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Abstract We introduce a generalized version of the
Metropolis-adjusted Langevin algorithm (MALA). The
informed proposal distribution of this new sampler fea-
tures two tuning parameters: the usual step size param-
eter �2 and an interpolation parameter � that may be
adjusted to accommodate the dimension of the target
distribution. We theoretically study the e�ciency of the
sampler by making use of the local- and global-balance
concepts introduced in Zanella (2020) and provide e�-
cient tuning guidelines that work well with a variety of
target distributions. Although the usual MALA (� = 1)
is shown to be optimal for infinite-dimensional targets,
in practice, the generalized MALA (1 < �  2) remains
the most appealing option, even in high-dimensional
contexts. Simulation studies and numerical experiments
are presented to illustrate our findings. We apply the
new sampler to a Bayesian logistic regression context
and show that its e�ciency compares favourably to
competing algorithms.
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1 Introduction

Statistical models to study real-world phenomena have
been increasing both in terms of complexity and dimen-
sionality. Such models generally produce densities that
cannot be treated analytically; MCMC methods have
thus become a device of choice to obtain samples from
these complicated probability distributions.

The Metropolis–Hastings sampler (Metropolis et al.,
1953; Hastings, 1970) is at the core of the MCMC tool-
box. The idea is to build a Markov process with in-
variant distribution ⇧ on a state space S by proposing
candidates to be included in the process according to
some acceptance probability. Let an initial value X0 for
the process be drawn from an arbitrary distribution µ
and let ⇡ be the d-dimensional target density arising
from ⇧ with respect to Lebesgue measure. Then, at it-
eration t + 1, the Metropolis–Hastings (MH) sampler
generates a candidate Yt+1 = y from a proposal distri-
bution Q(Xt, y) with density q(Xt, y). This candidate
is accepted as the next state Xt+1 of the Markov pro-
cess with probability ↵(Xt, y) = min{1, ⇡(y)q(y,Xt)

⇡(Xt)q(Xt,y)
},

otherwise we set Xt+1 = Xt and the process remains at
the current state for another time interval.

The role of the acceptance probability ↵(x, y) is one
of correction: it makes sure that accepted candidates,
which are generated using the proposal distribution,
can be considered as coming from the target distribu-
tion ⇧. This probability is chosen so as to make the
Markov process time-reversible with respect to ⇧, that
is to satisfy the detailed balance condition

⇡(x)q(x, y)↵(x, y) = ⇡(y)q(y, x)↵(y, x) ,

for all x, y 2 S. For discrete-space Markov chains, this
intuitively means that the probability of moving from
x at time t to y at time t+1 is equal to the probability
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of the reverse move. Conveniently, if a Markov chain
is reversible with respect to ⇧, it implies that ⇧ is
stationary for the chain.

A generic choice of proposal distribution is to draw
candidates from a N (Xt,�2

dId), where Id is the d ⇥

d identity matrix and �d > 0 is a scalar for tuning;
this yields a random walk version of the MH sampler
(RWMH). This simple distribution uses no ⇧-related
information to guide the exploration of the state space
and, in that sense, is thus blinded. For the Markov pro-
cess to rapidly explore its state space S, careful tun-
ing of the Q parameters is required. Optimal tuning
is however not a cure-all for basic proposal designs;
even carefully tuned RWMH samplers sometimes fail,
in practice, to appropriately explore the distribution of
interest. This is often the case with distributions formed
of highly correlated components, for instance.

Seeing as the previous proposal distribution is blind-
ed, we could instead opt for an informed proposal dis-
tribution, one that uses the target⇧ to guide the explo-
ration of the state space. Such distributions propose, on
average, better candidates; the acceptance probability
thus has less correcting to do. In fact, the more informed
is the proposal distribution, the fewer corrections are re-
quired, and the higher is ↵(x, y) under optimal tuning.
Taking this to the extreme, if we were able to sample di-
rectly from ⇧, then we could choose q(x, y) = ⇡(y) and
no correction would be needed as ↵(x, y) = 1. One ex-
ample of an informed proposal distribution is arising in
the Metropolis-adjusted Langevin algorithm (MALA),
where the gradient of the target’s log-density directs
the search of candidates towards regions of high prob-
ability. The MALA is a Metropolis-Hastings algorithm
with proposal distribution

Yt+1 ⇠ N

✓
Xt +

�2
d

2
r log {⇡(Xt)} ,�

2
dId

◆
,

with �d > 0 for tuning.

Under certain regularity conditions on the target
density, it has been proven that optimally tuned ver-
sions of the RWMH accept 23.4% of candidates and
explore their state space in O(d) iterations (Roberts
et al., 1997); similar results for the MALA tell that the
optimal acceptance rate is 57.4% and exploration of S is
achieved in O(d1/3) iterations (Roberts and Rosenthal,
1998). These optimal scaling results are valid asymp-
totically (as the target dimension d " 1) and illustrate
that there are significant e�ciency gains available from
using informed proposal distributions by opposition to
blinded ones. Such benefits are naturally not free, and
may come at prices that are more or less expensive in
terms of computational e↵ort.

The ultimate goal is then to find a proposal den-
sity that requires the less amount of correction possible
from the acceptance function, i.e. a proposal similar to
⇡. Naturally, the only way to omit the acceptance prob-
ability in the detailed balance condition would be to
sample directly from ⇡. This is generally not a viable
option as this density is complicated, from where the
need to turn to samplers such as RWMH and MALA.
Zanella (2020) however expounds a really nice theory
about locally- and globally-balanced proposal distribu-
tions. These concepts may be seen as weaker forms of
reversibility, where the detailed balance condition holds
in limiting cases only (i.e. when �d # 0 or �d " 1). He
also introduces a general class of biased proposal distri-
butions and provides conditions under which it satisfies
the local and global balance conditions.

Although motivated in a discrete-space context, the
theory is also applicable in the continuous case; the
framework is presented in §2. Building on these foun-
dations, we thus combine locally- and globally-balanced
proposal kernels in order to propose, in §3, an annealed
version of the usual MALA that features an extra tun-
ing parameter. Theoretical results about the e�ciency
of this sampler are introduced in §3.1 and §3.2, along
with some tuning guidelines. Significant e�ciency gains
come at no expense (with reference to MALA), as illus-
trated in the simulation studies of §3.3 and §3.4, as well
as in the real data examples of §4.

2 Developing informed proposal kernels

LetQ�(x, ·) be a symmetrical proposal distribution cen-
tered at x, with scaling parameter �. Now, let g : S ⇥

S ! [0,1) be a bounded, continuous function. Zanella
(2020) proposes to use the function g to bias the blinded
kernel Q�; the resulting biased proposal distribution
thus satisfies

Qg,�(x, dy) =
g(x, y)Q�(x, dy)

Zg,�(x)
, 8y 2 S , (1)

where Zg,�(x) =
R
S g(x, z)Q�(x, dz) is a normalizing

constant. When there is no confusion about our choice
of g, we use the lighter notation Z�(x); similarly, when
� is fixed, we use Zg(x).

Interesting choices for g contain some information
about the target density ⇡. For instance, one could
“transfer” the acceptance function of the RWMH into
the proposal kernel by setting g(x, y) = ⇡(y)/⇡(x);
in that case, Qg,�(x, dy) / ⇡(y)Q�(x, dy). Naturally,
if ⇡ is complicated, it might not be easy to obtain
candidates from this distribution, but we worry later
as to how this could be achieved. If we instead se-
lect g(x, y) = 1, we are back to the blinded proposal
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Qg,�(x, dy) = Q�(x, dy). Of interest in thus how to
choose the biasing function g. In particular, could we
find a function g that almost eliminates the need for an
accept/reject step?

2.1 Local and global balances

To completely avoid the accept/reject step in the MH
sampler while simultaneously satisfying the detailed bal-
ance condition ⇡(x)q(x, y) = ⇡(y)q(y, x) for all x, y 2 S,
we need to sample directly from⇧, which seems infeasi-
ble. Since it is impossible to find an alternative proposal
kernel that satisfies the detailed balanced condition by
itself, without any help from the acceptance function,
Zanella (2020) introduces weaker concepts of balance.

Local/global balances Let {Q�}�>0 be a family of tran-
sition kernels. We say that {Q�}�>0 is locally-balanced
with respect to a target ⇧ if, for every Q�, the Markov
process is reversible with respect to a distribution ⇧�

such that ⇧� ! ⇧ weakly as � # 0. Similarly, we say
that {Q�}�>0 is globally-balanced with respect to ⇧ if
instead ⇧� ! ⇧ weakly as � " 1.

These concepts state that reversibility is attained in
limiting cases only, where the algorithm then samples
directly from the target distribution, without a need to
submit candidates to an accept/reject step.

As it turns out, locally-balanced schemes, which be-
come reversible as � # 0, are appropriate in high-dimen-
sional contexts: as d increases, smaller � values are
required to avoid facing an acceptance rate that con-
verges to 0. Globally-balanced schemes, for their part,
are more of a theoretical concept as one never really
requires infinitely large tuning parameters. Nonethe-
less, they should be more appropriate in very small-
dimensional contexts, that is when � is as large as it
may be.

Specifically, let �2
1 be the optimal scaling parame-

ter of the RWMH (or MALA) for sampling from some
one-dimensional target; as higher-dimensional versions
of this target are studied, the optimal �2

d decreases from
�2
1 to eventually �2

1 = 0. This drop may happen more
or less rapidly, depending for instance on the correlation
among target components as d increases. In any case,
�2
d is a decreasing function of d and unidimensional tar-

gets are the closest we can naturally get to the globally-
balanced case. In particular, Roberts et al. (1997) and
Roberts and Rosenthal (1998) show under certain reg-
ularity conditions that scaling parameters should be of
the form �2

d = `2/d and �2
d = `2/d1/3 with ` > 0 for

RWMH and MALA, respectively. Following this line of

reasoning, relying on the right regime (local vs. global)
in a specific d-dimensional context should lead to bet-
ter, more frequently accepted candidates.

2.2 Selecting the balancing function

There remains the problem of actually selecting the
right function g. This function can be quite general,
but we mimic Zanella (2020) and focus on functions
of x, y through the ratio ⇡(y)/⇡(x). To avoid integra-
bility issues, assume g̃ : [0,1) ! [0,1) to be contin-
uous and bounded by some linear function, meaning
that g̃(t)  a + bt for some a, b > 0 and all t � 0.
Under these assumptions, Zanella (2020) derives condi-
tions on g that lead to locally-balanced algorithms. In
his Theorem 1, he shows the local balance condition to
be satisfied if, and only if, g(x, y) = g̃(⇡(y)/⇡(x)), with

g̃

✓
⇡(y)

⇡(x)

◆
=

⇡(y)

⇡(x)
g̃

✓
⇡(x)

⇡(y)

◆
, 8x, y 2 S . (2)

This nicely illustrates the duality between the accep-
tance function and the proposal kernel.

Although Zanella (2020) only briefly addresses the
concept of globally-balanced algorithms, it is not too
di�cult to show that the global balance condition is
satisfied if, and only if,

g(x, y) / ⇡(y) , 8x, y 2 S ;

here, the proportionality only concerns y as the biasing
function is ultimately involved in a proposal distribu-
tion for y. The proof of this result may be found in §A.1
of Appendix A. Intuitively, as � " 1, the blinded kernel
Q� in (1) becomes flat and so to attain reversibility, we
must sample directly from⇧. The proposal distribution
thus satisfies Qg,�(x, dy) / g(x, y)Q�(x, dy) / ⇧(dy)
and the acceptance rate becomes equal to 1 as candi-
dates are automatically included in the sampler.

Although finding practically-implementable globally-
balanced kernels is generally di�cult, in some idealised
sense, such kernels still are desirable from a theoreti-
cal viewpoint. In fact, we can show that the expected
squared jumping distance of the Markov process, which
measures the e�ciency of the sampler in exploring its
state space, remains positive in a globally-balanced con-
text despite an infinitely large tuning parameter �.

Proposition 1 Let ⇡ be a bounded target density such

that E⇡[kXk
2] < 1, where k · k denotes the Euclidean

norm. Suppose that a Metropolis-Hastings algorithm with

a globally-balanced proposal distribution is used to sam-

ple from this target. Let the blinded portion of the pro-

posal density, q�, be such that

⇡(y) > 0 ) q�(x, y) > 0 , 8x 2 S .
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Then,

lim
�!1

E[kXt+1 �Xtk
2] =

lim
�!1

ZZ
ky � xk2qg,�(x, y)↵(x, y)dydx > 0 ,

where qg,� is the density associated to Qg,�.

Proof The proof of this result may be found in §A.2 of
Appendix A or in §3.2 of Boisvert-Beaudry (2019).

While the conclusion of this result is very much in-
tuitive, we outline the fact that neither RWMH nor
MALA achieves as much when � " 1. In both cases,
the acceptance rate simply converges to 0 and so does
the expected squared jumping distance, leaving us with
a dead process. In low-dimensional settings, where we
tend to use relatively large �, globally-balanced pro-
posal kernels are thus expected to be more appropriate,
or closer to optimality, than locally-balanced ones.

2.3 Asymptotic e�ciency of locally-balanced proposals

Having characterized globally- and locally-balanced pro-
posal kernels, it would be useful to understand to which
extent locally-balanced distributions become more e�-
cient than other biased kernels as d " 1. Although
the theoretical results in this section are introduced in
a discrete-space framework, which is more accessible
in terms of exposition, we note that they also hold in
continuous-space settings.

By focusing on a discrete-space framework, Zanella
(2020) introduces some theoretical results for measur-
ing the e�ciency of MCMC samplers and comparing
their convergence properties. These results are based on
the concepts of spectral gap and asymptotic variance of
an arbitrary function h : S ! R (with S discrete). The
asymptotic variance is defined as

Var⇡(h, P ) = lim
N"1

1

N
Var

 
NX

t=1

h(Xt)

!
,

where {Xt; t � 0} is a Markov chain with transition
kernel P started in the stationary distribution ⇧. The
smaller is the asymptotic variance of some function h,
the less correlation there is among MCMC samples and
the more e�cient is the sampler in estimating E⇡[h],
the expectation of h(X) when X ⇠ ⇧. The spectral
gap Gap(P ) = 1 � �2 � 0, where �2 is the second
largest eigenvalue of P , may also be used to compare the
convergence of two samplers; the further from 0 is the
value of the spectral gap, the fastest is the convergence
of the Markov chain.

In his Theorem 2, Zanella (2020) shows that if P1

and P2 are ⇡-reversible Markov transition kernels on

S with P1(x, y) � cP2(x, y) for all x 6= y and a fixed
c > 0, then Gap(P1) � c Gap(P2) and

Var⇡(h, P1) 
1

c
Var⇡(h, P2) +

1� c

c
Var⇡(h) (3)

for all h : S ! R, where Var⇡(h) is the variance of
h(X) when X has density ⇡.

This result says that when the inequality of the ma-
trices holds, then the transition kernel P1 is c times
more e�cient than P2 in terms of asymptotic variance
and spectral gap (the term Var⇡(h) in (3) is usually
much smaller than the other term in that equation). In
particular, the case c = 1 is known as Peskun ordering;
we refer the reader to Peskun (1973) and Tierney (1998)
for more details about Peskun orderings on discrete and
continuous state spaces, respectively.

