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Abstract: We use location model methodology to guide the least squares analysis in the Lasso problem of
variable selection and inference. The nuisance parameter is taken to be an indicator for the selection of
explanatory variables and the interest parameter is the response variable itself. Recent theory eliminates
the nuisance parameter by marginalization on the data space and then uses the resulting distribution for
inference concerning the interest parameter. We develop this approach and find: that primary inference is
essentially one-dimensional rather than n-dimensional; that inference focuses on the response variable itself
rather than the least squares estimate (as variables are removed); that computation is relatively easy; that
a scalar marginal model is available; and that ineffective variables can be removed by distributional tilt or
shift. The Canadian Journal of Statistics xx: 1–25; 20?? c� 20?? Statistical Society of Canada
Résumé: Nous utilisons la méthodologie des modèles de position dans le but de guider l’analyse des moin-
dres carrés dans le cadre du problème de type Lasso, c’est-à-dire de sélection et d’inférence de variables. Le
paramètre de nuisance est une variable indicatrice relative à la sélection des variables explicatives alors que
le paramètre d’intérêt est la variable réponse. Selon des développements théoriques récents, le paramètre de
nuisance est éliminé par marginalisation sur l’espace de données; la distribution résultante est alors utilisée
pour effectuer une inférence sur le paramètre d’intérêt. Nous développons cette approche et constatons: que
l’inférence primaire est essentiellement unidimensionnelle plutôt que n-dimensionnelle; que l’inférence se
concentre sur la variable réponse elle-même plutôt que sur l’estimé des moindres carrés (à mesure que les
variables sont supprimées); que les calculs sont relativement faciles; que le modèle marginal scalaire est
disponible; et que les variables inefficaces peuvent être supprimées par inclinaison ou glissement distribu-
tionnel. La revue canadienne de statistique xx: 1–25; 20?? c� 20?? Société statistique du Canada

1. INTRODUCTION
The Lasso (least absolute shrinkage and selection operator) approach is a regression method that
simultaneously performs variable selection and parameter estimation. Introduced in the statistical
literature by Tibshirani (1996), its goal is to enhance the accuracy of predictions while retaining
the interpretability aspect of the resulting statistical model. The idea behind Lasso is to force
the sum of the absolute regression coefficients to be smaller than a predetermined value, which
consequently forces some coefficients to be null. It was initially introduced in the context of
linear regression and least-squares estimation; its applicability is however much wider, including
for instance generalized linear models and proportional hazards models.

The Lasso method essentially consists in solving a constrained minimization problem over
the parameter space, i.e., over all possible regression coefficients. The objective function to min-
imize may vary in different contexts, but the constraint on the sum of absolute regression coeffi-
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cients is generally present (although variations of this penalty may be used in different versions
of Lasso). Geometrically, the Lasso is usually illustrated by comparing the shape of its constraint
region to that arising from other penalty functions; this enhances the fact that Lasso’s constraint
region has several corners and edges over which one or several regression coefficients are null. As
this region gets smaller, the contours of the objective density function become increasingly likely
to hit one of those corners/edges, therefore leading to a regression model with fewer parameters
(see Figure 2.2 of Hastie, Tibshirani, & Wainwright, 2015).

There is a very extensive literature about Lasso. Several variations of the method have been
proposed, and various algorithms have been developed to solve the convex optimization prob-
lem it generates; Hastie, Tibshirani, & Wainwright (2015) and the references therein provide a
detailed summary of these advances. One limitation of Lasso is that it becomes computationally
intractable with large datasets, which are common in our current era of big data and sophisti-
cated statistical models. Another one is that in presence of high pairwise correlations in a group
of variables, Lasso tends to select only one variable and does not care which one it selects (see
Zou & Hastie, 2005).

In this paper, we consider a linear regression context and address the variable selection and
parameter estimation problems from a geometrical viewpoint. Given data on many variables,
we identify one of particular importance (the response variable) and seek a small selection of
others (the explanatory variables) that give good linear prediction of the interest variable. The
vector containing the observed responses serves as the focal point of the interpretation, around
which vectors containing observations from explanatory variables gravitate. The angles between
the response and explanatory vectors, and among pairs of explanatory vectors, provide the basic
input for a geometric analysis guided by location model theory.

To this end, the familiar location-scale standardization is applied to each variable; we also add
sign standardization so that all explanatory variables be positively correlated with the response
variable. This last modification is not required in the final implementation of the method, but
does make the problem easier to visualize and, in turn, helps justifying the steps leading to our
final approach. We then focus on normal linear models as a way to handle least squares and then
rely on the above geometry to propose a simple resolution for the Lasso problem. The response
variable is taken as the interest parameter and an indicator function for the selection of explana-
tory variables is used as the nuisance parameter. By projecting all pertinent information from
explanatory variables on a single line in the space, we find that the available information about
the response variable can be summarized in a one-dimensional distribution that is characterized
by its prediction variance.

This allows fine-tuning the objective function of the standard Lasso to more closely agree
with its intended purpose; this function however remains unaltered in the saturated cases. As a
consequence, the elimination of ineffective variables becomes easier, avoiding the usual iteration
procedure and making the problem largely dimension free. We eliminate seemingly underper-
forming explanatory variables by a tilt or moment generating type modification, and discard
negative coefficients under the distributional shift. We obtain an iteration-free resolution of the
Lasso that is essentially explicit, with out-of-sample prediction accuracy well exceeding that of
the regular Lasso. We use the term Linear Lasso for our procedure to emphasize that the mini-
mization trajectory above the parameter space is a straight line; this is in contrast to the regular
Lasso, which has multiple segments of lines and curves. The end result is a selection approach
that presents some similarities with that of Fan & Lv (2008), but in which variable selection is
built-in and thus avoids the need for preliminary screening.

The resulting model may then be used for inference or prediction; we however emphasize that
models obtained from data-driven variable selection procedures, such as the Lasso and Linear
Lasso, should be handled with care. For instance, confidence intervals or statistical tests that
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are naively performed on such models do not necessarily enjoy the advertised coverage/level.
Indeed, the variables that are selected tend to be the significant ones and ignoring this can falsely
amplify the apparent connection between variables. Statistical inference on models stemming
from such methods should instead rely on recent developments about post-selection inference;
see, for instance, Berk et al. (2013), Lee & Taylor (2014), Taylor & Tibshirani (2015), Lee et al.
(2016), and Zhao, Witten, & Shojaie (2021).

In Section 2, we record background and notation. The stochastic framework is analyzed in
Section 3 from a geometrical viewpoint, and is linked to location model theory. Section 4 intro-
duces what is viewed as the latent or simulation model and shows that least squares is effectively
equivalent to routine normal analysis, with a very simple example given in the subsequent sec-
tion. Section 6 determines how much response distribution is hidden in a selection of explanatory
variables and records the corresponding selection model. Sections 7 to 9 show how to construct a
reduced set of explanatory variables, while Sections 10 and 11 illustrate the theory with two real
data examples. We conclude with a discussion in Section 12.

This paper preserves the unique and original views of the late Professor D.A.S. Fraser. Ap-
pendix B is intended as an accompanying document containing section-by-section clarifications
and details about the concepts introduced (this appendix should ideally be read side by side with
the main document).

2. BACKGROUND AND NOTATION
In this work, we consider a scalar variable y of particular interest and r potential explanatory
scalar variables x1, . . . , xr, typically with r large. We then seek a small sub-selection of the ex-
planatory variables that provides acceptable or good prediction for the response y; we suppose
that these predictors have subscripts in Js = {j1, . . . , js}. To perform this task, we have n ob-
servations on the 1 + r variables, providing full data as an n⇥ (1 + r) array (y,x1, . . . ,xr), or
as 1 + r vectors of length n. The location, scaling, and sign of the variables are typically con-
ventional so we can widely apply standardizations. Accordingly, we hereafter assume that each
column vector has been location-scale standardized so the average of the coordinates is zero and
their standard deviation is one. To keep notation simple, we still refer to the modified data as
(y,x1, . . . ,xr).

The usual Lasso procedure is to minimize, over choice of regression coefficients �, the ex-
pression

X

i

(yi �Xi�)
2/2n+ �⌃j |�j | , (1)

where Xi is the i-th row of X = (x1, . . . ,xr). The first term is a rescaled residual sum-of-
squares from the linear model and the second term is a Lagrangian penalty to force fewer selected
predictors, with � for tuning; see Hastie, Tibshirani, & Wainwright (2015). The few non-null
regression coefficients � retained by the Lasso can then be combined with observations from the
selected explanatory variables to predict the associated response y.

Following the previous location-scale standardization, each data vector has length n1/2 and
the correlation between any pair of vectors is obtained by dividing the corresponding inner prod-
uct by n. We view the pairwise correlations of the 1 + r vectors as the intrinsic data for the
problem. Specifically, let c = (cj) be the correlations between y and the xj vectors, and let
C = (cij) be the correlations among the xj vectors. We can then assemble these terms as a full
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correlation matrix

C̃ =

 
1 ct

c C

!
. (2)

The use of the letters c and C reminds us that the elements are just cosines of angles between
unit data vectors, each conveniently obtained from a corresponding inner product. As with Lasso,
these correlation terms are treated as constant.

As explanatory variables xj can be positively or negatively correlated with the response y, we
apply a further standardization: any explanatory vector xj that is negatively correlated with the
response vector y has its sign reversed. Consequently, all explanatory vectors become positively
correlated with the response vector. This modification is notational and for visual convenience
only; it does not affect the substance and is in some agreement with the usual regression analysis.

Finally, in order to geometrically represent the vectors’ directions relatively to each other,
let uy,u1, . . . ,ur be unit versions of the data vectors y,x1, . . . ,xr (i.e., uj = xj/

p
n). It is

convenient to think of uy as pointing upward; it is also natural to have the zero point of each
vector uy,u1, . . . ,ur placed directly on the origin of some underlying vector space. Under this
framework, all uj vectors are then directed into the upper half-space L+y, above the plane L?y
perpendicular to y; see Figure 1.

FIGURE 1: The unit response vector uy and two (unit) predictor vectors u1 and u2, along with their
projections cj to Ly and residuals ũj on L?y.

3. LATENT STOCHASTIC MODEL
Having geometrically represented the direction of each data vector, we now impose a distri-
butional structure to pursue our analysis. The reference to correlated data indicates a common
stochastic background for the 1 + r variables. In our linear regression context, each variable
y, x1, . . . , xr can be viewed as a linear function of an n-dimensional latent normal distribution
on an underlying vector space. The values of such a linear function can be recorded on the line
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perpendicular to the contours of this linear function, that is, on the lines formed by the vectors
y,x1, · · · ,xr and designated Ly,Lx1, · · · ,Lxr. Conveniently, the use of least squares has al-
gebraic equivalence to symmetric normal location model analysis, where the related distribution
theory provides important guidance.

