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Abstract

The performance of RWM- and MALA-within-Gibbs algorithms for sampling from hierarchical models is studied.
For the RWM-within-Gibbs, asymptotically optimal tunings for Gaussian proposal distributions featuring a
diagonal covariance matrix are developed using existing scaling analyses. This leads to locally optimal proposal
variances that depend on the mixing components of the hierarchical model and that correspond to the classical
asymptotically optimal acceptance rate of 0.234. Ignoring the local character of the optimal scaling is possible,
leading to an optimal proposal variance that remains fixed for the duration of the algorithm; the corresponding
asymptotically optimal acceptance rate is then shown to be lower than 0.234. Similar ideas are applied to MALA-
within-Gibbs samplers, leading to efficient yet computationally affordable algorithms. Simplifications for location
and scale hierarchies are presented, and findings are illustrated through numerical studies. The local and fixed
approaches for the RWM- and MALA-within-Gibbs are compared to competitive samplers in the literature.
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1. Introduction

The Random walk Metropolis algorithm (RWM) and the Metropolis-adjusted Langevin algo-
rithm (MALA) are commonly used to produce samples from arbitrary distributions π that may
be complex, high-dimensional, or both ([8]). The idea is to build a Markov chain {X[j], j ∈ N}
on a state space X by proposing candidates to be included in the process according to some ac-5

ceptance probability. The resulting Markov chain admits the n-dimensional target distribution
π as its unique invariant distribution. Hereafter, π shall also be used for denoting the target
density on a state space X with respect to Lebesgue measure.

Suppose that the time-j state of the Markov chain is X[j] = x. In a (symmetrical) RWM
algorithm for instance, the proposal distribution selected to generate a candidate Y[j + 1] =10

y for the next state of the chain is assumed to have a density qn(y;x) = qn(|y − x|) with
respect to Lebesgue measure. A pragmatic choice, on which we focus in this article, is to draw
candidates from a N (x, σ2In) for some σ > 0, where In is the n-dimensional identity matrix
(the specific normal proposal distribution used with MALA shall be described in Section 5).
In implementing RWM and MALA samplers, one can update all n components simultaneously15

(classical RWM/MALA), or divide them into subgroups to be updated consecutively (RWM- or
MALA-within-Gibbs). The latter are commonly preferred for sampling hierarchical models, as
full conditional densities are usually available.

The variance of the normal proposal distribution (σ2) has a significant impact on the speed
at which the process travels across its state space (hereafter referred to as “efficiency”), with20

extremal variances leading to slow-mixing samplers. Simply put, large variances induce lazy
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processes (large candidate jumps that are refused), while small variances yield hyperactive pro-
cesses (tiny candidate steps that are accepted). To optimize exploration of the state space, we
aim for candidate steps that strike a balance, so that we have sizable steps that are still accepted
a reasonable proportion of the time. Seeking for this intermediate proposal variance is called25

the optimal scaling problem.
There exist, in Markov chain Monte Carlo theory, different notions of efficiency. In this paper,

the term efficiency is used as a measure of how rapidly the Markov chain explores its state space
once stationarity has been reached. For finite-dimensional chains, this can be measured by the
expected squared jumping distance (ESJD) to be introduced in (13). In an infinite-dimensional30

setting, the theoretical (or asymptotical) efficiency is measured through the speed function of
the limiting Langevin diffusion, to be discussed in Sections 3 and 4. In the high-dimensional
limit (n→∞), the ESJD is equivalent to the limiting speed measure.

This paper studies the optimal scaling theory for RWM-within-Gibbs with some heuristics
for MALA-within-Gibbs, and then looks at the performance of both in practice. In particu-35

lar, the theory exposed leads to the determination of proposal variances and acceptance rates
producing optimally mixing RWM-within-Gibbs chains. The theoretical results are derived for
high-dimensional hierarchical target densities with a large number of conditionally independent
and identically distributed (i.i.d.) components. The principal difference with traditional optimal
scaling results lies in the local character of the optimal proposal variances obtained, meaning40

that they vary from one iteration to the next. The concept of local proposal variances has been
discussed in [6] and [2]; in the latter, scaling analyses of the RWM algorithm for hierarchical
target densities are performed. Although theoretically appealing, local proposal variances had
to be obtained numerically in that context, which turned out to be rather impractical. With the
RWM-within-Gibbs sampler (and even the MALA-within-Gibbs), these variances may now be45

found analytically in a large number of cases, leading to a personalized version of the proposal
variance in a given iteration. The theoretical results derived thus stand on the work in [2], and
as such are expressed as a corollary of its main theorem.

The derivation of local proposal variances requires that certain expectations be obtained
analytically from the hierarchical model considered. The new approach is thus predicated on50

the tractability of the distribution of the conditionally i.i.d. components, given the mixing pa-
rameters and (in practice) the observations. It is thus well suited to some hierarchical models;
alternatively, we propose a fixed optimal proposal variance, which is shown to be less efficient
than the local ones. In an attempt to quantify the benefit, in terms of efficiency, of using local
proposal variances rather than a fixed one in the RWM- and MALA-within-Gibbs, we present55

numerical illustrations. To add some perspective, we compare these samplers to single-block
RWM and MALA algorithms, along with some of their variants that include correlation among
candidates. We also include the Adaptive Metropolis (AM) sampler of [7], which tunes the
proposal covariance matrix on the fly.

We shall realize that in tractable cases (and when there is not a strong correlation between60

mixing parameters and the remaining components), local versions of RWM- and MALA-within-
Gibbs can outperform fancy variants included in the MCMC toolbox. Local MALA-within-Gibbs
is the approach that provides the most convincing results, leading to net efficiency gains in a wide
range of situations, compared to a large set of competitors. These gains are however largely
influenced by the degree of variability present in the hierarchical model (a large variability65

sustaining the pursuit of local proposal variances). Even in cases where local samplers do
not allow for large gains in terms of theoretical efficiency, the risk associated with these local
variances is limited to the extra computational effort required for their implementation, which
is usually insignificant compared to a fixed variance.

The next section sets up the framework, while Section 3 reviews optimal scaling notions for70
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high-dimensional i.i.d. and hierarchical targets. Understanding these notions turns out to be
useful in Section 4, where we derive optimal tunings for the RWM-within-Gibbs for sampling
from hierarchical models; extensions to MALA-within-Gibbs are then discussed in Section 5.
Section 6 focuses on single-level hierarchical models where the mixing parameter acts on the
location or scale of the conditionally i.i.d. components; a simulation study illustrates the the-75

oretical results. An extension to inhomogeneous proposal variances is introduced in Section
7, and we conclude by presenting a numerical study on a hierarchical target model that falls
slightly outside the assumptions of the theory (Section 8).

2. Framework

Consider the following (n+p)-dimensional target density π with respect to Lebesgue measure80

π(x(n+p)) = f1(x1, . . . , xp)

p+n∏
i=p+1

f(xi|x1, . . . , xp) ; (1)

this is a multi-level hierarchical model with p mixing components X1:p = (X1, . . . , Xp) and n
conditionally i.i.d. components X(p+1):(p+n) given X1:p. We impose some regularity conditions
ensuring that the density f is smooth on R. Let X1 = {x1:p : f1(x1:p) > 0}; for fixed x1:p ∈ X1,
f(x|x1:p) is a positive C2 density on R (C2 denotes the space of real-valued functions with
continuous second derivatives). Furthermore, for all fixed x1:p ∈ X1, ∂

∂x log f(x|x1:p) is Lipschitz
continuous with constant k(x1:p) such that E[k4(X1:p)] <∞, and

EX
[(

∂
∂X log f(X|x1:p)

)4]
<∞ ∀x1:p ∈ X1 with E

[(
∂
∂X log f(X|X1:p)

)4]
<∞ .

Hereafter, the notation EX [·] means that the expectation is computed with respect to X|x1:p

with density f(x|x1:p), while E[·] is used to denote an expectation with respect to all the random
variables in the expression (so X|x1:p as before, but also X1:p with density f1).

To sample from such target densities, consider the following RWM-within-Gibbs algorithm
with Gaussian proposal distributions. If the (p + n) target components in (1) are divided into85

two blocks of dimensions p and n respectively, i.e. (X1,X2) = (X1:p,X(p+1):(p+n)), then one
iteration is implemented as follows.

