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Abstract: The Regional Adaptive (RAPT) algorithm is particularly useful in sampling from multimodal
distributions. We propose an adaptive partitioning of the sample space, to be used in conjunction with the
RAPT sampler and its variants. The adaptive partitioning consists in defining a hyperplane that is orthogo-
nal to the line joining averaged coordinates in two separate regions, and that goes through a point such that
both averaged coordinates are equally Mahalanobis-distant from this point. This yields an adaptive process
that is robust to the choice of initial partition, stabilizes rapidly, and is implemented at a marginal compu-
tational cost. The ergodicity of the sampler is verified through the Simultaneous Uniform Ergodicity and
Diminishing Adaptation conditions. The approach is compared to the RAPT algorithm with fixed regions
and to the RAPT with online recursion (RAPTOR) through various examples, including a real data appli-
cation. In short, our main contribution is the development of an alternative version of RAPTOR that seems
to have no obvious downside and runs 15 to 35 percent faster in the examples considered.
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Résumé: L’algorithme adaptatif régional (RAPT) est particulièrement utile pour échantillonner de distri-
butions cibles multimodales. Nous proposons un processus adaptatif de partitionnement de l’espace d’états
destiné à être utilisé avec l’algorithme RAPT et ses variantes. Le partitionnement adaptatif consiste à définir
un hyperplan orthogonal au segment joignant la moyenne des coordonnées comprises dans deux régions dis-
tinctes, et passant par un point tel que les coordonnées moyennes de chacune des deux régions sont à égale
distance de ce point selon le critère de Mahalanobis. Ceci mène à un algorithme robuste au choix de parti-
tion initiale, dont le processus de partitionnement se stabilise rapidement, et qui est implémenté à un coût
supplémentaire marginal. L’ergodicité de l’algorithme est vérifiée à l’aide des conditions d’ergodicité uni-
forme simultanée et d’adaptation dissipante. La nouvelle méthode est comparée à l’algorithme RAPT avec
régions fixes, ainsi qu’au RAPT avec récursion dynamique (RAPTOR) à travers différents exemples, inclu-
ant une application sur des données réelles. En résumé, notre contribution principale est le développement
d’une alternative à l’algorithme RAPTOR qui ne semble avoir aucun désavantage évident et qui roule de
15% à 35% plus vite dans les exemples considérés. La revue canadienne de statistique xx: 1–25; 20??
c© 20?? Société statistique du Canada

1. INTRODUCTION

In the past few decades, statistical models to study real-world phenomena have been increasing
both in terms of complexity and dimensionality. Such models generally produce densities that
cannot be treated analytically; Markov chain Monte Carlo (MCMC) methods have thus become
a device of choice to obtain samples from these complicated probability distributions.

The Metropolis-Hastings sampler (Metropolis et al. [1953]; Hastings [1970]) is at the core
of the MCMC toolbox and has spurred the development of countless specialized algorithms. The
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idea is to build a Markov chain with invariant distribution π (the d-dimensional distribution of in-
terest) on a state space S by proposing candidates to be included in the process according to some
acceptance probability. Let an initial value X0 for the process be drawn from an arbitrary distri-
bution µ. Then, at iteration t+ 1, the Metropolis-Hastings (MH) sampler generates a candidate
Yt+1 = y from a proposal distributionQ(y|Xt) with density q(y|Xt). This candidate is accepted
as the next state Xt+1 of the Markov chain with probability α(Xt, y) = min{1, π(y)q(Xt|y)

π(Xt)q(y|Xt)},
otherwise we set Xt+1 = Xt.

A pragmatic choice is to draw candidates from a N (Xt, sd Σd×d), where Σd×d is a positive
definite covariance matrix and sd > 0 is a scalar; this yields a random walk version of the MH
sampler (RWMH). For the Markov chain to rapidly explore its state space S, careful tuning of the
parameters of Q is required. In traditional MCMC, these parameters are either fixed or depend
on information collected from the process at time t, preserving the Markovian property of the al-
gorithm. For instance, Roberts and Rosenthal [2001] demonstrate that sd Σd×d = 2.382Σd×d/d
is the optimal choice for sampling from a d-dimensional normal target with covariance Σd×d
(with d large). Nevertheless, optimally tuned samplers may still fail, in practice, to appropri-
ately explore the distribution of interest; this is often the case with distributions formed of highly
correlated components or the notorious bimodal distributions.

In this paper, we consider a more flexible form of tuning based on information available from
the sampleX0, . . . , Xt and updated at every iteration. These adaptive MCMC algorithms rely on
theoretical foundations of their own as they violate the Markovian property, which is the building
block of traditional MCMC techniques. The celebrated Adaptive Metropolis (AM) sampler of
Haario et al. [2001] updates, at every iteration, the covariance matrix of the Gaussian proposal
used in the MH. The empirical estimate of Σd×d is obtained at a low computation cost through
a recursive formula that uses all past realizations of the chain. In the wake of this contribution,
an interesting collection of adaptive samplers was introduced in the statistical literature; see, for
instance, Haario et al. [2005], Haario et al. [2006], Roberts and Rosenthal [2009], Solonen et al.
[2012].

Convergence properties of adaptive algorithms have also been studied by several authors (e.g.
Andrieu and Robert [2001], Atchadé and Rosenthal [2005], Andrieu et al. [2006]). In particular,
Roberts and Rosenthal [2007] introduce the Diminishing Adaptation and Simultaneous Uniform
Ergodicity conditions, which together guarantee the ergodicity of adaptive samplers. The first
condition states that an algorithm should adapt less and less as it proceeds, while the second is a
technical condition (usually satisfied in practice) ensuring that the process does not wander off;
these are stated formally in Section 5.

Despite improved performances of adaptive methods by comparison to classical ones, sam-
pling from distributions involving multimodality or strong asymmetry remains a challenge. In
some cases, proposal distributions adapted using past samples might have learned the geography
of π over some regions, but might require a different adaptation on features not yet explored,
in alternate regions of S. Samplers such as the Regional Adaptive MCMC (RAPT) proposed by
Craiu et al. [2009] and the Regional Adaptive algorithm with online recursion (RAPTOR) by Bai
et al. [2011] aim at sampling from the usually problematic bimodal distributions (with possible
generalization to multimodal ones) by targeting the adaptation on various regions of the state
space. RAPT assumes that users can propose a decent partition of S; RAPTOR makes no such
assumption, but the resulting sampler is more demanding computationally.

In this paper, we introduce a robust and computationally affordable adaptive process for
partitioning the state space S, to be used in conjunction with the RAPT of Craiu et al. [2009].
The idea is to partition the space with hyperplanes that are orthogonal to the lines joining pairs
of regional sample averages. In proving the ergodicity of the new sampler, we show that the
angle between successive hyperplanes converges to 0. This leads to an interesting compromise
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between RAPT and RAPTOR, with performances that compare favorably to those of Bai et al.
[2011]. In our illustrations, regions rapidly adapt to nearly ideal partitions, even with extremely
poor initialization settings. The proposed sampler also performs well in our real data application,
where RAPT requires a separate optimization step to obtain a quality partition. In summary, our
newly developed OPRA acts similarly to RAPTOR but runs in about 65 to 85 percent of the
time. Naturally, if target computations were so demanding that adaptation became insignifiant in
comparison, then OPRA would take as long as RAPTOR to run.

2. MULTIMODALITY IN THE LITERATURE

Regional adaptive samplers are not the only way of tackling multimodality; a classical approach
in this context is to use multiple parallel chains started according to an over-dispersed distribution
with respect to π (Gelman et al. [1992]). Information from these parallel chains may also be used
to recursively update the parameters of the proposal distributions; this is known as inter-chain
adaptation (INCA, see Craiu et al. [2009]).

Another popular avenue is to rely on tempering (Neal [1996]; Geyer and Thompson [1995]).
A temperature parameter T is included in the target and as T increases (i.e. as the temperature
rises), the target πT becomes flatter and therefore easier to explore. Implementing several par-
allel algorithms with increasing temperatures and exchanging states among chains of different
temperatures is known as parallel tempering. The equi-energy sampler of Kou et al. [2006] runs
several Metropolis-Hastings chains at different temperatures but also builds energy rings, i.e. sets
containing states of similar densities. At every iteration, a given chain can either propose a local
move or sample a state of similar energy from a neighbouring chain, which helps the process
crossing low-energy barriers.

Lately, several approaches based on the concept of free energy have been proposed. The
Wang-Landau sampler (Landau et al. [2004]) partitions S and then artificially increases the en-
ergy of visited states. In other words, the density of a state is decreased by a predetermined factor
every time it is visited, so this state (and the region to which it belongs) has fewer chances of
being visited again, favoring the exploration of regions that have yet to be visited. Repeating this
with finer factors (i.e. factors closer to 1) in subsequent sweeps leads to a thorough exploration
of the space. Another method, introduced by Chopin et al. [2012], uses the free energy of a reac-
tion coordinate to build a bias for the MCMC sampler; this allows to move more freely between
the different modal regions of the initial target distribution. In their paper, Bornn et al. [2013]
automate the Wang-Landau algorithm by adapting its proposal distributions and space partition.