Now, let cg = sup(x,y)2S{Zg(y)/Zg(x)}, where S =
{(x, y) 2 S ⇥ S : ⇡(x)q(x, y) > 0}, Zg(x) is the nor-
malizing constant in (1), and q(x, y) is the density of
Q�(x, y) for a fixed �. The term cg is the largest pos-
sible ratio of normalizing constants over any two po-
tential consecutive states x and y; by construction, this
ratio is � 1. In its Theorem 3, Zanella (2020) shows
how to asymptotically improve the e�ciency of a MH
sampler that uses a proposal distribution as in (1) with
a biaising function g̃(⇡(y)/⇡(x)). In particular, he de-
fines ĝ(t) = min{g̃(t), tg̃(1/t)} and demonstrates that if
Pg̃ and Pĝ are the MH kernels obtained from the biased
proposal kernels Qg̃ and Qĝ respectively, then

Pĝ(x, y) �
1

cg̃cĝ
Pg̃(x, y) , 8x 6= y .

It turns out that ĝ satisfies ĝ(t) = tĝ(1/t); therefore,
for any biasing function g̃ : [0,1) ! [0,1), there is a
corresponding ĝ that leads to a locally-balanced kernel
Qĝ. Since cg̃, cĝ � 1, Theorems 2 and 3 of Zanella (2020)
do not imply that Pĝ is better than Pg̃. In many cases
however, the term (cg̃cĝ)�1 converges to 1 as d " 1;
when this is true, this means that the locally-balanced
kernel Pĝ is asymptotically optimal in terms of Peskun
ordering. Therefore, as d " 1, Pg̃ cannot significantly
improve over Pĝ in terms of asymptotic variance and
convergence (spectral gap).

Accordingly, locally-balanced proposals produce MH
algorithms that are asymptotically optimal within the
class of proposal distributions (1) with biasing func-
tion g̃(⇡(y)/⇡(x)). We note that ĝ cannot be used to
asymptotically improve on g̃ if the latter already is lo-
cally balanced. Indeed, in that case, tĝ(1/t) = ĝ(t) =
g̃(t) = tg̃(1/t) and Pĝ = Pg̃. In fact, there is generally
no choice of g that Peskun-dominates the others when
restricted to biaising functions satisfying g̃(t) = tg̃(1/t).

Now, let

bg̃ = sup
(x,y)2S

g̃(⇡(y)⇡(x) )/{(
⇡(y)
⇡(x) )g̃(

⇡(x)
⇡(y) )} ,
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with S as before. The term bg̃ � 1 measures how un-
balanced’ is the biasing function g̃: the larger is bg̃, the
more unbalanced is g̃ with respect to g̃(t) = tg̃(1/t);
when bg̃ = 1, then the previous relation is satisfied. In
his Theorem 4, Zanella (2020) shows that Pg̃(x, y) �

Pĝ(x, y)/{cg̃cĝbg̃} for all x 6= y. This means that the
less balanced is a function g̃, the more improvement
we can reasonably expect from relying on a locally-
balanced kernel as d " 1. Furthermore, for a rough
target, the expected improvement from using a locally-
balanced proposal is greater than for a smooth target.

In finite-dimensional settings, we expect conclusions
to be di↵erent from those just outlined. Theorems 2 and
3 of Zanella (2020) claim that ĝ is {cg̃cĝ}�1 times more
e�cient than some biased function g̃. Since cg̃, cĝ � 1,
we believe we can find a biasing function g̃ that o↵ers
better performances than ĝ in small to moderate dimen-
sions, with ĝ eventually becoming more e�cient than g̃
when d is large enough (as cg̃cĝ approaches 1). From
Theorem 4, the extent of the improvement of g̃ over ĝ
will not only depend on the choice of g̃, but also on the
roughness of the target studied.

2.4 Approximating the balancing function

As g typically is a function of the target density ⇡, sam-
pling from the above-mentioned biased proposal kernels
does not seem accessible. We need to resort to approx-
imation schemes to obtain manageable distributions.
Hereafter, we suppose the uninformed kernel Q� to be
the N (x,�2Id) of the RWMH.

In the locally-balanced context, it is relatively easy
to find biasing functions g(x, y) = g̃(⇡(y)/⇡(x)) that
satisfy (2). Using a first-order Taylor approximation to
reexpress the function g in Qg,�, it turns out that at
least two possibilities for the balancing function lead to
the usual MALA sampler, that is

g(x, y) =

⇢
⇡(y)

⇡(x)

�1/2

and g(x, y) =
⇡(y)/⇡(x)

1 + ⇡(y)/⇡(x)
.

Details of the calculations can be found in Appendix
A.3 (the square root balancing function is also discussed
in §5 of Zanella, 2020). This satisfyingly confirms the
e�ciency of MALA in high-dimensional contexts. Natu-
rally, as local balance is only attained in the limit when
� # 0, and since MALA is an approximation to genuine
locally-balanced kernels, then candidates are still sub-
mitted to an accept/reject step before being included
in the process.

In the globally-balanced context, a biasing function
g(x, y) / ⇡(y) is required (/ is with respect to y only).
Since the case � " 1 is purely theoretical and virtually

never arises in practice, we do not elaborate on this
but still inspire ourselves from this balancing function
to propose a general form for g. Let us think of g(x, y) as
a biasing function that minimizes the amount of correc-
tion coming from the acceptance function. For infinitely
small – or large – �, we identified functions g(x, y)
that eliminate the need for such corrections through
the usual accept/reject step. Now for intermediate cases
where 0 < � < 1, such a perfect biasing function
g(x, y) might or might not be available; nevertheless, it
still makes sense to look for a function that minimizes –
or at least diminishes significantly – the amount of cor-
rection required from the acceptance function. Seeing
as g(x, y) / {⇡(y)}1/2 for � # 0 and g(x, y) / {⇡(y)}1

for � " 1, we introduce the generalized biasing func-
tion g(x, y) / {⇡(y)}�/2 with � 2 [1, 2]. Following the
above theory, we expect this kernel to be more appro-
priate than locally- and globally-balanced kernels when
0 < � < 1, which reasonably corresponds to any finite-
dimensional target.

The generalized g leads to the proposal density

qg,�(x, y)dy

/ g(x, y)q�(x, y)dy

/ {⇡(y)}�/2 exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy .

Using a first-order Taylor approximation around x to
develop g(x, y) / {⇡(y)}�/2, we find

{⇡(y)}�/2 ⇡ exp
n�
2
log{⇡(x)}+

�

2
r log{⇡(x)}(y � x)

o
;

the approximated biased proposal density is then

qg,�(x, y)dy

/ exp
n�
2
r log{⇡(x)}(y � x)

o

⇥ exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy

/ exp

(
�

1

2�2

����y � x�
��2

2
r log{⇡(x)}

����
2
)
dy ,

leading to the proposal distribution

Yt+1 ⇠ N

✓
Xt +

��2

2
r log{⇡(Xt)},�

2Id

◆
. (4)

This proposal kernel is very similar to that of MALA,
the only di↵erence consisting in the extra parameter �
in front of the gradient term. Although this might seem
like a minor change, we will realize shortly that this
modification often leads to significant e�ciency gains
with respect to MALA. Naturally, candidates generated
using the above kernel still need to go through an ac-
cept/reject step to preserve the sampler’s reversibility.
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3 The annealed MALA

The generalized kernel introduced above, which is ex-
pected to better accommodate finite-dimensional con-
texts than the usual MALA, leads to a sampler here-
after labeled as ‘MALA with annealed proposals’, or
simply ‘annealed MALA’. In particular, let � 2 [1, 2]
and � > 0; the full density associated to the proposal
distribution in (4) is defined as

q�,�(x, y) = (2⇡�2)�d/2 (5)

⇥ exp

(
�

1

2�2

����y � x�
��2

2
r log{⇡(x)}

����
2
)

,

for y 2 Rd and x 2 S. We can think of � as an interpo-
lation parameter since it makes a connection between
the local and global balancing functions of §2.4. Indeed,
the biasing function g(x, y) / {⇡(y)}�/2 may find itself
closer to the local equilibrium (� = 1), the global one
(� = 2), or anywhere in between. We note that setting
� = 0 leads back to the traditional blinded RWMH
sampler but, in the current context, it seems inappro-
priate to include cases outside of the local-global range
of proposal kernels.

The interpolation parameter � adds to the versa-
tility of the proposal kernel. By imposing � = 1 as in
MALA, for instance, users automatically freeze the rela-
tionship between proposal variance and proposal mean.
By subsequently tuning �, they thus simultaneously set
(1) the variability of candidates around the mean of
the proposal kernel, and (2) the weight in front of the
gradient term, itself part of the proposal mean. There-
fore, as � increases, the variability among candidates
not only increases, but the latter also gravitate around
a point that moves towards high probability regions in
a predetermined fashion. There is however no guaran-
tee that the coveted high-density regions are attained
by the mean (we might require a more aggressive bi-
asing of the gradient), or are not already far behind
(which would call for a smaller factor in front of the
gradient). Indeed, di↵erent targets might require dis-
tinct biasing strategies; this is where the interpolation
parameter makes a di↵erence.

According to the preceding local and global balances
theory, the MALA kernel appears as overly conservative
when it comes to the biasing of its proposal mean. This
is unsurprising as the initial design of MALA originates
from the discretization of a Langevin di↵usion process
which, broadly speaking, corresponds to the limiting
behaviour of infinite-dimensional MH algorithms as � #

0. As hinted by the global biasing function one should
therefore assign more weight to the informed portion
of the proposal kernel (here the gradient term). All else
being equal, smaller-dimensional proposal distributions

should therefore generate candidates that are more bi-
ased than higher-dimensional ones.

Naturally, where augmented versatility comes into
play, a greater attention to tuning is also required. In
addition to finding the optimal � value, one also needs
to select an appropriate value for the interpolation pa-
rameter �. The new proposal distribution thus calls for
some guidance with respect to the tuning of this extra
parameter. Since � is understood to increase with �, we
expect the optimal � to be a decreasing function of the
dimension. Before saying more about the tuning of this
parameter, we first settle the matter of �.

3.1 Tuning the proposal variance

As part of optimizing the performances of the annealed
MALA, we study the tuning of its step size param-
eter �. On the one hand, aggressive candidate steps
(large �2

d) tend to always be rejected and lead to a
process that is frozen, more often than not. On the
other hand, conservative candidates (small �2

d) curb the
process, which then necessitates too many iterations
for travelling across the state space. We thus aim at
striking a balance between sizeable steps and accepted
candidates. For a given proposal distribution, the opti-
mal form of the proposal variance can be expressed as
�2
d = `2/d�0 , with

�0 = min
�c�0

⇢
�c : lim

d!1
E[↵(X,Y )] > 0, 8� 2 [�c,1)

�
.

The scaling �0 therefore leads to the largest possible
�2
d featuring a positive expected acceptance rate for all

d � 1.
It has been mentioned previously that with a tun-

ing parameter of the form �2
d = `2/d1/3 (` > 0), MALA

explores its space in O(d1/3) iterations. This turns out
to be the largest proposal variance, in terms of d, that
ensures a positive expected acceptance rate for all d
for this sampler (�0 = 1/3). This means that when
�0 < 1/3, then �2

d = `2/d�0 goes to 0 too slowly as
d " 1 and leads to candidates that are rejected with
increasing frequency as d grows (the acceptance rate
thus converges towards 0); see Roberts and Rosenthal
(1998). By comparison, RWMH accomplishes its explo-
ration in O(d) iterations at best, that is whenever it
uses a proposal variance satisfying �2

d = `2/d (�0 = 1).
Asymptotically as d " 1, MALA is thus more e�cient
than RWMH as it achieves longer steps than its coun-
terpart, leading to a more timely exploration of S.

Under regularity conditions similar to those men-
tioned in Roberts et al. (1997) and Roberts and Rosen-
thal (1998) for demonstrating the above results about
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RWMH and MALA, we now present theoretical results
that lead to a better understanding of the annealed
MALA. We underline the fact that the theory expound-
ed in this section is obtained in an asymptotic context,
meaning that the conclusions of the theorems intro-
duced are valid for infinite-dimensional target distri-
butions.

Let ⇡ be a target density on Rd, with independent
and identically distributed (i.i.d.) components as fol-
lows

⇡(x) =
dY

i=1

f(xi) =
dY

i=1

exp{l(xi)} ,

where l(x) = log{f(x)}. We impose the following regu-
larity conditions on f : all moments of f are bounded;
l belongs to Cm (the class of continuous, m-time dif-
ferentiable functions) for some m 2 N; l and its first
m derivatives are bounded by a polynomial function,
that is |l(x)|, |l(i)(x)|  M(x) for i = 1, . . . ,m, where
M(x) is a positive polynomial function. We finally as-
sume that l0(x) = (log f(x))0 is a Lipschitz function.

Following the literature on optimal scaling, it is as-
sumed here that the target has a product form, which
is quite an important limitation in practice. Indeed, the
targets we face usually have at least some level of cor-
relation among their components. In a Bayesian sta-
tistical context for instance, the resulting posterior is
more than likely to violate the independence assump-
tion, regardless of how ‘nice’ the initial context might
be. Nonetheless, the available asymptotic results usu-
ally are relatively robust to the form of the target and,
in most cases, are the only available ones on which
to rely anyway. Users should however be aware that,
generally, the stronger is the correlation among target
components, the smaller is the optimal acceptance rate
when based on a proposal with independent compo-
nents (if we can mimic target covariances in the pro-
posal distribution however, then original optimal tun-
ing results typically hold).

Theorem 2 Consider a target distribution ⇧ whose

density satisfies the above conditions with m = 1. Sup-

pose that X0 is distributed according to the stationary

distribution ⇧. Using a Metropolis-Hastings algorithm

with proposal density q�,� as in (5) with � 2 (1, 2], we
find that �0 = 1.

Proof The proof of this result may be found in §B.1 of
Appendix B or in §2.4 of Boisvert-Beaudry (2019).

This result says that for a fixed � 2 (1, 2], the an-
nealed MALA should use a step size parameter of the
form �2

d = `2/d. From Roberts and Rosenthal (1998),
this same parameter should be set to �2

d = `2/d1/3

when � = 1. It is thus natural to realize that MALA,
which is an approximation to the locally-balanced con-
text, is the best option for infinite-dimensional targets
as it explores its space according to O(d1/3). As soon
as one departs from the local context (� = 1) however,
it becomes necessary to generate less variable candi-
dates (�2

d = `2/d) to avoid facing a null acceptance
rate in targets featuring an increasingly large number
of dimensions. This of course results in a lengthier ex-
ploration of the state space, which is achieved in O(d)
iterations.

Naturally, as � # 1, the behaviour of the annealed
MALA sampler should approach that of MALA. So
how can the exploration of S be O(d) for an arbitrarily
small interpolation parameter (� = 1.001 say) while it
is O(d1/3) for � = 1? As it turns out, this discrepancy
is corrected through the optimal value for `2, which be-
comes infinitely large as � # 1.

Theorem 3 Consider a target distribution ⇧ whose

density satisfies the above conditions with m = 8. Sup-
pose that X0 is distributed according to the stationary

distribution ⇧. Using a Metropolis-Hastings algorithm

with proposal density q�,� as in (5) with � 2 (1, 2] and
�2
d = `2/d with ` > 0, we find that the asymptoti-

cally optimal value of ` (as d " 1) is ˆ̀
� = 2.38/{(� �

1)
p

E[{l0(X)}2]}. This gives rise to an asymptotically

optimal acceptance rate of 0.234.

Proof The proof of this result is very similar to that of
other optimal scaling results in the literature. For the
sake of brevity, only the broad lines of this demonstra-
tion are presented in §B.2 of Appendix B.

