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Abstract

In this paper, we shall optimize the efficiency of Metropolis algorithms for multidi-
mensional target distributions with scaling terms possibly depending on the dimension.
We propose a method to determine the appropriate form for the scaling of the proposal
distribution as a function of the dimension, which leads to the proof of an asymptotic
diffusion theorem. We show that when there does not exist any component with a scal-
ing term significantly smaller than the others, the asymptotically optimal acceptance
rate is the well-known 0.234.

Keywords: Metropolis algorithm, weak convergence, optimal scaling, diffusion, Markov
chain Monte Carlo

1 Introduction

Metropolis algorithms ([9], [8]) provide a method to sample from highly complex probability
distributions. The ease of implementation and wide applicability of these algorithms have
conferred them their popularity, and they are frequently used nowadays by all levels of
practitioners in various fields of application. However, their convergence can sometimes
be lengthy, which calls for an optimization of their performance. Because the efficiency of
Metropolis algorithms depends crucially on the scaling of the proposal density chosen for
their implementation, it is thus fundamental to judiciously choose this parameter.

Informal guidelines for the optimal scaling problem have been proposed among others by
[3] and [4], but the first theoretical results have been obtained by [11]. In particular, the
authors considered d-dimensional target distributions with iid components and studied the
asymptotic behavior (as d→∞) of Metropolis algorithms with Gaussian proposals. It was
proved that under some regularity conditions for the target distribution, the asymptotic
acceptance rate should be tuned to be approximately 0.234 for optimal performance of the
algorithm. It was also shown that the correct proposal scaling is of the form `2/d for some
constant ` as d → ∞. The simplicity of the obtained asymptotically optimal acceptance
rate (AOAR) makes these theoretical results extremely useful in practice. Optimal scaling
issues have been explored by other authors, namely [12], [6], [13], [5] and [10].
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In this paper, we carry out a similar study for d-dimensional target distributions with in-
dependent components. The particularity of our model is that the scaling term of each
component is allowed to depend on the dimension of the target distribution, which con-
stitutes a critical distinction with the iid case. We provide a condition under which the
algorithm admits the same limiting diffusion process and the same AOAR as those found in
[11]. This is achieved in the first place by determining the appropriate form for the proposal
scaling as a function of d, which is now different from the iid case. Then, by verifying
L1 convergence of generators, we prove that the sequence of stochastic processes formed
by say the i∗-th component of each Markov chain (appropriately rescaled) converges to a
Langevin diffusion process with a certain speed measure. Obtaining the AOAR is thus a
simple matter of optimizing the speed measure of the diffusion.

The paper is structured as follows. In Section 2, we describe the Metropolis algorithm and
introduce the target distribution setting. The main results are presented in Section 3, along
with a discussion about inhomogeneous proposal distributions and some extensions. We
prove the theorems in Section 4 using lemmas proved in Sections 5 and 6, finally concluding
the paper with a discussion.

2 Sampling from the Target Distribution

2.1 The Metropolis Algorithm

The idea behind the Metropolis algorithm is to generate a Markov chain X0,X1, . . . having
the target distribution as a stationary distribution. In particular, suppose that π is a d-
dimensional probability density of interest with respect to Lebesgue measure. Also let the
proposed moves be normally distributed around x, i.e. N

(
x, σ2Id

)
for some σ2 and with

Id the d-dimensional identity matrix. The Metropolis algorithm thus proceeds as follows.
Given Xt, the state of the chain at time t, a value Yt+1 is generated from the normal density
q (Xt,y) dy. The probability of accepting the proposed value Yt+1 as the new value for the
chain is α (Xt,Yt+1), where

α (x,y) =

{
min

(
1, π(y)

π(x)

)
, π (x) q (x,y) > 0

1, π (x) q (x,y) = 0
.

If the proposed move is accepted, the chain jumps to Xt+1 = Yt+1; otherwise, it stays where
it is and Xt+1 = Xt.

In order to have some level of optimality in the performance of the algorithm, care must
be exercised when choosing σ2. If it is too small, the proposed jumps will be too short
and in spite of a very high acceptance rate, simulation will move very slowly to the target
distribution. At the opposite, a large scaling value will generate jumps in low target density
regions, resulting in the rejection of the proposed moves and in a chain that stands still
most of the time.

Before finding an appropriate value for σ2 between these extremes, we first define a criterion
which is closely related to the algorithm efficiency. The notion of π-average acceptance rate
is defined in [11] as E

[
1 ∧ π(Y)

π(X)

]
=
∫ ∫

π (x)α (x,y) q (x,y) dxdy for the d-dimensional
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Metropolis algorithm.

2.2 The Target Distribution

Consider the following d-dimensional target density

π
(
d,x(d)

)
=

d∏
j=1

θj (d) f (θj (d)xj) . (1)

We impose the following regularity conditions on the density f : f is a positive C2 function

and (log f (x))′ is Lipschitz continuous. We also suppose that E
[(

f ′(X)
f(X)

)4
]

=
∫
R

(
f ′(x)
f(x)

)4
f (x) dx <

∞ and E
[(

f ′′(X)
f(X)

)2
]
<∞.

The d target components, although independent, are however not identically distributed.
In particular, we consider the case where the scaling terms θ−2

j (d), j = 1, . . . , d take the
following form

Θ−2 (d) =

K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+1

dγ1︸ ︷︷ ︸
c(J (1,d))

, . . . ,
Kn+m

dγm
, . . . ,

Kn+m

dγm︸ ︷︷ ︸
c(J (m,d))

 .

Ultimately, we shall be interested in the limit of the target distribution as d → ∞. Let
n < ∞ denote the number of components whose scaling term appears a finite number
of times in the limit of Θ−2 (d). Also, let the j-th of these n scaling terms be Kj/d

λj ,
j = 1, . . . , n, where λj ∈ (−∞,∞) and Kj is some positive and finite constant. Similarly,
let 0 < m <∞ denote the number of different scaling terms appearing infinitely often in the
limit. These m scaling terms are taken to be Kn+i/d

γi , i = 1, . . . ,m, with γi ∈ (−∞,∞).
For now, we assume the constants 0 < Kn+i <∞ to be the same for all scaling terms within
each of the m groups. We shall relax this assumption in Section 3.2.

For i = 1, . . . ,m, define the sets J (i, d) =
{
j ∈ {1, . . . , d} ; θ−2

j (d) = Kn+i

dγi

}
. The i-th set

thus contains positions of components with a scaling term equal to Kn+i/d
γi . These sets

are such that
⋃̇m

i=1J (i, d) = {n+ 1, . . . , d}.