These methods all have their pros and cons. Energy-based samplers are quite effective at
crossing low-density barriers but require extensive user input. Accordingly, the implementation
of these methods is often difficult for practitioners, both in terms of coding and tuning. Our
goal is to introduce a method that is as simple and user-friendly as possible, with virtually no
tuning left to users. The method we study for tackling multimodal targets is regional adaptation,
which can be combined to other tools such as INCA or parallel tempering if desired. For now,
the context in which the sampler is described is kept as plain as possible.

3. FRAMEWORK

To illustrate the need for regional adaptation, let N
(
x;µ, σ2

)
denote the normal density with

mean µ and variance σ2; now consider the density π(x) = 1
2N (x;−6, 4) + 1

2N
(
x; 6, 1

4

)
, whose

left mode is more spread out than the right one. To sample from this target, we could use a RWMH
with a normal proposal distribution. In that context, the proposal variance σ2 = 140 gives rise
to the fastest exploration of S (i.e. optimizes the average quadratic variation defined below),
and is large enough for the sampler to jump from one mode to the other. It however generates
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several candidates that are located in low-density areas, so only 17% of candidates turn out to be
accepted.

There exist, in MCMC theory, different notions of efficiency. Hereafter, the term efficiency
is used as a measure of how rapidly the Markov chain explores its state space. For d-dimensional
RWMH chains, this might be measured by the (standardized) average quadratic variation,

AQV =
1

nd

n∑
t=1

(Xt −Xt−1)TD−1(Xt −Xt−1) , (1)

where n is the number of iterations and D is a d× d diagonal matrix whose entries are the
variances of the d components, (σ2

1 , . . . , σ
2
d). The optimization of this measure encourages a

trade-off between large and frequently accepted moves, without penalizing components featuring
smaller scales.

Because of the geography of π, σ2 = 140 is obviously too large for individually exploring
each of the modes. It would be preferable to use different proposal variances on different regions
of S; we could use σ2

L = 22.6 and σ2
R = 1.4, the variances that optimize the AQV given that the

chain is restricted to the left or right mode, respectively. To know which of σ2
L or σ2

R to use, we
however need a frontier that partitions S = R. Here a good partition is easy to find as we clearly
want each region to be unimodal, but examples are often not that simple. In asymmetrical and
correlated contexts for instance, quality partitions are often difficult to find.

In order to define a notion of partition quality, let us suppose that we have access, for each
partition {S1, . . . ,SK} of S, to the corresponding K optimal proposal variances (meaning that
the i-th variance optimizes the AQV of a chain whose target is the restriction of π to Si). Although
several good partitions of S may exist (possibly based on various efficiency criteria), in the
current framework, we think of an ideal partition as one that maximizes the spectral gap, and
thus that optimizes the mixing time of the chain. In most contexts, it is intuitively clear that the
overall mixing of the sampler is limited by the slowest mixing region.

More formally, let us define the standardized AQV of Region i as

AQVi =
1

d
∑n
t′=1 1Si(Xt′−1)

n∑
t=1

1Si(Xt−1)(Xt −Xt−1)TD−1
i (Xt −Xt−1) ,

where Di is the diagonal variance matrix of π restricted to Region i and where again we sup-
pose that for each partition, we have access to the corresponding K optimal proposal variances.
Following the above intuition, an ideal partition is one that maximizes mini∈{1,...,K}AQVi. If
several partitions feature the same maximum, our choice narrows to the partition that maximizes∑K
i=1AQVi/K. In what follows, any reference to partition quality thus refers to this upper-level,

inter-region notion of optimality, as opposed to the lower-level, within-region optimality of the
proposal variances.

For now, suppose that a decent partition {S1, . . . ,SK} of S is available. In that situation, one
could draw a candidate Yt+1 from

∑K
i=1 1Si(Xt)Qi(Yt+1|Xt), where 1A(x) is the indicator

function that x belongs to A and Qi is the proposal distribution used in Region i. A RWMH
sampler would then be carried as usual for moves within each region, and by carefully computing
the acceptance function for moves crossing the frontier (e.g. x ∈ S1 and Yt+1 ∈ S2).

The performance of the above sampler heavily relies on the quality of the partition. In Craiu
et al. [2009] and Bai et al. [2011], two different avenues are explored to alleviate the effect of
suboptimal partitions, namely the RAPT and RAPTOR samplers. The remainder of this section
describes the idea behind these samplers. The adaptive partitioning process and its generalization
to K > 2 regions are introduced in Section 4, and theoretically justified in Section 5. Using sim-

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? 5

ulation studies and a real data application, the performance and robustness of the new algorithm
are compared to those of RAPTOR in Sections 6 and 7. Although valid more generally, discus-
sions about RAPT and the adaptive partitioning process will be restricted to the RWMH version
with Gaussian proposal distributions.

3.1. RAPT Algorithm
This sampler makes the assumption that users have access to a decent partition of S. To account
for suboptimal partitions {S1, . . . ,SK} (which could causeQ2 to be better thanQ1 for some x ∈
S1, say), candidates are generated from a mixture of the distributions Q1, . . . , QK . Specifically,

Q(y, t|x) =

K∑
i=1

1Si(x)

K∑
j=1

λi,j(t) Qj(y|x) ,

where mixture weights vary according to the region of the current state x and
∑
j λi,j(t) = 1,

∀i, t. Ideal weights λi,j(t) reflect the extent to whichQj is more or less appropriate than the other
proposal distributions in Region i. It is naturally difficult to select appropriate weights, so these
parameters are adapted as the sampler proceeds to account for newly gained information. With
Gaussian proposals, the AM sampler may also be used to update the K covariance matrices; Qj
is then updated using sample values from Region j exclusively, j = 1, . . . ,K.

Various approaches may be used to compute the mixture weights. For a RWMH version of
the RAPT algorithm define, for i, j = 1, . . . ,K,

Wi,j(t) = {0 ≤ s ≤ t− 1 : xs ∈ Si and ys+1 is generated from Qj} , (2)

and |Wi,j(t)| the number of elements in the set. To estimate time-t weights, the AQV of moves
from xs ∈ Si to a new state xs+1 generated from Qj is used:

di,j(t) =

∑
s∈Wi,j(t)

‖xs+1 − xs‖2

|Wi,j(t)|
, i, j = 1, . . . ,K ,

where ‖·‖ is the Euclidean norm. For x ∈ Si, time-t mixture weights are chosen proportional to
di,j(t),

λi,j(t) =


di,j(t)∑K
l=1 di,l(t)

, if
∑K
l=1 di,l(t) > 0 ,

1
K , otherwise ,

for i, j = 1, . . . ,K .

Proposal distributions Qj giving rise to larger di,j(t) will then be attributed heavier mixture
weights. It should be mentioned that RAPT relies on a pre-adaptation period; therefore, events
such as Wi,j(t) = ∅ will not occur if the pre-adaptation is long enough for moves from each i to
each j to be proposed at least once.

To enable a good flow between regions, Craiu et al. [2009] add a global adaptive component
to the mixture. The proposal distribution then becomes

Q(y, t|x) = (1− β)

K∑
i=1

1Si(x)

K∑
j=1

λi,j(t)Qj(y, t|x) + β QS(y, t|x) ,

where 0 < β < 1 and QS adapts using all past sample values. The weight of this component is
kept fixed to guarantee a positive probability, at any t, of crossing the frontier between regions
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(usually β = 0.3, see Guan et al. [2007]). This sampler then accepts candidates with probability

α∗t (x, y) =


π(y)
π(x) , if x, y ∈ Sk ,

π(y)((1−β)
∑K
i=1 λ`,i(t)qi(x,t|y)+βqS(x,t|y))

π(x)((1−β)
∑K
j=1 λk,j(t)qj(y,t|x)+βqS(y,t|x))

, if x ∈ Sk, y ∈ S`, k 6= ` .
(3)

RAPT is generally implemented with two regions. If the initial partition of a version with K
regions is harder to initialize, it is however not significantly more expensive in terms of com-
putational effort. In fact, when the geography of π calls for an additional region, the resulting
efficiency gain usually outweighs the computational overhead introduced.

The principal challenge in implementing RAPT is to determine a good partition of S without
extensively studying π. A poorly chosen partition may slow mixing or contribute to overlooking a
mode during preadaptation. Given that RAPT recursively updates regional means and covariance
matrices, it would make sense to also adapt the regions Si, i = 1, . . . ,K.

To recursively approximate the ideal partition we could, at any t ≥ 0, make it equally difficult
for all K sub-samplers to travel from the center of their region to the frontier. Regions producing
volatile observations will tend to push the frontier away, while those producing concentrated ones
will pull it closer; eventually, the frontier should stabilize when an equilibrium between means,
covariances, and partition is reached.