For someone familiar with the optimal scaling lit-
erature, the first thing that comes to mind probably
is the similarity between the asymptotic behaviours of
RWMH and annealed MALA with � = 2, as both fea-
ture the same ˆ̀. We however emphasize that a sampler
with � = 2 is to be used in very low-dimensional set-
tings only (1 or 2 dimensions); as a consequence, these
asymptotic results cannot be trusted to accurately tune
the sampler. At this point, the finite-dimensional tuning
guidelines in Figure 4 of Roberts and Rosenthal (2001),
which broadly state to accept 45% of candidates in a
one-dimensional RWMH, are likely to be closer to op-
timality than the asymptotic 23.4%.

For a fixed � value and a smooth-enough target with
su�ciently large d, this theorem may appear as a route
towards optimal tuning for the annealed MALA; these
are not, however, the key findings from Theorems 2 and
3. What these theorems do tell us is that ˆ̀� becomes ar-
bitrarily large as � gets closer to 1, which makes up for
the fact that �2

d is scaled by a factor of d. Hence, the
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conclusions of the previous theoretical results should
not be understood as negative for the annealed MALA,
but rather interpreted as a theoretical validation of our
initial intuition from the local and global equilibrium
theory of Zanella (2020): the interpolation parameter �
should decrease in d so as to obtain asymptotic results

that are consistent with those of MALA whenever � ap-

proaches 1. For example, if we let �d = 1 + d�1/3 and
then evaluate �2

d = `2/{(�d � 1)2d}, we find that the
proposal variance behaves according to `2/d1/3, which
is in agreement with the theory of Roberts and Rosen-
thal (1998).

Asymptotics of the annealed MALA Now better equip-
ped to understand the limiting behaviour of the sam-
pler, let �2

d = `2/d1/3 and �d = 1 + d�1/3. For a tar-
get ⇧ whose density satisfies the above conditions with
m = 8 and a Markov process that starts in stationar-
ity, Theorems 1 and 2 of Roberts and Rosenthal (1998)
hold. In particular, the speed at which S is explored
is O(d1/3) and is maximized at the unique value ˆ̀ for
which the annealed MALA accepts 57.4% of candidates.
The proofs are practically identical to those in Roberts
and Rosenthal (1998) and are omitted.

Although based on asymptotic arguments, Roberts and
Rosenthal (1998) observe that their theorems are quite
robust to dimensions, especially for symmetrical target
densities. The picture is not as clear for asymmetri-
cal ones, where optimal acceptance rates are seen to
be closer to 40% in small dimensions. Nonetheless, in
their examples, the 57.4% acceptance rate still leads to
a relative e�ciency in excess of 0.95.

According to our own experiments with the annealed
MALA, adjusting the interpolation parameter as a func-
tion of the dimension does not appear to negatively im-
pact the robustness of the 57.4% acceptance rate. In the
simulation studies of §3.3, the empirical optimal accep-
tance rate will be seen to gravitate around this value
most of the time. With the more complex targets of
§3.4, we observe slightly lower optimal acceptance rates
(mainly between 40% and 50%). This is to be expected
as the assumptions on the form of the target are more
strongly violated; the asymptotic results are therefore
not as well suited to the context studied, which gener-
ally translates into smaller acceptance rates.

Now, if we focus on specific target distributions and
study the optimal acceptance rate across � values (while
d is fixed), we observe some cases where the 57.4% rate
conveniently holds over the whole range � 2 [1, 2]. In
other cases, the optimal rate starts decreasing when � is
too greatly overestimated with respect to d, eventually
reaching an optimal rate of about 40%. Examples of

these behaviours will be presented in §4.2. In the real
data examples of §4, we shall be tuning our annealed
MALA to accept approximately 57% of candidates, so
as to be in accord with the theory exposed.

3.2 Tuning the interpolation parameter

We now turn to the tuning of �d with respect to di-
mension. As d " 1, asymptotic results establish the
optimal combination of parameters to be �0 = 1/3 and
� = 1, with �2

d = `2/d�0 tuned to accept 57.4% of
candidates. In practice however, dimensions never are
infinitely large and while simulation studies suggest the
optimal acceptance rate to be quite robust with respect
to d, this does not provide information about the indi-
vidual tuning of �d and �2

d in finite dimensions. Indeed,
while the regular MALA only has one parameter to ad-
just, the annealed MALA has di↵erent pairs (�d,�2

d)
leading to the same acceptance rate. In that context, it
is thus convenient to propose guidelines for judiciously
selecting the interpolation parameter �d in terms of d.
In fact, it would be interesting to classify dimensions
into distinct regimes that we designate as local (� = 1),
intermediate (1 < � < 2), and global (� = 2).

We have established, both intuitively and formally,
that the interpolation parameter �d has to be a decreas-
ing function of the dimension. In particular, we men-
tioned that a step size �2

d = `2/d1/3 together with an
interpolation �d = 1 + d�1/3 lead to an asymptotically
performant sampler, in the sense that exploring S re-
quires O(d1/3) iterations. Naturally, the speed at which
�d goes to 1 must be su�ciently rapid for the algorithm
to reach the desired asymptotic behaviour. If � = 2 for
instance, this forces us to use the scaling �2

d / d�1,
leading to an exploration in O(d) steps. Conversely, if
the decay is too rapid (the extremal case being � = 1
say), then the usual MALA kicks in early on and we
do not take advantage of what Zanella (2020)’s theory
has to o↵er (i.e. we find ourselves directly in the local
regime even though d is low). We know from the asymp-
totics of the annealed MALA in §3.1 that �2

d / d�1/3 is
the largest proposal variance leading to a positive ex-
pected acceptance rate for all d � 1, when paired to
�d = 1 + d�1/3. Now, what about �d? Does it decrease
from 2 to 1 as slowly as it can, or could we slow its
trajectory further down and still converge to a MALA
as d " 1? To answer this question, let

�d = 1 + d��d , (6)

where �d : N ! R+ is a positive function of the dimen-
sion. The role of �d is similar to that of �0: it regulates
the rate at which �d goes to 1 as d increases. Contrarily
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to the constant �0 however, �d may vary with d; this
allows more flexibility, as called upon by the simulation
results that will be presented in §3.3.

Theorem 4 Consider a target distribution ⇧ whose

density satisfies the conditions of §3.1 with m = 8.
Suppose that X0 is distributed according to the station-

ary distribution ⇧. Using a Metropolis-Hastings algo-

rithm with proposal density q�,� as in (5), where �d is

as in (6) and �2
d = `2/d1/3 with ` > 0, we find that

limd!1 E[↵(X,Y )] > 0 if, and only if, limd!1 �d �

1/3.

Proof The proof of this result may be found in §B.3 of
Appendix B or in §3.3 of Boisvert-Beaudry (2019).

This theorem claims that regardless of the rate at
which �d initially decreases, it must eventually come
close to 1 + d�1/3 in the limit. In setting limd!1 �d =
1/3, we have access to the largest possible biasing of the
proposal mean that still leads to a positive expected
acceptance rate. This behaviour shall be observed in
the numerical examples of §3.3, where �d will be seen
to decrease rapidly initially (up to d ⇡ 35) and slowly
thereafter (approaching 1 + d�1/3).

Finding the optimal form for �d is arduous as the
set of possible functions is vast and the optimal function
likely depends on the target under study. Nevertheless,
it would be convenient to o↵er a range of dimensions
over which the annealed MALA should be preferred to
MALA; in other words, for which d does � > 1 perform
better than � = 1? We propose to numerically study
normal targets and recommend a baseline that could
eventually be applied, if not exactly, at least approxi-
mately to other target distributions. In the next section,
we consider two di↵erent target distributions and study
how the optimal �d evolves as a function of d. As will
soon be seen, MALA is generally outdone by its newer
version with � > 1. In §3.4, we then perform a simi-
lar study on complex targets to better understand the
behaviour of the annealed MALA in presence of strong
correlation and/or multimodality.

3.3 Numerical explorations - Simple targets

We consider two target densities that easily scale ac-
cording to dimension; d-dimensional versions of each
target are then studied, where d ranges from 1 to 1,000.
Of interest is to gain some insight about the optimal
value of the interpolation parameter �d as a function of
d. To this end, we use the average squared jumping dis-
tance (ASJD) of the Markov process as a relative mea-
sure of performance for the sampler, 1

N

PN�1
t=0 kXt+1 �

Xtk
2, with N the number of iterations performed.
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Fig. 1 Bimodal target: max. ASJD against � for d =

1, 5, 50, 100, 300, 500 (left to right)

The first target consists in d independent compo-
nents, each component being a mixture of two normal
distributions such that Xi ⇠ 0.6N (µ, 1) + 0.4N (�µ, 1)
for i = 1, . . . , d with µ = 1. The modes of the mixture
distribution are not too distant, which is important as
MALA-type samplers are not designed to be perfor-
mant on targets featuring isolated modes.

Using an annealed MALA (aMALA) with proposal
as in (5), we obtain samples of size N = 200, 000 from
this target. For a given d, we perform runs using each
combination of the parameter values � 2 {0, 0.05, . . . , 2}
and �2

d = `2/d1/3 with `2 2 {0.1, 0.3, . . . , 12}. For each
�, we then select the proposal variance �2

d that max-
imises the average squared jumping distance and pro-
duce a graph of this maximum distance against �; see
Figure 1. Although aMALA has been defined earlier
with � 2 [1, 2], we still include � 2 [0, 1) in our study;
besides gaining a better understanding of the sampler
for values of � outside the usual range, this also al-
lows comparing its performance with that of RWMH
(� = 0).

The first observation is that below d = 5, the global
regime is to be favoured. Even if �2

d is not approaching
1, this parameter is as large as it may be (by compari-



10 Gabriel Boisvert-Beaudry, Mylène Bédard

son to sampling from higher-dimensional versions of the
same target). The intermediate regime kicks o↵ after
that and at d = 35, the optimal �-value has decreased
to 1.25. The drop becomes slower from there, which
confirms that �d is not constant; for instance, the opti-
mal �-value is 1.15 at d = 100. It is worth noting that
we never enter the local regime: the optimal �-value
remains at 1.1 from d = 300 to 1,000. The annealed
MALA thus seems appropriate even in relatively large
dimensions; performance comparisons with the regular
MALA are presented below. Finally, although di�cult
to see from the graphs, we note that the ASJD remains
positive for all � as d grows: when � = 2, it is around
2.4 for d = 300 and 2.2 for d = 500 (with acceptance
rates in the range 25-30% in both cases). This illustrates
that the asymptotic results of Theorem 3, which state
that the annealed MALA explores S in O(d) iterations
when � is constant (i.e. not d-ajusted), are attained
more rapidly for large � values. In fact, according to
the graphs, the performance of aMALA with � = 2
becomes very similar to that of RWMH as d grows.

The second target distribution studied is aN (0, Ad),
where 0 = (0, . . . , 0)> and Ad = diag(⌧1, . . . , ⌧d) with
⌧i ⇠ Unif(0.5, 2), i = 1, . . . , d. The d target compo-
nents are thus independent, with uniformly distributed
individual variances. Figure 2 presents the results ob-
tained from the same experiment as before. This time,
the global regime is valid for a few dimensions only
and at d = 5, we comfortably find ourselves in the in-
termediate regime (� = 1.85). By the time we reach
d = 35, the optimal � is 1.35 (by opposition to 1.25
for the previous target). Once again, the optimal value
for the interpolation parameter decreases much more
rapidly in small dimensions than it does in higher ones.
The optimal value is 1.2 at 300, then drops to 1.15 at
d = 500 and remains there until at least d = 1, 000.

The optimal � values are not exactly the same in
both examples, but their decline rates appear to follow
a similar pattern. We also note that the local regime has
yet to be attained in either case. In the bimodal con-
text, a quick calculation using �d shows that �d exceeds
1/3 from d = 25, and then slowly decreases towards
1/3 as d ! 1. The normal target studied in the sec-
ond example does not meet the requirements imposed
by Theorem 4, as its components are not i.i.d; in that
example, �d approaches 1/3 from below as d grows.
In both cases, �d is not constant; it initially increases
rapidly (corresponding to a rapid decay of �d up to
d ⇡ 35), then slowly approaches 1/3 (either from above
or below). Interestingly, a rule of thumb for �d seems to
emerge from our numerical explorations; these investi-
gations, which included asymmetrical targets (such as
the above-mentioned mixture of normals) and weakly
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Fig. 2 Normal target: max. ASJD against � for d =

1, 5, 50, 100, 300, 500 (left to right)
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correlated ones, revealed that the empirical �d are fairly
well approximated by �⇤

d = min(
p
d/100, 1/3). Figure

3 illustrates the relationship between d and �d for the
examples discussed above and presents the approxima-
tion �⇤

d = 1 + d�min(
p
d/10,1/3) as a function of d.

Knowing that the annealed MALA leads to an im-
proved exploration of S by comparison to the usual one,
it is now worth wondering if the promised benefits are
worth tuning an extra parameter. Table 1 presents the
e�ciency gains that are available from introducing an
interpolation parameter �, for both targets previously
studied. The improvement with respect to MALA, mea-
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sured in percentage, is defined as

% improvement =
ASJD�opt �ASJD�=1

ASJD�=1
⇥ 100% .

The table also records, for each d, the empirical ac-
ceptance rates that correspond to the maximum ASJD
obtained.

The main feature emerging from Table 1 is that the
benefit from implementing an annealed MALA does
not necessarily vanish as � gets closer to 1; on the
contrary, it seems to become more significant as d in-
creases. For the normal target, this improvement is over
50% from d = 100. For the mixture target, it increases
from 15% to 25% as the dimensions go from 100 to
1,000. These e�ciency gains, which are available at no
additional computational cost, are thus present across
all d but are not necessarily proportional to �d. This
is not overly surprising as in the limit, the sampler
behaves according to a di↵usion process with speed
measure �(`, � = 1); the optimal tuning ˆ̀ is there-
fore the value that maximizes the speed �(`). If we
make the dependence on � = 1 explicit, the speed mea-
sure satisfies �(`) = 2`2�(�`3K/2), with K = (3�/2�
1){E[3l000(X)2�3�2l00(X)3]/12}1/2. Now imagining that
� could vary in that equation, and that ` would then be
adjusted so as to optimize the speed measure, it is easy
to see that the impact on �(`) would not be linear; sim-
ilar outcomes are then expected in finite dimensions.
As prescribed by the theory, these gains will eventually
decrease towards 0 as d continues to grow but in prac-
tice, the point where MALA becomes optimal has not
been reached.

Another particularity of Table 1 is that the empiri-
cal acceptance rates recorded are over 80% for the pair
(d = 1, � = 2). Since a high proportion of candidates
are being accepted, this indicates that the large � has
to be balanced by a relatively small step size �. As �
simultaneously a↵ects the proposal variance and bias,
this then leads to a moderate benefit in terms of ASJD
(compared to larger d). As d grows, acceptance rates are
seen to decrease slightly and then rise again to stabilize
around 57%. For the normal target, rates vary between
52% and 67% for d ranging from 5 to 1,000. For the
bimodal target there is more instability for 5  d  35,
but after that rates fluctuate between 50% and 56%.
Overall, a rate of 57% appears as the safest tuning
choice for d � 5, while one could a↵ord to be more
aggressive with very low-dimensional targets (d < 5).

3.4 Numerical explorations - Complex targets

The standard MALA has some documented issues when
it comes to exploring strongly anisotropic target dis-

tributions. Naturally, we do not expect the annealed
MALA to o↵er a miraculous solution where MALA
struggles or fails. Nevertheless, it is of interest to study
the behaviour of our sampler in various contexts, and
to understand which � to favour with such targets.

In cases where ⇡ has strongly correlated compo-
nents, which is one way anisotropy may arise, MALA is
known to require a very small tuning parameter �2. In-
deed, using the gradient of the log-target to bias our tra-
jectory independently in each direction might be mis-
leading; a small �2 thus compensates for the fact that
we overlook correlation among target components.