Since each of the m groups of scaling terms might occupy different proportions of Θ−2 (d),
we also define the cardinality of the sets J (i, d):

c (J (i, d)) = #
{
j ∈ {1, . . . , d} ; θ−2

j (d) =
Kn+i

dγi

}
, i = 1, . . . ,m, (2)

where c (J (i, d)) is assumed to be some polynomial function of the dimension satisfying
limd→∞ c (J (i, d)) =∞.

It will be convenient to rearrange the terms of Θ−2 (d) so that all the different scaling terms
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appear at one of the first n+m positions:

Θ−2 (d) =
(
K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+m

dγm
,

Kn+1

dγ1
, . . . ,

Kn+m

dγm
, . . . ,

Kn+1

dγ1
, . . . ,

Kn+m

dγm

)
. (3)

This helps to identify each component being studied as d → ∞ without referring to a
component that would otherwise be at an infinite position.

Without loss of generality, we assume the first n and the next m scaling terms in (3)
to be respectively arranged according to an asymptotic increasing order. If � means ”is
asymptotically smaller than or equal to”, then we have θ−2

1 (d) � . . . � θ−2
n (d) and similarly

θ−2
n+1 (d) � . . . � θ−2

n+m (d), which respectively implies −∞ < λn ≤ λn−1 ≤ . . . ≤ λ1 < ∞
and −∞ < γm ≤ γm−1 ≤ . . . ≤ γ1 <∞. Based on this ordering, the asymptotically smallest
scaling term obviously has to be either θ−2

1 (d) or θ−2
n+1 (d).

Our goal is to study the limiting distribution of each component forming the d-dimensional
Markov process. To this end, we set the scaling term of the target component of interest
equal to 1 (θi∗ (d) = 1). This adjustment, necessary to the obtention of a nontrivial limiting
process, is performed without loss of generality by applying a linear transformation to the
target distribution. In particular, when the first component of the chain is studied (i∗ = 1),
we set θ−2

1 (d) = 1 and adjust the other scaling terms accordingly. Θ−2 (d) thus varies
according to the component of interest i∗ considered.

2.3 The Proposal Distribution and its Scaling

A crucial step in the implementation of Metropolis algorithms is the determination of the
optimal form for the proposal scaling as a function of d. Intuitively it makes sense that σ2 (d)
depends on the asymptotically smallest scaling term in Θ−2 (d). Otherwise, the proposed
moves might be too large for the components with smaller scaling terms, resulting in a high
rejection rate and compromising the convergence of the algorithm.

Moreover, as the dimension of the target increases, more individual moves are proposed in a
single step; it is thus more likely to generate an improbable move for one of the components.
To rectify the situation, it is recommended to decrease the proposal scaling as a function of
d.

Hence, the optimal form for the proposal scaling turns out to be σ2 (d) = `2/dα, where `2

is some constant and α is the smallest number satisfying

lim
d→∞

dλ1

dα
<∞ and lim

d→∞

dγic (J (i, d))
dα

<∞, i = 1, . . . ,m. (4)

Therefore, at least one of these m+ 1 limits converges to some positive constant, while the
other ones converge to 0. Since the scaling term of the component studied is taken to be 1,
then the largest possible form for the proposal scaling is σ2 = σ2 (d) = `2 and so it never
diverges as d grows.
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By its nature, the Metropolis algorithm is a discrete-time process. Since space (the proposal
scaling) is a function of the dimension of the target distribution, we also have to rescale the
time between each step in order to get a nontrivial limiting process as d→∞.

Let Z(d) (t) be the time-t value of the process sped up by a factor of dα; in particular,
Z(d) (t) =

(
X

(d)
1 ([dαt]) , . . . , X(d)

d ([dαt])
)

, where [·] is the integer part function. Instead of
proposing only one move, the sped up process has the possibility to move on average dα

times during each unit time interval. We are now ready to study the limiting comportment
of every component of the sequence of processes

{
Z(d) (t) , t ≥ 0

}
as d→∞.

3 Optimizing the Sampling Procedure

3.1 Optimal Value for `

We shall now present explicit asymptotic results allowing us to optimize `2, the constant
term of σ2 (d). We first introduce a weak convergence result for the process

{
Z(d) (t) , t ≥ 0

}
and most importantly in practice, we transform the conclusion achieved into a statement
about efficiency as a function of acceptance rate, as was done in [11].

We denote weak convergence in the Skorokhod topology by ⇒, standard Brownian motion
at time t by B (t), and the standard normal cumulative distribution function (cdf ) by Φ (·).
Moreover, recall that the scaling term of the component of interest Xi∗ is taken to be one
(θi∗ (d) = 1) which, as explained in Section 2.2, might require a linear transformation of
Θ−2 (d).

Theorem 1. Consider a Metropolis algorithm with proposal distribution Y(d) ∼ N
(
x(d), `

2

dα Id

)
,

where α satisfies (4), and applied to a target density as in (1) satisfying the specified con-
ditions on f , with θ−2

j (d), j = 1, . . . , d as in (3) and θi∗ (d) = 1. Consider the i∗-th

component of the process
{
Z(d) (t) , t ≥ 0

}
, that is

{
Z

(d)
i∗ (t) , t ≥ 0

}
=
{
X

(d)
i∗ ([dαt]) , t ≥ 0

}
,

and let X(d) (0) be distributed according to the target density π in (1).

We have
{
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0}, where Z (0) is distributed according to the den-

sity f and {Z (t) , t ≥ 0} satisfies the Langevin stochastic differential equation (SDE)

dZ (t) = υ (`)1/2 dB (t) +
1
2
υ (`) (log f (Z (t)))′ dt,

if and only if

lim
d→∞

dλ1∑n
j=1 d

λj +
∑m

i=1 c (J (i, d)) dγi
= 0. (5)

Here, υ (`) = 2`2Φ
(
−`
√
ER/2

)
, and

ER = lim
d→∞

m∑
i=1

c (J (i, d))
dα

dγi

Kn+i
E

[(
f ′ (X)
f (X)

)2
]
, (6)

with c (J (i, d)) as in (2).
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Intuitively, when none of the target components possesses a scaling term significantly smaller
than those of the other components, the limiting process is the same as that found in [11].
Note that the numerator of Condition (5) is based on θ−2

1 (d) only, which is not necessarily
the asymptotically smallest scaling term. Technically, we should then also verify if this
condition is still satisfied when θ−2

1 (d) is replaced by θ−2
n+1 (d); this is however ensured by

the term c (J (1, d)) θ2
n+1 (d) at the denominator.

The function υ (`) is sometimes interpreted as the speed measure of the diffusion process.
This quantity being proportional to the mixing rate of the algorithm, it then suffices to
maximize the function υ (`) in order to optimize the efficiency of the algorithm.

Let a (d, `) be the π-average acceptance rate defined in Section 2.1, but where the dependence
on the dimension and the proposal scaling are now made explicit. The following corollary
introduces the optimal value ˆ̀ and AOAR leading to greatest efficiency of the Metropolis
algorithm.