We note that it is usually impossible to get analytical expressions for the regional (lower-
level) optimal proposal variances mentioned above. As in Craiu et al. [2009], we rely on time-t
proposal scalings 2.382Σi(t)/d for i = 1, . . . ,K, which are proportional to the updated regional
covariance matrices Σi(t). These scalings are not necessarily optimal in our context (e.g. for
hopping between regions), but they each are as close to optimality (over a given region) as theory
brings us.

3.2. RAPTOR Algorithm
We now summarize the regional adaptive algorithm with online recursion. For more details on
its implementation, we refer the reader to Bai et al. [2011].

RAPTOR is an appropriate choice of sampler when the target π is well ap-
proximated by π̃(x) =

∑K
i=1 ωi N (x;µi,Σi). The idea is to update the parameters

{(ωi(t), µi(t),Σi(t)) ; i = 1, . . . ,K} on the fly, using recursion formulas based on the EM algo-
rithm and initially developed by Andrieu et al. [2006].

At every iteration, the updated mixture π̃t is then used to adaptively define a partition of the
state space, S =

⋃K
i=1 Si(t). At time t, the region Si(t) is the set in which the i-th component of

π̃t dominates the others:

Si(t) =

{
x : arg max

i′
N (x;µi′(t),Σi′(t)) = i

}
.

Once the time-t partition is updated, a candidate yt+1 is generated from

Q(y, t|x) = (1− β)

K∑
i=1

1Si(t)(x) N (y;x, sd (Σi(t) + εId))

+ β N (y;x, sd (ΣS(t) + εId)) ,

where sd = 2.382/d, ε > 0, and β ∈ (0, 1) is a fixed weight that controls the flow between re-
gions. The sample covariance matrix ΣS(t) is updated using all past observations, while the
terms εId are added to ensure that covariance matrices are positive definite. If x ∈ Si(t), a can-
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didate is thus generated using the dominant component of the mixture with probability 1− β,
or the global proposal distribution with probability β. The candidate is then accepted according
to the usual Metropolis-Hastings rule, αt(x, y) = min

{
1, π(y)q(x,t|y)

π(x)q(y,t|x)

}
, where q(y, t|x) is the

density of Q(y, t|x).

4. ON-LINE PARTITIONING AND REGIONAL ADAPTATION (OPRA)

We present a modification of RAPT in which we partition S adaptively. For this discussion,
we focus on K = 2 and denote the time-(t− 1) partition S1(t− 1) ∪ S2(t− 1) = S with
S1(t− 1) ∩ S2(t− 1) = ∅. For the new algorithm to be appealing from a practical point of view,
the adaptive partitioning should remain as simple as possible and avoid extra computationally in-
tensive calculations.

In multidimensional settings, an ideal partition of S is usually difficult to obtain. Most of
the time, a carefully chosen hyperplane leads to a very good approximation of the sought-after
frontier. Moreover, the mixture proposal distribution of RAPT protects the user, to some extent,
against suboptimal partitions; this will be particularly useful before the partitioning process sta-
bilizes. Define, for t ≥ 1,

Wi(t) = {0 < s ≤ t : xs ∈ Si(s− 1)} , i = 1, 2 , (4)

the sets containing indices of values that were progressively added to each of the two regions, up
to current time t. These sets are used to keep track of observations in each region. Intuitively, we
should in fact write {0 < s ≤ t : xs ∈ Si(t− 1)}, but we would need to reevaluate the region of
all observations every time the partition is updated. As will be explained in Remark 2, computa-
tional gains from progressively classifying observations are worth the minor loss in precision.

To determine the hyperplane used at time t, we need the time-t sample averages in each
region,

xi(t) =
1

|Wi(t)|
∑

s∈Wi(t)

xs , i = 1, 2 ,

with |Wi(t)| the number of values in the set Wi(t) for i = 1, 2. We also need estimates of the
covariance matrices in each region, Σ1(t),Σ2(t); these quantities are readily available from the
adaptation of the proposal distributions Q1, Q2 through the AM algorithm, and are computed
recursively.

At time t, we wish to define a hyperplane that is orthogonal to the segment joining the sample
averages xi(t), i = 1, 2. If the target densities over S1(t− 1) and S2(t− 1) possess relatively
similar shapes and scales, then it will be optimal to require that the hyperplane dividing the space
go through the middle point of this segment. It will then be expressed as aTt X = bt, with

at = x1(t)− x2(t) , bt = aTt

(
x1(t) + x2(t)

2

)
.

This hyperplane represents the frontier between the updated regions S1(t) and S2(t). We deter-
mine the region to which a value x belongs according to

x ∈

{
S1(t) if aTt x ≥ bt ,
S2(t) if aTt x < bt .

(5)

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



8 N. G.-GODBOUT AND M. BÉDARD Vol. xx, No. yy

To account for possible shape and scale discrepancies of the target density between regions,
we may use a weighted average of x1(t), x2(t) to obtain the parameter bt defining the position of
the hyperplane (by opposition to its orientation). To gain intuition about this weighted average,
we reexpress the problem in terms of Mahalanobis distance, a multi-dimensional generalization
of the z-score that measures the number of standard deviations a point is away from the mean of a
distribution. The Mahalanobis distance of an observation x = (x1, . . . , xd)

T from a distribution
with mean µ = (µ1, . . . , µd)

T and covariance matrix Σ is

DM (x) =
√

(x− µ)TΣ−1(x− µ) .

By imagining that the hyperplane should go through a coordinate r(t) on the segment joining
x1(t), x2(t) such that Mahalanobis distances between xi(t) and r(t) are equal for i = 1, 2, then
we have

(r(t)− x1(t))T {Σ1(t)}−1(r(t)− x1(t))

= (r(t)− x2(t))T {Σ2(t)}−1(r(t)− x2(t)) .

The coordinate r(t) thus satisfies r(t) = x1(t) + k(t) (x2(t)− x1(t)) for a certain value k(t) ∈
(0, 1) such that

k2(t) (x2(t)− x1(t))
T

Σ−1
1 (t) (x2(t)− x1(t)) =

(1− k(t))
2

(x2(t)− x1(t))
T

Σ−1
2 (t) (x2(t)− x1(t)) .

If Σ1(t) = Σ2(t) then k(t) = 1/2 and we are back to the situation described above (hyperplane
going through the middle point of the segment); otherwise,

k(t) =

√
z1z2 − z2

z1 − z2
=

√
z2√

z1 +
√
z2
, (6)

with zi = (x2(t)− x1(t))
T

Σ−1
i (t) (x2(t)− x1(t)). Hence,

at = x1(t)− x2(t) , (7)

bt = aTt r(t) = aTt {(1− k(t))x1(t) + k(t)x2(t)} .

An observation x is then classified according to (5) as before.
In practice, the determination of this weighted hyperplane requires slightly more effort than

the version going through the middle point. It turns out that a decomposition of the matrices
Σi(t), i = 1, 2 is readily available at every step where a change of region occurs (since it is
then needed to compute α∗t in (3)), which facilitates computations involving the inverse of those
matrices.

The proposed adaptive partitioning uses quantities that are already updated in RAPT and is
implemented at a marginal computational cost. In the unlikely event where one region is not
visited during pre-adaptation (which suggests that the initial partition is poorly selected, or that
pre-adaptation is not long enough), then one of the sample averages would be undefined (x2, say).
We could then fit a hyperplane going through x1, with arbitrary orientation, say a = (1, . . . , 1). In
practice, we try to avoid this situation by relying on parallel chains with initial values belonging
to different initial regions. Experimental results show that the RAPT algorithm with adaptive
partitioning is robust to the initial partition, in the sense that the hyperplane evolves rapidly and
stabilizes near the ideal hyperplane.
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4.1. Implementation
We now describe, step by step, how to implement OPRA. We first initialize the sampler: X0 =
x0, β = 0.3, λi,j(0) = 1/2 ∀(i, j), Σ1(0) = Σ2(0) = Id, and ΣS(0) = MId, where Id is the
d× d identity matrix and M yields a Gaussian density that is over-dispersed with respect to
S. Initial regions Si(0) (i = 1, 2) are separated by an hyperplane aT0 X = b0 with b0 = x0 and
arbitrary a0.

Given Xt = x, ΣS(t), Si(t), λi,j(t), Σi(t) for i, j = 1, 2, then at time t+ 1

1. Generate a candidate Yt+1 from the proposal distribution

Yt+1 ∼ (1− β)

2∑
i=1

1Si(t)(x) [λi,1(t)Q1(Yt+1, t|x) + λi,2(t)Q2(Yt+1, t|x)]

+ β QS(Yt+1, t|x) ,

where Qj(Yt+1, t|x) ∼ N (x,Σj(t)), j = 1, 2. In other words, assuming that x ∈ Sk(t), gen-
erate `′ ∈ {1, 2} ∪ {S} according to the probabilities {(1− β)λk,1(t), (1− β)λk,2(t), β},
then generate Yt+1 ∼ N (x,Σ`′(t)).

