn−p
exp

(
− 1

2σ2
‖yn − ŷn‖2

)
,

where Xn is matrix whose rows are given by xT1 , . . . ,x
T
n , ŷn := Xn(Xn

TXn)−1

Xn
Tyn, and ‖ · ‖ is the Euclidean norm. In particular, if π(σ) ∝ 1/σ, σ2 | yn ∼

Inverse-Γ((n− p)/2, ‖yn − ŷn‖2/2).

Proof. The proof relies essentially on straightforward calculations. We have

π(β, σ | yn) ∝ π(σ)

n∏
i=1

1√
2πσ

exp

(
− 1

2σ2
(yi − xTi β)2

)
.

We therefore have sum of squares in the exponential and we first analyse it. We
have

n∑
i=1

(yi − xTi β)2 =

n∑
i=1

(y2i − 2yix
T
i β + (xTi β)2).

We analyse the middle term:

−2

n∑
i=1

yix
T
i β = −2βT

n∑
i=1

xiyi = −2βTXn
Tyn = −2(Xn

Tyn)Tβ. (7.10)

The last term is such that

n∑
i=1

xTi β xTi β =

n∑
i=1

βTxix
T
i β = βTXn

TXnβ.

Adding and subtracting (Xn
TXn)−1Xn

Tyn to β before the first transpose
yields

(β − (Xn
TXn)−1Xn

Tyn + (Xn
TXn)−1Xn

Tyn)TXn
TXnβ

= (β − (Xn
TXn)−1Xn

Tyn)TXn
TXnβ + (Xn

Tyn)T (Xn
TXn)−1Xn

TXnβ.

The last term on the RHS cancels out with one in (7.10). We again add and
subtract (Xn

TXn)−1Xn
Tyn to β:

(β − (Xn
TXn)−1Xn

Tyn)TXn
TXn(β − (Xn

TXn)−1Xn
Tyn + (Xn

TXn)−1Xn
Tyn)

= (β − (Xn
TXn)−1Xn

Tyn)TXn
TXn(β − (Xn

TXn)−1Xn
Tyn)

+ (β − (Xn
TXn)−1Xn

Tyn)TXn
Tyn.
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The last term on the RHS is equal to βTXn
Tyn, which cancels out with the

remaining term in (7.10), minus (Xn
Tyn)T (Xn

TXn)−1Xn
Tyn.

Putting these results together yields

π(β, σ | yn) ∝ π(σ)
1

σn
exp

(
− 1

2σ2

(
n∑
i=1

y2i − (Xn
Tyn)T (Xn

TXn)−1Xn
Tyn

))

× exp

(
− 1

2σ2
(β − (Xn

TXn)−1Xn
Tyn)TXn

TXn(β − (Xn
TXn)−1Xn

Tyn)

)
.

Therefore,

β | σ,yn ∼ N ((Xn
TXn)−1Xn

Tyn, σ
2(Xn

TXn)−1),

and

π(β | σ,yn) =
1√

(2π)p|(Xn
TXn/σ)−1|

× exp

(
− 1

2σ2
(β − (Xn

TXn)−1Xn
Tyn)TXn

TXn(β − (Xn
TXn)−1Xn

Tyn)

)
=

1

σp
1

(2π)p/2
|Xn

TXn|1/2

× exp

(
− 1

2σ2
(β − (Xn

TXn)−1Xn
Tyn)TXn

TXn(β − (Xn
TXn)−1Xn

Tyn)

)
.

Consequently,

π(σ | yn) ∝ π(σ)
1

σn−p
exp

(
− 1

2σ2

(
n∑
i=1

y2i − (Xn
Tyn)T (Xn

TXn)−1Xn
Tyn

))
.

It just remains to prove that

n∑
i=1

y2i − (Xn
Tyn)T (Xn

TXn)−1Xn
Tyn = ‖yn − ŷn‖2.

We have

n∑
i=1

y2i − (Xn
Tyn)T (Xn

TXn)−1Xn
Tyn = yn

Tyn − ((Xn
TXn)−1Xn

Tyn)TXn
Tyn

= yn
Tyn − ŷTnyn

= (yn − ŷn)T (yn − ŷTn + ŷTn )

= (yn − ŷn)T (yn − ŷn) + (yn − ŷn)T ŷn

= (yn − ŷn)T (yn − ŷn).
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