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1. Introduction12

Randow walk Metropolis (RWM) algorithms are widely used to sample from complex or13

multidimensional probability distributions ([15], [12]). The simplicity and versatility of these14

samplers often make them the default option in the MCMC toolbox. Implementing a RWM15

algorithm involves a tuning step, to ensure that the process explores its state space as fast as16

possible, and that the sample produced be representative of the probability distribution of17

interest (the target distribution). In this paper, we solve an aspect of the tuning problem for18

a large class of target distributions with correlated components. This issue has mainly been19

studied for product target densities, but attention has recently turned towards more complex20

target models ([7], [14]). The specific type of target distribution considered here is formed of21

components which are related according to a hierarchical structure. These distributions are22

ubiquitous in several fields of research (finance, biostatistics, physics, to name a few), and23

constitute the basis of many Bayesian inferences.24

Bayesian hierarchical models are comprised of a likelihood function f(d|θ), which is the25

statistical model for the observed data d. The parameters θ are then modeled using a prior26

distribution π(θ|ρ); since this prior might not be easy to determine, it is common practice to27

assume that the hyperparameters ρ are themselves distributed according to a non-informative28

prior distribution π(ρ). The various models thus represent different levels of hierarchy and29

give rise to a posterior distribution π(θ, ρ|d), which is often quite complex. Most of the time,30

this distribution cannot be studied analytically or sampled directly, and thus simulation31

algorithms such as MCMC methods are required to perform a statistical analysis. Samplers32

such as the RWM, RWM-within-Gibbs, and Adaptive Metropolis (see [11]) are usually the33

default algorithms for such targets.34

The idea behind RWM algorithms is to build a Markov chain having the Bayesian posterior35

(target) distribution as its stationary distribution. To implement this method, users must36

select a proposal distribution from which are generated candidates for the Markov chain.37

This distribution should ideally be similar to the target, while remaining accessible from a38

sampling viewpoint. A pragmatic choice is to let the proposed moves be normally distributed39

around the latest value of the sample. Tuning the variance of the normal proposal distri-40

bution (σ2) has a significant impact on the speed at which the sampler explores its state41

space (hereafter referred to as “efficiency”), with extremal variances leading to slow-mixing42

algorithms. In particular, large variances seldom induce suitable candidates and result in43

lazy processes; small variances yield hyperactive processes whose tiny steps lead to a time-44

consuming exploration of the state space. Seeking for an intermediate value that optimizes45

the efficiency of the RWM algorithm, i.e. a proposal variance σ2 offering sizable steps that46

are still accepted a reasonable proportion of the time, is called the optimal scaling problem.47

The optimal scaling issue of the RWM algorithm with a Gaussian proposal has been addressed48

by many researchers over the last few decades. It has been determined in [17] that target49

densities formed of independent and identically distributed (i.i.d.) components correspond50

to an optimal proposal variance σ̂2 (n) ≈ 5.66/{nE [(log f(X))′]}, where f is the density51

of one target component and n the number of target components. This optimal proposal52

variance has also be shown to correspond to an optimal expected acceptance rate of 23.4%,53

where the acceptance rate is defined as the proportion of candidates that are accepted by54

the algorithm. Generalizing this conclusion is an intricate task and further research on the55
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subject has mainly been restricted to the case of target distributions formed of independent56

components (see [18], [16], [2], [3], [5], [6]). In the specific case of multivariate normal target57

distributions however, the optimal variance and acceptance rate may be easily determined58

(see [16], [1]). Lately, [7] and [14] have also performed scaling analyses of non-product target59

densities. These advances are important, as MCMC methods are mainly used when dealing60

with complex models, which only rarely satisfy the independence assumption among target61

components. These results however assume that the correlation structure among target62

components is known and used in generating candidates for the chain. This is a restrictive63

assumption that leads, as expected, to an optimal acceptance rate of 23.4% (see [18] for an64

explanation).65

In this paper, we focus on solving the optimal scaling problem for a wide class of models that66

include a dependence relationship, the hierarchical distributions. Weak convergence results67

are derived without explicitly characterizing the dependency among target components, and68

thus rely on a Gaussian proposal distribution with diagonal covariance matrix. The optimal69

proposal variance may then be obtained from these results, i.e. by maximizing the speed70

measure of the limiting diffusion process. This constitutes significant advances in under-71

standing the theoretical underpinnings of the RWM sampler. More importantly in practice,72

the results theoretically support the use of RWM-within-Gibbs over RWM samplers and pro-73

vide a convenient approach for obtaining a new type of proposal variances. These proposal74

variances are a function of the current state of the Markov chain; they thus evolve with the75

chain and lead to more appropriate candidates in the RWM-within-Gibbs algorithm.76