2. Define the time-(t+ 1) value of the Markov chain using α∗t (x, y) in (3):

Xt+1 =

{
Yt+1, with probability α∗t (x, Yt+1)

x, with probability 1− α∗t (x, Yt+1)
.

3. If `′ = S, go to Step 4; otherwise, (2) implies that t ∈Wk,`′(t+ 1), hence

|Wk,`′(t+ 1)| = |Wk,`′(t)|+ 1 ,

dk,`′(t+ 1) =
1

|Wk,`′(t+ 1)|
(
|Wk,`′(t)|dk,`′(t) + ‖Xt+1 − x‖2

)
.

For any other pair (i, j) 6= (k, `′), the quantities remain unchanged, i.e.Wi,j(t+ 1) = Wi,j(t)
and di,j(t+ 1) = di,j(t). Finally,

λk,j(t+ 1) =
dk,j(t+ 1)

dk,1(t+ 1) + dk,2(t+ 1)
, j = 1, 2

and λi,j(t+ 1) remains unchanged for i 6= k, j = 1, 2.
4. Now, let ` be such that Xt+1 ∈ S`(t); then

|W`(t+ 1)| = |W`(t)|+ 1 , |Wi(t+ 1)| = |Wi(t)| , i 6= ` ,

with Wi(t) as in (4), and

x`(t+ 1) =
1

|W`(t+ 1)|
(|W`(t)|x`(t) +Xt+1) ,

xi(t+ 1) = xi(t) , i 6= ` .

Similarly, Σ`(t+ 1) and ΣS(t+ 1) are updated according to the AM sampler, while Σi(t+
1) = Σi(t) (i 6= `). We finally update the hyperplane equation as

at+1 = x1(t+ 1)− x2(t+ 1) , bt+1 = aTt+1r(t+ 1) ,
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where r(t+ 1) follows from (7) and (6); Xt+1 then belongs to the new region

Xt+1 ∈

{
S1(t+ 1) if aTt+1Xt+1 ≥ bt+1 ,

S2(t+ 1) if aTt+1Xt+1 < bt+1 .

Remark 1. In a given iteration, we do not reevaluate the region of belonging of every sample
point, but merely that of the most recent observation. If we did, some values close to the frontier
would likely move from one region to another, due to the adaptive nature of the partitioning.
Such extra computations could be interesting during the first few iterations, when the partition is
still very unstable. A subprocess that alternately evaluates regions and computes a new partition
could even be used, which would be equivalent to the K-means algorithm. Once the partition
stabilizes, it naturally becomes inefficient to reevaluate the position of all sample values with
respect to new partitions. Preliminary simulation studies however suggest that these extra com-
putations do not improve the performance of the sampler, so this avenue has not been explored
further.

Remark 2. The mixture form of the proposal distribution remains useful in this new version
of the sampler. Experimental results show that the adaptive mixture weights greatly contribute to
the rapid convergence towards a good partition.

4.2. Generalization to K > 2

The adaptive partitioning process of Section 4 is described in the context of two separate regions.
The approach may be generalized to more regions by obtaining a hyperplane for each pair of
sample averages, and then considering appropriate intersections arising from these hyperplanes.
In the general case, one has to compute

(
K
2

)
hyperplanes in order to define K regions.

Specifically, let ai,j(t), bi,j(t) represent the coefficients of the hyperplanes dividing xi(t)
and xj(t), for 1 ≤ i < j ≤ K; these terms are obtained from calculations analogous to (7).
An observation x then belongs to the region Sj(t) such that aTj′,j(t)x < bj′,j(t) ∀j′ < j

and aTj,j′(t)x ≥ bj,j′(t) ∀j′ > j. To classify a new observation according to this rule given
{(ai,j(t), bi,j(t)); 1 ≤ i < j ≤ K}, we conveniently need exactlyK − 1 scalar products, as each
carefully selected comparison eliminates one potential region. Also note that only K − 1 of the(
K
2

)
hyperplanes need to be updated in a given iteration, since only one sample average and

covariance are updated at a time.
If hyperplanes go through the middle points of the segments joining sample averages, then

this becomes equivalent to classifying a point in the region containing the closest sample aver-
age. When hyperplanes do not go through middle points, we cannot classify an observation by
simply computing its K Mahalanobis distances to each sample average. Since hyperplanes are
perpendicular to the lines joining pairs of sample averages, then observations that are not lo-
cated on this line (i.e. most observations) are not necessarily located in the region containing the
Mahalanobis-closest average. In fact, a frontier dividing two regions so as to ensure that both Ma-
halanobis distances (from each sample mean to the frontier) are equal generally is a hypersurface
more complex than a hyperplane.

Although generalizations to more than 2 regions are easily implemented, K should be kept
at a minimum. To efficiently explore S , every region should be visited sufficiently often, which
becomes increasingly complicated as K grows.

4.3. Computational complexity
To have a better understanding of how OPRA and RAPTOR compare in terms of computational
efficiency, we briefly analyse the complexity of their partitioning process per iteration. To assign
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a new point to a region, RAPTOR requires evaluating K normal densities, each with its own
d× d determinant and quadratic form. Since all K densities are updated at every iteration, then
K Cholesky decompositions must be computed every time. RAPTOR thus takes O(Kd3) flops
per iteration to assign a new iterate to its region.

OPRA evaluates O(K) d× d quadratic forms to update the bi,j(t) coefficients, but these
forms only involve one new covariance matrix. Assuming that Cholesky decompositions are
saved at each step, then only one new decomposition per iteration is required. The sampler then
performs K − 1 well-chosen scalar comparisons to assign a new point to its region. Overall,
OPRA thus takes O(d3 +Kd2) flops per iteration to classify a new point. Its computational
advantage stems from the number of matrix decompositions required (1 for OPRA versus K for
RAPTOR).

Different partitioning schemes could also lead to potentially interesting results (as long as
they remain strictly less complex than 2 Cholesky decompositions). One could, for instance,
update two covariance matrices per iteration as in OPRA (regional and global matrices) but
use the partitioning scheme of RAPTOR, for a cost of O(d3 +Kd2) per iteration. Alterna-
tively, regions could be divided according to the Mahalanobis distances to each sample mean,
Si(t) = {x : arg mini′(x− xi′(t))TΣ−1

i′ (t)(x− xi′(t)) = i}, i = 1, . . . ,K. Although the com-
putational efficiency of the partitioning process is directly related to the number of matrix decom-
positions, users should be cautious in defining regions. In our numerical experiments, RAPTOR
faced problems with some targets and it is unclear whether this was due to the way of adapting
parameters or of defining regions. Partitioning schemes based on Mahalanobis distances should
however yield mixing times that are similar to OPRA.

5. ERGODICITY

To prove the ergodicity of OPRA, we make use of the sufficient ergodicity conditions introduced
in Theorem 1 of Roberts and Rosenthal [2007]. They state that an adaptive sampler on a state
space S with adaptive transition space Y , for which every possible transition kernel Pγ , γ ∈ Y
has π(·) as its stationary distribution, is ergodic for π(·) under the following conditions:

1. Simultaneous Uniform Ergodicity: For all ε > 0, there exists N ∈ N such that

‖P (N)
γ (x, ·)− π(·)‖TV < ε, ∀x ∈ S,∀γ ∈ Y, (8)

where ‖·‖TV denotes the norm in total variation distance.
2. Diminishing Adaptation:

sup
x
‖PΓt(x, ·)− PΓt−1

(x, ·)‖TV −−−→
t→∞

0 , in probability, (9)

where Γt contains the actual (random) adaptive parameters in use at time t.

We impose some conditions on the state space and target density. Specifically, we assume
that there is a compact subset S ⊆ Rd such that the target density π is continuous on S, positive
on the interior of S, and zero outside of S. These assumptions are of technical interest and do
not introduce important constraints in practice, as compact sets can be arbitrarily large.

To update hyperplanes, we also require a minimum distance δ > 0 between all pairs of
sample means. We thus start by assuming that ‖ai,j(0)‖ = ‖xi(0)− xj(0)‖ ≥ δ for all pairs
i 6= j (i, j = 1, . . . ,K). Then, if ‖xi(t+ 1)− xj(t+ 1)‖ < δ at some t > 0 for some pair i 6= j
(i, j = 1, . . . ,K), the current partition is maintained by letting at+1 = at and bt+1 = bt. This
means that we update the usual quantities of Section 4.1 to the exception of at and bt, which
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remain constant until ‖xi(t+ 1)− xj(t+ 1)‖ ≥ δ for i, j = 1, . . . ,K, i 6= j. Choosing δ ap-
propriately small will have a negligible effect on the sampler in practice.

Theorem 1. Consider a compact sample space S and a continuous, strictly positive target
density π(·) on S. The algorithm OPRA described in Section 4 and equipped with the above
δ-requirement satisfies conditions (8) and (9), which are sufficient for guaranteeing ergodicity of
adaptive algorithms.