Algorithm 1 (RWM-within-Gibbs algorithm). .
1) Given the time-j state X[j] = (X1[j],X2[j]) = (x1,x2) of the Markov chain, generate a
p-dimensional candidate Y1[j + 1] for the first block according to

Y1[j + 1] = x1 + σ1 Z1[j + 1] ,

where σ1 > 0 and Z1[j + 1] ∼ N (0, Ip).
2) Accept the candidate Y1[j + 1] = y1 with probability

α(x1;y1|x2) = 1 ∧ π(y1|x2)

π(x1|x2)
,

where π(x1|x2) ∝ π(x(n+p)) is the conditional density of x1 given that X2[j] = x2. That is,
X1[j + 1] = y1 with probability α(x1;y1|x2), and X1[j + 1] = x1 otherwise.90

3) Given the updated state of the first block, X1[j + 1] = x∗1, generate an n-dimensional
candidate Y2[j + 1] for the second block according to

Y2[j + 1] = x2 +
`√
n

Z2[j + 1] ,
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where ` = `(x∗1) > 0 and Z2[j + 1] ∼ N (0, In).
4) Accept the candidate Y2[j + 1] = y2 with probability

α(x2;y2|x∗1) = 1 ∧ π(y2|x∗1)

π(x2|x∗1)
,

where π(x2|x∗1) ∝ π((x∗1,x2)) is the conditional density of x2 given that X1[j + 1] = x∗1. If the
candidate is accepted, set X2[j + 1] = y2; otherwise, X2[j + 1] = x2.

This sampler may easily be generalized to a larger number of blocks; the particular case in
which there is only one block of components leads to the single-block RWM algorithm. Scaling95

analyses of the latter have already been performed for target densities such as (1) (see [2]).
In the next section, we describe some optimal scaling results that have been introduced in the
statistical literature, and that turn out to be useful in the tuning of the RWM-within-Gibbs
sampler.

3. Available literature about optimal scaling100

The optimal scaling issue of the RWM algorithm with a Gaussian proposal has been addressed
by many researchers over the last few decades. The seminal work of [15] presents a solution for
tuning these algorithms when the target density is formed of n i.i.d. components, where n is
large.

Generalizing the theoretical result of [15] is an intricate task; further research on this subject105

has addressed the tuning of various algorithms, but has mainly been restricted to the case of
high-dimensional target distributions formed of independent components (see [13], [12], [11], [1],
[5], [3], and the references therein). A few of these papers have extended their tuning results for
multivariate normal targets with correlation. Lately, scaling analyses of the RWM sampler for
non-product target densities have also been performed in [4], [16], [10], and [2].110

3.1. Optimal tuning of isotropic RWM: product target densities

Consider a RWM algorithm with an isotropic proposal distribution N (X(n)[j], σ2(n)In),
applied to a product target density π(x(n)) =

∏n
i=1 f(xi) with respect to Lebesgue measure.

The one-dimensional density f satisfies the assumptions specified in Section 2 (without mixing
components). It is well understood by now that the regularity conditions stated in [15] are115

stronger than necessary; those in Section 2 are slightly different, but sufficient for the following
theorem to hold according to [2].

Asymptotically optimal scaling results are obtained by studying the limiting path (as n→∞)

of a given component (X
(n)
1 say). The one-dimensional process is studied conditionally on

FX(n)

[j], the filtration of the n-dimensional process up to time j (the current state). In order to120

obtain a non-trivial limiting process as n→∞, space and time rescaling factors must be applied
to the RWM algorithm. The proposal variance is set to be a decreasing function of the dimension
by letting σ2(n) = `2/n. A continuous-time sped-up version of the initial Markov chain is then
introduced as {W(n)(t); t ≥ 0} = {X(n)[bntc]; t ≥ 0}, where b·c is the floor function. Note that
[·] and (·) are respectively used to index time in discrete- and continuous-time versions of the125

Markov chain.
Hereafter, let ⇒ denote weak convergence in the Skorokhod topology and B(t) a Brownian

motion at time t; the cumulative distribution function of a standard normal random variable
is denoted by Φ(·). The theoretical result proven in [15] for tuning RWM algorithms with an
isotropic proposal applied to product target densities is stated below.130
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Theorem 2. Suppose that W(n)(0) is distributed according to π(x(n)). For i = 1, 2, . . ., we

have {W (n)
i (t); t ≥ 0} ⇒ {Wi(t); t ≥ 0}, where Wi(0) is distributed according to the density f ,

and {Wi(t); t > 0} satisfies the stochastic differential equation (SDE)

dWi(t) = υ1/2(`) dB(t) +
1

2
υ(`) d

dWi(t)
log f (Wi(t)) dt,

with

υ(`) = 2`2Φ

(
− `

2

√
E
[(

d
dX log f(X)

)2])
. (2)

Furthermore, the univariate processes {W (n)
i (t); t ≥ 0}, i = 1, 2, . . . , n, are asymptotically mu-135

tually independent as n→∞.

The components of the isotropic RWM algorithm thus asymptotically behave according
to mutually independent Langevin diffusion processes, which depend on ` through the speed
function υ(`). The Langevin diffusion process that travels the most rapidly across its state
space is the process for which υ(`) is maximized with respect to `, giving rise to the asymp-140

totically optimal scaling value ˆ̀ for the algorithm. The optimal proposal variance satisfies
σ̂2 (n) = ˆ̀2/n ≈ 5.66/{nE

[
{log f(X))′}2

]
} and corresponds to an optimal expected acceptance

rate of 23.4%, where the acceptance rate is defined as the proportion of candidates that are
accepted by the algorithm.

3.2. Optimal tuning of RWM: hierarchical target densities145

In [2], asymptotically optimal scaling results similar to those of [15] are derived, but for
target densities as in (1) with p = 1. To prove the theoretical results, some further regularity
assumptions are imposed on f(x|x1), for fixed x ∈ R. The only assumption on f1 is that it be a
continuous density, with X1 forming an open interval on R; we refer the reader to [2] for more
details.150

Consider a RWM algorithm with proposal distribution N (x, `2In+1/(n + 1)); that is, no
prior knowledge about the target correlation structure is assumed. Although not a concern in
the i.i.d. setting, we now emphasize the fact that the proposal variance σ2(n) = `2/(n + 1)
may be a function of the current state x through ` = `(x1). Such a variation results in a valid
non-homogeneous RWM sampler, provided that the ratio of proposal densities be included in155

the acceptance probability : α(x;y) = 1 ∧ π(y)qn+1(x;y)/{π(x)qn+1(y;x)}, where qn+1(y;x)
is the density of a N (x, `2(x)In+1/(n+ 1)).

By studying an appropriately rescaled version of the initial Markov process, [2] obtains a
weak convergence result pointing towards the use of proposal variances that are a function of
x1, the current state of the mixing component. Specifically, a local proposal variance which is160

set to σ̂2(x1, n) = ˆ̀2(x1)/(n+ 1) maximizes the speed function

υ(`, x1) = 2`2E
[
Φ

(
− `

2
γ1/2(x1, Z1)

)]
, (3)

with respect to `. Here, Z1 ∼ N (0, 1) and

γ(x1, z1) = z21 EX
[(

∂
∂x1

log f(X|x1)
)2]

+ EX
[(

∂
∂X log f(X|x1)

)2]
. (4)

The speed function (3) is intuitive: the second term in (4) is a measure of roughness of
f(x|x1) under a variation of x, and is similar to the quantity E[{(log f(X))′}2] in the i.i.d.
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case. With hierarchical targets, we find an extra term that might be viewed as a measure of165

roughness of f(x|x1) under a variation of x1. This term is weighted by z21 , the squared candidate
standardized increment for the first component. The speed function in (3) then averages over
the possible standardized increments z1.

Although the concept of local tunings is theoretically appealing, the weak convergence results
in [2] were carried with fixed `; it is thus unclear whether local proposal variances optimizing170

(3) really are conditionally optimal given x1. The proof of such a result would require including
the ratio of proposal densities in the acceptance probability of the sampler, which is not a
trivial extension. These values are also difficult to obtain in practice: ˆ̀(x1) must be obtained
numerically and updated every time X1 jumps to a new state. Since the process is assumed to
start in stationarity (as in Theorem 2), we overcome this difficulty by defining an asymptotically175

optimal scaling value ˆ̀ that is fixed for the duration of the algorithm. This value maximizes the
expectation of the speed function with respect to the marginal distribution of X1,

E [υ (`,X1)] = 2`2
∫
X1

∫
R

Φ

(
− `

2
γ1/2(x1, z1)

)
φ(z1)f1(x1) dz1 dx1,

where φ(·) is the probability density function of a standard normal random variable. In the cur-
rent context the fixed optimal scaling value, which results from a single (numerical) maximization
performed before running the algorithm, is thus preferred to local tunings. In subsequent exam-180

ples, we shall automatically consider fixed optimal scaling values when dealing with single-block
RWM algorithms.