Specifically, for a linear model that corresponds to least squares, we use an n-dimensional
latent variable space having a rotationally symmetric standard normal distribution; for conve-
nience, we center this distribution at the origin. An observable variable (say, xj) is then a linear
function on that space, which can be viewed as a sort of “tap” on the latent stochastics. Each lin-
ear function has its own linear contours on the latent variable space, where a contour is formed
of all n-dimensional latent observations leading to a common point on the linear function. These
contours are parallel (hyper)planes that are perpendicular to the function; then, perpendicular to
these contours, we find a line that goes through the origin (say, Lxj) and that indexes the con-
tours of the linear function. Each such line thus records values for the corresponding variable (so
values for the variable xj are recorded on Lxj) and presents a column of the given data array
(xj are observations from the variable xj on Lxj). The data can then be viewed as giving n val-
ues on each observed line in the space, corresponding for instance to successive time points. As
these 1 + r lines all go through the origin in the latent vector space Rn, the model gives data on
a rotationally symmetric normal latent model, and the observed lines provide a type of skewed
coordinates that introduce the correlations c and C in the resulting distribution.

With the latent stochastic model, we are able to describe the 1 + r variables of interest in
terms of their dependence on the n latent variables. These variables of interest can then be pre-
sented as “taps” on the latent stochastics, or equivalently as functions on the latent variable
space. This alternative modeling format offers advantages, including making explicit the con-
tinuity that is present among variables. Such linear functions on the latent space can be called
“data generating” given their availability for simulations, or “structural” for their explicit presen-
tation of the dependences. For the full set of variables, we use the data generating format and
a choice of expressive but nonstandard notation: {yLy, x1Lx1, · · · , xrLxr}, where the lines
record the directions of the stochastic “taps”, and where the coefficients y, x1, · · · , xr each are
standard normal on their respective line, but collectively have correlations recorded as C̃. Then,
for the modeling to structure least squares, we use the lower case variables y, x1, . . . , xr; these
are jointly multivariate normal (0; C̃), that is,

y, x1, . . . , xr ⇠ MN

0

BB@

0

BB@

0

...
0

1

CCA ;

 
1 ct

c C

!
1

CCA . (3)

Before pursuing our analysis of the above model, we introduce a further coordinate standard-
ization that makes the model’s form and objectives more transparent. We explained above that the
response variable y, represented as a linear function of the latent variables on the n-dimensional
space, is recorded on the line Ly; prediction is thus one-dimensional rather than n-dimensional,
and the analysis involves scalar fitting rather than n-dimensional regression fitting. This then
leads to the Linear Lasso procedure that allows selection of variables by minimum-number or
maximum-variance viewpoints, where the elimination of unproductive x variables is achieved
by tilting (or equivalently by shifting) the response distribution along Ly.

By opposition, we outline that the regular least squares modeling seeks a vector ŷ in the
n-dimensional latent variable space that is as close as possible to y in terms of the residual sum-
of-squares. Expressed differently, it looks for a linear function of the r explanatory variables
(which are themselves linear functions in the latent variable space) that will reach this goal. Such
an approach thus involves n-dimensional regression fitting.
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4. INFERENCE FROM A PARTICULAR SUBSET OF EXPLORATORY VARIABLES
Using the distributional structure outlined in the previous section, we would like to achieve in-
ference on the response variable y using a particular subset containing s of the r exploratory
variables. We suppose that the predictors included in the subset are those with indices in
Js = {j1, · · · , js}, meaning that j1 is the original subscript of the first coordinate selected, j2
the original subscript of the second coordinate selected, and so on. Then, using the multivariate
normal in (3), we find that the subset of variables labelled by Js have the joint distribution

y, xj1 , . . . , xjs ⇠ MN

0

BB@

0

BB@

0

...
0

1

CCA ;

 
1 cts
cs Cs

!
1

CCA ,

where cs and Cs designate the correlations restricted to the subset Js.
For convenience, we assume that the full correlation matrix C̃ is nonsingular, and re-

turn to greater generality later. We then use the formulas of conditional probability to ob-
tain the conditional distribution of the response variable y given the subset of explanatory
variables with subscripts in Js. For a single x variable, the familiar conditioning formula is
y|x ⇠ N (�y,x��1

x,xx ; �y,y � �y,x��1
x,x�x,y), where �x,x and �y,y are the variances of x and y

respectively, and �x,y = �y,x is the covariance term. Applying the corresponding vector version
then gives

y|xj1 , . . . , xjs ⇠ N

0

BB@ctsC
�1
s

0

BB@

xj1

...
xjs

1

CCA ; 1� ctsC
�1
s cs

1

CCA (4)

on the line Ly. This represents the distribution of the response y given that we have observed
the explanatory variables xj1 , . . . , xjs , and this forecasts the value ctsC�1

s (xj1 , · · · , xjs)
t on Ly.

We refer to the value ctsC
�1
s (xj1 , · · · , xjs)

t as the y-content of the subset Js; it algebraically
corresponds to the least squares prediction given the observed explanatory variables xj1 , . . . , xjs

and data vectors xj1 , . . . ,xjs . This y-content, in turn, is normally distributed with mean 0 and
standard deviation {ctsC�1

s cs}1/2 on Ly. The standard deviation can be interpreted as the frac-
tion of y variability inherent in the subset of explanatory variables; it represents the fraction of
the marginal y distribution that is captured by the subset of predictors Js.

5. A VERY SIMPLE EXAMPLE
Consider a very simple example with n = 3 and r = 2, as indicated by Figure 1. In that context,
the number of possible selected variables is either s = 1 or s = 2. Suppose the data array is

(y X) = (y x1 x2) =

0

B@
1.000 000 . 0.900 000 . 0.600 000

0.000 000 0.435 890 0.400 000

0.000 000 0.000 000 0.692 820

1

CA ;

the vector y points upward and each of the data vectors is of unit length. If we place the zero
points of these vectors on the origin of the latent vector space, then they correspond to the unit
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TABLE 1: General expressions for individual predictions (second column) and their SD (third column), for
each possible subset of selected predictors.

SD of content =

Source y-content fraction of explained y-variability

{x1} c1 x1 c1

{x2} c2 x2 c2

{x1, x2} (c1 c2)

 
1 c12

c21 1

!�1 
x1

x2

! 8
<

:(c1 c2)

 
1 c12

c21 1

!�1 
c1

c2

!9=

;

1/2

TABLE 2: Values of y-content (third column) and SD = fraction of explained y-variability (fourth column),
for each possible subset of selected predictors.

Source
y axis

projection
y-content

SD
of content

From {x1} 0.9 0.9 x1 0.9

From {x2} 0.6 0.6 x2 0.6

From {x1, x2} 0.902 0.963 x1 � 0.088 x2 0.902

vectors uy , u1, and u2. The pairwise correlations between these vectors, all positive, are

C̃ =

 
1 ct

c C

!
=

0

B@
1.000 000 . 0.900 000 . 0.600 000

0.900 000 1.000 000 0.714 356

0.600 000 0.714 356 1.000 000

1

CA .

After standardizing each data vector so that the means be equal to zero and the standard devia-
tions to one, the latent stochastic model is expressed as (yLy, x1Lx1, x2Lx2), where (y, x1, x2)
is a multivariate normal (0, C̃) with 0 a vector of zeroes. In Figure 1, the latent model is a
three-dimensional standard normal centered at the origin. The form of the model above L?y
has a near-reflection through the origin, giving a near-duplicate below L?y (model has no cubic
terms).

In this example, we only have three possibilities in terms of variable selection, namely {x1},
{x2}, and {x1, x2}. For each possible case, general expressions for the y-content and the fraction
of explained response variability are provided in Table 1. The last line in the table uses results
for the full set of explanatory variables. Using the data summarized in C̃ above, the general
expressions in Table 1 lead to the models and values in Table 2. We then see that x1 has the
largest projection on the y axis, and thus the variable x1 is associated with the largest fraction of
explained y-variability; including x2 then adds very little to the fraction of y-variability captured
by the model. This is unsurprising considering that x2 is more correlated with x1 than it is with
y.
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Figure 2 illustrates the fraction of marginal y-density that is available from each explanatory
variable separately. Figure 3 depicts the fraction of marginal y-density that is available from the
best selection of size 1 and 2, respectively. In both cases, we included the full y density for
comparison. Although the example is simple, it does illustrate that for any subset of explanatory
variables, there is an available formula that quantifies the y-information contained in that specific
subset. Obviously, the number of non-trivial subsets in this example is very small (r!/{s!(r �
s)!} = 3!/{2!1!} = 3), but this number grows exponentially with larger data arrays.

6. HOW MUCH Y DISTRIBUTION IS HIDDEN IN SELECTED X VARIABLES
In Section 4, we used the conditional distribution of y given a subset Js of explanatory vari-
ables to make an inference about the response variable. Suppose now that we address the
larger question of how much y-content distribution is accessible from an arbitrary selection
Js = {j1, · · · , js} of explanatory variables. The distribution of such variables can be presented
in data-generating form as {xj1Lxj1 , · · · , xjsLxjs}, where the coefficients xj1 , . . . , xjs are cen-
tered multivariate normal

xj1 , . . . , xjs ⇠ MN

0

BBBBB@

0

BB@

0

...
0

1

CCA ;Cs =

0

BBBBB@

1 cj1j2 . . . cj1js
cj2j1 1 cj2js

...
. . .

...
cjsj1 . . . cjs�1js 1

1

CCCCCA

1

CCCCCA
.

The variables in Js can then be linearly combined so as to yield a prediction
ctsC

�1
s (xj1 , . . . , xjs)

t that is equivalent to the least squares prediction, as in Section 4. The dis-
tribution of this linear function is a centered normal on Ly with SD � = {ctsC�1

s cs}1/2. The
fraction of y-variability explained by the Js = {j1, · · · , js} selection of explanatory variables is
thus the fraction �(Js) = {ctsC�1

s cs}1/2 of the marginal N (0, 1) distribution for the response y;
see Figure 2.