In a similar fashion, we do not expect the annealed
MALA, in its actual expression at least, to do much
better than MALA. The annealed MALA proposes can-
didates that feature a stronger bias than its version
with � = 1, hence we expect even smaller values of
�2 to be required. In correlated contexts, the annealed
MALA with � 2 (0, 1) might even perform better than
� 2 [1, 2]; indeed, small � still guide the direction of
the next candidate, which is better than going blindly,
but without being too aggressive in a given direction.
While this is, in part, what we will observe in the first
example below, we will also realize that performances
for all � 2 [0, 2] are rather weak.

It turns out that the first-order approximation of the
biasing function g in §2.4 is not precise enough to cap-
ture the characteristics of complex targets. To overcome
this problem, we simply approximate g using a second-
order Taylor expansion; this of course implies compro-
mising on the simplicity of the proposal distribution,
but appears necessary for an e�cient exploration of
the state space. Developing g(x, y) / {⇡(y)}�/2 with
respect to y and around x leads to

{⇡(y)}�/2 ⇡ exp
n�
2
log ⇡(x) +

�

2
r log ⇡(x)(y � x)

+
�

4
r

2 log ⇡(x)(y � x)2
o

.

The approximated biased proposal density then becomes

qg,�(x, y)dy

/ exp
n�
2
r log ⇡(x)(y � x) +

�

4
r

2 log ⇡(x)(y � x)2
o

⇥ exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy

/ exp

(
�

1

2�2

✓
y � x�

��2

2
A(x)r log{⇡(x)}

◆>

A�1(x)

✓
y � x�

��2

2
A(x)r log{⇡(x)}

◆�
dy ,

with A(x) = {Id � ��2
r

2 log ⇡(x)/2}�1. The result-
ing proposal distribution is thus a position-dependent
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Bimodal target Normal target

d �opt % improv. Acc. rate (%) �opt % improv. Acc. rate (%)

1 2 11.39 80.96 2 28.66 86.80

5 1.95 25.09 54.28 1.85 27.10 66.90

15 1.65 20.18 34.66 1.45 26.33 60.99

25 1.3 13.07 41.29 1.4 34.20 52.17

35 1.25 12.66 47.78 1.35 33.63 59.96

50 1.2 14.08 50.48 1.35 40.13 58.77

100 1.15 15.29 55.76 1.3 49.71 61.83

300 1.1 18.06 55.34 1.2 63.88 58.75

500 1.1 18.95 54.81 1.15 67.06 61.64

700 1.1 22.52 54.50 1.15 72.88 60.35

1000 1.1 25.04 53.45 1.15 72.39 54.47

Table 1 Simple targets: % improvement in terms of ASJD, annealed MALA vs usual MALA

conditioned annealed MALA

Yt+1 ⇠ N

✓
Xt +

��2

2
A(x)r log{⇡(Xt)},�

2A(x)

◆
,

where A(x) is a conditioning matrix that depends on
the current state of the process. When � = 1, this sam-
pler is a special case of the manifold MALA of Girolami
and Calderhead (2011).

The role of the conditioning matrix A(x) consists in
capturing the target correlation structure. Upon exam-
ination, A�1(x) involves a multiple of �r

2 log ⇡(x), to
which we add the identity matrix Id. In this version of
the sampler, the term ��2/2 is then responsible for cal-
ibrating the weight of the negative Hessian matrix (of
the log target density) so as to obtain a positive definite
matrix A(x). With log-concave target densities, this
characteristic is automatically satisfied and it is there-
fore preferable to simply let A�1(x) = �r

2 log ⇡(x).
In other cases however, the identity matrix is not only
required, but might even be largely predominant to en-
sure that the conditioning matrix is positive definite
for every x 2 S. When this happens, the resulting sam-
pler compares to the aMALA with independent com-
ponents, obtained using a first-order Taylor expansion
of g(x, y) / {⇡(y)}�/2. In absence of log-concavity, it
is thus more appropriate to use a positive-definite ap-
proximation of �r

2 log ⇡(x) for A�1(x).
Given that A(x) succeeds in capturing the target

correlation structure reasonably well, we expect this
conditioned annealed MALA to behave as before, that
is to favour large � in small dimensions and values closer
to 1 in large dimensions. To illustrate this, consider a
d-dimensional hierarchical target with X1 ⇠ N (0, 1),
X2 ⇠ � (3, 1), and Xi|X1:2 ⇠ t7(X1, 1/

p
X2) for i =

3, . . . , d; the density of a generalized Student-t⌫(µ, ⌘) is
proportional to [1+ {(x�µ)/⌘}2/⌫]�(⌫+1)/2. The com-
ponents X1, X2 respectively act through the location
and scale of the variables Xi while the Student distribu-
tion destroys conjugacy and, along with it, any niceness

that could result from working exclusively with normal
distributions.

We perform a simulation study similar to that of
§3.3. We run N = 200, 000 iterations of an annealed
MALA with proposal as in (4) for various combinations
of d, �2

d, and � 2 [0, 2]. For each d, we record the values
of � and �2

d that maximize the standardized ASJD. The
latter is similar to the ASJD, but is more appropriate
for anisotropic target distributions and is defined as

stand. ASJD =
1

N

NX

j=1

dX

i=1

1

!2
i

(Xi,t+1 �Xi,t)
2 ;

!2
i is the marginal variance of the ith target component.
Due to the strong correlation between target compo-

nents, isotropic versions of the annealed MALA (includ-
ing RWMH and MALA) do not succeed in e�ciently
exploring the space. Table 2 reports the maximum stan-
dardized ASJD and corresponding acceptance rate ob-
tained for a selection of dimensions. Because the sam-
pler ignores correlation, it has to be much more conser-
vative in its biasing of the proposal mean when d < 20;
consequently, � 2 (0, 1) o↵er better performances than
� 2 [1, 2] in small dimensions. As d grows however, we
find ourselves forced to propose increasingly conserva-
tive moves to keep the acceptance rate from going to 0
(�2

d is decreasing in d); candidates then become conser-
vative to a point where the correlation structure does
not matter anymore and it becomes preferable to set �
closer to 2.

Admittedly however, none of the above isotropic
samplers o↵ers a convincing performance and it ap-
pears necessary to implement a conditioned version of
the annealed MALA. Since the t distribution is not
log-concave, �r

2 log ⇡(x) is not positive definite ev-
erywhere; we instead use the conditioning matrix A
with A�1 = �E[r2 log ⇡(X)], where the expectation is
with respect to ⇡. We could alternatively use a position-
dependent conditioning matrixA(x1:2) withA�1(x1:2) =
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Fig. 4 Hierarchical target: max. standardized ASJD against

� for d = 3, 12, 52, 102 (left to right)

�E[r log ⇡(x1:2, X3:d)], where the expectation is with
respect to the conditional distribution of X3:d|x1:2, but
we opt for the former. With the matrix A, the results
reported in Table 2 and the graphs in Figure 4 are very
similar to those obtained in §3.3; in particular, relying
on �⇤

d (2nd column of Table 2) would yield results that
are extremely close to optimal.

The case of multimodal target distributions has its
own particularities. In order to isolate these special fea-
tures from the e↵ects of correlation, we first consider
a bimodal target with independent components, X ⇠

pt⌫(µ, Id) + (1 � p)t⌫(�µ, Id), with µ = (µ1, 0, . . . , 0)
and µ1 > 0. The gradient of the target log-density,

r log ⇡(xt)

= p⇤(xt)r log ⇡1(xt) + {1� p⇤(xt)}r log ⇡2(xt) ,

consists in a weighted average of the distinct gradients
with weight function p⇤(xt) = p⇡1(xt)/{p⇡1(xt) + (1�
p)⇡2(xt)}; here, ⇡1 and ⇡2 implicitly represent the Stu-
dent densities involved in the mixture.

Suppose temporarily that d = 1, ⌫ = 7, p = 0.5, and
µ1 = 2; the resulting one-dimensional target is sym-
metrical about 0, with distinct modes at 2 and �2, re-
spectively. When the process is in the target’s left tail,
r log ⇡ ⇡ r log ⇡2 pulls the process up the left mode,
towards the center of the distribution (and similarly for
the right tail). When the process is anywhere between
the modes however, r log ⇡1 and r log ⇡2 pull in dif-
ferent directions, resulting in a weaker bias than with
unimodal distributions. Therefore, while a large value
of � definitely is desirable in the tails, the approach to
favour is not as clear when the process is located be-
tween modes; in particular, should we opt for a strong

biasing of the proposal mean (large �) or simply trust
a comparatively larger proposal variance (small �) to
readily explore the state space?

It turns out that both approaches have their own
merits. If we fix p = 0.5, d = 1, and let µ1 increase
from 0 to 15, we find that � = 2 leads to an optimal
version of the annealed MALA in terms of ASJD, as
expected. As the modes get farther away however, the
e�ciency curve (ASJD vs. �, not included) becomes
flat at the top, depicting a plateau that widens with
the distance between modes, and indicating that several
� yield similar performances. When the modes become
too distant, the plateau eventually narrows again and it
becomes preferable to rely on � = 2 only. In that case,
relying on a large bias directed towards the alternate
(distant) mode is a safer bet than trusting the variance
to achieve a mode change. We however note that the
associated acceptance rate becomes very small, which
indicates that a specialized, regional sampler might be
more appropriate with distant modes.

Now, as the dimension d increases, we have to make
sure that both modes are visited, regardless of the dis-
tance between them. For an appropriate exploration
of the state space, we precondition according to the
marginal variances ( ⌫

⌫�2+µ2
1,

⌫
⌫�2 , . . . ,

⌫
⌫�2 ). As d grows,

the plateau previously observed gradually vanishes since
the bimodal component then represents only one of sev-
eral other components in the standardized ASJD; this
also holds for various weights p.

Now, let us rotate our initial bimodal distribution:
we use µ = (µ1, . . . , µ1)/

p
d, leading to a constant dis-

tance between modes for all d. This is the same target as
before, but positioned di↵erently on the sample space.
One notable implication of this transformation is that
it yields a target with correlated components; the co-

variance matrix consists in ⌫
⌫�2 + µ2

1
d on the diagonal

and µ2
1
d o↵ the diagonal. Using an approximation A to

this covariance matrix in the preconditioned annealed
MALA obviously leads to results that are consistent
with those just described in the independent case.

We pursue our study using a more general target,

X ⇠ pt⌫(µ,⌃1) + (1� p)t⌫(�µ,⌃2) ,

where µ = (µ1, 0, . . . , 0) and µ1 > 0. We fix p = 0.5,
⌫ = 7, µ1 = 1.5, ⌃1 = diag(1, 2, 1, . . . , 2), and sim-
ilarly ⌃2 = diag(2, 1, 2, . . . , 1). In two dimensions for
instance, the Student distributions are spread out in
directions that are orthogonal to each other (T shape).
To obtain a decent performance on such a complex tar-
get, we use a preconditioning matrix A; since the neg-
ative Hessian of the log target is not positive definite
everywhere, we simply use A with A�1 = p⇤(xt)⌃

�1
1 +
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Isotropic aMALA Preconditioned aMALA

d �⇤
d �opt stand. ASJD % improv. Acc. rate (%) �opt stand. ASJD % improv. Acc. rate (%)

3 1.83 0.70 1.13 5.39 44.91 1.90 2.96 18.79 58.33

12 1.44 0.25 0.58 46.08 14.87 1.45 7.05 22.18 46.92

27 1.33 1.60 0.98 61.96 26.76 1.30 12.34 23.65 43.75

52 1.28 2.00 1.27 94.93 59.69 1.30 19.85 26.19 39.71

102 1.21 1.70 1.17 82.55 45.44 1.20 32.20 34.00 44.46

502 1.13 1.90 0.68 54.69 66.57 1.10 109.93 38.10 40.05

Table 2 Hierarchical target: optimal performances of isotropic and preconditioned annealed MALA, per dimension d, when

� 2 [0, 2]. We record the improvement, in terms of standardized ASJD, of optimal annealed MALA vs usual MALA (� = 1)

Preconditioned aMALA with �⇤
d Preconditioned aMALA with �opt

d �⇤
d stand. ASJD % improv. Acc. rate (%) �opt stand. ASJD % improv. Acc. rate (%)

2 1.91 2.23 4.64 45.87 2.00 2.26 5.72 48.61

10 1.48 7.80 25.69 45.34 1.70 7.88 26.98 44.00

25 1.34 13.53 35.57 56.87 1.50 14.18 42.13 49.99

50 1.27 10.69 19.95 73.04 1.20 11.09 24.41 76.94

100 1.22 6.31 24.54 74.74 1.20 6.31 24.54 74.74

200 1.17 3.67 21.67 85.37 1.15 3.67 21.67 85.37

Table 3 Bimodal target: performances of preconditioned annealed MALA, per dimension d, when using �⇤
d and �opt, respec-

tively. We record the improvement, in terms of standardized ASJD, of the annealed MALA vs usual MALA (� = 1)

{1 � p⇤(xt)}⌃
�1
2 . Table 3 presents e�ciency gains, for

various dimensions d, obtained using the approximation
�⇤
d and the optimal �opt. In both cases, we record the

standardized ASJD, the % improvement over MALA
(� = 1), and the corresponding % of accepted candi-
dates (note that results corresponding to a rounded ver-
sion of �⇤

d – to the nearest 0.05 – are reported). These
numbers were obtained by running N = 200, 000 it-
erations of the annealed MALA on a range of values
for �2

d; �opt is the value that corresponds to the largest
standardized ASJD in a given dimension.

In two dimensions, we observe the same phenomenon
as for the simpler bimodal target: since the distance
between modes is considerable, then � 2 (1.3, 2) lead
to similar performances (within 2% of optimal perfor-
mance) and the improvement over � = 1 is not as size-
able as with unimodal targets. From Table 3, we also
see that the progression of �opt is not as close to �⇤

d as
before. Nonetheless, since several � o↵er similar perfor-
mances, the rule �⇤

d still yields almost optimal results.
As d grows, these particularities gradually vanish and
the usual behaviour prevails.

Because of the high complexity of this specific tar-
get, the performance does not hold very well in larger
dimensions (the standardized ASJD suddenly starts de-
creasing). In spite of this, the rule �⇤

d is still worth im-
plementing as it o↵ers improvements in the 5%-40%
range. When d grows, the opposing target variances
in each mode make it laborious for the MALA and
aMALA to explore the space. In fact, for the process to

move around in the multidimensional space, it becomes
necessary to propose steps that are small to the point
where they are almost all accepted; this yields unusually
large acceptance rates, which indicate that a di↵erent,
more specialized sampler might be more appropriate for
high-dimensional versions of this target.

By repeating the same exercice as before and rotat-
ing this distribution (µ = (µ1, . . . , µ1)/

p
d), we obtain

a target with opposing correlation structures in each
mode. Using a preconditioning matrix A with A�1 =
p⇤(xt)⌃̂

�1
1 + {1�p⇤(xt)}⌃̂

�1
2 , where ⌃̂�1

1 and ⌃̂�1
2 are

estimates of ⌃�1
1 and ⌃�1

2 , obviously leads to results
that are consistent with those just discussed.