In the next section, we describe the target distribution and introduce some notation related77

to the RWM sampler. The theoretical optimal scaling results are stated in Section 3, and then78

illustrated with two examples using RWM samplers in Section 4. In Section 5, the potential of79

RWM-within-Gibbs with local scalings is illustrated in Bayesian contexts through a simulation80

study and an application on real data. Extensions are briefly discussed in Section 6, while81

appendices contain proofs.82

2. Framework83

Consider an n-dimensional target distribution consisting of a mixing component X1 and of84

n−1 conditionally i.i.d. componentsXi (i = 2, . . . , n) givenX1. Suppose that this distribution85

has a target density π with respect to Lebesgue measure, where86

π (x) = f1 (x1)
n∏
i=2

f (xi |x1 ) . (1)

To obtain a sample from the target density in (1), we rely on a RWM algorithm with87

a Gaussian proposal distribution. This sampler builds an n-dimensional Markov chain88

{X(n)[j]; j ∈ N} having π(x) as its stationary density. Given X(n)[j] = x, the time-j state of89

the Markov chain, one iteration is performed according to the following steps:90

1. generate a candidate Y(n)[j+ 1] = y from a N (x, Dn), where Dn is a diagonal variance91

matrix with elements
(
σ21(n), σ2(n), . . . , σ2(n)

)
. In particular, set Dn = `2In/n, where92

` > 0 is a tuning parameter and In the n-dimensional identity matrix;93
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2. compute the acceptance probability α(x,y) = min
{

1, π(y)π(x)

}
;94

3. generate U [j + 1] ∼ U(0, 1);95

4. if U [j + 1] ≤ α(x,y), accept the candidate and set X(n)[j + 1] = y; otherwise, the96

Markov chain remains at the same state for another time interval and X(n)[j + 1] = x.97

Optimal scaling results widely rely on the use of Gaussian proposal distributions which, due98

to their symmetry, lead to a simplified form of the acceptance probability. Although generally99

not emphasized in the literature, we note that the proposal variance could also be a function100

of x, which would result in a non-homogeneous random walk sampler. In that case, there101

would be no simplification in the Metropolis-Hastings acceptance probability and Step 2102

would then replaced by103

α(x,y) = min
{

1, π(y)qn(x;y)π(x)qn(y;x)

}
,

where qn(y; x) is the density of a N (x, Dn(x)).104

In what follows we work towards finding the optimal value of `, i.e. leading to an optimally105

mixing chain. The proofs of the theoretical results rely on CLTs and LLNs; as such, the106

results are obtained by letting n → ∞. This is a common approach in MCMC theory107

and does not prevent users from applying the asymptotically optimal value of ` in lower108

dimensional contexts (as small as n = 10 or 15). Indeed, a particularity of optimal scaling109

results is that the asymptotic behaviour kicks in extremely rapidly, as shall be witnessed in110

the examples of Section 4.111

The first thought of most MCMC users when facing a target density as in (1) would be to use112

a RWM-within-Gibbs algorithm, which consecutively updates subgroups of the n components113

in a given iteration. The tuning of RWM-within-Gibbs algorithms has been addressed in [16],114

but only for target distributions with i.i.d. components and Gaussian targets with correlation.115

Focusing on RWM algorithms is thus a good starting point to understand the behaviour of116

samplers applied to hierarchical target distributions. The results expounded in this paper117

lead to the concept of local tunings, which is particularly appealing in the context of RWM-118

within-Gibbs. Incidentally, the proofs in appendices provide a theoretical justification for the119

use of locally optimal scalings in RWM-within-Gibbs, see [4]. These findings are illustrated120

in the examples of Section 5.121

In Sections 2.1, 2.2, and 3, we expound how to obtain asymptotically optimal variances122

Dn and Dn(x) for RWM and RWM-within-Gibbs, respectively. Section 2.1 describes the123

regularity conditions imposed on π(x), while Section 2.2 explains why the proposal matrix124