To account for the various possible subsets of predictors, we now introduce a parameter �
in the above distribution. Specifically, we let � = (�1, · · · , �r) be an indicator variable for the
presence (1) or absence (0) of each of the r available explanatory variables. We then define the
vector c� = (cj�j ) and matrix C� = (ci�i,j�j ), in which elements with a null subscript are simply
excluded; this leads to a vector c� of length ⌃j�j and a matrix C� of dimension ⌃j�j ⇥ ⌃j�j .
Then, from the preceding paragraph, the fraction of y-density in our selection � is expressed as
a fraction �(�) of a standard normal distribution, where �(�) = {ct�C

�1
� c�}1/2. The statistical

density (with parameter �) of this y-information coming from the specified explanatory variables
therefore is

�(�) of �(y) ⌘ �(�) of
1

(2⇡)1/2
exp{�y2/2} .

This presents a relative density that is recorded as a fraction of a standard normal distribution. It
can also be recorded, more formally, in statistical model format:

f(y; �) = �(�)�(y) .

The density arising from any component (or group of components) labeled � will typically not
integrate to one, as it is only recording the fraction of a hidden y distribution that is accessible
from the x variables.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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FIGURE 2: For the simple example in Section 5, we record the fraction 0.6 of y-density inherent in x2

(right), 0.9 in x1 (middle), and finally 1 in the target variable y (left); percentages are illustrated by frac-
tioning the height of the standard normal.

FIGURE 3: For the simple example in Section 5, we record the fraction 0.9 of y-density coming from x1

alone (right), 0.902 from x1 and x2 (middle), and finally 1 for the target variable y (left).

7. SUBSTANTIAL REDUCTION IN THE SET JS OF EXPLANATORY VARIABLES
The objective of the Lasso is to minimize the residual sum-of-squares with respect to �, subject
to a penalty on the total magnitude of the regression coefficients. Having now projected the
pertinent y-information contained in the explanatory variables on the line Ly, we can recast the
objective as a model search along the response line. In light of the statistical context discussed
in the previous section, our primary objective is now to find a small selection Js of explanatory
variables that collectively give large y variance (and thus high distribution) for the y-content.
This involves a trade-off between the variance �2(�) = ct�C

�1
� c� and the cardinality ⌃�j of the

selection.
The variance formula for a single xj is straightforward; it gives the corresponding squared

correlation c2j , and is thus immediately available. However, if we seek an additional explanatory
variable, the variance is typically not the sum c21 + c22 of the individual variances; it generally
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includes weights from the inverse of the correlation matrix C. The variance for the y-content in
the variables x1 and x2 is c21c

11 + 2c1c2c12 + c22c
22, where the c’s with two raised indices are

elements of C�1; hence, the maximum variance given a cardinality ⌃�j does not seem easily
available. A direct search for this problem has an exponential order of computation and could be
viewed as unfeasible with large data.

We now briefly discuss a simpler computational route, appropriate with any number of pre-
dictors, that drops components by walking along Ly. The method has the potential of removing
a large batch of underperforming explanatory variables (Section 8) and it can also be fine-tuned
so as to obtain a one-by-one procedure; the latter is discussed in Section 9. Our marginal model
f(y; �) is a centered normal with variance �2(�) = ct�C

�1
� c�; this model depends on the selec-

tion � entirely through the scaling (or spread) � of its distribution. We then propose to shift this
distribution on the positive y-axis by applying an exponential tilt exp{�y} to the distribution; see
Appendix A. In doing so, the center of the distribution goes from zero to � and we then retain
only positive regression coefficients. This eliminates underperforming xj and provides a distri-
butional analog of the penalty function approach in Tibshirani (1996). The xj eliminated by this
process are those with small cj values. This substantial reduction is easy, entirely based on small
correlations, and does not require iterations. It is available here because of our direct search for
y-content rather than the focused use of fitted regression.

8. MANY EXPLANATORY VARIABLES
The Linear Lasso uses location model methodology to obtain an ordering on sets of explanatory
variables Js. The development uses a latent normal space, projects relevant information on the
response line, and discards predictors on the basis of their correlations {cj} with the response.
The simplicity evolves from the focus on the one-dimensional y-content distribution associated to
sets Js. The ordering is used to drop least contributing explanatory variables as part of a stepwise
regression, and is consistent when combining or reducing such sets of variables.

Conveniently, in contexts where there is a very large number of explanatory variables
(r >> n for instance), the consistent procedure would still be to drop variables in accord with
the correlations. Therefore, for stepwise regression, we can quite generally drop the small cj
variables as part of the reduction process. In our approach, making use of correlations is there-
fore built-in and replaces the need for preliminary screening as used in Fan & Lv (2008) in the
Lasso context.

9. ONE-BY-ONE
When few variables are left in the model, we might want to account for the correlations C be-
tween predictors by eliminating the variable xj that leads to the smallest decrease in the variance
term �2(�) = ct�C

�1
� c� . We thus apply backward regression with an exclusion criterion based on

the variance of the y-content distribution.
To this end, suppose that m variables have been eliminated on the basis of their correlations

with the response, and that the original subscripts of these variables are listed in M; here, m is
a value selected by the user. There are thus r �m variables left to order; iteratively, we proceed
as follows.

1. Initialize �(0) such that �j = 0 for j 2 M and �j = 1 for j /2 M, j = 1, . . . , r. The cardi-
nality ⌃�j of the selection �(0) is then r �m.

2. Let �(1) = �(0) and suppose that k1 /2 M. Set �k1 = 0, where k1 minimizes

�2(�(0))� �2(�(1)) = ct�(0)C
�1
�(0)

c�(0) � ct�(1)C
�1
�(1)

c�(1) ;
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include k1 in M and the cardinality ⌃�j becomes r �m� 1.
3. Let �(2) = �(1) and suppose that k2 /2 M. Set �k2 = 0, where k2 minimizes

�2(�(1))� �2(�(2)) = ct�(1)C
�1
�(1)

c�(1) � ct�(2)C
�1
�(2)

c�(2) ;

include k2 in M and the cardinality ⌃�j becomes r �m� 2.
4. Repeat these steps until all variables have been removed; the resulting ordering provides a

progressive selection of variables for various cardinalities ⌃�j .

Combining the substantial reduction of Sections 7 and 8 with the present one-by-one proce-
dure gives the process for the Linear Lasso; this new approach works directly on the response
line, after the data have been sign standardized. Neither the Linear nor the regular Lasso can be
expected to fully achieve its desired optimization, but the Linear Lasso uses y-change directly as
the desired target and has the substantial property of avoiding iterative steps. The tuning param-
eter for the Linear Lasso is the parameter � in the exponential tilt or shift.

10. EXAMPLE: CRIME DATA
To illustrate the use of the Linear Lasso, we study the small example on page 10 of Hastie,
Tibshirani, & Wainwright (2015). The data, originally taken from Thomas (1990), reports the
crime rate per million residents in n = 50 U.S. cities. There are r = 5 explanatory variables:
annual police funding (dollars/resident), people age � 25 with four years of high school (%),
people age 16 to 19 neither in high school nor high school graduates (%), people age 18 to 24
in college (%), and people age � 25 with � 4 years of college (%). The resulting data array is
50⇥ 6; the crime rate in the first column of the array is the outcome vector and columns 2 to 6
are the five potential explanatory variables.

A first step consists of standardizing the data so that each column has an average of zero
and a standard deviation of one. The standardized data array is (y x1 . . . x5). Inner products
cj = y · xj/n (j = 1, . . . , 5) represent the correlations between the outcome y and the explana-
tory variables (x’s). The variables x2, x4, and x5 represent different measures of the population’s
education level and are all negatively correlated with the crime rate. If we picture the outcome y
as a vector pointing upwards, this implies that vectors x2, x4, and x5 lie in the lower half-space.
We invert the sign of these three explanatory variables and use x⇤

j = �xj (for j = 2, 4, 5) and
x⇤
j = xj (for j = 1, 3); we thus work with vectors that are in the upper half-space L+y. The

resulting vector of correlations c is then formed of the elements |cj | = y · x⇤
j/n (j = 1, . . . , 5).

Similarly, inner products cjk = x⇤
j · x⇤

k/n (j, k = 1, . . . , 5) form the 5⇥ 5 matrix C of correla-
tions between the x⇤ vectors.

From (3), (y, x⇤
1, . . . , x

⇤
5) is jointly distributed according to a MN (0, C̃). Using (4), the

predictive distribution for the full model is

y|x⇤
1, . . . , x

⇤
5 ⇠ N (0.516x⇤

1 + 0.206x⇤
2 + 0.112x⇤

3 � 0.019x⇤
4 � 0.097x⇤

5; 0.666) .

Of interest is to use a predictive distribution that features a variance as small as possible, while
simultaneously relying on a relatively simple model (parsimony). We thus look for a small selec-
tion of explanatory variables Js whose y-content ctsC�1

s (x⇤
j1 , . . . , x

⇤
js)

t has a high variance; the
associated standard deviation then represents the fraction of y-variability that is explained by the
linear model.

We proceed as expounded in Section 9, starting with the full model and iteratively removing
variables. In this example, the vector of correlations between the outcome y and explanatory
variables x⇤

j is c = (0.533, 0.135, 0.323, 0.175, 0.026)t. Let us suppose that the first m variables
are eliminated from the model on the basis of having small cj (recall that m is selected by the

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



12 D.A.S. FRASER AND M. BÉDARD Vol. xx, No. yy

TABLE 3: Selection of subsets Js obtained with different m values in the Linear Lasso, along with the
corresponding fractions of y-content distribution ({ctsC�1

s cs}1/2, in %); this is based on all observations.
Mean-squared prediction errors (CV-MSE) and their standard deviations (SD), obtained with 50

repetitions of 10-fold cross-validation, are also provided.

Linear Lasso

s 5 4 3 2 1

m = 0

Js {1,2,3,4,5} {1,2,3,5} {1,2,5} {1,2} {1}

% y-cont. 57.758 57.749 57.277 56.984 53.320

CV-MSE 0.8524 0.8476 0.8434 0.7864 0.7784

SD 0.0397 0.0393 0.0372 0.0273 0.0452

m = 1

Js {1,2,3,4,5} {1,2,3,4} {1,2,3} {1,2} {1}

% y-cont. 57.758 57.548 57.231 56.984 53.320

CV-MSE 0.8556 0.8305 0.8398 0.7919 0.7776

SD 0.0381 0.0331 0.0342 0.0281 0.0420

m = 3

Js {1,2,3,4,5} {1,2,3,4} {1,3,4} {1,3} {1}

% y-cont. 57.758 57.548 56.457 55.802 53.320

CV-MSE 0.8582 0.8288 0.7883 0.7679 0.7757

SD 0.0498 0.0380 0.0362 0.0424 0.0389

m = 5

Js {1,2,3,4,5} {1,2,3,4} {1,3,4} {1,3} {1}

% y-cont. 57.758 57.548 56.457 55.802 53.320

CV-MSE 0.8554 0.8312 0.7870 0.7756 0.7837

SD 0.0420 0.0373 0.0291 0.0571 0.0613

user); the remaining r �m variables then have the highest correlations and are discarded accord-
ing to a backward elimination based on the variance criterion. This elimination procedure can be
viewed as a one-sided version of the two-sided penalty function in Tibshirani (1996). It uses a
type of moment generating penalty (the tilt exp{�y}) which, combined to the standard normal
latent distribution, just provides a shift of that distribution in the direction of positive y. The
“other side” of the penalty (usually managed using absolute values, as in Lasso) is handled here
by having only non-negative regression coefficients. At each step, this eliminates the smallest
contributor to estimable y-distribution.