4 Bayesian logistic regression

We now explore the performance of the annealed MALA
using di↵erent e�ciency criteria and real datasets in
the context of Bayesian logistic regression. We consider
an n ⇥ d design matrix X that contains, for each of
the n subjects, information about d explanatory vari-
ables (including an intercept for the model). Associ-
ated to these variables are d regression coe�cients � =
(�0,�1, . . . ,�d�1) and a response vector t 2 {0, 1}n

containing n binary variables that indicate whether an
event of interest has happened or not. Of interest is to
determine

pi = P(ti = 1|�) =
1

1 + exp{�Xi�}
,
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Name n d
Response

variable

Pima Indian 532 8 Diabetes (yes/no)

German Credit 1000 25 Credit (good/bad)

Australian Credit 690 15 Credit (approved/refused)

Heart 270 14 Heart disease (yes/no)

Table 4 Details about datasets: Bayesian logistic regression

the probability that the event happens given Xi, the
explanatory variables observed for the i-th subject. To
estimate the regression parameter �, we use a Bayesian
approach; the likelihood function satisfies f(t|�) =Qn

i=1 p
ti
i (1�pi)1�ti and the prior distribution is chosen

to be vague, �j ⇠ N (0, 100), j = 0, . . . , d� 1. We sam-
ple from the posterior distribution of � using MCMC
and then estimate the regression coe�cients using the
output.

We analyze the four datasets presented in Table 4
and studied in Girolami and Calderhead (2011). These
datasets o↵er various challenges: the dimension of �
varies between 8 and 25, while n goes from 270 to 1,000.
Since d is relatively small in all four cases, an annealed
MALA with � > 1 seems particularly appropriate. To
avoid numerical issues, all variables have been stan-
dardized. We refer the interested reader to Michie et al.
(1994) and Ripley and Hjort (1996) for more informa-
tion about these datasets and the context in which the
observations have been collected.

4.1 Simulation results

For each dataset, samples from the posterior distribu-
tion ⇡(�|t) are obtained using RWMH (� = 0), MALA
(� = 1), and annealed MALA with � = 0.3, 0.6, 1.2, 1.4,
1.6, 1.8, 2; although � should be in the range [1, 2], we
include some � values in (0, 1) in order to validate our
theoretical results. We also provide results based on the
approximation �⇤

d = 1 + d�min(
p
d/10,1/3). In all cases,

the proposal variance �2 is tuned so as to approach an
average acceptance rate of 23% for the RWMH and 57%
for the MALA and annealed MALA. These asymptot-
ically optimal rates are our best option given their ro-
bustness to dimension and the lack of tuning guidelines
for low-dimensional target distributions.

As was done in Girolami and Calderhead (2011),
we perform 10,000 iterations and discard the first 5,000
as burn-in. Samplers’ performance is measured using
the ASJD and the e↵ective sample size (ESS). For each
target component Xi, the latter is computed as ESSi =
N/{1 + 2

P
k ⇢k}, where N is the number of iterations

and
P

k ⇢k is the sum of the K monotone sample au-

tocorrelations as estimated by the initial monotone se-
quence estimator of Geyer (1992); we then report the
median of ESSi. The ESS may be interpreted as the
size of an i.i.d. sample that contains as much informa-
tion as the current correlated sample; we thus wish to
maximize this value. We also record running times in
seconds, and report Time/ASJD.

Tables 5 to 8 compile the performance results of
the various samplers implemented, for each of the four
datasets. Unsurprisingly, RWMH has the lowest per-
iteration cost; MALA and its annealed version require
up to twice as long to complete the same number of
iterations. In all cases, the RWMH performance is how-
ever rather weak, whether it be according to ASJD or
ESS, and so MALA ends up being more e�cient when
accounting for computational e↵ort. In particular, the
optimal � values are significantly greater than 1 for all
datasets and the benefits that are available from imple-
menting the annealed MALA over the usual one range
from 13% (Pima Indian, d = 8) to 30% (Australian
Credit, d = 15). As it turns out, using �⇤

d yields the
highest ASJD in 2 cases out of 4 and the highest ESS
in 3 cases out of 4. Even when �⇤

d is not optimal among
the values implemented, the ASJD it produces is always
at least 98.5% of the highest ASJD reported.

In all four cases, selecting � < 1 leads to significant
losses in terms of ASJD and ESS compared to using a
regular MALA, which is in agreement with the theory
previously developed. While overestimating � might not
be as dramatic and might still produce e�ciency gains,
overdoing it could also lead to an underperforming sam-
pler compared to MALA. In the examples analyzed,
setting � = 2 produces a small loss in two cases (Pima
Indian and Heart), while setting � = 1.8 or 2 leads to
more substantial losses in the highest dimensional case
(German Credit, d = 25). Similar conclusions hold for
the ESS and we note that the latter decreases more
rapidly than the ASJD.

In general, when � is too large with respect to d, the
biasing term ��2

r log{⇡(x)}/2 of the proposal distri-
bution is too aggressive and candidates find themselves
in regions of low target density. Since these candidates
are likely to be rejected, the proposal variance �2 needs
to be reduced so as to lower the weight in front of the
gradient and maintain an acceptance rate of 57%. This
naturally results in small, highly-correlated steps, and
therefore small ASJD/ESS. In such cases, if we settle
on an acceptance rate smaller than the usual 57% (so
a larger �), then conclusions are di↵erent. In the Ger-
man Credit example, setting � = 1.8 and tuning �2

so as to obtain an acceptance rate of 42% leads to an
ASJD greater than MALA (0.08293 against 0.08049).
Therefore, where there is a risk of overestimating � too
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Algorithm ASJD Time (sec) Time/ASJD ESS % improvement

RWM 0.01762 2.29 130.10 134.65 -78.95

(� = 0.3) 0.02125 4.05 190.58 156.17 -74.96

(� = 0.6) 0.04593 4.06 88.37 338.77 -45.87

MALA 0.08373 4.05 48.39 619.32 0

(� = 1.2) 0.09214 4.04 43.95 653.42 10.04

(� = 1.4) 0.09492 4.03 42.47 658.30 13.35
(� = 1.56) 0.09356 4.07 43.50 631.76 11.74

(� = 1.6) 0.09239 4.05 43.84 625.81 10.34

(� = 1.8) 0.08793 4.05 46.10 554.44 5.01

(� = 2) 0.07902 4.05 51.26 422.82 -5.62

Table 5 Results for the Pima Indian dataset (n = 532, d = 8)

Algorithm ASJD Time (sec) Time/ASJD ESS % improvement

RWM 0.00920 6.53 709.51 44.61 -88.56

(� = 0.3) 0.00979 12.26 1252.77 52.66 -87.83

(� = 0.6) 0.02837 12.24 431.62 139.97 -64.74

MALA 0.08049 11.20 148.20 365.76 0

(� = 1.2) 0.09662 12.18 126.09 415.36 19.89

(� = 1.34) 0.10015 12.20 121.82 425.57 24.42
(� = 1.4) 0.09932 12.13 122.22 424.15 23.24

(� = 1.6) 0.09112 12.69 139.35 373.59 13.21

(� = 1.8) 0.01045 12.22 1169.68 53.91 -87.02

(� = 2) 0.00621 12.09 1946.92 35.44 -92.28

Table 6 Results for the German Credit dataset (n = 1000, d = 25)

Algorithm ASJD Time (sec) Time/ASJD ESS % improvement

RWM 0.02470 3.94 159.38 98.80 -85.71

(� = 0.3) 0.02735 6.67 243.88 103.30 -84.36

(� = 0.6) 0.06958 6.58 94.69 247.27 -60.22

MALA 0.17288 6.44 37.27 621.18 0

(� = 1.2) 0.20736 6.55 31.59 706.92 19.94

(� = 1.4) 0.22228 7.17 32.26 761.92 28.57

(� = 1.42) 0.22269 6.83 29.22 765.05 28.81

(� = 1.6) 0.22459 6.53 29.09 724.38 29.91
(� = 1.8) 0.21364 6.68 31.28 659.24 23.57

(� = 2) 0.18624 6.59 35.43 481.16 7.72

Table 7 Results for the Australian Credit dataset (n = 690, d = 15)

greatly, lower acceptance rates (around 40%) seem more
appropriate.

4.2 The impact of �2

In light of the previous examples, it seems pertinent to
examine in more depth the impact of �2 on the per-
formance of the sampler. We saw that greatly overes-
timating � sometimes leads to an algorithm that does
not perform as well as MALA. Could this be explained
by the fact that �2 was tuned so as to favour the latter?
We remind readers that the 57% acceptance rate tar-
geted arises from asymptotic results and is thus more
likely to be appropriate when � is small.

We focus on the Pima Indian and German Credit
datasets, as those cases su↵ered e�ciency losses under

large �. For each of these examples, we fix � and run
the annealed MALA with several �2 so as to cover a
range of acceptance rates going from 0 to 1. For each
�, we present a graph of ASJD against acceptance rate;
we note that small �2 correspond to high acceptance
rates and vice versa. Figure 5 reports graphs related to
Pima Indian, while Figure 6 presents those of German
Credit.

In the case of Pima Indian (d = 8), the optimal ac-
ceptance rate is approximately 57% for � = 1, which
supports the previous claim about robustness of the-
oretical results for finite-dimensional targets. As � in-
creases, the optimal acceptance rate does as well, find-
ing itself around 62% for � = 1.2 and 70% for � = 1.4.
The optimal acceptance rate then starts decreasing; it
is close to 57% for � = 1.6, 1.8, and then lowers to about
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Algorithm ASJD Time (sec) Time/ASJD ESS % improvement

RWM 0.05264 1.71 32.52 93.06 -85.94

(� = 0.3) 0.06272 3.04 48.50 101.88 -83.16

(� = 0.6) 0.15287 3.07 20.10 231.57 -58.95

MALA 0.37430 3.01 8.04 577.14 0

(� = 1.2) 0.43199 2.99 6.92 626.22 14.97

(� = 1.4) 0.45584 2.98 6.54 646.74 21.79

(� = 1.41) 0.45613 3.05 6.68 677.27 21.86
(� = 1.6) 0.44876 3.02 6.73 586.91 19.89

(� = 1.8) 0.41554 3.10 7.45 481.08 11.02

(� = 2) 0.35810 3.05 8.53 395.54 -4.33

Table 8 Results for the Heart dataset (n = 270, d = 14)

Fig. 5 ASJD vs acc. rate for � = 1, 1.2, 1.4, 1.6, 1.8, 2 (left to

right), Pima Indian

50% when � = 2. The graphs confirm that the optimal �
lies around 1.4, since the maximum ASDJ when � = 1.4
is the highest among all curves. Optimally tuned ver-
sions of the annealed MALA with � = 1 or 2 o↵er sim-
ilar performances, with a slight edge for the traditional
MALA. The shape of the curves is also evolving: they
become steeper as � increases, which indicates that si-
multaneously overestimating the interpolation param-
eter and the acceptance rate is risky in terms of e�-
ciency. Nonetheless, e�ciency curves remain fairly flat
at the maximum in this 8-dimensional example, so tun-

Fig. 6 ASJD vs acc. rate for � = 1, 1.2, 1.4, 1.6, 1.8, 2 (left to

right), German credit

ing the sampler to accept 57% of candidates leads to an
almost optimal sampler, independently of �.

In the German credit example, the optimal accep-
tance rate is close to 57% from � = 1 to 1.6, falls slightly
below 50% for � = 1.8, and then further down to 40%
for � = 2. In Figure 6, we also observe that the annealed
MALA with � = 1.4 o↵ers an e�ciency gain of about
25% compared to MALA. This benefit however gets
smaller as � increases, almost vanishing around � = 1.8
and then becoming a 10% loss when � = 2. The sam-
pler also becomes more sensitive to the choice of �2 as �
grows; in particular, several �2 lead to a common accep-
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tance rate but widely di↵erent ASJD. As �2 decreases,
the variability of candidates decreases and so does the
drift term ��2

r log{⇡(x)}/2. For several �2, the e↵ect
of a smaller drift seems to be almost perfectly counter-
acted by a smaller variance, leading to candidates that
are neither accepted more nor less often. The decreas-
ing variability of candidates however produces smaller
ASJD and this phenomenon amplifies as � approches 2.
In such cases, overestimating the acceptance rate may
have a dramatic e↵ect, which is what happened in Table
6 for � = 1.8 and 2.

5 Discussion

The usual MALA originates from the discretization of
a Langevin di↵usion process. Although researchers and
users assumed this sampler to enjoy a certain form of
optimality due to its ties to the Langevin process, our
empirical results suggest that this is only true asymp-
totically, for infinite-dimensional distributions of inter-
est. In fact, the algorithm implemented over the last
decades can typically be improved by adding a single
tuning parameter, for which simple tuning heuristics ex-
ist. This appears as an e�cient way to preserve MALA’s
e�ciency through dimensions.

Based on the local and global balance concepts of
Zanella (2020), we thus introduced a generalized ver-
sion of MALA. The new sampler features two tuning
parameters: the usual step size �2 and an interpolation
parameter � 2 [1, 2] that accommodates the dimension
of the target distribution. The extra parameter adds to
the flexibility of the usual MALA by customizing the
impact of the biasing term in the proposal distribution,
which leads to a computationally-free improvement. We
obtained theoretical and empirical results about the
tuning of these parameters, which were then used to
provide specific and user-friendly tuning recommenda-
tions.

Although the traditional MALA is known to be op-
timal in infinite-dimensional settings, in practice, the
annealed MALA remains the most appealing option
(even for high-dimensional targets). Numerical illus-
trations indeed corroborate the existence of relatively
consistent e�ciency gains; such gains most often range
from 10% to 25% compared to MALA, but can also
approach 100% in some cases. The e�ciency of the
annealed MALA also compares favourably to that of
MALA in various Bayesian logistic regression contexts.
One however needs to be careful and avoid overestimat-
ing � too aggressively as the benefit from implementing
the annealed sampler could become marginal, or even
negative.

The proposed algorithm does not only generalize
the isotropic MALA, but also its more general position-
dependent version. This means that where a condition-
ing matrix is required for e�ciently exploring the space,
we still benefit from including an interpolation param-
eter �. As a general and e�cient tuning approach, we
suggest adjusting the interpolation parameter as a func-
tion of d using �⇤

d = 1 + d�min{
p
d/10,1/3}; this guide-

line has consistently provided near-optimal processes
in the examples considered. The step size may then
be tuned so as to obtain an acceptance rate that lies
in the 40% � 60% range; unless � is grossly overes-
timated, the performance appears to be quite robust
to choices of step size in the proposed range. Highly
complex targets sometimes require more conservative
steps, so we suggest opting for a smaller proposal vari-
ance (higher acceptance rate) if necessary. A poor per-
formance under these settings might be indicative of
the need for a conditioned version of the sampler in
isotropic cases, or simply a better conditioning process
when a general MALA is already implemented. We did
not encounter any situation where the proposed tunings
o↵ered performances significantly worse than MALA,
although equivalent performances might arise in cases
where potential e�ciency gains are modest.

All things considered, the main appeal of the new
sampler can be summarized as its low-e↵ort implemen-
tation, combined to the fact that it rarely produces an
output that is worse than MALA. Using the guidelines
presented in this article, one could naturally turn to
adaptation to appropriately tune � and �2. In this au-
tomated framework, we could even consider a position-
dependent parameter �(xt), or even interpolation pa-
rameters �1, . . . , �d adjusted to individual target com-
ponents; this shall be perused separately. One interpre-
tation of the algorithm introduced is that it builds a
proposal based on an annealed version of the target;
this appears like an easy-to-generalise perspective and
opens interesting directions for future research.
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A Appendix: Proofs of Section 2

A.1 Globally-balanced proposal distributions

The following result characterizes the functions g that satisfy the global balance condition.
The proof for the locally-balanced case can be found in Zanella (2020).