4. Tuning the RWM-within-Gibbs

Using the asymptotic results described in Section 3, we now optimize the efficiency of RWM-
within-Gibbs samplers (Algorithm 1) applied to hierarchical target models. For simplicity, we185

update each of the p mixing components in turn using a N (Xi[j], σ
2
i ) for i = 1, . . . , p since it

is then unnecessary to estimate the correlation structure. Parameters in a hierarchical model
may however be highly correlated, in which case it might be better to update them as a single
block, using an estimate of the covariance matrix; appropriate transformations may also be
applied to parameters that are initially restricted to subsets of R. We then take advantage of190

conditional independence among the components X(p+1):(p+n) (given X1:p) by grouping them
into a block. Given the updated states of the mixing components at time j + 1, X1:p[j + 1] =
x∗1:p, a candidate Y(p+1):(p+n)[j + 1] is generated using a N (X(p+1):(p+n)[j], σ

2(x∗1:p, n)In), with
σ2(x∗1:p, n) = `2(x∗1:p)/n. Under this setting, the last n components are updated simultaneously,
but independently from each other, using a proposal variance that may vary from one iteration195

to another.
For a one-dimensional normal target, it is widely known that an optimally efficient version of

the RWM algorithm should be tuned to accept approximately 45% of the proposed candidates
(see [12], [16]). We shall then apply this result to tune the first p proposal variances, σ2

1 , . . . , σ
2
p.

In the subsequent examples, tunings of the different blocks are performed simultaneoulsy and200

independently, as the scaling of a particular block does not affect the tuning of the other blocks.
When this is not the case, it might again be more efficient to update all p mixing components in
a single block. To obtain asymptotically optimal scaling results for updating the last block of the
RWM-within-Gibbs sampler, we assume that p is fixed; the number of components in the last
block thus grows as n → ∞. Based on previous optimal scaling theory, relying on the process205

{W(p+n)(t); t ≥ 0} = {X(p+n)[bntc]; t ≥ 0} (which is the continuous-time, sped-up version of
the initial Markov chain described in Section 3.1) along with a proposal variance that decreases
linearly in n, shall lead to a non-trivial limiting process as n grows.
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Even though the conditional density of X(p+1):(p+n) given X1:p is expressed as a product,∏p+n
i=p+1 f(xi|x1:p), one cannot directly rely on the results in [15]. Indeed, we are dealing with210

a density whose shape varies with the same rhythm as X1:p is updated. To tune this sampler,
we have a choice between using local or constant proposal variances. The latter is the usual
variance that is fixed for the duration of the algorithm, expressed as `2/n, while the former
consists in a variance that depends on X1:p[j+ 1] = x∗1:p, i.e. that is updated at every iteration.
In the current context, relying on local proposal variances does not require an adjustment of the215

acceptance probability since the p mixing parameters are updated separately.

4.1. Local proposal variances

In a given iteration, the components X1:p are updated prior to the block X(p+1):(p+n). Given

W(p+n)(t), the time-t value of the rescaled process, denote the next instant by t+dt and let the

updated value of X1:p at t+dt be expressed as W
(p+n)
1:p (t+dt) = x∗1:p. Because of this specificity of220

the RWM-within-Gibbs sampler, it is possible to study the limiting behaviour of the components

in the last block by conditioning on the filtration (FW
(p+n)
1:p (t + dt),FW

(p+n)

(p+1):(p+n)(t)). We then
suppose that the proposal variance of the last block satisfies σ2(n,x∗1:p) = `2(x∗1:p)/n < ∞ for
all x∗1:p ∈ X1, with E[`12(X∗1:p)] <∞. Taking advantage of the conditional independence among
the components X(p+1):(p+n) given X1:p and applying arguments similar to those in [2] lead to225

the following result.

Corollary 3. Suppose that W(n+p)(0) is distributed according to π in (1) and let ` ≡ `(x∗1:p) >
0. For i = p + 1, . . . , p + n, we have {W (p+n)

i (t); t ≥ 0} ⇒ {Wi(t); t ≥ 0}, where W1:p(0)
and Wi(0) are distributed according to the densities f1 and f respectively. Conditionally on the
filtration (FW1:p(t + dt),FWi(t)), the evolution of the process {Wi(t); t > 0} may be expressed230

as

dWi(t) = υ1/2(`,W1:p(t+ dt)) dB(t)

+
1

2
υ(`,W1:p(t+ dt)) ∂

∂Wi(t)
log f (Wi(t)|W1:p(t+ dt)) dt, (5)

with

υ(`,x∗1:p) = 2`2Φ

(
− `

2

√
I(x∗1:p)

)
, (6)

and I(x∗1:p) = EX
[(

∂
∂X log f(X|x∗1:p)

)2]
.

This means that conditionally on W1:p(t + dt) = x∗1:p, the evolution of {Wi(t); t > 0} over
an infinitesimal interval dt satisfies

{Wi(t+ dt)−Wi(t)}|Wi(t),x
∗
1:p ∼ N

(
1
2 υ(`,x∗1:p)

∂
∂Wi(t)

log f
(
Wi(t)|x∗1:p

)
dt, υ(`,x∗1:p) dt

)
.

Proof. The result can be seen as a special case of Theorem 2 in [2], which describes a weak
convergence result for the single-block RWM applied to hierarchical target models (Section 3.2).235

Indeed, since X1:p and X(p+1):(p+n) are updated successively, the last block of the RWM-within-
Gibbs deals with a product target density that depends on the mixing components X1:p (instead
of a hierarchical target, which considerably simplifies the proof). Since these mixing components
have already been updated, the process is unaffected by the roughness of the density f(xi|x1:p)
under a variation of x1:p. The first term in (4) is thus null, which implies that speed functions240

in (6) and (3) are equivalent.
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We should however point out that the proof of Theorem 2 in [2] applies when ` is fixed,
as local proposal variances are not practically appealing in the RWM framework. For the
current RWM-within-Gibbs sampler, a weak convergence result with local proposal variances
σ2(x1, n) = `2(x1)/n nonetheless follows from the arguments in the proof of Theorem 2 of [2].245

As mentioned previously, since X1:p are updated separately, we may rely on local proposal
variances without having to include the ratio of proposal densities in the acceptance probability.
The arguments in the proof, which is based on the L1-convergence of generators, thus remain
the same as before. The only adjustment when replacing ` by `(x∗1:p) lies in the control of the
error terms, which is straight-forwardly achieved by making use of the regularity assumptions250

in Section 2 along with the Cauchy-Schwarz inequality. To this end, slightly stronger regularity
conditions are imposed compared to [2]; in particular, we require E[k4(X1:p)] < ∞ (instead of
E[k2(X1:p)] < ∞, where k(x1:p) is the Lispchitz constant defined in Section 2) and also that
proposal variances be finite for all x∗1:p ∈ X1, with E[`12(X1:p)] <∞. �

The process {Wi(t); t ≥ 0} is Markovian with respect to the filtration (FW1:p(t+dt), FWi(t)).255

The equation in (5) provides a picture of the asymptotic behaviour of that process at time t, once
the first p components have been updated. By optimizing the speed measure of the limiting
diffusion with respect to `, we find the best possible proposal variance to use at time t for
generating a candidate at time t+dt, given that W1:p(t+dt) = x∗1:p. Optimizing υ(`,x∗1:p) with
respect to ` leads to260

ˆ̀(x∗1:p) =
2.38{

I(x∗1:p)
}1/2 ; (7)

the function σ̂2(x∗1:p, n) = ˆ̀2(x∗1:p)/n thus represents a locally optimal proposal variance.
We now introduce the expected acceptance rate of the n-dimensional stationary RWM step.

To be concise, let x(p+1):(p+n) = x and y(p+1):(p+n) = y; then,

an(`(x∗1:p)) =

∫∫∫
α(x;y|x∗1:p)

(
`(x∗1:p)√

n

)−n
φn

(
y − x

`(x∗1:p)/
√
n

)
p+n∏
i=p+1

f(xi|x∗1:p)f1(x∗1:p) dy dx dx∗1:p ,

where φn(·) stands for the probability density function of an n-dimensional standard normal
random variable. By reproducing the optimal scaling proofs in [2], it is easy to show that265

lim
n→∞

an(`(x∗1:p)) = a(`(x∗1:p)) ≡ 2

∫
Φ

(
−
`(x∗1:p)

2

√
I(x∗1:p)

)
f1(x∗1:p) dx

∗
1:p . (8)

To find the asymptotically optimal acceptance rate corresponding to the locally optimal
proposal variances, it suffices to evaluate (8) at ˆ̀(x∗1:p), which yields

a(ˆ̀(x∗1:p)) = 2Φ

(
−2.38

2

)∫
f1(x∗1:p) dx

∗
1:p ≈ 0.234 .

It is interesting to note that the asymptotically optimal acceptance rate of the RWM block
update is still equal to 0.234. This optimally mixing subchain cannot, however, be obtained
by monitoring the acceptance rate. Indeed, building an optimal Markov chain based on local270

proposal variances implies modifying the proposal variance at every iteration.
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In contrast to the local proposal variances derived for single-block RWM algorithms in Sec-
tion 3.2, an explicit expression for I(x∗1:p) is often available in practice for RWM-within-Gibbs
samplers. As shall be witnessed below, the local tuning approach is particularly useful when
dealing with various models involving scale parameters. For hierarchical models related through275

parameters other than location or scale, the benefit of relying on this type of tuning requires a
case by case analysis.