The resulting sequence of models is detailed in Table 3 for different choices of m, along with
the corresponding percentage of y-content distribution for each model. For comparison, Table 4
provides the models obtained using Lasso with a continuum of � values. Note that these models
and percentages (first two lines of Tables 3 and 4) are obtained using all available observations in
the dataset. Lasso and Linear Lasso do not propose the same sequences of models; in fact, Linear
Lasso with m = 3 and m = 5 are the only instances with identical sequences. In all cases, the
first variable to be eliminated is always either the fifth or fourth one.
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TABLE 4: Selection of subsets Js obtained with different � values in Lasso, along with the corresponding
fractions of y-content distribution ({ctsC�1

s cs}1/2, in %); this is based on all observations. Mean-squared
prediction errors (CV-MSE) and their standard deviations (SD), obtained with 50 repetitions of 10-fold

cross-validation, are also provided.

Lasso

� 0.00 0.03 0.06 0.10 0.14

s 5 4 3 3 3

Js {1,2,3,4,5} {1,2,3,5} {1,2,3} {1,2,3} {1,2,3}

% y-cont. 57.758 57.749 57.231 57.231 57.231

CV-MSE 0.8673 0.8213 0.8037 0.8158 0.8377

SD 0.04488 0.0401 0.0362 0.0383 0.0440

� 0.18 0.22 0.25 0.30

s 2 2 1 1

Js {1,3} {1,3} {1} {1}

% y-cont. 55.802 55.802 53.320 53.320

CV-MSE 0.8591 0.8935 0.9252 0.9492

SD 0.0445 0.0439 0.0265 0.0254

To find the optimal number of explanatory variables (s) and the optimal value of m in terms
of prediction, we use a repeated 10-fold cross-validation approach. The 50 observations are ran-
domly divided into 10 groups of size five. One of these groups is taken as the test set, while the
nine remaining groups form the training set. The Linear Lasso is then applied to the training set
to obtain a sequence of nested models, as well as coefficient estimates for these models. Each of
the five fitted models (size five to size one) is then used to predict responses in the test set; for
each model, we record the mean-squared prediction error. These steps are repeated 10 times, each
time selecting a different group as the test set. The mean-squared prediction errors are averaged
separately for each of the five models. This process is then repeated 50 times, every time with
a new random partitioning of the observations into 10 groups. For each model size (s) and each
choice of m, the output is thus a 50-dimensional vector of mean-squared prediction errors. The
last two lines of Table 3 report the means and standard deviations of these vectors (one vector
for each pair m, s). The same steps are repeated with the standard Lasso, using several values of
the tuning parameter �; results are reported in the last two lines of Table 4. We note that in the
cross-validation process, models are fitted using portions of the initial dataset; such models may
vary from one training set to another, and in particular may differ from the models reported in
Tables 3 and 4 (obtained using all observations). This nonetheless allows identifying the optimal
pair m, s for prediction.

According to Table 3, the Linear Lasso favours the model with two explanatory variables (x⇤
1

and x⇤
3) as this is the selection that minimizes the mean-squared prediction error. The model with

a single explanatory variable (x⇤
1) however offers a comparable performance. The standard Lasso

rather selects the model with x⇤
1, x⇤

2, and x⇤
3 (� = 0.06 minimizes the mean-squared prediction

error). The prediction errors are, on average, smaller when using the Linear Lasso model with
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TABLE 5: Least squares estimates and their standard errors for each subset Js selected by the Linear Lasso
with m = 3 and m = 5.

s = 5 s = 4 s = 3 s = 2 s = 1

�̂ SE �̂ SE �̂ SE �̂ SE �̂ SE

x⇤
1 0.516 0.143 0.533 0.136 0.489 0.128 0.479 0.126 0.533 0.121

x⇤
2 0.206 0.219 0.145 0.157 – – – – – –

x⇤
3 0.112 0.204 0.129 0.198 0.240 0.157 0.173 0.126 – –

x⇤
4 -0.019 0.220 -0.080 0.159 -0.111 0.156 – – – –

x⇤
5 -0.097 0.239 – – – – – – – –

one or two variables than when using the three-variable Lasso model. If one had reason to prefer
a three-variable model, the best options are the Linear Lasso with m = 3 or m = 5.

Table 5 presents the least squares estimates ctsC
�1
s for each model proposed by the Linear

Lasso with m = 3. The standard errors of the estimates are obtained as the square root of �2
sC

�1
s ,

where the estimate of �2
s is the residual sum-of-squares, divided by n� s. Overall, both method-

ologies seem to agree that the first explanatory variable (police funding) has a large effect, while
the other variables (all related to the population’s education level) have small or moderate effects.
This indicates that more police resources are allocated in cities with higher crime rates.

11. EXAMPLE: MATHEMATICS GRADES
As a second example, we study student performance in secondary institutions using the dataset
in Cortez & Silva (2008). This dataset records the final mathematics grades of n = 395 students
along with 32 potential explanatory variables; these variables include the students’ past grades, as
well as other factors including demographic, social, and education-related features (age, family
status, absences, etc). Nominal variables, such as the field of the mother’s job, were converted
into binary variables; the total number of variables is thus r = 41.

We study three different scenarios: in Scenario A, the first- and second-period grades are
available (r = 41); in Scenario B, the first-period grades are available, but the second-period
grades are not (r = 40); in Scenario C, the first- and second-period grades are not available
(r = 39).

To find the optimal model in terms of prediction, we run a repeated 5-fold cross-validation al-
gorithm similar to that described in the previous section. The 395 observations are thus randomly
divided into five groups of size 79; once each of these five groups has acted as the test set (the
other four groups being combined into a training set), new groups are formed and the approach is
repeated for a total of 50 times. This repeated cross-validation approach is applied on the Linear
Lasso with m = r, m = 37, and m = 0, each generating a nested sequence of models ranging
from size s = 41 to size s = 1; the choice m = 37 corresponds to the number of cj elements
 0.2. The approach is then repeated on the standard Lasso, using a �-vector of length 400 in
order to find the best possible model.

The cross-validation method described above generates 50 mean-squared prediction errors
for each pair (s,m) tested; we then compute the mean and standard deviation of each such
50-dimensional vector. Table 6 provides some information about the models that minimize the
mean-squared prediction error for each method implemented (Linear Lasso and standard Lasso)
and each scenario studied (A, B, and C).
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TABLE 6: Cross-validation mean-squared prediction errors (CV-MSE) and their standard deviations (SD)
for the best models of the Linear and standard Lasso in each of Scenarios A, B, and C. The number of

parameters in each model is also specified; for the standard Lasso, s is the number of regression
coefficients greater or equal to 0.01.

A B C

CV-MSE SD s CV-MSE SD s CV-MSE SD s

Lin. Lasso 0.1792 0.0008 2 0.3563 0.0026 3 0.8708 0.0092 2
(m = r)

Lin. Lasso 0.1804 0.0015 3 0.3573 0.0028 3 0.8714 0.0103 2
(m = 37)

Lin. Lasso 0.1794 0.0043 5 0.3580 0.0101 4 0.8760 0.0043 1
(m = 0)

Stand. Lasso 0.1785 0.0019 6 0.3514 0.0052 9 0.8777 0.0134 21

When past grades are available (first and/or second period), the models obtained show good
prediction potential. When past grades are excluded from the model, it becomes quite difficult
to predict final grades, which is in line with the conclusions of Cortez & Silva (2008). In that
case, there are nonetheless a few variables that are kept in the model, such as the number of past
failures.

Prediction errors are similar under the Linear and standard Lasso approaches. The standard
Lasso however systematically keeps a large number of explanatory variables in the model, para-
doxically offering a fit that is no better than that of the Linear Lasso in terms of prediction. Linear
Lasso, in contrast, offers parsimonious fits; this agrees with Cortez & Silva (2008)’s claim about
the high number of irrelevant variables in the dataset.

Linear Lasso keeps first- and second-period grades as explanatory variables in Scenario A,
first-period grades and number of failures in Scenario B, and number of failures and mother’s
education in Scenario C. In Scenario A, Lasso keeps past grades, age, number of failures, quality
of family relationships, and number of absences. In Scenario B, it keeps first-period grades, age,
number of failures, and number of absences, but it replaces the quality of family relationships
(which was included in the Scenario A model) by the existence of a romantic relationship, reason
for choosing the school, and a few other variables. In Scenario C, Lasso keeps 21 variables, that
is, too many variables to enumerate all of them; we however note that the number of failures is
still there and has the largest coefficient, followed by gender.

12. DISCUSSION
The Linear Lasso uses sign-adjusted explanatory vectors so as to work with predictors that are
positively correlated with the interest variable; this is entirely notational, but means that the
recorded explanatory vectors all point into the positive half-space L+y, “above” the plane L?y.
This allows certain characteristics to be more easily described in geometric terms; this also argues
that the Lasso objective itself should be recast as the scalar change y along the line Ly rather
than the vector change yLy in the vector space.

The modified objective means that the maximum likelihood value for the response is now on
the line Ly, and all explanatory vectors intersect that line at the origin. A penalty function then
becomes the one-sided moment generating function �⌃�j with the “other side” being handled
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by the usual positive regression coefficient requirement. As a result, computation is strictly on
the line Ly; then, as � is increased, the xj vectors are shifted in the �Ly direction, and dropped
from the lower end as determined.

When a particular xj is dropped in computation, there is a minimum reduction in the variance
of the accessible y-information. However, when a group of xj is dropped, there is no assurance
that the composite change results in a minimum variance reduction. This is the same for the usual
Lasso as it is here for the Linear Lasso, and would be as expected from the exponential ordering
in the possible selection of subsets.