Proof. The proof of (8) is identical to that of RAPT in Craiu et al. [2009] and is thus
omitted. The new adaptive parameters for partitioning S do not jeopardize the existence of lower
and upper bounds on the proposal and target densities or their positivity, which are the sole
necessary elements for proving this condition.

We thus focus on verifying (9). This portion of the proof is also similar to what is done in
Craiu et al. [2009], with the extra complication that integration regions now vary with t. We
focus on the case K = 2 and then provide indications for the generalization of this proof to any
finite K > 2.

Let the time-t proposal density be expressed as

fΓt(y|x) = (1− β)

K∑
i=1

1Si(t)(x)

K∑
j=1

λi,j(t)qj(y, t|x) + β qS(y, t|x) ,

where qj(y, t|x) is the normal density with mean x and covariance Σj(t) for j ∈ {1, . . . ,K, S}.
The vector Γt = (λ1,1(t), . . . , λK,K(t),Σ1(t), . . . ,ΣK(t),ΣS(t)) represents the set adaptive pa-
rameters at a given time t. Let M(c1, c2) be the set of all k × k positive definite matrices M such
that c1Ik ≤M ≤ c2Ik. From (14) in the proof of Theorem 1 in Haario et al. [2001], there exist
c1, c2 > 0 such that all Σi(t) (i = 1, . . . ,K) and ΣS(t) are in M(c1, c2). Since S is compact,
then

M1 ≡ max

{
sup
x,y∈S

q1(y, t|x), . . . , sup
x,y∈S

qK(y, t|x), sup
x,y∈S

qS(y, t|x)

}
<∞ .

Define gΓt(x, y) := fΓt(y|x)α∗t (x, y), with f as above and α∗t as in (3). For any x ∈ S1(t)
and A ∈ B(S) (the Borel sets of S), the time-t probability of moving from x to a state in A is

PΓt(x,A) =

K∑
i=1

∫
A∩Si(t)

fΓt(y|x)α∗t (x, y)dy

+ 1A(x)

K∑
i=1

∫
Si(t)

fΓt(y|x)(1− α∗t (x, y))dy .

(10)

Denote each term in (10) by Ii,t(x,A), i = 1, . . . , 2K. Equation (9) satisfies

sup
x
‖PΓt+1(x, ·)− PΓt(x, ·)‖TV ≤ sup

x
sup
A

2K∑
i=1

|Ii,t+1(x,A)− Ii,t(x,A)| . (11)

Hereafter, we let K = 2 and focus on the convergence of |I2,t+1(x,A)− I2,t(x,A)| (the
proof for the other terms is very similar). We have

|I2,t+1(x,A)− I2,t(x,A)| =
∣∣∣∣ ∫
A∩S2(t+1)

gΓt+1(x, y)dy −
∫
A∩S2(t)

gΓt(x, y)dy
∣∣∣∣ ;
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splitting both integration regions and using the fact that gΓt(x, y) is uniformly bounded by M1

leads to

sup
x

sup
A
|I2,t+1(x,A)− I2,t(x,A)|

≤ sup
x

sup
A

∫
A∩S2(t)∩S2(t+1)

∣∣gΓt+1(x, y)− gΓt(x, y)
∣∣ dy

+M1

∫
S1(t)∩S2(t+1)

dy +M1

∫
S1(t+1)∩S2(t)

dy . (12)

We now show that each term on the right converges to 0 as t→∞. The convergence to 0 of
the first term is proved in Lemma 4.2 of Craiu et al. [2009]. For the second and third terms, it
suffices to show that the subset of S switching regions from t to t+ 1 has a measure converging
to 0. We suppose that d ≥ 2, the case d = 1 being trivial.

At any time t, for two successive hyperplanes to be exactly parallel, Xt+1 has to be gen-
erated directly on the segment joining x1(t) and x2(t), which happens with probability 0.
Successive hyperplanes thus intersect, and the intersection is a (d− 2)-dimensional hyper-
plane. The acute angle between the normal vectors at and at+1 of these hyperplanes is θt :=
arccos

(
aTt /‖at‖ · at+1/‖at+1‖

)
, with at as in (7). Letting i(t) represent the region of xt+1,

at+1 = x1(t)− x2(t) +
(−1)i(t)−1(xt+1 − xi(t)(t))

|Wi(t)(t+ 1)|
=: at + ct . (13)

Since S is compact, then every component in the numerator of ct is bounded. Furthermore,
|Wi(t)(t+ 1)| → ∞ when t→∞; indeed, even if one of the regions (say S1) is only visited a
finite number of times, then for t0 large enough, i(t) = 2 ∀t ≥ t0, implying that |W2(t+ 1)| →
∞. Hence, ct → 0 term by term. Using (13) along with the triangle inequality at the denominator,
we find

1 ≥ aTt at+1

‖at‖ · ‖at+1‖
≥ ‖at‖2 + aTt ct
‖at‖2 + ‖at‖ · ‖ct‖

−−−→
t→∞

1 . (14)

We note that the compacity of S and the design of the sampler, specifically the δ-requirement,
imply that there exist δ and M0 such that 0 < δ ≤ ‖at‖ ≤M0 <∞ for all t. Continuity of the
function arccos implies that θt → 0 as t→∞.

Since the angle between successive hyperplanes goes to 0, then the volume between those
hyperplanes inside S also goes to 0 as t→∞, as long as the intersection between hyper-
planes do not get arbitrarily far from S. In fact, the point z∗ that is simultaneously con-
tained in two successive hyperplanes and closest to origin can be obtained by minimizing
h(z) = ‖z‖2 + 2λ1

(
aTt z + bt

)
+ 2λ2

(
aTt+1z + bt+1

)
, using Lagrange multipliers. This leads

to

z∗ =

(
‖at+1‖2bt − aTt at+1bt+1

)
at +

(
‖at‖2bt+1 − aTt at+1bt

)
at+1

‖at‖2‖at+1‖2 −
(
aTt at+1

)2 .

Using a decomposition similar to (14), we see that the denominator is bounded below by a
positive constant. Hyperplane parameters are also bounded as they are functions of sample aver-
ages on a compact S. Each term of z∗ is thus bounded (so is ‖z∗‖), implying that the distance
between the intersection of two successive hyperplanes and S is bounded, as desired. The same
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holds for the Mahalanobis version described in Section 4. The only difference lies in the param-
eter bt, but it remains bounded as bt = at {(1− k(t))x1(t) + k(t)x2(t)}, with k(t) ∈ (0, 1). We
conclude that the second and third terms on the right of (12) converge to 0 as t→∞, and thus
supx supA |I2,t+1(x,A)− I2,t(x,A)| → 0 as t→∞. Since this reasoning may be repeated for
every term in (11), this verifies (9).

To generalize the proof to the case K > 2, we use the following upper bound for
|I2,t+1(x,A)− I2,t(x,A)|∫

A∩S2(t)∩S2(t+1)

∣∣gΓt+1
(x, y)− gΓt(x, y)

∣∣ dy
+

∑
i6=2,1≤i≤K

[∫
S∗i (t)∩S∗2 (t+1)

|gΓt+1
(x, y)|dy +

∫
S∗i (t+1)∩S∗2 (t)

|gΓt(x, y)|dy

]
,

where S∗2 (·) and S∗i (·) denote the partition assuming that these are the only two regions of S.
We may then show that each term on the second line converges to 0 as t→∞, using arguments
similar to those used above when K = 2. Indeed, each region of integration only depends on the
evolution of one hyperplane. For instance, the area of the region S∗i (t+ 1) ∩ S∗2 (t) only depends
on the evolution of the hyperplane separating xi and x2 from t to t+ 1, and so on. �

6. SIMULATED EXAMPLES

We now study the behaviour of OPRA and compare it to competitors through simulation studies.
Consider the following flexible family of target densities

π(x) =

κ∑
k=1

pk N (φψ(x);µk,Σk) , x ∈ Rd .

For k = 1, . . . , κ, µk ∈ Rd, Σk ∈ Rd×d are positive definite matrices, pk ∈ [0, 1] with
∑
pk = 1,

and ψ ≥ 0. Here, N (x;µ,Σ) is the normal density function with mean µ and covariance Σ; the
function φψ(·) satisfies φψ(x2) = x2 + ψ(x2

1 − 100) and φψ(xj) = xj for j ∈ {1, 3 . . . , d}. The
parameter ψ introduces a nonlinearity in the exponential term, leading to increasingly twisted
distributions and non convex confidence regions as ψ gets larger. This type of distribution has
been used in Haario et al. [2001], for instance, in the context of comparative tests.

6.1. Illustrations of the adaptive partitioning
From its construction, it seems clear that the adaptive partitioning of OPRA will be effective in
the case of multimodal target distributions, with modes separated by a low density region. It is
however interesting to investigate OPRA’s behavior in more challenging situations, as may arise
from the above family of target densities. We focus here on two-dimensional examples, as the
convergence of the separating hyperplane can then be visually illustrated.