4.2. Fixed proposal variance

It is also possible to obtain an optimal, fixed proposal variance; the latter is however not
the best proposal variance given x∗1:p, the latest update of the first p components. By assuming280

that the Markov chain starts in stationarity (as was done in the previous sections), the optimal

fixed proposal variance, σ̂2(n) = ˆ̀2/n, optimizes

E [υ(`,X1:p)] = 2`2
∫

Φ

(
− `

2

√
I(x1:p)

)
f1(x1:p) dx1:p (9)

with respect to `. A corresponding asymptotically optimal acceptance rate a(ˆ̀) may then be
computed (both values are generally obtained numerically). Apart from specific frameworks,
a fixed approach will generally not match the results arising from a local approach. We thus285

expect an acceptance rate no greater than 0.234, which is the acceptance rate obtained with
the best possible combination of (local) proposal variances. In fact, an optimal fixed proposal

variance only gives rise to an acceptance rate of 0.234 when ˆ̀2(x∗1:p) is independent of x∗1:p, in
which case the locally optimal proposal variance is constant.

Proposition 4. Consider a RWM-within-Gibbs sampler and a target density as in Section 2.290

The asymptotic acceptance rate a(ˆ̀) obtained by applying the optimal fixed proposal variance
σ̂2(n) is no greater than 0.234, the asymptotically optimal acceptance rate arising from the
locally optimal proposal variances in (7).

Proof. The proof is similar to that of Theorem 4 in [16], except when we introduce g at the
end, which corrects a sign typographic error in their proof. Since the optimal fixed proposal
variance optimizes E[υ(`,X1:p)] with respect to `, we have

2E

[
Φ

(
−

ˆ̀

2

√
I(X1:p)

)]
= E

[
ˆ̀

2

√
I(X1:p)φ

(
−

ˆ̀

2

√
I(X1:p)

)]
.

Letting t(X1:p) = Φ(− ˆ̀

2

√
I(X1:p)) with t(X1:p) ∈ [0, 0.5] (since ˆ̀≥ 0 and

√
I(X1:p) ≥ 0), this

becomes
2E [t(X1:p)] = E

[
−Φ−1 (t(X1:p))φ

(
Φ−1 (t(X1:p))

)]
.

As argued in [16], we may apply Jensen’s inequality to obtain

E
[
−Φ−1 (t(X1:p))φ

(
Φ−1 (t(X1:p))

)]
≤ −Φ−1 (E[t(X1:p)])φ

(
Φ−1 (E[t(X1:p))]

)
.

Combining the previous two equations and expressing them in terms of g = −Φ−1(E[t(X1:p))])
yields 2Φ(−g) ≤ gφ(−g). The single solution in the case of equality is ĝ ≈ 1.19, and the295

inequality is strict if and only if g > ĝ; hence, the acceptance rate satisfies 2Φ(g) ≤ 2Φ(ĝ). �

In light of the results expounded in Section 4, one should rely on locally optimal proposal
variances when available; these are efficient and computationally inexpensive to implement, as
shall be seen in the coming sections. Alternatively, one may use the (optimal) fixed proposal
variance or its corresponding acceptance rate for tuning the last block. The optimal acceptance300

rate is obtained as a function of the fixed proposal variance; this shall be illustrated in Sections
6.3 and 8.
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5. MALA-within-Gibbs

The Metropolis-adjusted Langevin algorithm (MALA) is a Metropolis-Hastings sampler that
stems from the discretization of Langevin diffusion processes (see [13], for instance). Given the305

current state X[j] = x, the version with an isotropic step size generates candidates according to
the proposal distribution

Y[j + 1] ∼ N
(
x + h

2∇ log π(x) , hIn
)
, (10)

for a chosen step size h > 0. The candidates are then accepted with probability α(x;y) =
1 ∧ π(y)qn(x;y)/{π(x)qn(y;x)}, where qn(y;x) is the density of the above normal proposal.

Since it uses local problem-specific information about the target, this sampler often yields310

results that are superior to isotropic RWM samplers, while frequently being almost as easy to
implement. When the covariance matrix of the target components greatly departs from the
identity matrix, one may instead use a pre-conditioned MALA :

Y[j + 1] ∼ N
(
x + h

2A∇ log π(x) , hA
)
, (11)

where A is an n× n positive-definite matrix (see [14]).
More recently, [6] proposed a manifold variant of the Metropolis-adjusted Langevin algorithm315

(MMALA) based on the discretization of a diffusion with a position-dependent volatility matrix.
This sampler generates candidates according to

Y[j + 1] ∼ N
(
x + h

2G
−1(x)∇ log π(x) + hΩ(x) , hG−1(x)

)
,

where G(x) is some positive-definite n× n matrix, and

Ωi(x) = |G(x)|−1/2
n∑
j=1

∂
∂Xj

[
G−1ij (x) |G(x)|1/2

]
.

The choice of the metric tensor G is arbitrary; a popular choice that allows adaptation to the
local curvature of the target π is the Fisher-Rao metric tensor, i.e. that G(x) is based on the320

expected Fisher information (in a Bayesian context, where the expectation is computed with
respect to the observations). This version of the MMALA has been shown to perform efficiently
in a number of examples. As noted by the authors, the main overheads arising from the use
of MMALA are the development of analytical expressions for the parameters of the normal
proposal distribution, and the computational cost from updating these same parameters.325

The position-dependent MALA (PMALA) proposed by [17] has been developed based on the
discretization of a diffusion that slightly differs from that used by [6]. This results in a sampler
that is at least as efficient as MMALA in theory, while being computationally cheaper. In
the numerical examples, we shall thus use PMALA instead of MMALA; this sampler generates
candidates according to330

Y[j + 1] ∼ N
(
x + h

2A(x)∇ log π(x) + hΓ(x) , hA(x)
)
,

where A(x) = G−1(x) and Γi(x) = 1
2

∑n
j=1

∂
∂Xj

Aij(x).

Asymptotically optimal scaling results similar to those of [15] have been obtained for the
isotropic MALA with product target density π(x(n)) =

∏n
i=1 f(xi). Of course, regularity as-

sumptions stronger than those in Section 2 need to be imposed on the one-dimensional density
f , such as finiteness of all moments k ≥ 1, as well as polynomial bounds on the log-density and335

its derivatives; we refer the reader to [13] for more details.
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In their article, [13] showed that for a step size of the form h(n) = `2/n1/3 with ` > 0 the
first component of an appropriately rescaled isotropic MALA algorithm asymptotically behaves
according to a Langevin diffusion, where

υMALA(`) = 2`2Φ

(
−`

3

2
K

)
≡ 2`2Φ

−`3
2

√√√√EX

[
5{ d3

dX3 log f(X)}2 − 3{ d2

dX2 log f(X)}3

48

]
is the speed of the limiting diffusion (in which the positive root K > 0 is implicitly defined).
The value ` optimizing the speed function satisfies

ˆ̀
MALA =

(
1.1236

K

)1/3

and yields an asymptotically optimal acceptance rate a(ˆ̀
MALA) = 2Φ(−1.1236/2) ≈ 0.574.

Of course, any of the described variants may be used in updating blocks of Metropolis-within-
Gibbs samplers. Although we do not chase the details of such a proof, we expect optimal scaling
results similar to those of Section 4 to hold for MALA-within-Gibbs algorithms. For the target340

density in (1), denote x(p+1):(p+n) = x. For MALA-within-Gibbs, the drift term for the block
update should be based on the conditional density given the fixed parameters, x∗1:p, as follows

Y[j + 1] ∼ N
(
x + h

2∇ log π(x|x∗1:p) , hIn
)
.

Just as it makes sense to adjust the drift of the proposal distribution according to the most
recent position of the mixing components, it would equally make sense to take this information
into account when adjusting the proposal variance. Specifically, we define345

ˆ̀
MALA(x∗1:p) =

(1.1236)1/3

{K(x∗1:p)}1/3
, (12)

with K2(x∗1:p) = (5EX [{ ∂3

∂X3 log f(X|x∗1:p)}2]−3EX [{ ∂2

∂X2 log f(X|x∗1:p)}3])/48; we then propose

to use local step sizes ĥ(n,x∗1:p) = ˆ̀2
MALA(x∗1:p)/n

1/3, which correspond to an asymptotically
optimal acceptance rate of 0.574. A fixed step size would also be available by optimizing the
expected speed function E[υMALA(`,X1:p)] = E[2`2Φ(−`3K(X1:p)/2)] with respect to `. For a
target density f(x|x1:p) that is smooth enough with respect to x and x1:p, we expect the above350

local and fixed step sizes to be asymptotically optimal. The proof is beyond the scope of this
paper, but we explore the idea in numerical studies.