The Linear Lasso handles cases with r >> n in a straight-forward manner, by simultaneously
dropping several variables featuring the smallest cj’s. It also largely works with singular matrices
C, due to the simplicity of the minimizing procedure. Empirical evidence from the real dataset
examples of Sections 10 and 11 show that the performance of Linear Lasso is in accordance with
the theoretical results developed in earlier sections; in these examples, the Linear Lasso finds
models that are comparable to those found by the usual Lasso in terms of prediction accuracy,
yet it consistently proposes more parsimonious models. The main advantage of Linear Lasso
stems from its simplicity and ease of application, translating into a computational problem that
is basically independent of the dimension once correlations are obtained.

The theory and objective function of the Linear Lasso have been proposed in a context of
multiple linear regression. Resolution algorithms for the usual Lasso offer a numerical solution
for a wide range of regression models. It will be interesting to find out how the geometric argu-
ments of the Linear Lasso can be adapted to suit other contexts that are of interest for the regular
Lasso.

APPENDIX A
A. NORMAL LOCATION – A TILT IS A SHIFT
For a standard normal c exp{�z2/2} on the real line let exp{�z} be a factor that gives an expo-
nential tilt or boost to the right:

c exp{�z2/2} exp{�z} = c exp{�(z � �)2/2}.

We thus see that a � tilt to the right can be viewed as a � shift of the distribution to the right.
Now consider a standard normal c exp{�

P
z2i /2} on a vector space space coupled with a � tilt

in some direction x:

c exp{�⌃z2i /2} exp{�⌃zixi} = exp{�⌃(zi � �xi)
2/2}.

Then similarly we see that a � tilt in the direction x can be viewed as a � shift in the direction x.
If only s of some explanatory variables are being considered, say, those with subscripts in the

set Js = {j1, · · · , js}, we can use the corresponding correlation arrays as, say, cs and Cs, and
then have distributional results analogous to the two preceding equations but in the appropriate
subspace.
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Appendix B: More on the Linear Lasso
D.A.S. FRASER and Mylène BÉDARD

Abstract: This paper is the last manuscript of Professor D.A.S. Fraser. The main document preserves his
unique and original writing style. It presents an approach that simultaneously performs model selection and
estimation in the context of linear regression. This goal is achieved by analyzing the standard Lasso from
a geometrical viewpoint and then summarizing all available information about the response variable on a
single line in the space; this leads to what we call the Linear Lasso approach.

This appendix aims at clarifying and detailing the ideas covered in the paper. As Professor Fraser’s co-
author and from our numerous discussions on the subject, my goal is to cover our motivations and explain
the concepts in my own words, so as to provide a different perspective and hopefully shed some light on sec-
tions that might be more obscure. These pages may thus be seen as an accompanying document that provides
section-by-section clarifications. The Canadian Journal of Statistics xx: 1–25; 20?? c� 20?? Statistical
Society of Canada
Résumé: Cet article est le dernier manuscrit du regretté professeur D.A.S. Fraser. Le document principal
préserve son style d’écriture unique et original; on y retrouve une approche qui effectue simultanément
la sélection et l’estimation de modèle dans le contexte de la régression linéaire. Cet objectif est atteint en
analysant le Lasso standard d’un point de vue géométrique, puis en projetant toute l’information disponible
concernant la variable réponse sur une unique droite dans l’espace. Cette approche mène à ce que nous
appelons le Lasso linéaire.

Cette annexe vise à clarifier et à détailler les idées abordées dans le document principal. À titre de co-
auteure du professeur Fraser et en m’inspirant de nos nombreuses discussions sur le sujet, mon objectif
est de couvrir nos motivations et d’expliquer les concepts dans mes propres mots, de sorte à fournir une
perspective différente et, ultimement, à faire de la lumière sur certaines sections qui pourraient paraı̂tre
plus obscures. Ces pages devraient donc être vues comme un document d’accompagnement procurant des
précisions, section par section. La revue canadienne de statistique xx: 1–25; 20?? c� 20?? Société statis-
tique du Canada

1. INTRODUCTION
In a linear regression context, Lasso simultaneously performs variable selection and coefficient
estimation. It consists in a constrained optimization problem where we minimize the residual
sum-of-squares arising from a linear model (the objective function), subject to a constraint on the
sum of absolute regression coefficients. This is intuitive and elegant, but requires the assistance
of algorithms to reach a solution. The larger is the dimensionality of the problem studied, the
more demanding is the associated Lasso algorithm in terms of computations.

In the steepest descent algorithm for instance, the process goes down in the steepest possible
direction given the current value of the process, until a minimum of the objective function (or
a barrier) is reached. The algorithm then re-evaluates its direction in order to pursue its descent
(it again chooses the direction of steepest descent given the current point of the function to
minimize). When the process hits a barrier (corner/edge of the constraint region), one of the
regression coefficients is set to 0; the algorithm therefore consecutively discards coefficients,
until a minimum of the function is reached. The number of discarded coefficients eventually
depends on a tuning parameter � that acts as a weight on the Lasso constraint. The larger is
�, the heavier is the penalty compared to the objective function and the more intent we are on
discarding explanatory variables (equivalently, the smaller is the constraint region in Figure 2.2
of Hastie, Tibshirani, & Wainwright, 2015). Conversely, if � = 0, then there is no constraint and
we are back to full model estimation; the regression coefficients are then the usual least squares

c� 20?? Statistical Society of Canada / Société statistique du Canada
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estimates. Gradually increasing � in the Lasso thus leads to an ordering of models from full to
empty.

The efficiency of the Lasso method of course depends on the dimensionality of the context
studied. The algorithm selected to solve the constrained optimization problem has to explore a
multidimensional space, which turns out to be an intense exercise in certain situations. Consider-
ing this drawback, we wish to make use of geometrical arguments to make the variable selection
problem dimension-free. Instead of considering data (yi, xi,1, . . . , xi,r) on n separate subjects
(i = 1, . . . , n), and then using these n subjects to produce a statistical model (fixed � value) or
an ordering of models (continuum of � values), we turn the problem around. We visualize the
n observed responses (y1, . . . , yn) as a single n-dimensional response vector y, and similarly
group the n measures from a given explanatory variable (x1,j , . . . , xn,j) into an n-dimensional
explanatory vector xj . By extracting the information (about the response) contained in each of the
r explanatory vectors, and then projecting these pieces of information onto the response vector,
we transform the initial r-dimensional convex optimization problem into a single-dimensional
one.

These geometrical inputs are then combined with location model theory to produce the Linear
Lasso method. In particular, we use a latent standard normal model that is conveniently equiv-
alent (algebraically) to the use of least squares, and then obtain a predictive distribution lying
on the response line. This then allows characterizing a (one-dimensional) distribution for the y-
content hidden in the explanatory variables. By varying the location parameter of this y-content
distribution, it gradually shifts and allows discarding some predictors. Since every pertinent piece
of information about y (in a linear regression context, that is) is projected on the response vec-
tor/line, we refer to the new method as Linear Lasso; this emphasizes that our constrained opti-
mization problem has a linear trajectory (in opposition to the bits and pieces that are produced
by the traditional Lasso).

2. BACKGROUND AND NOTATION
In this section, a number of simplifying assumptions are introduced to make the problem easier
to visualize; these do not affect the applicability of the results.

The regular Lasso looks for a small selection of explanatory variables that provides good
prediction for the response variable. Typically, the number of available explanatory variables r
is large and the number of variables s kept by the Lasso is much smaller. Indeed, Lasso is on a
budget and has to limit the total magnitude of the r coefficients in �; it thus sets a number of these
coefficients to 0, keeping only the most useful ones in terms of response prediction. Naturally,
the tighter is the budget, the greater is the compromise in terms of data fitting.

Typically, explanatory variables are standardized; this means that each column vector in X
has mean 0 and unit variance. This keeps predictors from depending on the unit with respect to
which they were measured (feet versus meters, for instance). We apply the same location-scale
standardization to the response vector y. Centering variables is convenient as it allows avoiding
the use of a model intercept �0.

Using the rescaled residual sum-of-squares as the objective function, we are left minimiz-
ing ky �X�k22/2n with respect to � and subject to k�k1  t, with k · k1 and k · k2 respec-
tively denoting the `1 and Euclidean norms. This optimization problem is then equivalent to its
Lagrangian form in (1). The tuning parameter � in that equation is usually specified through
cross-validation procedures, to be discussed in later sections.

Following the above-mentioned standardization steps, each explanatory vector xj (j =
1, . . . , r) has unit variance

Pn
i=1 x

2
ij/n = 1, implying that each vector is of length kxjk2 =

{
Pn

i=1 x
2
ij}1/2 = n1/2. Generally speaking, pairwise correlations between vectors are conve-
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niently obtained by computing inner products between unit versions of these vectors. For exam-
ple, the correlation between y and x1 simply is (y/n1/2) · (x1/n1/2) = y · x1/n. In our specific
context, pairwise correlations are thus inner products between two standardized vectors, divided
by the sample size n. These correlations, obtained directly from the data, act as the input for our
regression problem.

Standardizing the location and scale of data vectors produces regression models with desir-
able properties. In terms of geometrical representation however, it is more convenient to work
with unit versions of these data vectors, i.e., uy = y/

p
n and uj = xj/

p
n for j = 1, . . . , r. We

then imagine uy as pointing upwards, with its zero point on the origin, and assume that the zero
point of every other unit vector uj is also on the origin. Since correlations are cosines of angles
between corresponding unit data vectors, we can thus view each term cj (j = 1, . . . , r) as the
projection of uj on uy (or on the response line Ly, which coincides with uy).

Now, according to this geometrical representation, the vectors uj that are positively corre-
lated with uy are directed above the plane L?y that is perpendicular to Ly at 0. Similarly, vectors
that are negatively correlated with uy are directed below that plane. To make the problem one-
sided, we choose to reverse the sign of those predictors that are negatively correlated with y; for
j 2 {1, . . . , r} such that �1  y · xj/n < 0, we use �xj instead of xj (�uj instead of uj) and
exclusively work with predictors whose unit vectors uj lie in the upper half-space L+y.

Visually, the unit response vector uy is thus the focal point (vector pointing upwards) and
explanatory vectors gravitate around it. The smaller is the angle between uy and uj , the more
correlated are y and xj , and the more information about the response is carried by that predictor.
Our analysis will also need to take account of the angles among explanatory vectors. Indeed, two
explanatory vectors that are strongly correlated with y likely contain more information about the
response if their own pairwise correlation is low; if they are independent for instance, there is
no redundancy in the response information they carry. Our geometrical analysis will thus use,
as basic input, the vector c of correlations between the response vector y and each explanatory
vector, as well as the matrix C of correlations among explanatory vectors.