Theorem A.1. Let Q�(x, ·) be a d-dimensional symmetrical proposal distribution centered

at x 2 S, with scale parameter �. Assume that q�(x, ·), its associated bounded density, can

be expressed as

q�(x, y) =
1

�d
r

✓
y � x

�

◆
, (A.1)

where r is a unit-scale density such that r(�z) = r(z). Let g : S ⇥ S ! [0,1] be a

bounded, continuous function such that
R
S g(x, z)dz < 1 for all x 2 S. The biased proposal

distribution Qg,� in (1) satisfies the global balance condition if, and only if,

g(x, y) / ⇡(y), 8x, y 2 S .

Proof. (() Suppose g(x, y) / ⇡(y). Using (1) and the symmetry of q�, we have

Z�(x)qg,�(x, y)dydx

g(x, y)
= q�(x, y)dydx = q�(y, x)dxdy =

Z�(y)qg,�(y, x)dxdy

g(y, x)
,

where Z� is a normalization constant as detailed in Section 2. The function g(x, y) being
proportional to ⇡(y) implies that

⇡(x)Z�(x)qg,�(x, y)dydx = ⇡(y)Z�(y)qg,�(y, x)dxdy ,

and the biased proposal distribution thus generates a Markov process that is reversible
with respect to the density

⇡(x)Z�(x)dxR
S ⇡(z)Z�(z)dz

=
�d⇡(x)Z�(x)dx

�d
R
S ⇡(z)Z�(z)dz

. (A.2)

Our interest is in the limit of this distribution as � " 1. Using the assumption on q�,
we can rewrite the numerator in (A.2) as

�d⇡(x)Z�(x) = ⇡(x)

Z

S
g(x, z)�dq�(x, z)dz = ⇡(x)

Z

S
g(x, z)r

✓
z � x

�

◆
dz .

Since g(x, z) / ⇡(z) and the density r is bounded, we use the Dominated Convergence
Theorem to obtain the limit of the last integral; for a constant 0 < c < 1,

Z

S
g(x, z)r

✓
z � x

�

◆
dz =

Z

S
c⇡(z)r

✓
z � x

�

◆
dz

�"1
���!

Z

S
c⇡(z)r(0)dz = cr(0) .

1



The limit of the numerator is thus ⇡(x)cr(0). We again use the Dominated Convergence
Theorem to evaluate the limit of the integral at the denominator of (A.2). Since the density
r is bounded by a constant M < 1 (say), the integrand is bounded by

�d⇡(z)Z�(z) = ⇡(z)

Z

S
c⇡(u)r

✓
u� z

�

◆
du 6 cM⇡(z) ,

which is integrable. Applying the aforementioned theorem and using the limit of �d⇡(x)Z�(x)
calculated earlier, the limit of the denominator is

lim
�"1

�d
Z

S
⇡(z)Z�(z)dz =

Z

S
⇡(z)cr(0)dz = cr(0) .

Combining both limits, it follows that the density associated to (A.2) converges to ⇡(x).
Hence, by Sche↵é’s Lemma, the distribution converges to ⇧(dx).

()) Suppose Qg,� is globally balanced with respect to ⇧. As before, we can write

�dg(y, x)Z�(x)qg,�(x, y)dydx = �dg(x, y)Z�(y)qg,�(y, x)dxdy , (A.3)

including �d on both sides of the equation to help with further calculations. By taking the
limit as � " 1 on both sides of (A.3), we will be able to capitalize on the global balance
hypothesis. We again use the Dominated Convergence Theorem on the term �dZ�(x),
since

�dZ�(x) =

Z

S
g(x, z)r

✓
z � x

�

◆
dz 6 M

Z

S
g(x, z)dz < 1 ,

by assumption on g and using the fact that r is bounded. Hence, taking the limit on both
sides of (A.3) and noting q⇤g as the asymptotic density of qg,�, we get

✓
g(y, x)

Z

S
g(x, z)r(0)dz

◆
q⇤g(x, y)dydx =

✓
g(x, y)

Z

S
g(y, z)r(0)dz

◆
q⇤g(y, x)dxdy .

The term
R
S g(x, z)r(0)dz = k(x) is a function of x only. Now, being in the asymptotic

realm, the global balance hypothesis implies, for a constant ⌫ > 0, that

g(y, x)k(x) = ⌫⇡(x) ) g(y, x) =
⌫⇡(x)

k(x)
,

where k(x) > 0 since in the opposite case, the global balance would not be respected.
Hence, g(y, x) is a function of x only, which means that k(x) =

R
S g(x, z)dz is a constant.

We conclude that g(y, x) / ⇡(x) for all x, y 2 S.

2



A.2 E�ciency of globally-balanced proposal distributions

In order to simplify the expression for the expected squared jumping distance (ESJD) in
finite-dimensional contexts, we need to partition the state space S. In particular, because
of the specific form of the acceptance probability ↵(x, y), there are only four distinct regions
of S in which the candidate (y) for the next state of the process can lie:

• the identity region Rid(x) := {x}, which is a set of measure zero under Q�(x, ·);

• the equality region Req,�(x) :=
n
y 2 S : y 62 Rid(x),

⇡(y)q�(y,x)
⇡(x)q�(x,y)

= 1
o
;

• the acceptance region Ra,�(x) :=
n
y 2 S : ⇡(y)q�(y,x)

⇡(x)q�(x,y)
> 1

o
, which is the last of

the three regions where the candidate is automatically accepted;

• the rejection region Rr,�(x) := {y 2 S : ↵(x, y) < 1}, which is the region where
the candidate is not automatically accepted.

Using these regions, we can now prove two lemmas that will then be used in the proof
of Proposition 1. The first one, Lemma A.2, mixes results from Lemma 1 and Corollary 1
in Sherlock (2006).

Lemma A.2. Consider a target density ⇡ on S and suppose that a Metropolis-Hastings

with proposal density q�(x, ·) is used to sample from this target. Let X be the current state

of the process and Y be the candidate for the next state. Then, under stationarity, the

following equality holds
Z

x2S

Z

y2Ra,�(x)
ky � xk2A(dx, dy) =

Z

x2S

Z

y2Rr,�(x)
ky � xk2A(dx, dy) ,

where A(dx, dy) = ⇡(x)q�(x, y)↵(x, y)dydx denotes the joint density of X and Y . The

expected squared jumping distance (ESJD) is then expressed as

ESJD =

Z

S

 Z

Req,�(x)
ky � xk2 q�(x, y)dy + 2

Z

Ra,�(x)
ky � xk2 q�(x, y)dy

�
⇡(x)dx .

Proof. The first part follows from the reversibility of the Markov process, as well as from
the interchangeability of the regions Ra,�(·) and Rr,�(·). Indeed, we can write
Z

x2S

Z

y2Ra,�(x)
ky � xk2A(dx, dy) =

Z

x2S

Z

y2Ra,�(x)
ky � xk2 ⇡(x)q�(x, y)↵(x, y)dydx

=

Z

x2S

Z

y2Ra,�(x)
ky � xk2 ⇡(y)q�(y, x)↵(y, x)dydx

=

Z

y2S

Z

x2Rr,�(y)
ky � xk2 ⇡(y)q�(y, x)↵(y, x)dxdy

=

Z

y2S

Z

x2Rr,�(y)
ky � xk2A(dy, dx) ,

3



and then swapping the integration variables on the last line simply leads to
Z

x2S

Z

y2Ra,�(x)
ky � xk2A(dx, dy) =

Z

x2S

Z

y2Rr,�(x)
ky � xk2A(dx, dy) .

Ignoring the region Rid(x) (since ky � xk2 = 0 for y 2 Rid(x)), we can write

ESJD =

ZZ
ky � xk2A(dx, dy)

=

Z

x2S

 Z

y2Req,�(x)
ky � xk2A(dx, dy) +

Z

y2Ra,�(x)
ky � xk2A(dx, dy)

+

Z

y2Rr,�(x)
ky � xk2A(dx, dy)

�

=

Z

x2S

 Z

y2Req,�(x)
ky � xk2A(dx, dy) + 2

Z

y2Ra,�(x)
ky � xk2A(dx, dy)

�

=

Z

x2S

"Z

y2Req,�(x)
ky � xk2 q�(x, y)dy + 2

Z

y2Ra,�(x)
ky � xk2 q�(x, y)dy

#
⇡(x)dx ,

where we use the fact that for all x 2 S, ↵(x, y) = 1 if y 2 {Req,�(x) [Ra,�(x)}.

The regions Ra,�(x) and Req,�(x) are functions of the parameter � through the proposal
density. In order to determine the limiting ESJD when �2

" 1, we have to find the
limiting form of these regions. This is studied in Lemma A.3 for globally-balanced proposal
distributions.

Lemma A.3. Consider a bounded target density ⇡ on S. Suppose that a Metropolis-

Hastings algorithm with biased proposal kernel Qg,� is used to sample from this target,

where g(x, y) = ⇡(y). Furthermore, let

A�(x) := {Req,�(x) [Ra,�(x)} =

⇢
y 2 S\{x} :

⇡(y)qg,�(y, x)

⇡(x)qg,�(x, y)
> 1

�
. (A.4)

Then, for all x 2 S, the limit of this set when � " 1 is

lim
�"1

A�(x) = S\{x} .

Proof. From (1), the biased proposal density satisfies

qg,�(x, y) =
⇡(y)q�(x, y)

Z�(x)
,

4



with Z�(x) =
R
S ⇡(z)q�(x, z)dz. For all x 2 S, q�(x, ·) is a symmetrical density that can be

expressed as (A.1). Given the form of the regions Req,�(x) and Ra,�(x), we are interested
in the ratio

⇡(y)qg,�(y, x)

⇡(x)qg,�(x, y)
=

⇡(y)⇡(x)q�(y, x)Z�(x)

⇡(x)⇡(y)q�(x, y)Z�(y)
=

Z�(x)

Z�(y)
. (A.5)

We want to obtain the limit of (A.5) when � " 1. We first write

�dZ�(x) =

Z

S
⇡(z)�dq�(x, z)dz =

Z

S
⇡(z)r

✓
z � x

�

◆
dz

�"1
���!

Z

S
⇡(z)r(0)dz = r(0) ,

where the convergence follows the same arguments as in §A.1. The limit of (A.5) then
becomes

�dZ�(x)

�dZ�(y)
�"1
���! 1, 8x, y 2 S .

This implies that lim
�"1

A�(x) = S\{x}.

Using the previous lemmas, we can now prove Proposition 1.

Proposition A.4. Let ⇡ be a bounded target density such that E⇡[kXk
2] < 1, where k · k

denotes the Euclidean norm. Suppose that a Metropolis-Hastings algorithm with a globally-

balanced proposal distribution is used to sample from this target. Let the blinded portion of

the proposal density, q�, be such that

⇡(y) > 0 ) q�(x, y) > 0 , 8x 2 S . (A.6)

Then,

lim
�"1

E[kXt+1 �Xtk
2] = lim

�"1

ZZ
ky � xk2qg,�(x, y)↵(x, y)dydx > 0 ,

where qg,� is the density associated to Qg,�.

Proof. Without loss of generality, we suppose that � > c for some constant 0 < c < 1. We
wish to find a lower bound that is strictly greater than 0 for the limiting expected squared
jumping distance. Using Lemma A.2, we write

ESJD = E[kY �Xk
2]

=

Z

x2S
⇡(x)

 Z

y2Req,�(x)
ky � xk2 qg,�(x, y)dy + 2

Z

y2Ra,�(x)
ky � xk2 qg,�(x, y)dy

�
dx

>
Z

x2S
⇡(x)

Z

y2A�(x)
ky � xk2 qg,�(x, y)dydx ,

5



where the set A�(x) is as in (A.4). To avoid integration issues, we only consider points
x 2 B(0, a), the ball of radius 0 < a < 1 centered at (0, . . . , 0)> 2 S. Then,

ESJD >
Z

x2B(0,a)

⇡(x)

Z�(x)

Z

y2A�(x)
ky � xk2 ⇡(y)q�(x, y)dydx

=

Z

x2B(0,a)

⇡(x)

Z⇤
�(x)

Z

y2A�(x)
ky � xk2 ⇡(y)r

✓
y � x

�

◆
dydx , (A.7)

where Z⇤
�(x) =

R
S ⇡(z)�dq�(x, z)dz.

To compute the limit of the ESJD as � " 1, we need to move the limit inside the
integrals. For the first integral, we use the Dominated Convergence Theorem; we thus
need to find a function (independent of �) that acts as an upper bound for the function

F�(x) =
⇡(x)

Z⇤
�(x)

Z

y2A�(x)
ky � xk2 ⇡(y)r

✓
y � x

�

◆
dy , (A.8)

for all � > c. We first focus on the numerator of (A.8). Since supz2S r(z) = M < 1, then
the numerator of F�(x) is bounded by

⇡(x)

Z

y2A�(x)
ky � xk2 ⇡(y)r

✓
y � x

�

◆
dy 6 M⇡(x)

Z

y2A�(x)
ky � xk2 ⇡(y)dy

6 M⇡(x)

Z

y2S
(kyk2 + kxk2 + 2 kyk kxk)⇡(y)dy.

Since M2 ⌘ E⇡[kXk
2] < 1, then by Jensen’s inequality M1 ⌘ E⇡[kXk] < 1; therefore,

M⇡(x)

Z

y2S
(kyk2 + kxk2 + 2 kyk kxk)⇡(y)dy 6 M⇡(x)(M2 + kxk2 + 2M1 kxk) ,

and the term on the right-hand side is also integrable.
We now show that the denominator in (A.7), that is the function Z⇤

�(x), has a constant
lower bound for all � > c. Define the set C(t) = {x 2 S : ⇡(x) > t}, where t > 0 is such
that C(t) is of positive Lebesgue measure. Then, we have

Z⇤
�(x) =

Z

S
⇡(z)�dq�(x, z)dz >

Z

C(t)
⇡(z)r

✓
z � x

�

◆
dz > t

Z

C(t)
r

✓
z � x

�

◆
dz.

Naturally, C(t) is of finite measure as the density ⇡ could not integrate to 1 otherwise;
indeed, we have

1 =

Z

S
⇡(z)dz =

Z

C(t)
⇡(z)dz +

Z

S\C(t)
⇡(z)dz > t

Z

C(t)
dz .

6



Since the density r is bounded above, the Bounded Convergence Theorem implies that

Z

C(t)
r

✓
z � x

�

◆
dz

�"1
���! r(0)

Z

C(t)
dz ,

where lim
�"1

r((z � x)/�) = r(0) for all x 2 B(0, a) since a < 1. For 0 < " < r(0), there

thus exists �0 such that |r((z � x)/�)� r(0)| < " for all � > �0. Hence, for � > �0,

Z⇤
�(x) > t

Z

C(t)
r

✓
z � x

�

◆
dz > t(r(0)� ")

Z

C(t)
dz > 0 .

When c 6 � < �0, then given (A.6) we necessarily have

Z⇤
�(x) =

Z

S
⇡(z)�dq�(x, z)dz > cd

Z

S
⇡(z)q�(x, z)dz > 0 .

This means thatm ⌘ inf
c6�<�0

Z⇤
�(x) > 0. Then, for all � > c, we have Z⇤

�(x) > min{m, t(r(0)�

")
R
C(t) dz}. The function F�(x) in (A.8) is thus bounded by

F�(x) 6
M⇡(x)(M2 + kxk2 + 2M1 kxk)

min{m, t(r(0)� ")
R
C(t) dz}

,

which is independent of � and integrable on B(0, a).
Using the Dominated Convergence Theorem, we can thus move, in (A.7), the limit

inside the first integral

lim
�"1

ESJD >
Z

B(0,a)
lim
�"1

⇡(x)

Z⇤
�(x)

Z

y2A�(x)
ky � xk2 ⇡(y)r

✓
y � x

�

◆
dydx . (A.9)

We can now separately compute the limits of Z⇤
�(x) and of the numerator in (A.9). As

seen in §A.1, we have

Z⇤
�(x) =

Z

S
⇡(z)r

✓
z � x

�

◆
dz

�"1
���!