Corollary 2. In the setting of Theorem 1 we have limd→∞ a (d, `) = 2Φ
(
−`
√
ER/2

)
≡ a (`).

Furthermore, υ (`) is maximized at the unique value ˆ̀= 2.38/
√
ER for which a

(
ˆ̀
)

= 0.234
(to three decimal places).

For a high-dimensional target distribution as defined in Section 2.2 and having no component
converging significantly faster than the others, the value ` should then be chosen such that
the acceptance rate is close to 0.234 in order to optimize the efficiency of the Metropolis
algorithm.

Theorem 1 may be used to verify whether the AOAR for sampling from any multivariate
normal distribution with covariance matrix Σ is 0.234. Since normal random variables are
invariant under orthogonal transformations, we can transform Σ into a diagonal matrix
where the eigenvalues of Σ constitute the diagonal elements. The eigenvalues can then be
used to verify if Condition (5) is satisfied, and hence to determine whether or not 2.38/

√
ER

is the optimal scaling for the proposal distribution. For example, consider Σ with σ2
i = 2,

i = 1, . . . , d and σij = 1, j 6= i. The d eigenvalues of Σ are (d, 1, . . . , 1) and satisfy
Condition (5). For a relatively high-dimensional multivariate normal with such a correlation
structure, it is thus optimal to tune the acceptance rate to 0.234. Note however that not
all d components mix at the same rate. When studying any of the last d − 1 components
the vector Θ−2 (d) = (d, 1, . . . , 1) is appropriate, so σ2 (d) = `2/d and these components
thus mix in O (d) iterations. When studying the first component, we need to linearly
transform the scaling vector so that θ−2

1 (d) = 1. We then use Θ−2 (d) = (1, 1/d, . . . , 1/d),
so σ2 (d) = `2/d2 and this component mixes according to O

(
d2
)
.

Now consider the simple model where X1 ∼ N (0, 1) and Xj ∼ N (X1, 1) for j = 2, . . . , d.
The joint distribution of X(d) is multivariate normal with mean 0 and d × d covariance
matrix such that σ2

1 = 1, σ2
2 = . . . = σ2

d = 2 and σjk = 1, ∀j 6= k. Using the d eigenvalues,
which are O (d), O (1/d) and 1 with multiplicity d− 2, we thus conclude that Condition (5)
is violated and that 0.234 might not be optimal, even though the distribution is normal (see
Theorem 5 of Section 3.2 when dealing with more general θj (d)’s).

The previous example might seem surprising as multivariate normal distributions have long
been believed to behave as iid target distributions in the limit. A natural question to ask
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is then, what happens when Condition (5) is not satisfied? In such a case, the algorithm
can be shown to admit the same limiting Langevin diffusion process but with a different
speed measure. Furthermore, the AOAR is found to be smaller than the usual 0.234. For
more details on this case, see [1]. For a better picture of the applicability of these results,
examples and simulation studies for various statistical models are presented in [2].

3.2 Inhomogeneous Proposal Scaling and Extensions

So far, we have assumed σ2 (d) = `2/dα to be the same for all d components. It is natural
to wonder if adjusting the proposal scaling as a function of d for each component would
yield a better performance of the algorithm. An important point to keep in mind is that for{
Z(d) (t) , t ≥ 0

}
to be a stochastic process, we must speed up time by the same factor for

every component. Otherwise, some components would move more frequently than others in
the same time interval, and since the acceptance probability of the proposed moves depends
on all d components this would violate the definition of a stochastic process.

The inhomogeneous scheme we adopt is the following: we personalize the proposal scaling of
the last d−n components only, implying that the proposal scaling of the first n components
is the same as it would have been under the homogeneity assumption. We then treat each of
the m groups of scaling terms appearing infinitely often as a different portion of the scaling
vector and determine the appropriate α for each group.

In particular, consider Θ−2 (d) in (3) and let the proposal scaling of Xj be σ2
j (d) = `2/dαj ,

where αj = α for j = 1, . . . , n and αj is the smallest value such that limd→∞ c (J (i, d)) dγi/dαj <
∞ for j = n + 1, . . . , d, j ∈ J (i, d). In order to study the component Xi∗ , we still assume
that θi∗ (d) = 1, but we now let Z(d) (t) = X(d) ([dαi∗ t]). We have the following result.

Theorem 3. In the setting of Theorem 1 but with the proposal scaling as just described, the
conclusions of Theorem 1 and Corollary 2 are preserved, and ER is now expressed as

ER = lim
d→∞

m∑
i=1

c (J (i, d))
dαn+i

dγi

Kn+i
E

[(
f ′ (X)
f (X)

)2
]
.

Since the proposal scaling is now adjusted to suit every distinct group of components, each
constant term Kn+1, . . . ,Kn+m has an impact on the limiting process, yielding a larger value
for ER. Hence, the optimal value ˆ̀ = 2.38/

√
ER is now smaller than with homogeneous

proposal scaling. When the proposal scaling of all components was based on α in Section
3.1, the algorithm had to compensate for the fact that α is chosen as small as possible, and
thus maybe too small for certain groups of components, with a larger value for ˆ̀2.

The conclusions of Section 3.1 also extend to more general target distribution settings. First,
we can relax the assumption of equality among the constant terms of θ−2

j (d) for j ∈ J (i, d).
In particular, let

Θ−2 (d) =
(
K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+c(J (1,d))

dγ1
, . . .

,
Kn+

∑m−1
i=1 c(J (i,d))+1

dγm
, . . . ,

Kd

dγm

)
. (7)
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We assume that {Kj , j ∈ J (i, d)} are iid and chosen randomly from some distribution

with E
[
K−2
j

]
< ∞. Without loss of generality, we denote E

[
K−1
j

]
= bi for j ∈ J (i, d).

Recall that the scaling term of the component of interest cannot depend on d, so we have
θ−2
i∗ (d) = Ki∗ .

To support the previous modifications, we now suppose that −∞ < γm < γm−1 < . . . <
γ1 < ∞. In addition, we assume that there does not exist a λj , j = 1, . . . , n equal to one
of the γi, i = 1, . . . ,m. This means that if there is an infinite number of scaling terms of
the same order, they must necessarily belong to the same of the m groups. We obtain the
following result.