The MALA-within-Gibbs with local step sizes shares some similarities with PMALA- and
MMALA-within-Gibbs in which the first p blocks are updated as before (usual MALA), and a
PMALA or MMALA is used to update the last block. In all three cases, step sizes vary across355

iterations; in contrast to PMALA and MMALA however, local step sizes in the MALA-within-
Gibbs are independent of the current state x(p+1):(p+n).

We could thus view local step sizes in the MALA-within-Gibbs as arising from a special
diagonal metric tensor, whose diagonal entries are the expectation of a function (involving the
second and third derivatives of the log-density) with respect to the parameters X(p+1):(p+n) given360

X1:p. This expectation leads to the elimination of the metric tensor dependency on x(p+1):(p+n).
Note that, if desired, an extra expectation with respect to potentially present observations
could also be computed, as in [6]. Since local step sizes depend on x∗1:p only, which are updated
separately, then Ωi(x) = Γi(x) = 0, i = p+ 1, . . . , p+ n and the drift indeed remains the same
as before.365

11



The exact expression selected for the metric tensor is expected to naturally arise from weak
convergence results, and leads to a simple and numerically cheap version of the PMALA- and
MMALA-within-Gibbs (as it is independent of x(p+1):(p+n)). In addition, this choice of metric
tensor conveniently comes with a guideline for an appropriate choice of `. Of course, full-
dimensional PMALA and MMALA are generally not equivalent to the MALA-within-Gibbs with370

local step sizes, as correlation between components involves a non-diagonal proposal covariance
matrix for those samplers.

6. Hierarchies through location and scale

The tuning results of Sections 4 and 5 may be refined when p = 1 in (1) and the mixing
parameter X1 acts through the location or scale of the n conditionally i.i.d. components (or if375

X1, X2 are location and scale parameters in a target as in (1) with p = 2).
In this section, we study a hierarchical model with no observation; in this case, all the calcula-

tions required to derive local proposal variances are tractable. In practice however, observations
would be present and local proposal variances could still be obtained analytically, as long as the
conditional distribution of X(p+1):(p+n) given X1:p and the observations is tractable. This would380

be the case, for instance, if the distribution of X(p+1):(p+n)|X1:p is conjugate to the conditional
distribution of the observations given X(p+1):(p+n).

6.1. Location mixing parameter

Consider a target density π as in (1), with p = 1 and f(xi|x1) = f(xi − x1) for i =
2, . . . , n+1. The component X1 thus acts as the (random) location parameter of the components385

X2, . . . , Xn+1. In this particular context, we may use a simple change of variable (u = x− x∗1)
to reepxress I(x∗1) in (7)

EX
[(

∂
∂X log f(X − x∗1)

)2]
=

∫
R

(
∂
∂u log f(u)

)2
f(u) du .

The locally optimal proposal variance of the RWM-within-Gibbs sampler is thus independent
of x∗1, i.e. ˆ̀loc = ˆ̀(0), where the function ˆ̀(x1) is given by (7). This is intuitively clear, as the
smoothness of the target distribution is not affected by the location parameter.390

Applying similar changes of variables, it is easy to show that the value of the local step size in
the MALA-within-Gibbs also is independent of x∗1, i.e. ˆ̀loc

MALA = ˆ̀
MALA(0), where the function

ˆ̀
MALA(x1) is given by (12).

6.2. Scale mixing parameter

Now consider a target density as in (1), with p = 1 and f(xi|x1) = 1
x1
f( xix1

), i = 2, . . . , n +395

1; in other words, the component X1 acts as the (random) scale parameter of the variables
X2, . . . , Xn+1. Applying a change of variable (u = x/x∗1), the term I(x∗1) in (7) may now be
expressed as

E
[(

∂
∂X log 1

x∗
1
f
(
X
x∗
1

))2]
=

(
1
x∗
1

)2 ∫ ( ∂
∂uf (u)

f (u)

)2

f (u) du .

The locally optimal proposal variance of the RWM-within-Gibbs sampler thus takes a form that
is similar to that found in [15], except that it is multiplied by (x∗1)2; indeed, ˆ̀sc(x∗1) = ˆ̀(1)x∗1,400

where the function ˆ̀(x1) is given by (7). The larger is the scale parameter X1 at a given time,
the larger is the proposal variance used to generate candidates for X2, . . . , Xn+1 within the same
iteration.
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We may apply similar changes of variables to the local step sizes of the MALA-within-Gibbs.
We find ˆ̀sc

MALA(x∗1) = ˆ̀
MALA(1)x∗1, where the function ˆ̀

MALA(x1) is given by (12); local step405

sizes are thus multiplied by (x∗1)2. For a scale mixing parameter, the MALA-within-Gibbs
with local step sizes is thus equivalent to a MMALA-within-Gibbs in which the first block is
updated according to the usual MALA, and the metric tensor in the last block is chosen to be
−E[H(X2:(n+1)|x∗1)], where H(x2:(n+1)|x∗1) is the Hessian of the log-target for X2:(n+1)|x∗1 and

the expectation is with respect to the density
∏n+1
i=2 f(xi|x∗1). Note that this metric tensor is410

pre-tuned according to anticipated asymptotic results.
It is worth mentioning that in the presence of observations, local proposal variances would

not necessarily be proportional to the scale parameter X1. They would rather be proportional to
the scaling parameter of the conditional distribution of X2:(n+1) given X1 and the observations,
which may itself be a function of X1. We now combine these notions into a numerical example415

that considers two mixing components, i.e. that includes location and scale parameters.

6.3. Simulation study: Normal-gamma-Student hierarchical distribution

Consider an n-dimensional hierarchical target such that X1 ∼ N (0, 1), X2 ∼ Γ(3, 1), and
Xi|X1:2 ∼ tν(X1, 1/

√
X2) for i = 3, . . . , n with ν = 7; the density of a non-standard Student-

t(µ, η) is proportional to [1 + ((x − µ)/η)2/ν]−(ν+1)/2. The components X1, X2 respectively420

act through the location and scale of the variables Xi and the Student distribution destroys
conjugacy.

To illustrate the theoretical results, we consider a 42-dimensional target and apply various
algorithms to obtain samples from this distribution: single-block RWM and MALA (each with
isotropic and diagonal tunings), RWM- and MALA-within-Gibbs (with fixed and local tunings),425

pre-conditioned MALA, position-dependent MALA, and the Adaptive Metropolis of [7].
Isotropic, single-block RWM. The components are updated according to a N (x, `2In/n) pro-

posal distribution. Although the target distribution falls slightly outside the framework specified
in [2], we may still approximate the optimal proposal variance by optimizing the speed measure in
(3). With two mixing parameters, we however rely on γ(x1:2, z1:2) = 0.8(1+z21)x2+0.35(z2/x2)2,430

where z1:2 come from independent N (0, 1) random variables (see the discussion in [2]); note that
this is independent of x1. Letting Z1:2 ∼ N (0, I2) and maximizing

EX1:2
[υ(`,X1:2)] = 2`2EX1:2,Z1:2

[
Φ

(
− `

2
γ1/2(X1:2,Z1:2)

)]
with respect to ` leads to ˆ̀

R = 1.485. This corresponds to an expected speed measure of
E[υ(ˆ̀

R,X1:2)] = 0.395. Using the relationship between the speed function and expected accep-
tance rate, E[υ(`,X1:2)/`2] = a(`) (see (8) and (9) for the RWM-within-Gibbs, but this is valid435

more generally), a corresponding acceptance rate of E[υ(ˆ̀
R,X1:2)]/ˆ̀2

R = 0.179 is obtained.
Diagonal, single-block RWM. The proposal variances of the RWM sampler are the marginal

variances of the target model, multiplied by the tunable factor `2/n; we choose ` to yield an
acceptance rate between 0.179 and 0.234.

Local RWM-within-Gibbs. We update X1, X2, and X3:n separately, using normal proposal440

distributions. The proposal standard deviations of the first and second blocks are set to σ1 = 0.25
and σ2 = 1.5 respectively, leading to acceptance rates close to 45% for the corresponding sub-
algorithms. In practice, a convenient approach is to fix the proposal variance of the block X3:n,
and then tune σ1, σ2 to attain the desired acceptance rates.

Hereafter, x∗1:2 and x3:n refer to the latest available states of X1:2 and X3:n, just after X1:2

is updated. For a Student-t distribution, we find

I(x∗1:2) = x∗2
(ν + 1)2

ν(ν + 2)

Γ((ν + 1)/2) Γ((ν + 4)/2)

Γ(ν/2) Γ((ν + 5)/2)
= 0.8 x∗2 ;
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the locally optimal variance arising from (7) is thus ˆ̀2
M(x∗1:2)/(n− 2) = (2.38)2/{0.8x∗2(n− 2)}.445

WhenX2 is large (small), the distribution of X3:n is narrowed down (spread out) and accordingly,
the proposal variance must be small (large). The expected efficiency based on these local tunings

is E
[
2ˆ̀2

M(X1:2)Φ (−2.38/2)
]

= 0.828, which of course corresponds to an acceptance rate of 0.234.