Z

S
⇡(z)r(0)dz = r(0) .

To move the limit inside the second integral in (A.9), we use the Dominated Convergence
Theorem. We have
Z

y2A�(x)
ky � xk2 ⇡(y)r

✓
y � x

�

◆
dy =

Z

y2S
ky � xk2 ⇡(y) y2A�(x)r

✓
y � x

�

◆
dy (A.10)

6 M

Z

y2S
ky � xk2 ⇡(y)dy ,
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where ky � xk2 ⇡(y) is independent of � and integrable. From Lemma A.3, the limit of the
set A�(x) when � " 1 is S\{x}, and so the limit of (A.10) is

Z

y2A�(x)
ky � xk2 ⇡(y)r

✓
y � x

�

◆
dy

�"1
���! r(0)

Z

y2S\{x}
ky � xk2 ⇡(y)dy .

Combining the limits of Z⇤
�(x) and of (A.10), we conclude that

lim
�"1

ESJD >
Z

B(0,a)
⇡(x)

Z

y2S\{x}
ky � xk2 ⇡(y)dydx > 0 .

A.3 Approximated kernels: local and global balances

The following result shows how two di↵erent choices of the biasing function g lead to the
MALA sampler.

Proposition A.5. The locally-balanced proposal kernels Qg,� obtained by combining the

normal kernel N (x,�2Id) and one of the balancing functions

g1(x, y) =

s
⇡(y)

⇡(x)
or g2(x, y) =

⇡(y)

⇡(y) + ⇡(x)
,

can be approximated by the MALA proposal kernel.

Proof. Consider the case of g1 first. Since Q�(x, ·) is the normal distribution, we can write

qg1,�(x, y)dy /

⇢
⇡(y)

⇡(x)

�1/2

q�(x, y)dy

/ exp

⇢
1

2
log{⇡(y)}

�
exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy . (A.11)

A first-order Taylor approximation of log{⇡(y)} around x gives

⇡(y) = exp{log(⇡(y))} ⇡ exp{log{⇡(x)}+r log{⇡(x)}(y � x)} .

This expression is then used to approximate (A.11) as

qg1,�(x, y)dy / exp

⇢
1

2
log{⇡(y)}

�
exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy

⇡ exp

⇢
1

2
log{⇡(x)}+

1

2
r log{⇡(x)}(y � x)

�
exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy

/ exp

⇢
�

1

2�2
(y � x)>(y � x) +

1

2
r log{⇡(x)}(y � x)

�
dy

/ exp

(
�

1

2�2

����y � x�
�2

2
r log{⇡(x)}

����
2
)
dy ,
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which is proportional to the MALA proposal density.
Now consider the balancing function g2. Letting k(y) = ⇡(x) + ⇡(y), the first-order

Taylor approximation of g2 with respect to y around x becomes

g2 (x, y) = exp

⇢
log{⇡(y)}� log{⇡(x) + ⇡(y)}

�

⇡ exp

⇢
log{⇡(x)}+r log{⇡(x)}(y � x)� log{2⇡(x)}�r(log � k)(x)(y � x)

�

/ exp

⇢
r log{⇡(x)}(y � x)�

✓
r⇡(x)

2⇡(x)

◆
(y � x)

�

= exp

⇢
1

2
r log{⇡(x)}(y � x)

�
.

With this approximation for g2, the locally-balanced proposal density becomes

qg2,�(x, y)dy ⇡ exp

⇢
1

2
r log{⇡(x)}(y � x)

�
exp

⇢
�

1

2�2
(y � x)>(y � x)

�
dy

/ exp

(
�

1

2�2

����y � x�
�2

2
r log{⇡(x)}

����
2
)
dy ,

which is again proportional to the MALA proposal density.

B Appendix: Proofs of Section 3

B.1 Scaling function of the annealed MALA

To prove Theorem 2 (and subsequently Theorem 4), we need the following lemma whose
proof can be found in Beskos and Stuart (2009).

Lemma B.6. Let T 2 R be a random variable. By defining x ^ y := min{x, y}, we have

1. For every c > 0,

E[1 ^ eT ] > e�c

✓
1�

E[|T |]
c

◆
.

2. If E[T ] < 0, then

E[1 ^ eT ] 6 eE[T ]/2 +
2E[|T � E[T ]|]

(�E[T ]) .
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Proof of Theorem 2. Let X = x be the current state of the generated Markov process;
since the latter is assumed to start in stationarity, this means that X ⇠ ⇧. A candidate
y is proposed, and then accepted with probability ↵(x, y) = 1 ^ eRd . The densities ⇡ and
q�,�d having i.i.d. components, Rd can be written as

Rd = log

✓
⇡(y)q�,�d(y, x)

⇡(x)q�,�d(x, y)

◆
=

dX

i=1

log

✓
f(yi)q⇤�,�d

(yi, xi)

f(xi)q⇤�,�d
(xi, yi)

◆
,

where q⇤�,�d
is the unidimensional version of the proposal density in (5). More precisely,

the ith component of the candidate Y satisfies

Yi = xi +
��2

d

2
l0(xi) + �dZi ,

with Zi ⇠ N (0, 1) independant of Xi ⇠ f , i = 1, . . . , d and � 2 (1, 2]. Considering Rd as a
function of �d, we now use Taylor expansions to determine exactly for which � values (in
�2
d = `2/d�) does E[↵(X,Y )] becomes null as d " 1.

Case 1: �2
d / d�� with � > 1.

We need to show that lim
d!1

E[↵(X,Y )] > 0. Following the first part of Lemma B.6, we

are certain that this is true whenever lim
d!1

E[|Rd|] < 1. Let us consider a second-order

Taylor development of Rd around in �d = 0. The details of this calculation can be found
in Appendix A.1 of Boisvert-Beaudry (2019). We have

Rd = A1,d +A2,d + Ud ,

with

A1,d = �dR
0
d(0) = �d

dX

i=1

C1,i , where C1,i = l0(xi)Zi(1� �) ; (B.1)

A2,d =
�2
d

2!
R00

d(0) =
�2
d

2

dX

i=1

C2,i , where C2,i = (1� �)[l00(xi)Z
2
i + l0(xi)

2�] ; (B.2)

Ud =
�3
d

3!

dX

i=1

Ui,d(xi, Zi,�
⇤
i ) ,

where �⇤
i 2 [0,�d], i = 1, . . . , d. The moments of C1,i and C2,i are bounded because of the

conditions on the moments of f and the derivatives of l. Since |Rd| 6 |A1,d|+ |A2,d|+ |Ud|,
we need to verify that the expectation of each term remains finite in the limit as d ! 1.

Upon examination of the terms Ui,d(xi, Zi,�⇤
i ), i = 1, . . . , d, we note that they are

polynomials of Zi, derivatives of l, and positive powers of �⇤
i . By the polynomial bound

10



assumption and following the proof of Theorem 1 in Beskos and Stuart (2009), there thus
exists polynomials M1, M2, and M3 such that

|Ui,d(xi, Zi,�
⇤
i )| 6 M1(xi)M2(Zi)M3(�

⇤
i ) .

Since Xi and Zi are independant and all moments of f are finite, then E[M1(Xi)M2(Zi)] =
E[M1(Xi)]E[M2(Zi)] < 1 for all i. Furthermore, since � > 0, there exists an " > 0
such that �⇤

i < �d < " for all i, so M3(�⇤
i ) is also bounded by a constant. Therefore,

E[|Ui,d(Xi, Zi,�⇤
i )|] < K < 1 for a constant K independant of i and d. Since � > 1, the

residual term satisfies

lim
d!1

E[|Ud|] 6 lim
d!1

�3
d

3!
dK = 0 .

We now study the term |A1,d|. Using Jensen’s inequality, we obtain

E[|A1,d|] = E
hq

A2
1,d

i
6 E[A2

1,d]
1/2 = E

2

4
 
�d

dX

i=1

C1,i

!2
3

5
1/2

.

We note that C1,i, i = 1, . . . , d are i.i.d., since each term depends on Xi and Zi only;
moreover, we observe that E[C1,i] = 0. This thus leads to the simpler bound

E[|A1,d|] 6 �d

0

@
dX

i=1

E[C2
1,i] +

dX

i=1

X

j 6=i

E[C1,iC1,j ]

1

A
1/2

= �d
p

dE[C2
1,1]

1/2 .

Since all moments of C1,1 are bounded and � > 1, it follows that the limit of this term is
also bounded.

Now, using the fact that C2,i (i = 1, . . . , d) are i.i.d. along with the triangle inequality,
and then applying Jensen’s inequality, we find the following bound on the expectation of
|A2,d|

E[|A2,d|] 6
d�2

d

2
E[|C2,1|] 6

d�2
d

2
E[C2

2,1]
1/2 ,

and the limit of E[|A2,d|] is also bounded. We deduce that lim
d!1

E[|Rd|] < 1; by Lemma

B.6, we conclude that

lim
d!1

E[↵(X,Y )] > 0 .

Case 2: �2
d / d�� with � 2 (0, 1).
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We need to show that lim
d!1

E[↵(X,Y )] = 0. In this case, using the second part of

Lemma B.6, it is su�cient to verify that

E[Rd]
d"1
���! �1 and

E[|Rd � E[Rd]|]

�E[Rd]
d"1
���! 0 . (B.3)

We first focus on E[Rd]. Using a Taylor expansion of order m of Rd around �d = 0, where
m 2 N is such that (m+ 1)� > 2, we find

Rd =
mX

j=1

Aj,d + U⇤
d ,

with

Aj,d =
�j
d

j!
R(j)

d (0) =
�j
d

j!

dX

i=1

Cj,i ,

U⇤
d =

�m+1
d

(m+ 1)!
R(m+1)

d (�⇤) =
�m+1
d

(m+ 1)!

dX

i=1

U⇤
i,d(xi, Zi,�

⇤
i ) ,

and �⇤
i 2 [0,�d], i = 1, . . . , d. The terms C1,i and C2,i are identical to (B.1) and (B.2).

We first study the term U⇤
d . Using arguments similar to those applied in Case 1, we

find that the residual term E[|U⇤
i,d(Xi, Zi,�⇤

i )|] can be bounded by a constant K0 that is
independant of d and i. The mth order of the expansion implies then implies that

lim
d!1

E[U⇤
d ] 6 lim

d!1
E[|U⇤

d |] 6 lim
d!1

�m+1

(m+ 1)!
dK0 = 0 ,

and E[U⇤
d ] is O

⇣
d1�

(m+1)�
2

⌘
.

For the other terms, since E[C1,1] = 0, we have

E[Rd] =
mX

j=1

E[Aj,d] + E[U⇤
d ] =

mX

j=2

d�j
d

j!
E[Cj,1] + E[U⇤

d ] .

As before, the terms Cj,1, j = 1, . . . ,m are all polynomial functions of Z1 and the deriva-
tives of l. Thus, similarly as in Case 1, all moments of Cj,1 are bounded. We can therefore
deduce that the dominant term of E[Rd] is E[A2,d], which turns out to be negative. Indeed,
using E[l00(X)] = �E[l0(X)2] (see the proof of Lemma 6 in Bédard (2007)) and (B.2), we
can write

E[C2,1] = (1� �)E[l00(X1)Z
2
1 + l0(X1)

2�]

= (1� �)
�
E[l00(X1)] + E[l0(X1)

2]�
 

= �(1� �)2E[l0(X1)
2] < 0 .
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This implies that E[Rd] ! �1 at rate O(d1��).
We now study the ratio E[|Rd�E[Rd]|]/�E[Rd]. Making use of the triangle inequality

and then of Jensen’s inequality, we bound the numerator as follows

E[|Rd � E[Rd]|] 6
mX

j=1

E[|Aj,d � E[Aj,d]|] + E[|U⇤
d � E[U⇤

d ]|]

6
mX

j=1

V(Aj,d)
1/2 + E[|U⇤

d � E[U⇤
d ]|]

=
mX

j=1

V
 
�j
d

j!

dX

i=1

Cj,i

!1/2

+ E[|U⇤
d � E[U⇤

d ]|]

=
mX

j=1

�j
d

j!

p

dV(Cj,1)
1/2 + E[|U⇤

d � E[U⇤
d ]|] . (B.4)

The first term of (B.4) being dominant, the numerator of (B.3) is O(d
1��
2 ) while the

denominator is O(d1��). Using the fact that � 2 (0, 1), this means that the ratio converges

to 0 according to O(d
��1
2 ). By Lemma B.6, we conclude that

lim
d!1

E[↵(X,Y )] = 0 .

Since the smallest value of � that gives a positive asymptotic acceptance rate is 1, we
conclude that �0 = 1.

B.2 Tuning of the annealed MALA

To obtain weak convergence and optimal scaling results for the annealed MALA, we con-
sider target densities as in Section 3.1.

Given the current state Xt = x, the annealed MALA generates a candidate Yt+1 = y
from the proposal distribution

Yt+1 = Xt + �dZt+1 +
��2

d

2
r log{⇡(Xt)} ,

with Zt+1 ⇠ N (0, Id). It then accepts the candidate (i.e. Xt+1 = Yt+1) with probability

↵(Xt, Yt+1) = 1 ^
⇡(Yt+1)q(Yt+1, Xt)

⇡(Xt)q(Xt, Yt+1)
,

where

q(x, y) =
dY

i=1

q(xi, yi) = (2⇡�2
d)

�d/2 exp

(
�

1

2�2
d

����y � x�
��2

d

2
r log{⇡(x)}

����
2
)

.
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To find the asymptotically optimal ` in �2
d = `2/d, we need to study the asymptotic

behaviour of the Markov process as d " 1. To compare the discrete-time process to a
limiting continuous-time process, it is convenient to work with a sped up version of the
initial algorithm. Let Zd(t) be the time-t value of the process speeded up by a factor of
d; in particular, Zd(t) = (X1([dt]), . . . , Xd([dt]), where [·] is the floor function. Instead of
proposing a single move per unit time interval, the accelerated process has the possibility
of moving, on average, d times.

Theorem B.7 studies the limiting behaviour of {Z1(t); t � 0}, the first component
of Zd(t), as d " 1. Corollary B.8 then transforms the weak convergence result into a
statement about the e�ciency of the sampler as a function of the acceptance rate, as was
done in Roberts and Rosenthal (1998). We denote weak convergence in the Skorokhod
topology by ), standard Brownian motion at time t by B(t) and the standard normal
c.d.f. by �(·).

Theorem B.7. As d " 1, the process Z1 converges weakly, in the Skorokhod topology, to

the Langevin di↵usion defined by

dZ(t) = �(`, �)1/2dB(t) +
1

2
�(`, �)(log{f(Z(t))})0dt ,

where �(`, �) = 2`2�(� `
2(� � 1)

p
E[{(log f(X))0}2]) is the speed of the limiting di↵usion.

Furthermore, �(`, �) is maximized at the unique value ˆ̀
� = 2.38/{(��1)

p
E[{(log f(X))0}2].

We define the expected acceptance rate of the sampler (under stationarity) as follows

ad(`) = E[↵(X,Y )] =

ZZ
⇡(x)q(x, y)↵(x, y)dxdy .

Corollary B.8. We have limd!1 ad(`) = a(`), where

a(`) = 2�

✓
�
1

2
`(� � 1)

p
E[{(log f(X))0}2]

◆
,

and the expectation is taken over X having density f . The asymptotically optimal accep-

tance rate is therefore a(ˆ̀�) = 0.234.