Theorem 4. Consider the setting of Theorem 1, except with Θ−2 (d) as in (7) and θi∗ =
K
−1/2
i∗ . We have

{
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0}, where Z (0) is distributed according to

the density θi∗f (θi∗x) and {Z (t) , t ≥ 0} satisfies the Langevin SDE

dZ (t) = (υ (`))1/2 dB (t) +
1
2
υ (`) (log f (θi∗Z (t)))′ dt,

if and only if Condition (5) is satisfied. Here, υ (`) is as in Theorem 1 and

ER = lim
d→∞

m∑
i=1

c (J (i, d)) dγi

dα
biE

[(
f ′ (X)
f (X)

)2
]
,

with c (J (i, d)) = #
{
j ∈ {n+ 1, . . . , d} ; θj (d) is O

(
dγi/2

)}
. Furthermore, the conclusions

of Corollary 2 are preserved.

The previous results can also be extended to more general functions c (J (i, d)), i = 1, . . . ,m
and θj (d), j = 1, . . . , d. In order to have sensible limiting theory, we however restrict our
attention to functions for which the limit exists as d → ∞. As before, we must have
c (J (i, d)) → ∞ as d → ∞. We even allow

{
θ−2
j (d) , j ∈ J (i, d)

}
to vary within each

of the m groups, as long as they are of the same order. That is, for j ∈ J (i, d), we
suppose limd→∞ θj (d) /θ′i (d) = K

−1/2
j for some reference function θ′i (d) and some constant

Kj coming from the distribution described for Theorem 4.

As for Theorem 4, we assume that if there are infinitely many scaling terms of a certain
order they must all belong to one of the m groups. Hence, Θ−2 (d) contains at least m and
at most n+m functions of different orders. The positions of the elements belonging to the
i-th group are thus

. J (i, d) =

{
j ∈ {1, . . . , d} ; 0 < lim

d→∞

θ′2i (d)
θ2
j (d)

<∞

}
, i ∈ {1, . . . ,m} . (8)

For such target distributions we define the proposal scaling to be σ2 (d) = `2σ2
α (d), with

σ2
α (d) the function of largest possible order such that

limd→∞ θ
2
1 (d)σ2

α (d) <∞ and
limd→∞ c (J (i, d)) θ′2i (d)σ2

α (d) <∞, i = 1, . . . ,m.
(9)
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Theorem 5. Under the setting of Theorem 4, but with proposal scaling σ2 (d) = `2σ2
α (d)

where σ2
α (d) satisfies (9) and with general functions for c (J (i, d)) and θj (d) as defined

previously, the conclusions of Theorem 4 are preserved, provided that

lim
d→∞

θ2
1 (d)∑n

j=1 θ
2
j (d) +

∑m
i=1 c (J (i, d)) θ′2i (d)

= 0

holds instead of Condition (5) and with

ER = lim
d→∞

m∑
i=1

c (J (i, d)) θ′2i (d)σ2
α (d) biE

[(
f ′ (X)
f (X)

)2
]
,

where c (J (i, d)) is the cardinality function of (8).

This theorem assumes quite a general form for the scaling terms of the target distribution
and allows for a lot of flexibility.

4 Theorems Proofs

We now present the proof of Theorem 1; those of the theorems in Section 3.2 being similar,
we just outline the main differences. The proofs are based on Theorem 8.2 of Chapter
4 in [7], which roughly says that for the finite-dimensional distributions of a sequence of
processes to converge weakly to those of some Markov process, it is enough to verify L1

convergence of their generators. Then, Corollary 8.6 of the same chapter provides further
conditions for our sequence of processes to be relatively compact, and thus to reach weak
convergence of the stochastic processes themselves. Specifically, it is easily verified that C∞c ,
the space of infinitely differentiable functions on compact support, is an algebra that strongly
separates points. Since the algorithm starts in stationarity, X(d) (t) ∼ π ∀t > 0. Using a
method similar to the proof of Lemma 7, we show that E

[(
Gh
(
d,X(d)

))2]
is bounded by

some constant for all d ≥ 1, where G is the generator of the sped up Metropolis algorithm
appearing in Section 4.2; this assesses relative compactness.

Our task is then to focus on the L1 convergence of the generators. To this end, we base
our approach on the proof for the Metropolis algorithm case in [10]. Note however that the
authors instead prove uniform convergence of generators, which could not be used in the
present situation.

The generator is written in terms of an arbitrary test function h, which can usually be
any smooth function; in our case, we restrict our attention to functions in C∞c . Since the
limiting process obtained is a diffusion, then C∞c is a core for the generator by Theorem 2.1
of Chapter 8 in [7], meaning that it is representative enough so as to focus on the functions
it contains only.

In order to lighten the formulas, we adopt the following convention for defining vectors:
X(b−a) = (Xa+1, . . . , Xb) . The minus sign appearing outside the brackets (e.g. X(b−a)−)
means that the component of interest Xi∗ is excluded. We also use the following notation
for conditional expectations: E [f (X,Y ) |X ] = EY [f (X,Y )]. When there is no subscript,
the expectation is taken with respect to all random variables included in the expression.
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4.1 Restrictions on the Proposal Scaling

We first transform Condition (5) into a statement about the proposal scaling and its pa-
rameter α. For this condition to be satisfied, we must equivalently have

lim
d→∞

K1

dλ1

(
dλ1

K1
+ . . .+

dλn

Kn

)
+ lim
d→∞

K1

dλ1

(
c (J (1, d))

dγ1

Kn+1
+ . . .+ c (J (m, d))

dγm

Kn+m

)
=∞.

Since the first term on the LHS is finite, there is at least one i ∈ {1, · · · ,m} such that
limd→∞ θ

−2
1 (d) c (J (i, d)) dγi

Kn+i
=∞. Consequently, the choice of α in (4) must be based on

one of the groups of scaling terms appearing infinitely often. If we had α = λ1, this would
mean that limd→∞

c(J (i,d))dγi

dα = ∞ for all i for which the previous limit was diverging,
which contradicts the definition of α. When Condition (5) is satisfied, it thus follows that
limd→∞ d

λ1/dα = 0 and θ−2
1 (d) does not govern α; the parameter α is then strictly greater

than 0, no matter which component is under study.

4.2 Proof of Theorem 1

For an arbitrary test function h ∈ C∞c , we show that

lim
d→∞

E
[∣∣∣Gh(d,X(d)

)
−GLh (Xi∗)

∣∣∣] = 0,

where Gh
(
d,X(d)

)
= dαEY(d)

[
(h (Yi∗)− h (Xi∗))

(
1 ∧ π(d,Y(d))

π(d,X(d))

)]
is the discrete-time gen-

erator of the sped up Metropolis algorithm, andGLh (Xi∗) = υ (`)
[

1
2h
′′ (Xi∗) + 1

2h
′ (Xi∗) (log f (Xi∗))

′]
is the generator of a Langevin diffusion process with speed measure υ (`) as in Theorem 1.