In all cases, K = 2 and the basic OPRA0 sampler is used (hyperplane going through the
middle point). The number of iterations before starting adaptation is t0 = 100 and the weight of
the global component is β = 0.3 in all cases. Two parallel chains started in each of the initial
regions are implemented with Σ1(0) = Σ2(0) = I2 and ΣS(0) = 25I2. The graphs in Figures 1
to 3 each present an i.i.d. sample of size 104 from the target distribution. The initial hyperplane
and starting values are orange, while the final hyperplane and sample means x1(n), x2(n) are
green. The blue ellipses correspond to 95% confidence region estimates for E

[
X1Si(n)(X)

]
(i = 1, 2) and E [X] (one for each region, as well as a global one), obtained from sample means
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FIGURE 1: Non spherical covariances, n = 200 (left), n = 2, 000 (right). Target parameters: µ1 =
(−1,−1), µ2 = (1, 1), Σ1 = (3, 2; 2, 3), Σ2 = (3,−2;−2, 3), p1 = 0.5.

FIGURE 2: Stretched covariances, n = 200 (left), n = 2, 000 (right). Target parameters: µ1 = (−2,−2),
µ2 = (2, 2), Σ1 = diag(10, 0.05), Σ2 = diag(0.05, 10), p1 = 0.4.

and empirical covariances. In each figure the left graph illustrates the evolution after a limited
number of iterations (n = 200), while the right one considers n = 2, 000.

In Figures 1 to 3, the hyperplane adaptation is fast, even when the initial partition is way off.
Naturally, the online partitioning gradually becomes more challenging as the dimension of the
target density increases.

6.2. Comparative tests
We now evaluate the performance of RAPT, RAPTOR, OPRA0, and OPRA in sampling from
target densities with d = 50. Densities are selected so as to cover a variety of challenges, but
are simple enough so that specific efficiency and convergence measures may be recorded. In
all cases, N runs of n iterations, each with a pre-adaptation period of t0 are obtained. In each
example, k = 4 adaptive parallel chains with inter-chain adaptation (as described in Craiu et al.
[2009]) are implemented to remain true to what would usually be done in practice; this improves
the performance of all four samplers, but particularly that of RAPT. We use K = 2 regions
and initial conditions that reproduce as closely as possible approaches favored in the literature:
small-normed Σ1(0), Σ2(0) that initially lead to high acceptance rates within each region during
pre-adaptation and an overly spread out ΣS(0) covering the whole state space.
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FIGURE 3: Irregular distribution, n = 200 (left), n = 2, 000 (right). Target parameters: µ1 = (0, 0), Σ1 =
diag(100, 1), ψ = 0.03.

To compare the performances of the various samplers we measure ρ, the absolute difference
between theoretical and empirical coverage rates at various levels. If C1−α is the (1− α)%-level
highest density region associated to π(x), then ρ = |(1− α)−

∑n
i=0 1C1−α(xi)/(n+ 1)|. We

report ρ, the average difference overN runs, as well as the associated standard deviation. Quality
algorithms should produce small ρ, along with a small standard deviation. Evaluating average
coverage rates at various levels (50%, 90%, 95%, 99%) is ideal in the examples considered, as
they measure the extent to which a sampler is able to estimate the tails of a complicated target
density. In cases where theoretical regions C1−α cannot be obtained analytically, we compute
estimates based on a sample of size 106 obtained directly from the target. We also report running
times and the acceptance rate Ta =

∑n
t=1 1{xt 6= xt−1}/n whenever appropriate.

Below,X(i)
0 , i = 1, . . . , 4, denote the starting value of each parallel chain. The initial covari-

ance matrices are specified for each example, as well as the initial partition of S used by RAPT,
OPRA0 and OPRA, and the initial means µ1(0) and µ2(0) for RAPTOR. All other initial param-
eters are set to their default values as specified in Section 4.1, and in Bai et al. [2011] in the case
of RAPTOR. We first discuss a few unimodal examples before turning to a bimodal context.

The first example, a simple unimodal, spherical normal with an appropriate initial hyper-
plane, leads to interesting observations. In Table 1, RAPTOR and OPRA offer comparable per-
formances that are better than those of RAPT and OPRA0 (themselves similar). Compared to its
competitors, RAPTOR however takes 33% more time to complete its task, which makes OPRA’s
net performance more appealing. In fact OPRA’s extra flexibility pushes the separating hyper-
plane to the side of the density, leading to a proposal distribution that is unimodal, and thus better
suited to the target at hand. RAPTOR shows a similar behaviour in relatively high dimensions
(one of the proposal modes gets a weight close to 1). Numerical explorations however show
that this sampler suffers from significant problems in smaller dimensions (when d = 5, the pro-
posal distribution remains bimodal). The designs of RAPT and OPRA0 do not allow detecting
unimodality, explaining their somehow inferior performances.

Similar conclusions hold when the target is a two-term mixture of distributions whose modes
coincide, e.g. 0.6N (0d, Id) + 0.4N (0d, 4Id). As before, RAPTOR and OPRA often treat such
distributions as unimodal. Our numerical experiments show that OPRA does not suffer from
working with a single region, offering net performances that are at least as good, and often
better than those of RAPT (initialized with a decent partition) and OPRA0. RAPTOR faces some
difficulties: in moderate dimension (d = 20) net performances are, at best, comparable to those of
its competitors; in smaller and larger dimensions (d = 5, 50), gross performances remain inferior
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Algorithm RAPT RAPTOR OPRA0 OPRA

Criteria mean s.d. mean s.d. mean s.d. mean s.d.

K = 2 d = 50 n = 2 · 105 t0 = 104 N = 103 k = 4

Time (sec) 32.92 2.80e-02 44.72 6.02e-02 33.80 1.31e-01 33.42 1.23e-02

Cov. 50% (%) 6.51 3.70e-02 5.51 6.67e-02 6.50 3.80e-02 5.53 3.90e-02

Cov. 90% (%) 2.47 1.80e-02 2.03 2.47e-02 2.47 1.77e-02 2.18 1.86e-02

Cov. 95% (%) 1.39 1.17e-02 1.14 1.54e-02 1.40 1.15e-02 1.24 1.20e-02

Cov. 99% (%) 0.33 4.06e-03 0.28 5.05e-03 0.34 4.17e-03 0.31 4.34e-03

Ta 0.25 5.65e-05 0.28 7.72e-04 0.25 5.75e-05 0.25 9.65e-05
TABLE 1: Unimodal, spherical normal target: µ1 = (0, . . . , 0),Σ1 = Id. Parameters:

µ1(0) = X
(1)
0 = X

(2)
0 = (−0.1, 0, . . . , 0), µ2(0) = X

(3)
0 = X

(4)
0 = (0.1, 0, . . . , 0), Σ1(0) = Σ2(0) = 0.1Id,

ΣS(0) = 2Id. Initial hyperplane: x1 = 0.

to its competitors, a phenomenon that is amplified when taking account of computational effort.
As a second example we look at a unimodal, banana-shaped target density similar to that

illustrated in Figure 3. According to Table 2, the suboptimal initial partition favors OPRA0 com-
pared to RAPT, which cannot explore S as efficiently due to its static partition. RAPTOR yields
coverage rates that are comparable to OPRA0, while OPRA performs significantly better than
its competitors for a fixed number of iterations. The gap between RAPTOR and the other sam-
plers widens when taking account of the increased computational effort: almost 30% compared
to RAPT, as opposed to an increase of only 2% for OPRA0 and OPRA. Interestingly, modifying
the twisting degree of the target does not appear to affect RAPTOR’s performance, contrarily
to that of the other samplers. Nonetheless, in our simulation studies, the net performances of
OPRA0 and OPRA remain the most appealing options after adjusting for running time.

Algorithm RAPT RAPTOR OPRA0 OPRA

Criteria mean s.d. mean s.d. mean s.d. mean s.d.

K = 2 d = 50 n = 2 · 105 t0 = 104 N = 103 k = 4

Time (sec) 44.28 2.73e-02 56.88 1.04e-01 44.46 3.16e-02 45.07 2.75e-02

Cov. 50% (%) 9.78 4.49e-02 8.82 1.09e-01 9.04 4.12e-02 8.58 4.22e-02

Cov. 90% (%) 3.55 1.84e-02 3.28 3.89e-02 3.30 1.82e-02 3.14 1.87e-02

Cov. 95% (%) 1.98 1.17e-02 1.86 2.23e-02 1.86 1.15e-02 1.77 1.19e-02

Cov. 99% (%) 0.47 4.15e-03 0.45 6.16e-03 0.45 4.08e-03 0.42 4.28e-03

Ta 0.23 2.83e-04 0.21 1.41e-03 0.23 1.82e-04 0.22 1.91e-04
TABLE 2: Unimodal, stretched normal target with slight twisting and poor initial partition: ψ = 0.03,

µ1 = (0, . . . , 0), Σ1 = diag(100, 1, . . . , 1). Parameters: X(1)
0 = . . . = X

(4)
0 = (0, . . . , 0),

µ1(0) = −µ2(0) = (−0.1, 0, . . . , 0), Σ1(0) = Σ2(0) = 0.1Id, ΣS(0) = Id. Initial hyperplane: x2 = 0.