The proof of Theorem B.7 and Corollary B.8 is simply a mix of the optimal scaling
proofs for RWMH and MALA found in Bédard (2007) and Roberts and Rosenthal (1998).
Accordingly, we just outline the main steps and avoid the technical treatment of errors.
To learn more about the latter, we refer the reader to the original papers.

The proof is based on the theory exposed in Chapter 4 of Ethier and Kurtz (1986), and
in particular Theorem 8.2 and Corollary 8.6. This theory roughly says that for the finite-
dimensional distributions of a sequence of processes to converge weakly to those of some
Markov process, we simply need to verify the L

1-convergence of their generators. Then,
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further conditions are verified to make sure that the sequence of processes is relatively
compact, which leads to the weak convergence of the stochastic processes themselves.

The main task is then to focus on the L
1-convergence of the generators. Hereafter, we

omit time indexing and use boldface to denote d-dimensional vectors. The discrete-time
generator of the process produced by the accelerated version of the annealed MALA is
expressed as

Gh(x) = dE [(h(Y1)� h(x1))↵(x,Y)]

= dE

(h(Y1)� h(x1))

⇢
1 ^

⇡(Y)q(Y,x)

⇡(x)q(x,Y)

��
. (B.5)

The generator of a Langevin di↵usion process with speed measure �(`) is

GLh(x1) = �(`, �)


1

2
h00(x1) +

1

2
h0(x1)(log f(x1))

0
�

.

The goal is thus to show that

lim
d!1

E [|Gh(x)�GLh(x1)|] = 0 .

The generators are written in terms of an arbitrary test function h, which can usually be
any smooth function. In our case, since the limiting process obtained in a di↵usion, it
follows that C1

c is a core for the generator, which means that we can focus on functions
in that core to prove the above expression.

The expectation in (B.5) is computed with respect to the d-dimensional candidate

random variable Y = x+ �Z+ ��2

2 r log ⇡(x). By Taylor expanding ↵(x,Y) with respect
to Y1 and around x1, we can show that

lim
d!1

E
h���Gh(x)� G̃h(x)

���
i
= 0 ,

where

G̃h(x) = dE
h
(h(Y1)� h(x1))

n
E
h
1 ^ e

Pd
i=2 ⇠(xi,Yi)

i
+ (Y1 � x1)⇥

⇣
@

@Y1
⇠(x1, Y1)

⌘

Y1=x1

E
h
e
Pd

i=2 ⇠(xi,Yi)
⇣Pd

i=2 ⇠(xi, Yi) < 0
⌘i��

, (B.6)

⇠(xi, Yi) = log f(Yi)q(Yi,xi)
f(xi)q(xi,Yi)

, and (·) is the indicator function. Now, by Taylor expanding

the function h(Y1)� h(x1) with respect to Y1 around x1, we obtain

h(Y1)� h(x1) ⇡
`

d1/2
h0(x1)Z1 +

`2

d

�

2
(log f(x1))

0h0(x1) +
`2

d

1

2
h00(x1)Z

2
1 .
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Substituting this expression in (B.6), we can show that

lim
d!1

E
h���G̃h(x)� Ĝh(x)

���
i
= 0 ,

where

Ĝh(x) =
`2

2

�
�h0(x1)(log f(x1))

0 + h00(x1)
 
E
h
1 ^ e

Pd
i=2 ⇠(xi,Yi)

i

+`2h0(x1)(1� �)(log f(x1))
0E
h
e
Pd

i=2 ⇠(xi,Yi)
⇣Pd

i=2 ⇠(xi, Yi) < 0
⌘i

.(B.7)

All is left to do is computing the expectations with respect to the random variables
Y2, . . . , Yd in the previous expression. Again using a Taylor expansion, we find that

⇠(xi, Yi) ⇡
`

d
(� � 1)Zi(log f(xi))

0 +
`2

2d
(� � 1)

⇥
�{(log f(xi))

0
}
2 + Z2

i (log f(xi))
00⇤ .

Using the fact that Zi, i = 2, . . . , d are independent standard normal, we find thatPd
i=2 ⇠(xi, Yi) also is normally distributed. It is then easy to show (see Roberts and Rosen-

thal (1998); Bédard (2007)) that

lim
d!1

����E
h
1 ^ e

Pd
i=2 ⇠(xi,Yi)

i
� 2�

✓
�
`

2
(� � 1)

p
E [{(log f(X))0}2]

◆���� = 0 ,

and

lim
d!1

����E
h
e
Pd

i=2 ⇠(xi,Yi)
⇣Pd

i=2 ⇠(xi, Yi) < 0
⌘i

� �

✓
�
`

2
(� � 1)

p
E [{(log f(X))0}2]

◆���� = 0 .

Replacing the expectations in (B.7) by their limits in terms of �(·), we find

GLh(x1) = 2`2�

✓
�
`

2
(� � 1)

p
E [{(log f(X))0}2]

◆⇢
1

2
h0(x1) +

1

2
(log f(x1))

0h00(x1)

�
,

and we can show that limd!1 E
h���Ĝh(x�GLh(x)

���
i
= 0, which concludes the convergence

proof of Theorem B.7.

The speed limit of the Langevin di↵usion, �(`, �) = 2`2�
⇣
�

`
2(� � 1)

p
E [{(log f(X))0}2]

⌘
,

is optimized at the unique value ˆ̀= 2.38

(��1)
p

E[{(log f(X))0}2]
.

The asymptotically optimal acceptance rate may be easily computed from there. By
using the Taylor expansion of ⇠(xi, Yi) expressed above and reapplying similar arguments
as before (but without worrying about the function h, which simplifies things),

lim
d!1

|ad(`)� a(`)| = lim
d!1

����E
h
1 ^ e

Pd
i=1 ⇠(xi,Yi)

i
� 2�

✓
�
`

2
(� � 1)

p
E [{(log f(X))0}2]

◆���� = 0 .

The asymptotically optimal acceptance rate is therefore the value a(ˆ̀�) = 0.234.
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B.3 Convergence rate of the interpolation parameter �d

Proof of Theorem 4. As in the proof of Theorem 2, we consider the acceptance probability
↵(x, y) = 1 ^ eRd of a Markov process currently at x, with candidate step y. We desire to
apply Lemma B.6 on a Taylor expansion centered at �d = 0 of

Rd = log

✓
⇡(y)q�d,�d(y, x)

⇡(x)q�d,�d(x, y)

◆
=

dX

i=1

log

✓
f(yi)q⇤�d,�d

(yi, xi)

f(xi)q⇤�d,�d
(xi, yi)

◆
,

where q⇤ is the unidimensional version of the proposal distribution. This time, the ith
component of the candidate Y is given by

Yi = xi +
�d�2

d

2
l0(xi) + �dZi , i = 1, . . . , d ,

with Zi ⇠ N (0, 1) independant of Xi ⇠ f , i = 1, ..., d. Since �2
d is O(d�1/3) in this case, an

expansion of order 6 is required.
()) Following Lemma B.6, we want to show that lim

d!1
E[|Rd|] < 1. The Taylor

expansion of order 6 of Rd evaluated at �d = 0 gives

Rd =
6X

i=1

Ai,d + Ud ,

where for i = 1, . . . , 6, we have

Ai,d =
�i
d

i!
R(i)(0) =

�i
d

i!

dX

j=1

Ci,j and Ud =
�7
d

7!

dX

j=1

Uj,d(xj , Zj ,�
⇤
j ) ,

with �⇤
j 2 [0,�d], j = 1, . . . , d. Expressions for C1,j and C2,j may be found in (B.1) and

(B.2), while the terms Ci,j , i = 3, . . . , 6, are detailed in Section A.2 of Boisvert-Beaudry
(2019).

From Lemmas A.2.1 and A.2.2 of Boisvert-Beaudry (2019), we also know that lim
d!1

E[Ci,1] <

1, i = 1, . . . , 6, with E[C1,1] = E[C3,1] = E[C5,1] = 0,

E[C2,1] = �(�d � 1)2E[l0(X1)
2] , and E[C4,1] = (�d � 1)K4,d , (B.8)

where lim
d!1

K4,d < 1. We also have lim
d!1

E[C2
i,1] < 1, i = 1, . . . , 6, with

E[C2
1,1] = (�d � 1)2K1 and E[C2

2,1] = (�d � 1)2K2,d, (B.9)

where K1 < 1 is independant of d and lim
d!1

K2,d < 1.
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With that in mind, we start by looking at the expectation of |Ud|. The terms Uj,d(xj , Zj ,�⇤
j ),

j = 1, . . . , d, are polynomial functions of Zj , derivatives of l and positive powers of �⇤
j .

Reusing the argument in the proof of Theorem 2, there exists polynomials M1,M2, and
M3 such that

|Uj,d(xj , Zj ,�
⇤
j )| 6 M1(xj)M2(Zj)M3(�

⇤
j ) , j = 1, . . . , d .

Since all moments of f are finite and by the independance ofXj and Zj , we have E[M1(Xj)M2(Zj)] <
1 for all j. Furthermore, since �⇤

j 6 �d 6 `, this means that M3(�⇤
j ) 6 K < 1 for a

constant K independant of j and d. There thus exists a constant K0 independant of d such
that

lim
d!1

E[|Ud|] 6 lim
d!1

d�7
d

7!
K0 = 0,

since �2
d / d�1/3.

Consider now the terms Ai,d, i = 1, . . . , 5. By Jensen’s inequality, we have

E[|Ai,d|] 6 E[A2
i,d]

1/2 =
�i
d

i!
E

2

4

0

@
dX

j=1

Ci,j

1

A
23

5

1/2

. (B.10)

Using the fact that Ci,j (j = 1, . . . , d) are i.i.d., we bound (B.10) by

E[|Ai,d|] 6
�i
d

i!

8
<

:dE[C2
i,1] +

dX

j=1

X

k 6=j

E[Ci,jCi,k]

9
=

;

1/2

6 �i
d

i!

�
dE[C2

i,1] + d2E[Ci,1]
2
 1/2

6 �i
d

i!

np
dE[C2

i,1]
1/2 + d|E[Ci,1]|

o
. (B.11)

For i = 1, 3, 5, the first moment of Ci,1 is null and so (B.11) can be bounded by

E[|Ai,d|] 6
p
d�i

d

i!
E[C2

i,1]
1/2 = d

1
2�

i
6
`

i
2

i!
E[C2

i,1]
1/2 .

Since lim
d!1

E[C2
i,1] < 1 for i = 1, . . . , 6, we have directly that lim

d!1
E[|Ai,d|] < 1 for i = 3, 5.

For i = 1, using (B.9), we get the following bound

E[|A1,d|] 6
p

d�dE[C2
1,1]

1/2 =
p

d�d(�d � 1)K1/2
1 = d

1
3��d

p
`K1 .
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Thus,

lim
d!1

E[|A1,d|] 6

8
<

:

p
`K1 < 1 if lim

d!1
�d = 1/3 ,

0 if lim
d!1

�d > 1/3 .

For i = 2, using (B.9) with lim
d!1

K2,d < 1, the limit of the first term of (B.11) becomes

�2
d

p
d

2!
E[C2

2,1]
1/2 =

�2
d

p
d

2
(�d � 1)

p
K2,d = d

1
6��d

`2

2

p
K2,d

d"1
���! 0 .

For the second term of (B.11), we find from (B.8) that

�2
d

2!
d|E[C2,1]| 6

�2
d

2
d(�d � 1)2E[l0(X1)

2] = d
2
3�2�d

`2

2
E[l0(X1)

2] ,

with E[l0(X1)2] < 1 by the polynomial bound assumption. This means that

lim
d!1

E[|A2,d|] 6

8
<

:

`2

2 E[l
0(X1)2] < 1 if lim

d!1
�d = 1/3,

0 if lim
d!1

�d > 1/3.

For i = 4, since the second moment of C4,1 is bounded, the first term of (B.11) satisfies

�4
d

4!

p

dE[C2
4,1]

1/2 = d�
1
6
`4

4!
E[C2

4,1]
1/2 d"1

���! 0.

For the second term, we use E[C4,1] = (�d � 1)K4,d in (B.8) with lim
d!1

K4,d = L4 < 1.

This term is thus be bounded by

�4
d

4!
d|E[C4,1]| 6

�4
d

4!
d(�d � 1)|K4,d| = d

1
3��d

`4

4!
|K4,d|.

This implies that

lim
d!1

E[|A4,d|] 6

8
<

:

`4

4! |L4| < 1 if lim
d!1

�d = 1/3 ,

0 if lim
d!1

�d > 1/3 .

Finally, using Jensen’s inequality to bound |A6,d| yields

lim
d!1

E[|A6,d|] 6 lim
d!1

d�6
d

6!
E[|C6,1|] = lim

d!1

`6

6!
E[|C6,1|] 6 lim

d!1

`6

6!
E[C2

6,1]
1/2 < 1 .
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Since lim
d!1

E[|Rd|] 6 lim
d!1

6P
i=1

E[|Ai,d|] + E[|Ud|] < 1, we conclude by Lemma B.6 that

lim
d!1

E[↵(X,Y )] > 0.

(() We need to show that if lim
d!1

�d < 1/3, then lim
d!1

E[↵(X,Y )] = 0. From the second

part of Lemma B.6, it is su�cient to verify that

E[Rd]
d"1
���! �1 and

E[|Rd � E[Rd]|]

�E[Rd]
d"1
���! 0 . (B.12)

For the first limit, since E[C1,1] = 0, the dominating term in the development of E[Rd] is
E[A2,d]. Using (B.8), we have

E[A2,d] =
d�2

d

2!
E[C2,1] =

�(�d � 1)2d�2
d

2
E[l0(X1)

2] = �d
2
3�2�d

`2

2
E[l0(X1)

2] < 0 .

It follows that E[Rd] ! �1 at a speed of d
2
3�2�d .

For the ratio in (B.12), we want to show that the numerator does not grow faster than
the denominator. As shown in (B.4), we can bound E[|Rd � E[Rd]|] by

E[|Rd � E[Rd]|] 6
6X

i=1

�i
d

i!

p

dV(Ci,1)
1/2 + E[|Ud � E[Ud]|]

=
6X

i=1

`i

i!
d

1
2�

i
6V(Ci,1)

1/2 +O(d�1/6)

= `d
1
3E[C2

1,1]
1/2 +

`2

2
d

1
6 (E[C2

2,1]� E[C2,1]
2)1/2 +O(1) , (B.13)

as the elements i > 3 of the sum are O(1) (because lim
d!1

E[Ci,1] < 1 and lim
d!1

E[C2
i,1] < 1

for i = 1, . . . , 6) and E[|Ud �E[Ud]|] is O(d�1/6) as seen in the first part of this demonstra-
tion. Using (B.8) and (B.9), we simplify (B.13) and obtain

E[|Rd � E[Rd]|]

6 `d
1
3 (�d � 1)K1/2

1 +
`2

2
d

1
6
�
(�d � 1)2K2,d � (�d � 1)4E[l0(X1)

2]2
 1/2

+O(1)

= d
1
3��d`

p
K1 + d

1
6��d

`2

2

n
K2,d � d�2�dE[l0(X1)

2]2
o1/2

+O(1) .

This implies that E[|Rd � E[Rd]|] is O(d
1
3��d) while E[Rd] is O(d

2
3�2�d). The ratio is thus

O(d�d� 1
3 ) and converges to 0 as d " 1 since lim

d!1
�d < 1/3. By Lemma B.6, we conclude

that limd!1 E[↵(X,Y )] = 0.
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