According to Lemma 7, we have limd→∞ E
[∣∣∣Gh (d,X(d)

)
− G̃h

(
d,X(d)

)∣∣∣] = 0, where

G̃h
(
d,X(d)

)
=

1
2
`2h′′ (Xi∗) EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
+`2h′ (Xi∗) (log f (Xi∗))

′ EY(d)−

e∑d
j=1,j 6=i∗ ε(d,Xj ,Yj);

d∑
j=1,j 6=i∗

ε (d,Xj , Yj) < 0


and ε (d,Xj , Yj) is as in (10). To prove the theorem, we are thus left to show L1 convergence
of the generator G̃h

(
d,X(d)

)
to that of the Langevin diffusion.

Substituting explicit expressions for the generators, grouping some terms and using the

10



triangle’s inequality yield

E
[∣∣∣G̃h(d,X(d)

)
−GLh (Xi∗)

∣∣∣] ≤
`2EX(d)−

[∣∣∣∣12EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
− Φ

(
−`
√
ER
2

)∣∣∣∣]E
[∣∣h′′ (Xi∗)

∣∣]
+`2EX(d)−

∣∣∣∣∣∣EY(d)−

e∑d
j=1,j 6=i∗ ε(d,Xj ,Yj);

d∑
j=1,j 6=i∗

ε (d,Xj , Yj) < 0


−Φ

(
−`
√
ER
2

)∣∣∣∣]E
[∣∣h′ (Xi∗) (log f (Xi∗))

′∣∣] .
Since the function h has compact support, then h itself and its derivatives are bounded in
absolute value by some constant. As a result, E [|h′′ (Xi∗)|] and E

[∣∣h′ (Xi∗) (log f (Xi∗))
′∣∣]

are both bounded by K, say. Using Lemmas 8 and 9, we then conclude that the first
expectation on the RHS goes to 0 as d → ∞; we reach the same conclusion for the first
expectation of the second term by applying Lemmas 10 and 11.

4.3 Proof of Theorem 4

The main difference with the proof of Theorem 1 happens when working with the m groups
formed of infinitely many components. Since the constant terms are now random, we cannot
factorize the scaling terms of components belonging to a same group. This difficulty is
however easily overcome by changes of variables and the use of conditional expectations; for
instance, a typical quantity we have to deal with is

1
dα

∑
j∈J (i,d)

(
d

dXj
log θj (d) f (θj (d)Xj)

)2

=
c (J (i, d)) dγi

dα

 1
c (J (i, d))

∑
j∈J (i,d)

(
d

dXj
log

1√
Kj

f

(
Xj√
Kj

))2
 .

By the Weak Law of Large Numbers (WLLN), the term in brackets converges to biE
[(

f ′(X)
f(X)

)2
]
.

Instead of carrying the term θ2
n+i (d) = dγi/Kn+i as before, we thus carry bidγi .

4.4 Proof of Theorem 5

The general forms of the functions c (J (i, d)), i = 1, . . . ,m and θj (d), j = 1, . . . , d ne-
cessitate a fancier notation, but do not affect the body of the proof. What alters the
demonstration is rather the fact that θj (d) for j ∈ J (i, d) are allowed to be different func-
tions of d as long as they are of the same order. Because of this particularity, we have to
write θj (d) = K

−1/2
j θ′i (d) θ∗j (d) /θ′i (d), where θ∗j (d) is implicitly defined. We can then carry

with the proof as usual, factoring the term biθ
′
i (d) instead of θ2

n+i (d) in Theorem 1 (or bidγi
in Theorem 4). Since limd→∞ θ

∗
j (d) /θ′i (d) = 1, the rest of the proof can be repeated with

minor modifications.

11



5 Equivalent Generator and Other Results

5.1 Convergence of an Approximation Term

Lemma 6. For i = 1, . . . ,m, let

Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)
=

1
2

∑
j∈J (i,d)

(
d2

dX2
j

log f (θj (d)Xj)

)
(Yj −Xj)

2

+
`2

2dα
∑

j∈J (i,d)

(
d

dXj
log f (θj (d)Xj)

)2

,

where Yj |Xj ∼ N
(
Xj , `

2/dα
)

and Xj is distributed according to the density θj (d) f (θj (d)xj),
independently for all j = 1, ..., d. Then, for i = 1, . . . ,m

E
Y

(d)
J (i,d)

[∣∣∣Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)∣∣∣] →p 0 as d→∞.

Proof. By Jensen’s inequality, E [|W |] ≤
√

E [W 2]. Developing the square and taking the
expectation conditional on X(d)

J (i,d) yield

E
Y

(d)
J (i,d)

[
W 2
i

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)]
=

`4

2d2α

∑
j∈J (i,d)

(
d2

dX2
j

log f (θj (d)Xj)

)2

+
`4

4d2α

 ∑
j∈J (i,d)

(
d2

dX2
j

log f (θj (d)Xj) +
(

d

dXj
log f (θj (d)Xj)

)2
)

2

.

Using changes of variables, we obtain

E
Y

(d)
J (i,d)

[∣∣∣Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)∣∣∣] ≤
`2√
2dα

θ2
n+i (d)

√
c (J (i, d))

 1
c (J (i, d))

∑
j∈J (i,d)

(
d2

dX2
j

log f (Xj)

)2
1/2

+
`2

2dα
θ2
n+i (d) c (J (i, d))

×

∣∣∣∣∣∣ 1
c (J (i, d))

∑
j∈J (i,d)

(
d2

dX2
j

log f (Xj) +
(

d

dXj
log f (Xj)

)2
)∣∣∣∣∣∣ .

By the WLLN, the term in parentheses on the second line converges in probability to

E
[(

d2

dX2 log f (X)
)2
]

as d → ∞. Since dα > dγi
√
c (J (i, d)) and the previous expecta-

tion is bounded by some constant, the first term converges to 0 as d → ∞. Given that
θ2
n+i (d) c (J (i, d)) /dα is O (1) for at least one i ∈ {1, . . . ,m}, we must also show that the

term between absolute values converges to 0. From Lemma 12, we know that f ′ (x)→ 0 as

12



x → ±∞; hence, we have E
[
d2

dX2
j

log f (Xj) +
(

d
dXj

log f (Xj)
)2
]

=
∫
f ′′ (x) dx = 0 and as

d→∞, we conclude (by the WLLN) that∣∣∣∣∣∣ 1
c (J (i, d))

∑
j∈J (i,d)

(
d2

dX2
j

log f (Xj) +
(

d

dXj
log f (Xj)

)2
)∣∣∣∣∣∣→p 0.

5.2 Convergence to the Equivalent Generator G̃h
(
d, X(d)

)
Lemma 7. For any function h ∈ C∞c , let

G̃h
(
d,X(d)

)
=

1
2
`2h′′ (Xi∗) EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
+`2h′ (Xi∗) (log f (Xi∗))

′ EY(d)−

e∑d
j=1,j 6=i∗ ε(d,Xj ,Yj);

d∑
j=1,j 6=i∗

ε (d,Xj , Yj) < 0

 ,
where

ε (d,Xj , Yj) = log
f (θj (d)Yj)
f (θj (d)Xj)

. (10)

If α > 0 as defined in (4), then limd→∞ E
[∣∣∣Gh (d,X(d)

)
− G̃h

(
d,X(d)

)∣∣∣] = 0.