We now discuss the bimodal context. In very simple cases where modes are distinct without
being too far from each other and of similar shape/scale, RAPTOR is generally the best available
option (even when adjusting for running time). If initial parameters are reasonable, without nec-
essarily being ideal, then RAPT offers performances similar to OPRA0 and OPRA, due to the
flexibility of its other adaptive parameters. Although OPRA0 and OPRA do not lead to signifi-
cant efficiency gains here, they do not cost much to implement either. As soon as we depart from
these generic cases however, we find different conclusions.
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We consider a third example in which two modes are blended into a single, asymmetrical
density mass. For a fixed number of iterations, RAPTOR loses ground to OPRA and OPRA0

(Table 3). It seems that the pre-adaptation period is not long enough for the sampler to appro-
priately detect and explore the second mode, leading to a discarded component and a unimodal
proposal distribution. A longer pre-adaptation period improves all performances but that of RAP-
TOR. Our numerical explorations point towards RAPT, OPRA0, and OPRA being more robust
than RAPTOR to initial parameters and length of pre-adaptation.

Algorithm RAPT RAPTOR OPRA0 OPRA

Criteria mean s.d. mean s.d. mean s.d. mean s.d.

K = 2 d = 50 n = 2 · 105 t0 = 104 N = 103 k = 4

Time (sec) 52.41 3.87e-01 62.51 4.41e-01 53.93 4.12e-01 53.80 3.99e-01

Cov. 50% (%) 40.80 2.39e-01 46.68 1.27e-01 39.45 2.73e-01 39.14 2.75e-01

Cov. 90% (%) 8.96 3.15e-02 9.88 7.07e-03 8.74 3.71e-02 8.69 3.86e-02

Cov. 95% (%) 4.55 1.44e-02 4.96 2.82e-03 4.45 1.70e-02 4.42 1.79e-02

Cov. 99% (%) 0.93 2.65e-03 1.00 5.31e-04 0.91 3.14e-03 0.91 3.45e-03

Ta 0.26 4.30e-04 0.17 1.44e-03 0.27 4.84e-04 0.26 5.28e-04
TABLE 3: Normal bimodal target with unequal variances: µ1 = −µ2 = −(2.5, . . . , 2.5)/d , Σ1 = 4Id, Σ2 = Id,

p1 = 0.6. Parameters: µ1(0) = X
(1)
0 = X

(2)
0 = (−2, 0, . . . , 0), µ2(0) = X

(3)
0 = X

(4)
0 = (2, 0, . . . , 0),

Σ1(0) = Σ2(0) = 0.1Id, ΣS(0) = 100Id/d. Initial hyperplane : x1 = −1.

The last example studies a 20-dim bimodal distribution in which one mode is narrow and
the other widely spread out. Table 4 is one of the few examples where pre-adaptation time has
a drastic impact on the performances. With t0 = 103, OPRA does better than its competitors in
recovering from a pre-adaptation period that is arguably too short. RAPTOR comes second, but
is further penalized by its running time compared to RAPT and OPRA0. With t0 = 104, RAPT,
OPRA0, and OPRA offer similar performances. Thanks to the quality of its initial partition,
RAPT is able to recover when the pre-adaptation is sufficiently long, while efficiency gains for
RAPTOR are less important as for other samplers.

6.3. Comparative tests with three or more regions
Table 5 presents results for the twisted target of Table 2, with K = 3. For all samplers but RAP-
TOR, the computational overhead introduced by the third region is negligible. The additional
region improves the performances of all four samplers, with RAPTOR offering the best results.
When accounting for running time, RAPTOR is however relegated behind OPRA given that the
other samplers run in about 60% of the time.

In this example, the initial partition for RAPT, OPRA0, and OPRA is extremely poor. OPRA
thus produces a slightly larger ρ̄ than RAPTOR as it has to recover from this poor initial setting.
Surprisingly, RAPT and OPRA offer seemingly identical performances. This provides a false
sense of security in using RAPT, but users should be aware that despite an appealing ρ̄-value,
every run consistently under-samples one tail of the distribution due to the poor initial partition. A
similar behaviour happens with OPRA0 (see the average mean square errors in Table 5). For these
algorithms, add-ons such as INCA then become mandatory to improve the quality of samples
(already implemented here).

In Table 6, a normal target with 5 spherical modes, which is an ideal density for RAPTOR, is
implemented withK = 5 regions. In that context, OPRA and OPRA0 offer similar performances,
and turn out to be much better than RAPTOR when adjusting for computational effort. The initial
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Algorithm RAPT RAPTOR OPRA0 OPRA

Criteria mean s.d. mean s.d. mean s.d. mean s.d.

K = 2 d = 20 n = 105 t0 = 103 N = 104 k = 4

Time (sec) 4.20 9.36e-03 5.49 1.18e-02 4.31 9.97e-03 4.43 1.03e-02

Cov. 50% (%) 18.04 1.41e-01 17.64 1.20e-01 18.33 1.42e-01 16.72 1.50e-01

Cov. 90% (%) 6.18 3.70e-02 6.02 3.24e-02 6.26 3.76e-02 5.76 4.01e-02

Cov. 95% (%) 3.20 1.80e-02 3.11 1.59e-02 3.24 1.83e-02 2.99 1.96e-02

Cov. 99% (%) 0.67 3.60e-03 0.65 3.21e-03 0.68 3.64e-03 0.63 3.92e-03

Ta 0.22 3.81e-04 0.23 4.11e-04 0.21 4.01e-04 0.20 3.97e-04

K = 2 d = 20 n = 105 t0 = 104 N = 104 k = 4

Time (sec) 3.38 2.87e-03 4.54 3.42e-03 3.40 2.81e-03 3.47 2.93e-03

Cov. 50% (%) 5.34 1.61e-01 8.24 1.55e-01 5.80 1.61e-01 5.61 1.62e-01

Cov. 90% (%) 2.48 4.64e-02 3.35 4.42e-02 2.57 4.65e-02 2.48 4.69e-02

Cov. 95% (%) 1.38 2.30e-02 1.78 2.20e-02 1.42 2.31e-02 1.37 2.33e-02

Cov. 99% (%) 0.31 4.75e-03 0.38 4.57e-03 0.31 4.77e-03 0.30 4.82e-03

Ta 0.19 3.95e-04 0.22 4.55e-04 0.19 3.95e-04 0.18 4.07e-04
TABLE 4: Bimodal normal target with narrow and wide modes: µ1 = −(2.5, . . . , 2.5)/d, µ2 = (2.5, . . . , 2.5)/d,

Σ1 = Id/10, Σ2 = Id, p = 0.6. Parameters: µ1(0) = X
(1)
0 = X

(2)
0 = (−2, 0, . . . , 0),

µ2(0) = X
(3)
0 = X

(4)
0 = (2, 0, . . . , 0), Σ1(0) = Σ2(0) = 0.1Id, ΣS(0) = 100Id/d. Initial hyperplane : x1 = 0.

partition is relatively good, so RAPT does not come very far behind the OPRAs.
In general, RAPT’s and OPRA0’s running times are nearly identical, and are slightly faster

than OPRA (this difference slowly increases withK). The gap between RAPTOR’s running time
and its competitors’ is however much larger and significantly widens with K, as expected. For
K = 5, RAPTOR takes roughly twice as long as its competitors to perform a fixed number of
iterations.

It is interesting to note that OPRA0 sometimes does better than OPRA, a phenomenon that
gradually becomes more frequent asK grows. Indeed having more regions improves the flexibil-
ity of the proposal, so obtaining highly precise frontiers might not be as crucial for some targets.
As witnessed in our experiments this extra flexibility, when superfluous, might lead to slight
performance losses since there is no compensation for this instability in the initial stage of the
sampler. Overall, results from examples with K > 2 are consistent with our previous findings,
and in agreement with the complexity analysis of Section 4.3.

7. REAL DATA EXAMPLE : GENETIC INSTABILITY OF ESOPHAGEAL CANCERS

Loss of heterozygosity (LOH) is one of the genetic changes suffered by cancer cells during dis-
ease progression. Of interest in cancer studies are chromosome regions with high rates of LOH,
which are hypothesized to contain genes regulating cell behavior. The goal of the Seattle Bar-
rett’s Esophagus research project is to locate “Tumor Suppressor Genes” (TSGs). The associated
dataset (Barrett et al. [1996]) contains LOH rates from esophageal cancers for 40 regions (under
the form of a frequency and sample size for each region). In order to determine the probability of
LOH in the background and TSG groups, Desai [2000] proposes to model the frequencies using
the following hierarchical mixture:

Xi ∼ η Binomial(Ni, π1) + (1− η) Beta-Binomial(Ni, π2, γ) ,
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Algorithm RAPT RAPTOR OPRA0 OPRA

Criteria mean s.d. mean s.d. mean s.d. mean s.d.