This geometrical setting will eventually allow us to visualize a plane perpendicular to uy

that elevates itself, gradually setting regression coefficients to 0 when the corresponding unit ex-
planatory vector uj finds itself completely under the plane, or equivalently when the plane finds
itself over cj , the projection of the vector uj on uy . The height of the perpendicular plane will
then play the role of � in the regular Lasso and act as a tuning parameter for the budget (but, as
we will see, this parameter needs not be tuned explicitly). From now on, we then assume that the
above standardization steps have been applied when referring to the data vectors (y,x1, . . . ,xr)
and their unit versions (uy,u1, . . . ,ur).

3. LATENT STOCHASTIC MODEL
We started with n observations for each of the 1 + r variables (one response variable and r
explanatory variables). Now that we have standardized the data vectors y,x1, . . . ,xr and geo-
metrically represented their directions in an underlying vector space using 1 + r (n-dimensional)
unit vectors uy,u1, . . . ,ur, we need to provide some distributional structure on that space. To
this end, we assume that the directions of the data vectors are fixed (we thus implicitly condition
on these directions through the use of data vectors). Using correlations as input for our approach
obviously indicates a common stochastic background for the 1 + r variables y, x1, . . . , xr. We
use the normal distribution to represent this stochastic background; this choice is based on large
sample theory (first-order asymptotics) and, as we will see, it is algebraically equivalent to least
squares analysis; this kind of validates our choice of latent normal model.
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Consider, as an underlying stochastic model, n latent variables Z1, . . . , Zn jointly dis-
tributed according to a standard multivariate normal MN (0, In⇥n) on Rn, with 0 a vector
(of length n here) and In⇥n the identity matrix. We express each of our 1 + r scalar variables
y, x1, . . . , xr as a linear function of this latent model (in other words, our first-order—or lin-
ear—approximation for a variable is a linear combination of Z1, . . . , Zn). Specifically, x1 =
(xt

1/
p
n) · (Z1, . . . , Zn)t is a scalar variable with distribution

x1 ⇠ xt
1/
p
n MN (0, In⇥n) = N (ut

1 · 0, ut
1In⇥nu1)

= N (0, 1) .

Now, the variable x1 takes values on a line that is perpendicular to the contours of the linear
function (xt

1/
p
n) · (Z1, . . . , Zn)t. One contour of a function consists of all points (z1, . . . , zn)

that lead to a common value of that function. Geometrically, the contours of any linear function
are perpendicular to the gradient of this function; the contours are thus (hyper)planes that are
perpendicular to the vector x1/

p
n = u1. The scalar variable x1 thus takes values on Lx1, the

line that coincides with the vector u1 (and hence goes through the origin).
Similar conclusions are reached for each of the r remaining variables. This means that

the 1 + r observed lines Ly,Lx1, . . . ,Lxr fix the directions of the variables y, x1, . . . , xr

in the space. From the latent standard multivariate normal model, each of these variables is
(marginally) normally distributed with mean 0 and variance 1. Hence, y = (y1, . . . , yn) and
xj = (x1,j , . . . , xn,j), j = 1, . . . , r, each represents a set of n observed values on one of the
1 + r distinct lines; we note that the mean and variance of each set of observations indeed corre-
spond to those of the marginal distributions.

Now, since each scalar variable is normally distributed, then the collection of 1 + r vari-
ables (or of any subset of these) is also jointly normally distributed. Furthermore, since each
scalar variable is a linear function of the latent standard normal model on the underlying n-
dimensional space, then the individual variables in this joint distribution lie on the observed
lines Ly,Lx1, . . . ,Lxr. For instance, let us consider the bivariate distribution of the variables
x1 = (xt

1/
p
n) · (Z1, . . . , Zn)t and x2 = (xt

2/
p
n) · (Z1, . . . , Zn)t:

 
n�1/2xt

1

n�1/2xt
2

!
MN (0, In⇥n) = MN

  
0

0

!
, n�1

 
xt
1

xt
2

!
In⇥n(x1,x2)

!

= MN
  

0

0

!
,

 
ut
1u1 . ut

1u2

ut
2u1 . ut

2u2

!!

= MN
  

0

0

!
,

 
1 c12

c21 1

!!
.

The component x1 in this bivariate normal takes values on the line Lx1, while the component x2

takes values on Lx2. This holds generally, for any subset of the 1 + r variables y, x1, . . . , xr.
As it turns out, the implications of the above modeling are quite important. The marginal

distribution of the response variable y, obtained as a linear function of the latent Z1, . . . Zn, is
a N (0, 1) along the line Ly. This means that values of y can be recorded directly on Ly, i.e.,
the dataset provides the direction Ly used for prediction. Consequently, instead of working in an
n-dimensional space for achieving predictions, we only work along Ly; prediction is thus one-
dimensional rather than n-dimensional. This is where the expression “Linear Lasso” originates:
instead of exploring a space, we need only move along a line. Eventually, we will include pa-
rameters regulating the presence/absence of each predictor in the model; more will be said later

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? APPENDIX B: LINEAR LASSO 5

about this.
By contrast, the standard least squares modeling uses a proportion �̂j of each vector xj to

form a vector ŷ that is as close as possible to y in terms of the residual sum-of-squares. We can
view this as opening the “taps” of the different lines on the latent stochastics more or less freely,
so as to approach Ly as much as possible. If the model is saturated (n = r and uy is in the linear
span of u1, . . . ,ur), then the least squares line Lŷ coincides with Ly. In the subsaturated case
(r < n), the line Lŷ will be in the linear span of the predictor lines, but distinct from Ly. In
the supersaturated case, exact solutions are not unique. According to this least squares approach,
prediction is obviously n-dimensional as we search for the line that is closest to Ly in the n-
dimensional space.

To summarize, we started with a rotationally symmetric normal latent model; after observing
data (the training sample in a cross-validation context, for instance), we obtain one vector (or
line) in Rn for each variable. These 1 + r lines, which all go through the origin, are assumed to
be fixed and turn out to be correlated; they can thus be regarded as a kind of (1 + r)-dimensional
skewed coordinate system in a variable space with an underlying standard normal model. The
resulting distribution on the 1 + r observed lines Ly,Lx1, . . . ,Lxr is thus the correlated nor-
mal mentioned in (3). Given observations for the i-th subject Xi = (yi, xi,1, . . . , xi,r) (the test
sample in a cross-validation context, say), we then ignore the scalar y and hope that we can pro-
vide a good predictive distribution for y on Ly, using x1, . . . , xr on the lines Lx1, . . . ,Lxr (by
conditioning on these variables, for instance).

The latent stochastics we use allow one to picture each of the 1 + r variables as a lin-
ear function of the latent Z1, . . . , Zn. This clearly illustrates the continuity that is present
among variables, as they all depend on the same latent variables. In what follows, the notation
{yLy, x1Lx1, · · · , xrLxr} refers to 1 + r correlated scalar variables y, x1, . . . , xr that have a
joint normal distribution as in (3), and that take values on the fixed lines Ly,Lx1, . . . ,Lxr; these
are the data generating equations.

4. INFERENCE FROM A PARTICULAR SUBSET OF EXPLANATORY VARIABLES
Using the distributional structure established in Section 3 of the paper, we want to perform in-
ference on the response variable y using a subset Js of s explanatory variables xj1 , . . . , xjs . For
the moment, we do not worry about how this specific subset is chosen.

From the properties of the multivariate normal distribution, any subset of variables in
y, x1, . . . , xr is also normally distributed; the resulting distribution is still centered at 0 and
its covariance matrix is obtained by removing, from C̃ in (2), the rows and columns corre-
sponding to the discarded variables. Using the resulting (1 + s)-dimensional joint distribution
for (y, xj1 , . . . , xjs), it is then easy to obtain the conditional distribution of the response y given
the s explanatory variables; this distribution on Ly is provided in (4).

The forecasted value, or y-content, is taken as the mean of the conditional distribution
ctsC

�1
s (xj1 , . . . , xjs)

t = (xj1 , . . . , xjs) · C�1
s cs. We thus find ourselves in the familiar situation

where prediction is computed using a model that is algebraically equivalent to least squares; in-
deed, we have �̂s = C�1

s cs = (Xt
sXs)�1Xt

sy, where the matrix Xs is an n⇥ s matrix whose
columns are the n-dimensional explanatory vectors xj1 , . . . ,xjs . The variance 1� ctsC

�1
s cs of

the conditional distribution is a variability around the forecasted value that is unexplained by the
linear model.

Now, the y-content ctsC�1
s (xj1 , . . . , xjs)

t itself possesses a distribution on Ly; indeed, the
correlations are taken as fixed, but the explanatory variables xj1 , . . . , xjs are jointly normally
distributed. The forecast is thus a linear function of a normal with mean 0 and covariance matrix
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Cs, which yields a normal distribution with mean 0 and variance

Var(ctsC�1
s (xj1 , · · · , xjs)

t) = ctsC
�1
s Var((xj1 , · · · , xjs)

t)C�1
s cs

= ctsC
�1
s CsC

�1
s cs

= ctsC
�1
s cs .

This N (0, ctsC
�1
s cs) represents the distribution of possible forecasted values using the subset

Js of explanatory variables. In this case, the residual/error terms in our linear model have a
variance of 1� ctsC

�1
s cs (see (4)) and are independent of the forecasted values. We therefore see

that these two variances add to unity, leading to the marginal N (0, 1) distribution for y.
As mentioned, the term ctsC

�1
s cs represents the variability of forecasted values obtained

using the predictors in Js. Hereafter, we however prefer to use the standard deviation
{ctsC�1

s cs}1/2 and express the distribution of forecasted values, or y-content distribution, as
{ctsC�1

s cs}1/2N (0, 1). We then interpret the standard deviation {ctsC�1
s cs}1/2 as the fraction of

y variability, or rather the fraction of the marginal response distribution, that is contained in the
subset Js of explanatory variables.

5. A VERY SIMPLE EXAMPLE
From this simple example with only two predictors, we can easily visualize what happens. The
data vectors are of unit length and conveniently refer to the vectors uy,u1, andu2. By placing
the zero point of these vectors on the origin as in Figure 1, we easily imagine their projections
on Ly. We then realize that the stronger is the correlation between variables x and y, the larger
is the projection of the vector ux on uy and the greater is the fraction of y-variability captured
by x.

Whether or not a second variable is useful in predicting the response does not only depend on
its correlation with y, but also depends on its correlation with the other predictor. In this example,
the vector x2 is significantly correlated with y, but is even more strongly correlated with x1; the
extra y-variability it explains in the model and projects on the line Ly is therefore very small in
the end.