Proof. The proof being similar to that of Lemmas A.2 and A.3 in [10], we shall skip some
details. The generator of the sped up Metropolis algorithm can be expressed as

Gh
(
d,X(d)

)
=

dαEYi∗
[
(h (Yi∗)− h (Xi∗)) EY(d)−

[
1 ∧ e

∑d
j=1 ε(d,Xj ,Yj)

]]
. (11)

We can reexpress the inner expectation using a Taylor expansion of the minimum function
with respect to Yi∗ and around Xi∗ . As mentioned in [10] the generator becomes

Gh
(
d,X(d)

)
= dαEYi∗ [(h (Yi∗)− h (Xi∗))] EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
+ dα (log f (Xi∗))

′ EYi∗ [(h (Yi∗)− h (Xi∗)) (Yi∗ −Xi∗)]

× EY(d)−

e∑d
j=1,j 6=i∗ ε(d,Xj ,Yj);

d∑
j=1,j 6=i∗

ε (d,Xj , Yj) < 0


+
dα

2
EYi∗

[
(h (Yi∗)− h (Xi∗)) (Yi∗ −Xi∗)

2 ((log f (Ui∗))
′)2

×EY(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]]
+
dα

2
EYi∗

[
(h (Yi∗)− h (Xi∗)) (Yi∗ −Xi∗)

2 (log f (Ui∗))
′′

×EY(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]]
.

13



where g (Ui∗) = ε (Xi∗ , Ui∗) +
∑d

j=1,j 6=i∗ ε (d,Xj , Yj), for some Ui∗ ∈ (Xi∗ , Yi∗) or (Yi∗ , Xi∗).

We first note that all expectations computed with respect to Y(d)− are bounded by 1,∣∣(log f (Ui∗))
′′∣∣ is bounded by a constant, and

∣∣(log f (Ui∗))
′∣∣ ≤ ∣∣(log f (Xi∗))

′∣∣+K |Yi∗ −Xi∗ |
for some K > 0. Expressing h (Yi∗)− h (Xi∗) as a three-term Taylor’s expansion and using
the fact that h has compact support, we can bound the expectations taken with respect to
Yi∗ and obtain∣∣∣Gh(d,X(d)

)
− G̃h

(
d,X(d)

)∣∣∣ ≤ K ( `3

dα/2
+
`4

dα
+

`5

d3α/2

)(
(log f (Xi∗))

′)2
+ K

(
`4

dα
+

`5

d3α/2
+

`6

d2α

)(
1 +

∣∣(log f (Xi∗))
′∣∣)+K

`3

dα/2
+K

`7

d5α/2
,

for some constant K > 0. By assumption E
[(

(log f (Xi∗))
′)2] < ∞, so it follows that

E
[∣∣∣Gh (d,X(d)

)
− G̃h

(
d,X(d)

)∣∣∣] converges to 0 as d→∞.

6 Volatility and Drift of the Diffusion

6.1 Convergence to an Equivalent Volatility

Lemma 8. We have

lim
d→∞

EX(d)−

[∣∣∣EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
−EY(d)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]∣∣∣] = 0,

where ε (d,Xj , Yj) is as in (10) and

z
(
d,Y(d)−,X(d)−

)
=

n∑
j=1,j 6=i∗

ε (d,Xj , Yj) +
m∑
i=1

∑
j∈J (i,d),j 6=i∗

d

dXj
log f (θj (d)Xj) (Yj −Xj)

− `2

2dα

m∑
i=1

∑
j∈J (i,d),j 6=i∗

(
d

dXj
log f (θj (d)Xj)

)2

. (12)

Proof. Using a Taylor expansion with three terms, we obtain

EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
= EY(d)−

1 ∧ exp


n∑

j=1,j 6=i∗
ε (d,Xj , Yj) +

m∑
i=1

∑
j∈J (i,d),j 6=i∗

[
d

dXj
log f (θj (d)Xj) (Yj −Xj) + (13)

1
2
d2

dX2
j

log f (θj (d)Xj) (Yj −Xj)
2 +

1
6
d3

dU3
j

log f (θj (d)Uj) (Yj −Xj)
3

]}]
,
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for some Uj ∈ (Xj , Yj) or (Yj , Xj).

By the triangle’s inequality, the Lipschitz property of the function 1 ∧ ex (see Proposition
2.2 in [11]) and noticing that the first two terms of the function z

(
d,Y(d)−,X(d)−) cancel

out with the first two terms of the exponential function in (13), we get∣∣∣EY(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
− EY(d)−

[
1 ∧ ez(d,Y(d−),X(d−))

]∣∣∣
≤

m∑
i=1

E
Y

(d)−
J (i,d)

[∣∣∣Wi

(
d,X(d)−

J (i,d),Y
(d)−
J (i,d)

)∣∣∣]+
m∑
i=1

c (J (i, d)) `3K
d3γi/2

d3α/2
.

By Lemma 6, the RHS converges in probability to 0 as d→∞. We then apply the Bounded
Convergence Theorem to complete the proof of the lemma.

6.2 Simplified Expression for the Equivalent Volatility

Lemma 9. If Condition (5) is satisfied, then

lim
d→∞

EX(d)−

[∣∣∣∣EY(d)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]
− 2Φ

(
−`
√
ER
2

)∣∣∣∣] = 0,

where z
(
d,Y(d)−,X(d)−) and ER are as in (12) and (6) respectively.

Proof. For each group of components whose scaling term appears infinitely often in the
limit, i.e. for i = 1, . . . ,m let

Ri

(
d,x(d)−

J (i,d)

)
=

1
dα

∑
j∈J (i,d),j 6=i∗

(
d

dxj
log f (θj (d)xj)

)2

. (14)

Since (Yj −Xj) |Xj ∼ iid N
(
0, `2/dα

)
for j = 1, · · · , d, then

z
(
d,Y(d)−,X(d)−

) ∣∣∣Y(n)−,X(d)− ∼

N

 n∑
j=1,j 6=i∗

ε (d,Xj , Yj)−
`2

2

m∑
i=1

Ri

(
d,X(d)−

J (i,d)

)
, `2

m∑
i=1

Ri

(
d,X(d)−

J (i,d)

) .