Fixed RWM-within-Gibbs. The proposal variance of the third block is now fixed, and max-
imizes E

[
2`2Φ

(
−`
√

0.8X2/2
)]

. The resulting variance is ˆ̀2
M/(n − 2) = (1.90)2/(n − 2) and450

corresponds to asymptotic acceptance rate and expected efficiency of 0.191 and 0.691 respec-
tively. There is thus an improvement of 20% available from tuning the proposal variance locally,
as opposed to favoring a fixed approach for the RWM-within-Gibbs.

Isotropic, single-block MALA. All n components are simultaneously updated according to
(10). In the case of hierarchical target distributions as in (1), we are not aware of optimal455

scaling results for tuning MALA; we thus settle for an acceptance rate of 0.35, which is close to
optimal according to the efficiency curves in Figure 2 (to be described shortly).

Diagonal, single-block MALA. The step sizes of the MALA sampler are the marginal variances
of the target model, multiplied by the tunable factor `2/n1/3; we choose ` to yield an acceptance
rate between 0.35 and 0.57.460

Pre-conditioned MALA. All n components are simultaneously updated according to (11).
We set A = −E[H(X1:n)]−1, where H(x1:n) is the Hessian of the log-target and the expectation
is with respect to the target distribution, and tune the step size so as to yield an acceptance
rate close to 0.574.

Local MALA-within-Gibbs. We update X1, X2, and X3:n separately, using MALA samplers.465

The step sizes of the first two blocks are set to h1 = 0.2 and h2 = 1.1 respectively, leading to
acceptance rates close to 57% for the corresponding sub-algorithms. As discussed in Section 3
of [13], this is a conservative choice in low-dimensional settings.

For a Student-t distribution, we find K(x∗1:2) = 0.262(x∗2)3/2 and from (12), this leads to

locally optimal step sizes ĥ(n,x∗1:2) = 2.64/{x∗2(n − 2)1/3}. The expected efficiency based on470

these local tunings is E
[
2ˆ̀2

MALA(X1:2)Φ (−1.1236/2)
]

= 0.761, which of course corresponds to

an acceptance rate of 0.574.
Fixed MALA-within-Gibbs. The step size of the third block is now fixed, and maximizes

E
[
2`2Φ

(
−`30.262(X2)3/2/2

)]
. The resulting step size is ˆ̀2

MALA/(n − 2)1/3 = (1.07)2/(n −
2)1/3 and corresponds to asymptotic acceptance rate and expected efficiency of 0.467 and 0.535475

respectively. There is thus an improvement of more than 40% available from tuning the step
sizes locally, as opposed to favoring a fixed approach for the MALA-within-Gibbs.

Theoretical performances of MALA and RWM cannot be compared directly. To obtain weak
convergence results for RWM and MALA, one needs to rescale space and time, using factors of n
and n1/3 respectively. For high-dimensional targets, the theoretical efficiency obtained through480

MALA’s speed function should thus be multiplied by an O(n2/3) factor in order to be compared
to the theoretical efficiency of a RWM. We then expect a significant gain from using a locally
tuned MALA-within-Gibbs over its RWM-within-Gibbs counterpart. This efficiency gain is of
course tempered by extra computations, required at each iteration of the sampler.

Position-dependent MALA. The metric tensor suggested in [6] is G(x1:n) = −H(x1:n),485

where H(x1:n) is the Hessian of the log-target. Since the Student-t distribution is not log-
concave, −H(x1:n) is not positive definite everywhere, and so neither is A(x1:n) = −H−1(x1:n).
We thus take G(x1:2) = A−1(x1:2) = −E[H(x1:2,X3:n)], where the expectation is with respect
to the conditional distribution of X3:n|x1:2. This leads to a relatively simple form for A(x1:2),
which conveniently allows to compute the extra drift term Γ(x1:2). This results in a sampler that490

is similar to the locally updated MALA-within-Gibbs, but where all n components are updated
simultaneously (and not independently). We tune the acceptance rate to the usual 0.574.
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Figure 1: Efficiency against acceptance rate of RWM samplers for the normal-gamma-Student target. Left:
efficiency based on X3:n. Right: total standardized efficiency based on X1:n. The solid, dashed, and dotted lines
represent, in order, the theoretical efficiency curve of the local, fixed RWM-within-Gibbs, and isotropic RWM.
Symbols come from simulations with n = 42 (top to bottom: local and fixed RWM-w-Gibbs, isotropic RWM).

Adaptive Metropolis. This sampler proposes candidates from a N (x1:n, `
2
AΣj/n), where Σj

is an estimate of the target covariance matrix that is updated recursively at every iteration.
Since the chain takes a long time to adapt, we shall use 1,000,000 iterations to update Σ, which495

will then remain fixed for the rest of the run. The initial covariance Σ0 is a diagonal matrix
whose entries are the marginal target variances. We rely on ˆ̀

A = 2.38, as suggested in [7].
We now illustrate the performance of algorithms featuring a diagonal proposal covariance

matrix with efficiency curves. Each of these samplers is run with 50 different tunings. Samplers
that generate candidates from a multivariate normal distribution are expensive to run, so we con-500

sider optimal versions of these samplers later on. For each run, we perform 5,000,000 iterations
and measure efficiency by recording the standardized expected squared jumping distance

ESJD =
1

N

N∑
j=1

n∑
i=1

1

ω2
i

(xi[j]− xi[j − 1])
2

; (13)

here, N is the number of iterations, n is the dimension of the target distribution as before, and
ω2
i is the marginal variance of the ith target component. We also record the average acceptance

rate of each algorithm, expressed as

AAR =
1

N

N∑
j=1

1{x[j] 6= x[j − 1])}.

The resulting curves of efficiency against acceptance rates are then compared in Figure 1
(isotropic RWM, fixed & local RWM-within-Gibbs) and in Figure 2 (isotropic MALA, fixed &
local MALA-within-Gibbs). The left graph of each figure combines the efficiency curves of the505

42-dimensional samplers along with their theoretical efficiency curves (expected speed measure
against expected acceptance rate); it focuses on the efficiency measure arising from the third
block only, i.e. ignoring, in (13), contributions coming from the movements of X1:2 and setting
ω2
i = 1. The right graph of each figure compares total standardized efficiency of the samplers.

Optimal versions of the samplers discussed are compared in Table 1, in which running times510

for performing 5,000,000 iterations are also reported (obtained with the function system.time in
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Figure 2: Efficiency against acceptance rate of MALA samplers for the normal-gamma-Student target. Left:
efficiency based on X3:n. Right: total standardized efficiency based on X1:n. The solid and dashed lines
respectively represent the theoretical efficiency curve of the local and fixed MALA-within-Gibbs. Symbols come
from simulations with n = 42 (top to bottom: local and fixed MALA-within-Gibbs, and isotropic MALA).

R). We note that pre-conditioned MALA, position-dependent MALA, and Adaptive Metropolis
samplers generate candidates from multivariate normal distributions with correlation, which
is achieved by performing a Cholesky decomposition of the covariance matrix and generating
n independent standard normal observations. Hereafter, net efficiency refers to an efficiency515

measure that penalizes for computational effort; it is defined as the ESJD divided by the running
time.

According to Table 1, the pre-conditioned MALA yields the highest net efficiency: it offers
a gain of 54% over the local version of MALA-within-Gibbs, which comes second. The latter
offers a net efficiency gain of 35% over the fixed MALA-within-Gibbs, and is almost 3 times more520

efficient than the position-dependent MALA. Unsurprisingly, net efficiency of RWM samplers
come behind those of the fanciest MALA algorithms. The position-dependent MALA is almost
twice as efficient as the local version of the RWM-within-Gibbs, which constitutes the best
available option among RWM-type samplers. In the current context, the latter results in an
efficiency gain of about 10% compared to the diagonal, single-block MALA, 15% compared to525

the fixed RWM-within-Gibbs, and 30% compared to the Adaptive Metropolis sampler. Single-
block RWM (isotropic or diagonal) and MALA (isotropic) do not constitute competitive options
here, but rather act as baselines for the other methods. Although the pre-conditioned MALA
offers a significant improvement compared to other competitors, we remind the reader that this
target model is used as a proof of concept. A real example shall be studied in Section 8.530

7. Inhomogeneous proposal variances

The theoretical results of Sections 4, 5, and 6 may be extended to target densities

π(x(n+p)) = f1(x1:p)

p+n∏
i=p+1

1

Ci
f

(
xi −Mi

Ci

)
, (14)

where f1, f are densities satisfying the assumptions stated in Section 2, and Mi ≡ Mi(x1:p),
Ci ≡ Ci(x1:p) (i = p + 1, . . . , p + n) respectively are location and scale parameters which are
conditionally i.i.d. (given X1:p) from a distribution with finite variance. In other words, the Xis535
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Table 1: Standardized efficiency, acceptance rate, and running times of optimized samplers applied to the normal-
gamma-Student target.