K = 3 d = 50 n = 2 · 105 t0 = 104 N = 103 k = 4

Time (sec) 42.61 9.12e-03 73.30 6.48e-02 42.84 1.23e-02 44.70 1.13e-02

Mean MSE 2.94 2.01e-02 1.60 3.31e-02 4.79 1.03e-02 1.97 3.15e-02

Cov. 95% (%) 1.60 1.23e-02 1.26 1.41e-02 1.42 1.30e-02 1.61 1.26e-02

Ta 0.24 2.44e-04 0.23 2.59e-03 0.24 1.60e-04 0.23 2.53e-04
TABLE 5: Unimodal, stretched normal target with slight twisting and poor initial partitions, 3 regions:

µ1 = (0, . . . , 0), Σ1 = diag(100, 1, . . . , 1), ψ = 0.03. Parameters:
X

(1)
0 = . . . = X

(4)
0 = µ3(0) = (0, . . . , 0), µ1(0) = −µ2(0) = (−0.1, 0, . . . , 0),

Σ1(0) = Σ2(0) = Σ3(0) = 0.1Id, ΣS(0) = 100Id/d. Initial hyperplanes: x2 = 1, x2 = 0, x2 = −2.

Algorithm RAPT RAPTOR OPRA0 OPRA

Criteria mean s.d. mean s.d. mean s.d. mean s.d.

K = 5 d = 50 n = 2 · 105 t0 = 104 N = 103 k = 4

Time (sec) 57.01 1.46e-02 116.42 1.54e-01 57.36 1.43e-02 63.71 5.60e-02

Mean MSE 7.53 4.24e-03 7.59 4.69e-03 7.56 4.90e-03 7.57 4.76e-03

Cov. 95% (%) 3.31 1.33e-02 2.69 1.90e-02 3.22 1.41e-02 3.21 1.51e-02

Ta 0.26 1.79e-04 0.28 5.30e-04 0.26 1.61e-04 0.29 4.58e-04
TABLE 6: Normal target with 5 spherical modes: µ1 = (0, . . . , 0), µ2 = −µ3 = (2.5, . . . , 2.5)/d,

µ4 = −µ5 = (−2.5, 2.5, . . . , 2.5)/d, Σ1 = Id, Σ2 = · · · = Σ5 = Id/2, p1 = · · · = p5 = 1/5. Parameters:
µ1(0) = X

(1)
0 = −µ2(0) = −X(2)

0 = (2, 0, . . . , 0), µ3(0) = X
(3)
0 = X

(4)
0 = (0, . . . , 0),

µ4(0) = −µ5(0) = (0, 2, 0 . . . , 0), Σ1(0) = · · · = Σ5(0) = 0.1Id, ΣS(0) = 100Id/d. Initial hyperplanes:
x1 = 0, . . . , x10 = 0.

with priors for η, π1, π2 each distributed as a Unif[0, 1] and γ ∼ Unif[−30, 30]. The labeling
of the background and TSG groups being unknown, η represents the probability that a region
belongs to the binomial group. The parameters π1, π2 are the probabilities of LOH in the binomial
and beta-binomial groups respectively, while γ controls the variability of the latter.

To simplify the use of MCMC samplers, the beta-binomial is parameterized so that γ ∈ R.
Furthermore, a logistic transformation is applied to η, π1, π2 so that they each be supported on
R; we refer the reader to Craiu et al. [2009] for more details. In practice, restricting the resulting
posterior distribution to a sufficiently large, 4-dim compact set then ensures the ergodicity of the
regional adaptive MCMC samplers, without significantly affecting the analysis.

In implementing RAPT, Craiu et al. [2009] had to rely on the optimization used in Warnes
[2001] to determine a reasonable partition S1 ∪ S2 of the four-dimensional space S. Accord-
ing to that procedure, the two modes of π are reasonably well separated when we choose
S1 = {(η, π1, π2, γ) ∈ [0, 1]× [0, 1]× [0, 1]× [−30, 30]|π2 ≥ π1} and S2 = {(η, π1, π2, γ) ∈
[0, 1]× [0, 1]× [0, 1]× [−30, 30]|π2 ≤ π1}. The implementation of OPRA does not require this
extra step, as even poor initial partitions lead to an efficient exploration of S. Instead of relying
on the partition proposed by Warnes [2001], we initialize OPRA with the uninformed partition
generated by aT0 X = b0 with aT0 = (1, 1, 1, 1) and b0 = 0.

To provide a fair comparison with the RAPT of Craiu et al. [2009] and the RAPTOR of
Bai et al. [2011], we use the same initialization parameters as them. We set β = 0.3 and co-
variance matrices are initialized to Σ1(0) = Σ2(0) = 0.1I4, ΣS(0) = 20I4. Starting points are
randomly selected over the prior range (in the original parameterization). Using OPRA we run
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FIGURE 4: Scatterplot of the samples for (π1, π2).

five independent parallel chains and perform 800,000 iterations for each chain; Figure 4 shows
a two-dimensional scatterplot of (π1, π2) based on all the samples obtained. The graph is very
similar to that in Craiu et al. [2009] based on RAPT with Warne’s partition, and also to that
in Bai et al. [2011] obtained with RAPTOR. In particular, the two distinct modes are clearly
identifiable.

Table 7 provides a summary of estimates from RAPT (with Warnes’ partition) and OPRA,
detailed by regions (on the original scales). For results to be comparable to those of Craiu et al.
[2009], we use the first 55,000 iterations of each of our five parallel chains, from which we
drop the first 5,000 iterations as burn-in. Even though OPRA is at a net disadvantage with its
uninformed initial partition, estimates for the whole space are quite close to those of RAPT. This
not only testifies of the quality partitioning process proposed by OPRA, but also of the speed
at which it stabilizes. While estimates for Region 1 agree under both approaches, estimates for
Region 2 are not as similar. We should note that in the current 4-dim space, there are very likely
more than one decent partition of S , and OPRA seems to rely on a partition different from that
of Warnes [2001].

Algorithm RAPT OPRA

Mean in Region 1 Region 2 Whole space Region 1 Region 2 Whole space

η 0.897 0.079 0.838 0.898 0.934 0.901

π1 0.229 0.863 0.275 0.229 0.233 0.230

π2 0.714 0.237 0.679 0.720 0.865 0.729

γ 15.661 -14.796 13.435 14.222 -15.149 12.401
TABLE 7: Simulation results for the LOH data (250,000 iterations).

Table 8 contains estimates for the parameters of interest (both regions confounded) from
OPRA, RAPTOR, and RAPT. To compare our results with those of Bai et al. [2011] for
RAPTOR, we use four of our five available 800,000-iteration parallel chains, from which
we drop the first 40,000 iterations as burn-in. While the above uninformed initial par-
tition is used in OPRA, starting mixture estimates for RAPTOR are slightly informed,
with µ̂1(0) = (2.2,−1.4, 1.4, 12.2), µ̂2(0) = (−2.2, 2.2,−1.15,−13.25), and (0.8, 0.2) for the
modes weights. RAPT figures are based on the 55,000-iteration runs of Craiu et al. [2009] and
are included as a baseline only. Once again, parameter estimates in Table 8 are comparable under
all three approaches; OPRA’s γ is slightly below the others, but still largely within one standard
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deviation according to Bai et al. [2011], who highlight the high variability of this parameter.
OPRA runs in 85% of RAPTOR’s time and its performance is, overall, convincing and reliable
in this real data context.

η π1 π2 γ Time (sec)

RAPT 0.838 0.275 0.679 13.435 95.382

OPRA 0.824 0.285 0.671 10.085 94.686

RAPTOR 0.828 0.248 0.614 12.732 112.378
TABLE 8: Simulation results for the LOH data; global parameters means (3,200,000 iterations).

8. DISCUSSION

The adaptive partitioning process proposed in this paper is used in conjunction with RAPT in the
context of two separate regions. The approach may be generalized to more regions by obtaining
a hyperplane for each pair of sample averages, and then considering appropriate intersections
arising from the hyperplanes. The resulting sampler is ergodic in the sense that it satisfies the Si-
multaneous Uniform Ergodicity and Diminishing Adaptation conditions for adaptive algorithms.

The simplicity of this new adaptive partitioning of the sample space is what makes it ap-
pealing. In the examples considered, the partitioning process has been seen to stabilize rapidly,
regardless of the quality of the initial partition. For a fixed number of iterations, it is understood
that OPRA produces better results than RAPT alone, and that it often compares favorably to
RAPTOR. OPRA’s ease of implementation, along with an adaptive partitioning step that is vir-
tually free in terms of running time, consolidates its avantage over the other regional adaptive
samplers when accounting for computational effort. According to our extensive numerical ex-
plorations, it would seem that OPRA does not suffer the same struggles as RAPTOR in dealing,
for instance, with low-dimensional target densities or short pre-adaptation times. According to
the results presented in this paper, users that intend to implement RAPT might want to hedge
their initial partition choice by relying on the adaptive partitioning process. This will provide
some peace of mind at a marginal computational cost.
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