Applying Proposition 2.4 in [11] allows us to obtain an expression in terms of Φ (·), the cdf
of a standard normal random variable

EY(d)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]
= EY(n)−

exp

 n∑
j=1,j 6=i∗

ε (d,Xj , Yj)



×Φ

−
∑n

j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m

i=1Ri

(
d,X(d)−

J (i,d)

)


+Φ


∑n

j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m

i=1Ri

(
d,X(d)−

J (i,d)

)

 .
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We note that ER > 0 since there is at least one i ∈ {1, . . . ,m} such that limd→∞ c (J (i, d)) dγi/dα >
0. Using Propositions 13 and 14, and then applying Slutsky’s Theorem and the Continuous
Mapping Theorem, we conclude that exp

(∑n
j=1,j 6=i∗ ε (d,Xj , Yj)

)
→p 1 and

Φ

±
∑n

j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)

J (i,d)

)
√
`2
∑m

i=1Ri

(
d,X(d)

J (i,d)

)
→p Φ

(
−`
√
ER
2

)
.

Since EY(d−n)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]
is positive and bounded by 1, we use the Bounded Con-

vergence Theorem to assert that E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
→p 2Φ

(
−`
√
ER/2

)
; we complete

the proof of the lemma by reapplying the Bounded Convergence Theorem.

6.3 Convergence to an Equivalent Drift

Lemma 10. We have

lim
d→∞

EX(d)−

∣∣∣∣∣∣EY(d)−

e∑d
j=1,j 6=i∗ ε(d,Xj ,Yj);

d∑
j=1,j 6=i∗

ε (d,Xj , Yj) < 0


−EY(d)−

[
ez(d,Y

(d)−,X(d)−); z
(
d,Y(d)−,X(d)−

)
< 0
]∣∣∣] = 0, (15)

where ε (d,Xj , Yj) and z
(
d,Y(d)−,X(d)−) are as in (10) and (12) respectively.

Proof. First, let T (x) = ex1(x<0),

A
(
d,Y(d)−,X(d)−

)
= T

 d∑
j=1,j 6=i∗

ε (d,Xj , Yj)

− T (z (d,Y(d)−,X(d)−
))

,

and

δ (d) =

(
m∑
i=1

E
Y

(d)−
J (i,d)

[∣∣∣Wi

(
d,X(d)−

J (i,d),Y
(d)−
J (i,d)

)∣∣∣]+
m∑
i=1

c (J (i, d)) `3K
d3γi/2

d3α/2

)1/2

.

We shall show that A
(
d,Y(d)−,X(d)−) ∣∣X(d)− →p 0, and then use this result to prove

convergence of expectations.

Similar to the proof of Lemma A.7 in [10], we have

PY(d)−

(∣∣∣A(d,Y(d)−,X(d)−
)∣∣∣ ≥ δ (d)

)
≤

PY(d)−

∣∣∣∣∣∣
d∑

j=1,j 6=i∗
ε (d,Xj , Yj)− z

(
d,Y(d)−,X(d)−

)∣∣∣∣∣∣ ≥ δ (d)

 (16)

+PY(d)−

(
−δ (d) < z

(
d,Y(d)−,X(d)−

)
< δ (d)

)
.
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By Markov’s inequality and the proof of Lemma 8, the first term on the RHS is bounded by

1
δ (d)

EY(d)−

∣∣∣∣∣∣
d∑

j=1,j 6=i∗
ε (d,Xj , Yj)− z

(
d,Y(d)−,X(d)−

)∣∣∣∣∣∣
 ≤√δ (d)→p 0

as d → ∞. Using conditioning and the proof of Lemma 9, the second term on the RHS
becomes

PY(d)−

(∣∣∣z (d,Y(d)−,X(d)−
)∣∣∣ < δ (d)

)
=

EY(n)−

Φ

δ (d)−
∑n

j=1,j 6=i∗ ε (d,Xj , Yj) + `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
`

√∑m
i=1Ri

(
d,X(d)−

J (i,d)

)


−Φ

−δ (d)−
∑n

j=1,j 6=i∗ ε (d,Xj , Yj) + `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
`

√∑m
i=1Ri

(
d,X(d)−

J (i,d)

)

 .

Using the convergence results developed in the proof of Lemma 9 along with the fact that
δ (d)→p 0 as d→∞ and the Bounded Convergence Theorem, we deduce that the previous
expression converges in probability to 0. Therefore, A

(
d,Y(d)−,X(d)−) ∣∣X(d)− →p 0 and

(15) follows by reapplying the Bounded Convergence Theorem twice.

6.4 Simplified Expression for the Equivalent Drift

Lemma 11. If Condition (5) is satisfied, then

lim
d→∞

EX(d)−

[∣∣∣EY(d)−

[
ez(d,Y

(d)−,X(d)−); z
(
d,Y(d)−,X(d)−

)
< 0
]

−Φ
(
−`
√
ER
2

)∣∣∣∣] = 0,

where the functions ε (d,Xj , Yj) and z
(
d,Y(d)−,X(d)−) are as in (10) and (12) respectively.

Proof. The proof is similar to that of Lemma 9, the only difference lying in the fact that
(Proposition 2.4 in [11])

EY(d)−

[
ez(d,Y

(d)−,X(d)−); z
(
d,Y(d)−,X(d)−

)
< 0
]

=

EY(n)−

exp

 n∑
j=1,j 6=i∗

ε (d,Xj , Yj)



×Φ

−
∑n

j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m

i=1Ri

(
d,X(d)−

J (i,d)

)

 .
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7 Discussion

The theorems in this paper basically extend the iid work of [11] to a more general setting
where the scaling term of each target component is allowed to depend on the dimension of the
target distribution. The conclusions achieved are similar to those in [11], since the AOARs
are identical; the sole difference lies in the optimal scaling values themselves. Condition (5),
which says that no target component converges significantly faster than the others, ensures
that the process asymptotically behaves as in the iid case. This work thus partially answers
Open Problem #3 of [14].

These results can also be used to determine, for virtually any correlated multivariate normal
target distribution, whether or not 0.234 is optimal. Contrarily to what seemed to be
a common belief, multivariate normal distributions do not always adopt a conventional
limiting behavior and there exist cases where the AOAR is significantly smaller than 0.234
(see [1]).

It was shown in the iid case that although asymptotic, the results are pretty accurate in
small dimensions (d ≥ 10). In the present case however, this fact is not always verified
and care must be exercised in practice. In particular, if there exists a finite number of
scaling terms such that λj is close to α (but with λj < α, otherwise Condition (5) would be
violated) then the optimal acceptance rate converges extremely slowly to 0.234 from above.
For instance, suppose that Θ−2 (d) =

(
d−λ, 1, . . . , 1

)
with λ < 1. The proposal scaling is

then σ2 (d) = `2/d and the closer to 1 is λ, the slower is the convergence of the optimal
acceptance rate to 0.234. In fact, for a multivariate normal target with λ = 0.75, simulations
show that d must be as big as 200, 000 for the optimal acceptance rate to be reasonably
close to 0.234; they also show that for α − λ ≥ 0.5, the asymptotic results are accurate
in relatively small dimensions, just as in the iid case. Detailed examples and simulation
studies illustrating the results introduced in this paper and in [1] are presented in [2].