Sampler AAR ESJD Time (sec) Sampler AAR ESJD Time (sec)

Isotropic RWM 0.209 0.239 211 Isotropic MALA 0.362 0.587 455

Diagonal RWM 0.204 0.258 228 Diagonal MALA 0.442 0.882 518

Fixed RWM-w-G 0.191 0.540 330 Fixed MALA-w-G 0.376 4.891 621

Loc. RWM-w-G 0.215 0.628 338 Loc. MALA-w-G 0.500 6.765 632

Adapt. Met. 0.267 0.860 605 Prec. MALA 0.552 14.28 864

PMALA 0.571 13.25 3 634

are conditionally independent given X1:p, and are distributed according to a common density f
that features different location and scale parameters.

In a RWM-within-Gibbs, every block is updated with respect to its full conditional dis-
tribution. Denoting the updated values of the scales at time t + 1 by C∗i ≡ Ci(x

∗
1:p) (i =

p+ 1, . . . , p+n), we generate a candidate for Xi according to a Gaussian proposal with variance540

of the form `2i (x
∗
1:p)/n ≡ ˜̀2C2

i (x∗1:p)/n for some constant ˜̀> 0.
Following [12], we then believe Corollary 3 in Section 4.1 to be still valid. In particular,

we expect the process associated to the ith component to asymptotically behave according to
the diffusion and speed measure in (5) and (6), but with the function f(xi|Mi(x

∗
1:p), Ci(x

∗
1:p))

as defined in (14). This would give rise to a locally optimal proposal variance for the ith545

component that is equal to ˆ̀2
i (x
∗
1:p)/n = ˆ̀2(0, 1)C2

i (x∗1:p)/n, with the function ˆ̀(M∗, C∗) as in
(7). In particular, the asymptotically optimal acceptance rate would still be 0.234. Proofs of the
asymptotic results found in this paper heavily rely on Laws of Large Numbers and Central Limit
Theorems. It is thus unclear whether or not optimal scaling results based on inhomogeneous
proposal variances could be generalized to target densities other than (14).550

Similar extensions are also believed to hold for MALA-within-Gibbs samplers; in partic-
ular, candidates in the last block should be generated according to step sizes ĥi(n,x

∗
1:p) =

ˆ̀2
MALA(0, 1)C2

i (x∗1:p)/n
1/3 for i = p+1, . . . , p+n, with ˆ̀

MALA(M∗, C∗) as in (12). As mentioned
previously, it is however unclear as to what regularity assumptions should be imposed on the
target density for these extensions to hold.555

To illustrate the correspondence between these heuristic claims and their anticipated asymp-
totic behaviours, consider the example of Section 6.3 in which there is no location parameter:
X1 ∼ Γ(3, 1) and Xi|X1 ∼ t7(0, ξi/X1), with fixed ξi = i − 1 for i = 2, . . . , 41. All else being
equal, the 5,000,000-iteration simulation study described in that section for the local RWM-
and MALA-within-Gibbs leads to the graphs in Figure 3. In these graphs, the RWM-within-
Gibbs relies on the proposal variances `2i (x

∗
1)/n = ˜̀2ξi/{nx∗1Ii(x∗1 = ξi)}, i = p + 1, . . . , p + n

(for 50 values of ˜̀ equally spaced in [0.1, 5]); the MALA-within-Gibbs relies on step sizes

`2MALA,i(x
∗
1)/n1/3 = ˜̀2ξi/{x∗1K

2/3
i (x∗1 = ξi)n

1/3}, i = p+ 1, . . . , p+ n (for 50 values of ˜̀ equally
spaced in [0.05, 2.5]). Simulations for the local RWM-within-Gibbs approach are compared to
the standardized theoretical efficiency curve of

1

40

41∑
i=2

E[υi(`,X1)]

ξi
=

1

40

41∑
i=2

2˜̀2E[X−11 ]

Ii(X1 = ξi)
Φ

(
−

˜̀

2

)

versus the expected acceptance rate 2Φ(−˜̀/2). For MALA-within-Gibbs, standardized theoret-
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Figure 3: Standardized efficiency of X2:n against acceptance rate for the gamma-Student target. Left : RWM-
within-Gibbs. Right : MALA-within-Gibbs. The solid lines represent the theoretical standardized efficiency
curves; the symbols come from simulations with n = 41.

ical efficiency satisfies

1

40

41∑
i=2

E[υMALA
i (`,X1)]

ξi
=

1

40

41∑
i=2

2˜̀2E[X−11 ]

{Ki(X1 = ξi)}2/3
Φ

(
−

˜̀3

2

)
,

which is plotted against the expected acceptance rate 2Φ(−˜̀3/2).
Under this inhomogeneous setting, the relative performances and computational efforts of the

samplers previously studied are as discussed in Section 6.3. Of course, if proposal variances of
samplers such as RWM, MALA, fixed RWM- and MALA-within-Gibbs are not adjusted to take
inhomogeneity into account, the gap between their performance and that of the other samplers560

is expected to significantly widen.

8. A stochastic volatility model

Consider a stochastic volatility model in the flavour of [9] and [6], in which the latent volatil-
ities take the form of an autoregressive process of order 1. That is, Di = εi exp{Xi/2} with
Xi+1 = φXi + ηi+1, where εi ∼ N (0, 1), ηi ∼ N (0, τ2) and X1 ∼ N (0, τ2/(1 − φ2)). Priors for565

the parameters are τ2 ∼ IΓ(δ, λ) and (φ+1)/2 ∼ β(a, b), where IΓ(δ, λ) is the inverse gamma dis-
tribution with density proportional to x−(δ+1)e−λx. This model leads to an (n+ 2)-dimensional
posterior density π(τ2, φ,X1, . . . , Xn|d1:n).

The posterior density is too complex for analytic computation, and numerical integration
must be ruled out due to the high-dimensionality of the problem. This distribution is best570

sampled with MCMC methods; in the current setting, we propose to use RWM- and MALA-
within-Gibbs samplers with three blocks of variables, τ2, φ, and X1:n. We are also interested
in assessing the performance of competitors such as those considered in Section 6.3.

In Section 6.3, it was not necessary to apply a change of variable to take care of the positivity
constraint on the scale parameter X2. Indeed, the target density was smooth on R, in the sense575

that the density was converging relatively slowly to 0 as X2 approached 0. The hyperparameters
used in the current example lead to a target density that is not as smooth, so we let τ2 = exp{κ}
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and φ = tanh(γ); this yields the following (n+ 2)-dimensional posterior density

π(κ, γ,x1:n|d1:n) ∝ exp
{
−κ(n2 + δ)

} e−γ(2b+1)

(1 + e−2γ)a+b+1
exp

{
− 1

2

n∑
i=1

(xi + d2i e
−xi)

}

× exp

{
e−κ

2

[
λ+

4e−2γ

(1 + e−2γ)2
x21 +

n∑
i=2

(
xi − ( 1−e−2γ

1+e−2γ )xi−1

)2]}
.

In the following experimental study, we fix the hyperparameters to δ = 1, λ = 1.5, a = 20,
and b = 6, and consider a 100-dimensional dataset d1:100 in which the data points exhibit580

low correlation. This dataset is simulated directly from the target model with φ = 0.15 and
τ2 = 0.75. Of interest is to evaluate the performance of previously described approaches, in the
context of a target model falling outside the assumptions of the theory.

We perform a 5,000,000-iteration simulation study similar to those described previously. The
ESJD is again used as a measure of efficiency; it is reported in Table 2 for each sampler, along585

with acceptance rates and running times. We now point out the particularities of the algorithms
implemented.

Adaptive Metropolis. The initial proposal covariance matrix Σ0 is a diagonal matrix of
dimension n + 2. The diagonal elements are the reciprocal of those in −E[H(κ, γ,X1:n|D1:n)],
where H is the Hessian of the log-posterior density and the expectation is computed with590

respect to the distribution of (κ, γ,X1:n,D1:n). For instance, the diagonal entry related to κ is

−E[( ∂2

∂κ2 log π(κ, γ,X1:n|D1:n))2]−1 = δ + n/2. Since the adaptation of Σj is slow, we again use
1,000,000 iterations to update Σ, which then remains fixed for the rest of the run. We tune the
acceptance rate as close as possible to 0.234.

Pre-conditioned MALA. The matrix A in (11) satisfies A−1 = −E[H(κ, γ,X1:n|D1:n)], where595

the expectation is with respect to the distribution of (κ, γ,X1:n,D1:n). The matrix A−1 is
tridiagonal; for i = 1, . . . , n − 1 we have, for instance, A−1i+3,i+2 = A−1i+2,i+3 = −(a−ba+b )

δ
λ . We

settle for the usual acceptance rate of 0.574.
Local RWM-within-Gibbs. We update κ, γ, and X1:n separately; the proposal standard

deviations of the first and second blocks are set to 0.2 and 0.27 respectively, leading to acceptance600

rates close to 45% for the corresponding sub-algorithms. Tuning of the different blocks were
conveniently performed simultaneously and independently, as the scaling of a particular block
did not affect the tuning of the other blocks.