This explains why the regression coefficient for x2 is negative in the full model with s = 2,
despite the fact that both predictors are positively correlated with y. Indeed, a large portion of the
y-content captured by x2 is redundant with that from x1; the exclusive y-content coming from
x2 is thus modest. Due to the pairwise correlation between predictors, the extra information from
x2 can be modeled by increasing the regression coefficient associated to x1, and then fine-tuning
the adjustment with a coefficient for x2 that is slightly below 0.

In this example, we did not explicitly standardize the data vectors (mean of 0 and SD of
1) since we performed no prediction and only spoke in general terms. It is however implicitly
assumed that the forecasted values (y-content) in Tables 1 and 2 are computed using observations
(from the explanatory variables x1 and x2) that were previously standardized.

6. HOW MUCH Y DISTRIBUTION IS HIDDEN IN SELECTED VARIABLES
In Section 4 (of the paper and of Appendix B), we obtained the conditional distribution of the
response variable y given a specific subset Js of explanatory variables. This distribution is a
normal on the line Ly, with a mean ctsC

�1
s (xj1 , . . . , xjs)

t that simply corresponds to the least
squares prediction and that we interpret as the forecasted value (or y-content). This y-content
itself is normally distributed on the line Ly, with mean 0 and variance ctsC

�1
s cs.
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Our ultimate objective being to perform variable selection, we wish to have more flexibility
in our model; we thus introduce a parameter �, as defined in the paper, that provides a selection
of predictors. The statistical distribution of the forecasted value is then expressed as ct�C

�1
� x� ⇠

N (0, ct�C
�1
� c�) on Ly with x� = (x1�1 , . . . , xr�r )

t, where a null subscript indicates that the
variable is excluded from the model. The density of ct�C

�1
� x� naturally integrates to 1 as we

have access to the complete distribution of forecasted values given the selection of explanatory
variables �.

Factoring the standard deviation in the previous distribution leads to

{ct�C�1
� c�}1/2N (0, 1) = �(�)N (0, 1)

on Ly; the selection � thus captures a fraction �(�) of the marginal y-distribution. Since we are
working with a fraction of a the response distribution, the term {ct�C

�1
� c�}1/2N (0, 1) similarly

corresponds to a fraction of the response density, which does not integrate to 1. This implies that
the remaining fraction (1� {ct�C

�1
� c�}1/2) of the same marginal y-distribution has been lost in

the modeling process (that is, the subset of explanatory variables possesses limited information
about the response variable). The statistical distribution of the response contained in a selection
� of predictors is thus expressed as f(y; �) = �(�)�(y), where �(·) is the density of a standard
normal. Note that this explanation is not to be confused with the claim ct�C

�1
� x� = �(�)y, which

simply does not hold here; if it were true, it would mean that we could recover, from the y-content
ct�C

�1
� x� and the fraction {ct�C

�1
� c�}1/2, the exact value of the response y.

We could now view this variable selection situation as an inferential problem involving in-
terest and nuisance parameters. The statistical model f(y; �) can be interpreted as a likelihood
function in which y is the location parameter of interest and � is the nuisance parameter. The
interpretation of y as a location parameter is possible thanks to the symmetry of the normal
density in the variable and mean (i.e., f(µ; y,�) = f(y;µ,�)). The likelihood function is then
L(y, �) = �(�)�(y), which is just a fraction of the marginal likelihood for y. The goal thus ob-
viously becomes to maximize �(�) with respect to � so as to eliminate the nuisance parameter
while simultaneously having access to the greatest possible fraction of the marginal likelihood
for y. We may of course include, in our inferential problem, a potential constraint on the total
number of explanatory variables ⌃j�j . The variable selection problem can thus been seen as
being related to location model theory.

7. SUBSTANTIAL REDUCTION IN THE SET JS OF EXPLANATORY VARIABLES
In this section, we wish to propose a variable selection approach based on the y-content distribu-
tion in a selection of predictors �, with density f(y; �) = �(�)�(y). Using this statistical model,
our goal is to drop the predictors that do not contribute much in terms of y-content. We thus
wish to restrict our search for a solution along the line Ly, on which we previously projected all
pertinent information about the response.

In the regular Lasso, the goal is to minimize the residual sum-of-squares, subject to a contraint
on the total magnitude of the regression coefficients. Lasso does not achieve an exact solution,
but uses algorithms to approximate a solution in the multidimensional space. This is exactly what
we do in this section, but we restrict our search along Ly. For this, recall that the unit vector uy

points upwards and that all unit explanatory vectors u1, . . . ,ur are positively correlated with uy ,
lying in the upper half space over L?y.

7.1. Independent predictors
To ease the discussion, we first suppose that all covariates are independent from each other (C is
the identity matrix). Because of the predictors’ positive correlation with y, the regression coef-
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ficients are such that �j � 0; the problem then becomes one-sided and the function to minimize
is ky �X�k22/2n+ �

P
j �j (we drop the absolute values in the constraint). In the independent

case, there is no redundancy in the y-information carried by the predictors; each explanatory
variable thus contributes totally new information about y.

When there is no constraint (� = 0), the regression coefficient estimates that minimize
ky �X�k22 satisfy �j = cj . The predictor with the smallest �j is thus the least correlated with
y and contributes a smaller fraction to the y-distribution than the other predictors. In our stan-
dardized context, this means that one unit of predictor j brings less information about y than
one unit of any other predictor. As � grows, the budget becomes tighter and the regression co-
efficients gradually shrink. In particular, the smallest regression coefficient gradually decreases
until it reaches 0. Since the information carried by the predictors is mutually exclusive, the infor-
mation loss from decreasing �1, say, cannot be partially recovered by rebalancing the coefficient
of another predictor. Therefore, as � increases, each coefficient successively shrinks toward 0,
starting with the predictor associated to the smallest cj and ending with the greatest one.

Now, in the specific context outlined in Section 6, we know that the y-content distribution is a
N (0, ct�c�) on Ly. Furthermore, coefficient estimates are of the form �̂� = c� = (c1�1 , . . . , cr�r ),
where a null subscript j ⇤ �j indicates that the variable j is excluded from the vector. When
computing the residual sum-of-squares using estimates �̂� = c� , we find that

ky �X��̂�k22 = yty � 2ytX��̂� + (X��̂�)
tX��̂�

= yty � 2(Xt
�y)

t�̂� + �̂t
�(X

t
�X�)�̂�

= n� 2nct�c� + nct�I(⌃�j⇥⌃�j)c�

= n(1� ct�c�) ,

where X� = (x1�1 , . . . ,xr�r ) is the matrix X from which columns with null subscripts have
been removed. Based on estimates �̂� , minimizing the residual sum-of-squares with respect to
the selection � is thus exactly equivalent to maximizing the variance ct�c� with respect to �.

Instead of minimizing ky �X�k22/2n+ �
P

j �j with respect to �, we could thus maximize
�2(�)� �k�̂�k1 = ct�c� � �

P
j cj�j with respect to � (these approaches are in agreement, but

are not exactly equivalent since Lasso is generally not restricted to estimates of the form �̂� = c�).
When � = 0, there is no constraint and the maximum variance is ctc; as � increases, we start
dropping predictors. For this, we temporarily assume that c1 > c2 > . . . > cr; the (r � k + 1)-
th predictor to be dropped is then xk and this happens when

kX

j=1

c2j � �
kX

j=1

cj <
k�1X

j=1

c2j � �
k�1X

j=1

cj ,

which implies � > ck. In other words, every time � becomes larger than a new �̂k = ck value,
then the corresponding predictor is discarded. This thus gives rise to an ordering of models from
full to empty, as in Lasso.

For a neat visual representation of this selection process on the line Ly, we may think
of our line as pointing upwards, along with the fraction of y density f(y; �) = �(�)�(y) =
{ct�c�}1/2�(y) lying on it. We then apply a sort of upwards tilt, or moment generating type
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penalty, on the density:

exp{�y}f(y; �) = �(�)�(y) exp{�y}

/ �(�) exp{�y2/2} exp{�y}

/ �(�) exp{(y � �)2/2} ,

and note that this tilt exp{�y} simply corresponds to a shift of the distribution in the direction of
positive Ly. Instead of being centered at 0, the y-content distribution is now centered at � and as
the latter increases, the distribution N (�, ct�c�) shifts upwards. When the imaginary horizontal
line at � goes over the vector uj (or equivalently when � > �̂j = cj), then the variable xj is
excluded from the model. We note here that the regression coefficient �j can be interpreted as
the projection, on Ly, of admissible y-information coming from xj ; for instance, �̂j = cj means
that the unit vector uj is entirely admissible in the regression model, and so we use its projection
�j = cj on Ly.

We refer to this method as the Linear Lasso since it describes the process of variable selec-
tion and coefficient estimation through a constrained maximization problem on a line (instead of
a multidimensional space). The output of the Linear Lasso is thus an ordering of models (with
a decreasing number of coefficients) whose forecasted values ct�x� = ct�(x1�1 , . . . , xr�r )

t alge-
braically correspond to least squares predictions. Of course, the above situation was extra simple
as covariates were assumed to be independent from each others.

7.2. Correlated predictors
When correlation between pairs of covariates is present, the matrix C is no longer diagonal. Even
though covariates are positively correlated with y, some terms in �̂ = C�1c may be negative; this
is however the exception rather than the rule. In fact, this only happens when covariates carry too
much redundancy in their y-content; in that case, the coefficient of one of these variables may go
slightly negative to avoid accounting for the same information several times.

As before, we aim at minimizing ky �X�k22/2n+ �
P

j |�j |. As the constraint � on the to-
tal magnitude of coefficients grows, some regression coefficients are shrunken and eventually one
of them is dropped (likely the smallest one, but not necessarily). Because of the correlation be-
tween predictors, the loss of information from shrinking or dropping one covariate can sometimes
be partially recovered by adjusting the coefficient of one (or several) correlated covariate(s). It is
thus difficult to know exactly in which order predictors are dropped as � increases. Lasso uses
algorithms to find an approximate solution to this minimization problem in the multidimensional
space.

In this paper, we use the fact that all available information about the response is projected
onto the line Ly and propose an algorithm that searches for a solution along this line only. We
then wish to minimize ky �X�k22/2n+ �

P
j |�j | with respect to �, but also wish to restrict

our search along Ly. We have already established that for a specific subset of predictors �, the
forecasted value is E[y|x�] = ct�C

�1
� x� on Ly. This algebraically corresponds to the prediction

based on least squares estimates for a model �, which minimizes the residual sum-of-squares
ky �X���k22 for this model.