Appendix

Lemma 12. Let f be a C2 probability density function (pdf). If (log f (x))′ is Lipschitz
continuous, then f ′ (x)→ 0 as x→ ±∞.

Proof. The asymptotic behavior of a C2 pdf as x → ±∞ can be one of three things: (1)
f (x) → 0, f ′ (x) → 0; (2) f (x) → 0, f ′ (x) 9 0; (3) f (x) 9 0, f ′ (x) 9 0. We prove that
in cases (2) and (3), (log f (x))′ is not Lipschitz continuous, which implies that (1) is the
only possible option.

(2) f (x) → 0, f ′ (x) 9 0: Since f → 0, then ∀ε > 0, ∃x0 (ε) ∈ R such that ∀x ≥ x0 (ε),
f (x) < ε. Since f ′ 9 0, then ∀ε > 0, ∃x∗ ≥ x0 (ε) + 1 such that |f ′ (x∗)| > lim sup |f ′| /2.
Because f is C2, then ∀0 < ε < lim sup |f ′| /2, ∃y with |x∗ − y| ≤ 1 such that |f ′ (y)| = ε.
Now, choose y∗ to be the value y which minimizes |x∗ − y|, but such that f (y∗) > f (x∗).
Given 0 < ε < lim sup |f ′| /2, we then have

sup
x,y∈R,x 6=y

∣∣∣f ′(x)f(x) −
f ′(y)
f(y)

∣∣∣
|x− y|

≥

∣∣∣ |f ′(x∗)|f(x∗) −
|f ′(y∗)|
f(y∗)

∣∣∣
1

≥
∣∣∣∣ lim sup |f ′| /2− ε

ε

∣∣∣∣ .
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Since this is true for all 0 < ε < lim sup |f ′| /2, then the Lipschitz continuity assumption is
violated.

(3) f (x) 9 0, f ′ (x) 9 0: Since f is continuous, positive, and
∫
f = 1, then ∀ε > 0,

∃x0 (ε) ∈ R such that f (x) < ε for x ≥ x0 (ε), except on a set Aε of Lebesgue measure
λ (Aε) < ε. Since (−∞, ε) is an open set, then B = {x ∈ R : f (x) < ε} must be open as
well; Aε = Bc ∩ [x0 (ε) ,∞) is then formed of closed intervals over which f (x) ≥ ε.

Since f 9 0, then ∀ε > 0, ∃ an interval [x (ε) , y (ε)] in Aε where the maximum value reached
by f over this interval (h (ε) say) is such that h (ε) > lim sup |f | /2. There might be many
values in the interval for which f (x) = h (ε), but all these values satisfy f ′ (x) = 0. Since
f (x (ε)) = f (y (ε)) = ε, then supx∈R f ′ (x) ≥ h(ε)−ε

y(ε)−x(ε) >
h(ε)−ε
ε . Hence, supx∈R

f ′(x)
f(x) >

h(ε)−ε
εh(ε) and since this is true ∀ε > 0, then supx∈R

f ′(x)
f(x) = ∞. Given ε > 0, we take y to be

one of the points in [x (ε) , y (ε)] such that f (y) = h (ε) and f ′ (y) = 0. We then have

sup
x,y∈R,x 6=y

∣∣∣f ′(x)f(x) −
f ′(y)
f(y)

∣∣∣
|x− y|

≥ sup
x∈R

∣∣∣f ′(x)f(x) − 0
∣∣∣

|x (ε)− y (ε)|
> sup

x∈R

∣∣∣f ′(x)f(x) − 0
∣∣∣

ε
=∞,

and we realize that the Lipschitz continuity assumption is violated. Note that in cases (2)
and (3), we have considered the case where x → ∞; we can repeat a similar reasoning for
the case where x→ −∞.

Proposition 13. Let ε (d,Xj , Yj), j = 1, . . . , n be as in (10). If λj < α, then ε (d,Xj , Yj)→p

0.

Proof. By Taylor’s Theorem, we have for some Uj ∈ (Xj , Yj) or (Yj , Xj)

E [|ε (d,Xj , Yj)|] = E
[∣∣(log f (θj (d)Xj))

′ (Yj −Xj) +
1
2

(log f (θj (d)Xj))
′′ (Yj −Xj)

2 +
1
6

(log f (θj (d)Uj))
′′′ (Yj −Xj)

3

∣∣∣∣] .
Applying changes of variables and using the fact that

∣∣(log f (X))′′
∣∣ and

∣∣(log f (U))′′′
∣∣ are

bounded by a constant, we get for some K > 0

E [|ε (d,Xj , Yj)|] ≤ `
dλj/2

dα/2
KE

[∣∣(log f (X))′
∣∣]+

(
`2
dλj

dα
+ `3

d3λj/2

d3α/2

)
K.

By assumption, E
[∣∣(log f (X))′

∣∣] is bounded by some finite constant. Since λj < α, the pre-
vious expression converges to 0 as d→∞. To complete the proof of the proposition we use
Markov’s inequality and find that for all ε > 0, P (|ε (d,Xj , Yj)| ≥ ε) ≤ E [|ε (d,Xj , Yj)|] /ε→
0 as d→∞.

Proposition 14. Let Ri
(
d,X(d)−

J (i,d)

)
be as in (14), with i ∈ {1, . . . ,m}. We have

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
→p

ER, where ER is as in (6).
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Proof. The expectation of each variable satisfies E
[
Ri

(
d,X(d)−

J (i,d)

)]
= c(J (i,d))

dα
dγi
Kn+i

E
[(

f ′(X)
f(X)

)2
]
.

By independence between the Xj ’s and using the fact that Var (X) ≤ E
[
X2
]
, we obtain

Var

(
m∑
i=1

Ri

(
d,X(d)−

J (i,d)

))
≤

m∑
i=1

1
d2α

d2γi

K2
n+i

c (J (i, d)) E

[(
f ′ (X)
f (X)

)4
]
.

By assumption, E
[(

f ′(X)
f(X)

)4
]

is finite and since c (J (i, d)) d2γi < d2α, the variance converges

to 0 as d→∞. To conclude the proof, we use Chebychev’s inequality and find that ∀ε > 0,
P
(∣∣∣∑m

i=1Ri

(
d,X(d)−

J (i,d)

)
− ER

∣∣∣ ≥ ε) ≤ 1
ε2

Var
(∑m

i=1Ri

(
d,X(d)−

J (i,d)

))
→ 0 as d→∞.
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