Hereafter, κ∗, γ∗ and x1:n refer to the latest available states of the process, just after κ and
γ are updated. An n-dimensional update of X1:n in the third block is performed with respect
to the conditional density π(x1:n|κ∗, γ∗,d1:n). When working conditionally on data points d1:n,
the expectation in Ii(κ∗, γ∗) = E[( ∂

∂Xi
log π(X1:n|κ∗, γ∗,d1:n))2] (i = 1, . . . , n) is not necessarily

easy to obtain, as the full conditional distribution is usually not as simple as initial distributions.
This problem may be solved by first computing the above expectation with respect to the random
variables Di (i = 1, . . . , n), and then with respect to X1:n. This yields local proposal variances
that have been averaged over all possible datasets, i.e. the best possible local proposal variances
without information about the specific dataset at hand. This approach has also been favored
in [6], in the choice of their metric tensor. The only cases where this extra expectation would
possibly result in poor proposal variances would be when the dataset is highly improbable given
the target model. In the current situation, local proposal variances for the third block are

`2

n

(
1
2 + e−κ

∗
, 12 + e−κ

∗
(

1 + ( 1−e−2γ∗

1+e−2γ∗ )2
)
, . . . , 12 + e−κ

∗
(

1 + ( 1−e−2γ∗

1+e−2γ∗ )2
)
, 12 + e−κ

∗
)−1

.

With these proposal variances, we simply tune the acceptance rate as close as possible to 0.234.
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Fixed RWM-within-Gibbs. The theory of Section 4.2 is used to obtain an approximately605

optimal acceptance rate of 0.2, keeping in mind that regularity assumptions are of course violated
here (and that acceptance rates generally seem more robust than proposal variances, at least
for RWM samplers).

Local MALA-within-Gibbs. We update κ, γ, and X1:n separately, using MALA samplers.
The step sizes of the first and second blocks are set to h1 = 0.2 and h2 = 0.27 respectively,610

leading to acceptance rates close to 57% for the corresponding sub-algorithms. As for the
RWM-within-Gibbs sampler, we obtain local step sizes by computing an extra expectation with

respect to D1:n. This leads to step sizes `2

n1/3 ( 1
K1
, 1
K2
, . . . , 1

Kn
)2/3, where

K2
1 = K2

n =
1

128
(25 + 18e−κ

∗
+ 12e−2κ

∗
+ 8e−3κ

∗
) ,

K2
i =

1

128

[
25 + 18e−κ

∗
(

1 + ( 1−e−2γ∗

1+e−2γ∗ )2
)

+ 12e−2κ
∗
(

1 + ( 1−e−2γ∗

1+e−2γ∗ )2
)2

+8e−3κ
∗
(

1 + ( 1−e−2γ∗

1+e−2γ∗ )2
)3]

, i = 2, . . . , n− 1 .

We then choose ` so that the acceptance rate be close to 0.574.
Fixed MALA-within-Gibbs. The sampler is tuned according to the approximated optimal615

acceptance rate of 0.54 (numerically computed, using concepts in Section 5).
Position-dependent MALA. Due to the difficulty in computing the derivatives of the in-

verse metric tensor, we instead do as in [6] and use a position-dependent MALA to update
the last block of a MALA-within-Gibbs. We rely here on the same three blocks as before: the
first two blocks are tuned as detailed above, while the last block relies on the metric tensor620

A−1(κ∗, γ∗,X1:n) = −E[H(X1:n|κ∗, γ∗,D1:n)], where H is the Hessian of the log of the density
π(x1:n|κ∗, γ∗,d1:n) and the expectation is with respect to the distribution of D1:n only. The
resulting matrix turns out to be tridiagonal, with entries that are independent of X1:n. Accord-
ingly, Γi(x) = 0, i = 1, . . . , n, and the drift term is the same as in a classical MALA. This is
thus equivalent to using a pre-conditioned MALA for the third block (we refer the reader to [6]625

for more details). We tune the acceptance rate to the usual 0.574.
Table 2 is similar in form to Table 1 and compares the ESJD of each sampler along with

their running times; the acceptance rates are also included. We set ω2
i = 1 for i = 1, . . . , n in

(13), as all the samplers implemented feature different proposal scalings for κ, γ, and X1:n, and
can thus be compared directly.630

The ESJD obtained behave as expected, showing a progression from RWM-type samplers
to MALA-within-Gibbs, and eventually the fancier MALA with correlated candidates. Local
versions of the RWM- and MALA-within-Gibbs lead to small gains of about 7% and 13% re-
spectively, in terms of ESJD over their fixed counterparts. The position-dependent MALA is
the sampler that results in the highest ESJD, while the fixed RWM-within-Gibbs and Adaptive635

Metropolis fight for the last place.
When including computational effort in the picture, the outcome is different. The need

of generating correlated candidates in some samplers disturbs the above ordering. The local
MALA-within-Gibbs seems to offer the best compromise, although its edge over the fixed version
is tempered by a slightly increased computational effort. The pre-conditioned MALA suffers a640

drop of 40% in terms of net efficiency compared to the local MALA-within-Gibbs. In the
current context, the computational overhead of the position-dependent MALA prevents this
sampler from being a serious competitor to MALA-within-Gibbs samplers; it also suffers a net
efficiency loss of 8% compared to the local RWM-within-Gibbs algorithm. The local and fixed
RWM-within-Gibbs are virtually equivalent when accounting for computational effort, and are645

3 times as efficient as the Adaptive Metropolis. The light variability among local proposal
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Table 2: Efficiency, acceptance rate, and running times of optimized samplers applied to the stochastic volatility
model.

Sampler AAR ESJD Time (sec) Sampler AAR ESJD Time (sec)

Fixed RWM-w-G 0.169 0.527 499 Fixed MALA-w-G 0.521 11.174 1 089

Loc. RWM-w-G 0.239 0.564 531 Loc. MALA-w-G 0.559 12.627 1 184

Adapt. Met. 0.296 0.526 1 534 Prec. MALA 0.510 13.940 1 835

PMALA 0.578 16.028 16 309

variances in a given iteration, and also from one iteration to the other, explains in part the
modest improvement offered by local versions over fixed ones in the current context.

9. Discussion

Optimality results for the RWM-within-Gibbs sampler have been presented. It has been con-650

cluded that, compared to fixed proposal variances, local ones generally offer interesting benefits
in terms of performance when sampling from hierarchical models involving scaling parameters.
These variances are easily implemented, at a marginal additional computational cost compared
to RWM-within-Gibbs with fixed variances. They also allow to rely on simple, well-known op-
timality results (ˆ̀ = 2.38/{I(x∗1:p)}1/2, leading to an acceptance rate of 0.234). The analytical655

derivation of local proposal variances however requires that the distribution of the conditionally
independent components given the mixing parameters and the observations be tractable. When
this is not the case, a fixed approach that implies numerically solving for optimal proposal vari-
ance and acceptance rate prior to running the sampler may be favored. It has been demonstrated
that the optimal acceptance rate arising from a fixed proposal variance is no greater than 0.234.660

Similar conclusions have then be drawn for fixed versus local MALA-within-Gibbs samplers.
When available, users should then favor local approaches over their fixed counterpart as they
represent a safe yet interesting avenue, both for the RWM- and MALA-within-Gibbs.

An expression for locally optimal, inhomogeneous proposal variances has been proposed for
the case where the full conditional densities of the n-dimensional block are inhomogeneous but665

belong to a location/scale family. The simulation study of Section 8 leads us to believe that local,
inhomogeneous proposal variances and step sizes could be used more generally. Indeed, each
proposal variance (step size) is adjusted according to the roughness of the target distribution in
a particular direction, and so they constitute an intuitive option, even when the target density
does not fit in the prescribed framework.670

In the examples, the locally tuned MALA-within-Gibbs yielded convincing results, while net
performances of the local RWM-within-Gibbs outdid those of RWM-type samplers (including
the Adaptive Metropolis), as well as some of the MALA-type samplers. We obviously do not
expect local MALA-within-Gibbs to outdo all competitors in all situations. Gibbs samplers,
for instance, become very inefficient in the presence of strong correlation between blocks; the675

proposed approach does not circumvent this feature and is thus not expected to be competitive
in strongly correlated situations. What we do believe, however, is that once a user has chosen
to implement RWM- or MALA-within-Gibbs, he will do better by relying on a local version of
these samplers. As witnessed from the simulations studies, the efficiency gain available from
implementing a local RWM- or MALA-within-Gibbs over its fixed version is however largely680

influenced by the variability present in the hierarchical model, with a larger variability sustaining
the need for local samplers.
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