Having proposed a solution for the “estimation” part of the problem, we now tackle the
“selection” part. The only parameter left to tune in the residual sum-of-squares is the model
selection �; in fact, when trying to minimize ky �X��̂�k22 = ky �X�C

�1
� c�k22 with respect to
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�, we find

ky �X�C
�1
� c�k22 = yty � 2ytX�C

�1
� c� + ct�C

�1
� Xt

�X�C
�1
� c�

= n� 2nct�C
�1
� c� + nct�C

�1
� C�C

�1
� c�

= n(1� ct�C
�1
� c�) .

Since the distribution of forecasted values satisfies ct�C
�1
� x� ⇠ N (0, ct�C

�1
� c�) on Ly, our

search thus consists in finding the model that has the greatest variance ct�C
�1
� c� , subject to a

penalty �
P

j |�̂j�j | = �
P

|C�1
� c�|. Because estimates C�1

� c� are a function of � only, our ob-
jective may be recast as a trade-off between a high variance ct�C

�1
� c� and a small cardinality

⌃j�j . Naturally, solving this problem is computationally intensive. We propose, in Section 9, an
approximate solution when there are only a few predictors left in the model; we however need a
simpler route for general cases.

We assume, as in Hastie, Tibshirani, & Wainwright (2015), that models with a very large
number of covariates are sparse. This is a realistic assumption in our big data era, where only a
small number of predictors are usually found to be significant. We may choose to reformulate the
constrained optimization problem as the maximization of the variance ct�C

�1
� c� (with respect to

�) subject to a penalty �
P

j �̂j�j = �
P

C�1
� c� that automatically discards negative regression

coefficients. In our sign-standardized framework where all predictors are positively correlated
with the response, negative regression coefficients are an indication that the corresponding pre-
dictor is of marginal interest; it is thus appropriate to set coefficients to 0 when they try to go
negative.

Now, one way to approximate a solution for this one-sided variable selection problem is to
use the fraction of y density f(y; �) = {ct�C

�1
� c�}1/2 exp{�y2/2} on Ly, to which we then

apply an upward tilt exp{�y} (as in the independent framework). Conveniently, the moment
generating type penalty exp{�y} is one-sided and so the other side of this constraint is simply
managed by discarding negative coefficients, which is consistent with the approach described in
the previous paragraph. This penalty function therefore leads to the shifted model

f(y; �) exp{�y} = {ct�C�1
� c�}1/2 exp{�(y � �)2/2} .

Visually, the selection approach is represented using an horizontal line at �. As the tuning param-
eter � grows, the distribution moves upwards on Ly; when � > �j , the corresponding predictor
xj is dropped from the model and the variance ct�C

�1
� c� decreases accordingly.

We however realize that dropping predictors according to the size of their regression coeffi-
cients C�1

� c� is not an option in practice. It involves estimating the coefficients and, therefore,
inverting C� at every step. Recall that in our context, �j may be interpreted as the projection,
on Ly, of some portion ûj (of the vector uj) that is admissible in the modeling of the response;
as for the coefficients �j however, the vectors ûj are not easily computed. We thus go to the
next order and discard regression coefficients according to the slope of the associated ûj on Lxj .
Indeed, the closer are Ly and Lxj , the more likely is the projection of ûj on Ly to be large
compared to another vector that is less correlated with uy (despite the fact that the lengths of the
vectors ûj might differ). In terms of our selection process, this means that we can focus on unit
vectors only; when � goes over the vector uj (or its projection cj on Ly), we drop the associated
explanatory variable. This is immensely convenient as it leads to an iteration-free approach: we
end up dropping predictors according to their projection cj on Ly, as before, and these projec-
tions are constant across iterations! We eventually obtain an ordering of models from moving up
on the response line, referred to as the Linear Lasso.
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8. MANY EXPLANATORY VARIABLES
The main advantage of the Linear Lasso is that it leads to an ordering of nested models, without
requiring any iteration. It also allows to drop either a single predictor, or several explanatory
variables at once, on the basis of the vector c. Because elements in c are fixed, proceeding forward
or backward does not make any difference and leads to a consistent ordering of models.

Accordingly, since the projections cj are constant across iterations, this variable selection
approach easily manages the case r >> n. It suffices to drop r � n predictors simultaneously
according to the cj’s; once we are left with n explanatory variables or less, we can obtain co-
efficient estimates and forecast values. It is however more likely that we wish to further reduce
the model size, until we reach a parsimonious fit. In that case, we just drop more predictors on
the basis of their cj’s, until we have a model of the desired cardinality (or we can perform cross-
validation to find the best model, as will be done in the examples of Sections 10 and 11). When
there are few predictors left, we may also choose to fine-tune the model search by taking the
correlation between predictors into account, as discussed in Section 9.

9. ONE-BY-ONE
One of the strengths of the above procedure based on the cj’s is that the ordering of models
does not require iterations, and is consistent in a forward or backward selection approach. Nat-
urally, the resulting sequence of models does not necessarily perfectly agree with the ordering
that would result from maximizing the variance ct�C

�1
� c� subject to a certain budget ⌃j�j . In

particular, the approach does not account for the fact that two correlated predictors may carry
some redundancy in their y-content. To overcome this problem, we may want to fine-tune the
above procedure when the number of remaining predictors is manageable.

To fine-tune the method and account for correlation between predictors, we can use a dual
approach in the Linear Lasso: first drop m explanatory variables according to c; then, when there
are only a few explanatory variables left, perform a more thorough search and discard the variable
that leads to the smallest drop in the variance ct�C

�1
� c� . The fine-tuning part is then equivalent to

a simple backward selection in which the criterion relies on the variance ct�C
�1
� c� .

The number m of predictors that are discarded on the basis of c is user-selected. We could
choose to fine-tune when there are only 5 predictors left, for instance. We could also let m be
the number of explanatory variables with cj < 0.2; we would then drop the first m variables
according to cj , and then fine-tune the sequence using the above backward approach on the
remaining r �m variables. In the next two sections, we implement the Linear Lasso on two
different datasets; we then use cross-validation to find the pair (⌃�j ,m) that leads to the best
model.

10. EXAMPLE: CRIME DATA
In this section, we study a simple example with r = 5 predictors; this allows visualizing the
Linear Lasso process, and also comparing it to the regular Lasso. The Linear Lasso approach
selects a more parsimonious model than the regular Lasso; based on the mean-squared errors
(MSEs) obtained through cross-validation, it chooses a model containing only 2 explanatory
variables (x⇤

1 and x⇤
3) while Lasso selects a 3-variable model (x⇤

1, x⇤
2, and x⇤

3). The model selected
by the Linear Lasso has a smaller MSE than that of Lasso; this is not overly surprising given that
our approach does not rely on shrunken regression coefficient estimates as Lasso does. A look at
Tables 3 and 4 tells us that this holds quite generally: Lasso produces higher MSEs than Linear
Lasso.
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According to our explorations, it appears like a reasonable approach to let m = {#j 2
{1, . . . , r} : cj < 0.2}. Indeed, in practice, we seldom have several variables that are highly cor-
related with the response. Ordering models according to the correlations c while the cj elements
are “small”, and then using a backward, variance-based approach to put the finishing touch on
the selection, is thus an interesting avenue in general contexts.

The 2-variable, cross-validation model selected by the Linear Lasso (which, as it turns out,
corresponds to m = {#j 2 {1, . . . , r} : cj < 0.2} = 3) does not really come as a surprise when
we look at the available predictors. The variables x2, x4, and x5 present different measures of the
population’s education level, while the variable x3 measures the extent to which the population
is uneducated. These predictors are thus highly correlated, which explains why the Linear Lasso
only keeps one of them in its optimal model. Contrarily to the standard Lasso, which does not
care which variable is selected in a group of highly correlated predictors, the Linear Lasso uses
a coherent approach to drop explanatory variables in presence of high correlation.

11. EXAMPLE: MATHEMATICS GRADES
In this example, the correlations between predictors are quite weak: 79% of elements in the ma-
trix C are  0.1, and 94% are  0.2. One of the few cases where correlation is highly significant
happens to be between first- and second-period grades; despite this correlation, Linear Lasso and
standard Lasso keep both predictors in the model. Other predictors featuring significant pairwise
correlations are mother’s education and mother’s job, school attended and home address, etc.
Given the fact that these predictors are only slightly correlated with the response, these pairwise
correlations between predictors do not appear to have an impact on the final model selection.

12. DISCUSSION
In the introduction, we identified two limitations of the standard Lasso: its computational com-
plexity and inconsistent approach in dropping correlated explanatory variables. The proposed
Linear Lasso addresses these two limitations; we now summarize the foundations of this new
approach.

Using the latent normal model, the conditional distribution of y given the predictors included
in a selection � is on the line Ly; the maximum likelihood estimate (MLE) for the response y
is found to be the forecasted value x�C

�1
� c� on Ly. The function to maximize then becomes

the variance of this forecasted value, ct�C
�1
� c� . In our sign-standardized context, the penalty on

the function to maximize may be re-expressed as exp{�y}; according to this penalty, we thus
automatically discard the regression coefficients that are negative since they indicate that their
y-content is largely redundant with that of other predictors.

When � = 0, there is no penalty on the magnitude of the coefficients. The forecasted value
ctC�1(x1, . . . , xr)t is thus the MLE of the predictive distribution when all explanatory variables
are present. Now, it may help to picture each regression coefficient �j as the projection, on Ly,
of the model-admissible portion of the vector uj on Lxj . This portion of the vector points in
L+y from the origin when the coefficient is positive and points below L?y when it is negative;
its length is directly related to the magnitude of the associated regression coefficient.

As a selection rule, we thus start by discarding explanatory variables whose coefficients com-
pletely find themselves in the lower half-space. Now, as � grows, we may picture the whole
system of regression coefficient vectors being pulled down along �Ly (this is an alternative vi-
sualization to imagining a horizontal line at � that moves up Ly). As these coefficient vectors find
themselves totally below 0 (i.e., as the projection �j on Ly is below 0), they are discarded. This
leads to an ordering of models according to the projection of coefficient vectors on Ly. Natu-
rally, to propose a solution (or algorithm) that is manageable in practice, we have to approximate
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this process using the cj’s, just like Lasso provides an approximate solution to its constrained
minimization problem.

Before concluding, we note that the goal of the sign standardization in the development of
the Linear Lasso was to make the problem one-sided and thus easier to visualize. In theory,
the selection process based on the penalty exp{�y} discards negative regression coefficients.
In practice, we cannot afford to compute these coefficients at every iteration and thus propose
an approximate solution based on the slope of the vectors associated to these coefficients. The
procedure detailed in Section 9, which relies on this approximate solution, may thus be easily
implemented without having to worry about the sign standardization step; we however still need
to standardize the vectors’ mean and standard deviation in order to implement the Linear Lasso.
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