Dn = `2In/n is the optimal choice for obtaining the theoretical results that shall be presented125

in Section 3.126

2.1. Assumptions on the target density127

To characterize the asymptotic behaviour of the conditionally i.i.d. components Xi (i =128

2, . . . , n), we impose some regularity conditions on the densities f1 and f in (1). The density129

f1 is assumed to be a continuous function on R, with X1 = {x1 : f1(x1) > 0} forming an130

open interval.131
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For all fixed x1 ∈ X1, f(x|x1) is a positive C2 density on R and ∂
∂x log f(x|x1) is Lipschitz132

continuous with constant K(x1) such that E[K2(X1)] < ∞. Here, C2 denotes the space of133

real-valued functions with continuous second derivative. For all fixed x ∈ X = R, f(x|x1) is134

a C2 function on X1 and ∂
∂x log f(x|x1) is Lipschitz continuous with constant L(x) such that135

E[L4(X)] <∞. Furthermore,136

EX
[(

∂
∂X log f(X|x1)

)4]
<∞ ∀x1 ∈ X1 with E

[(
∂
∂X log f(X|X1)

)4]
<∞ ; (2)

hereafter, the notation EX [·] means that the expectation is computed with respect to X137

conditionally on the other variables in the expression; the first expectation in (2) is thus138

obtained according to the conditional distribution of X given X1. Where there is no confusion139

possible, E[·] shall be used to denote an expectation with respect to all random variables in140

the expression. The above regularity conditions constitute an extension of those stated in141

[3] for target distributions with independent components, and are weaker than would be a142

Lipschitz continuity assumption on the bivariate function ∂
∂x log f(x|x1). They also imply143

that the Lipschitz constants K(x1) and L(x) themselves satisfy a Lipschitz condition.144

We now impose further conditions on f(x|x1) to account for the movements of the coordinate145

X1 when studying the asymptotic behaviour of a component Xi (i = 2, . . . , n). These move-146

ments should not be too abrupt so for almost all fixed x ∈ X , ∂
∂x1

log f(x|x1) is Lipschitz147

continuous with constant M(x) such that E[M2(X)] <∞ and148

EX
[(

∂
∂x1

log f(X|x1)
)2]

<∞ ∀x1 ∈ X1 with E
[(

∂
∂X1

log f(X|X1)
)2]

<∞ . (3)

Finally, in order to characterize the asymptotic behaviour of the mixing component X1, we149

introduce assumptions that are closely related to the Bernstein von Mises Theorem. Let150

X2:n = (X2, . . . , Xn), X = (X2, X3, . . .), and →p denote convergence in probability. Assume151

that V(X1|X2:n) →p 0, and denote µ ≡ µ(X) such that µn ≡ µn(X2:n) = E[X1|X2:n] →p µ152

as n → ∞, with |µ| < ∞. Hereafter, we make a small abuse of notation by letting µ153

and µn sometimes denote the random variable or the realisation, depending on the context.154

Furthermore, define X̃1 =
√
n(X1 − µn); for almost all x2:n ∈ Rn−1, the conditional density155

of X̃1 given x2:n, f1(µn + x̃1/
√
n|x2:n)/

√
n, is assumed to converge almost surely to g1(x̃1|x),156

a continuous density on R with respect to Lebesgue measure. In fact, the information on X1157

increases linearly in n, meaning that the limiting density of X1|x2:n is degenerate, but that158

a standard rescaling leads to a non-trivial density on R (normal distribution).159

2.2. Form of the proposal variance matrix Dn160

In Section 3, we focus on deriving weak convergence and optimal scaling results for the RWM161

algorithm with a Gaussian proposal by letting n, the dimension of the target density in162

(1), approach ∞. Traditionally, asymptotically optimal scaling results have been obtained163

by studying the limiting path of a given component (X2 say) as n → ∞. In the case of164

target distributions with i.i.d. components (and some extensions), the components of the165

RWM algorithm are asymptotically independent of each other and their limiting behaviour166

is regimented by identical one-dimensional Markovian processes. In the current correlated167

framework, we expect the presence of an asymptotic dependence relationship among Xi168
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(i ∈ {2, . . . , n}) and X1, in the spirit of (1). In the following section, we thus study the169

limiting behaviour of components X1 and X2 separately, on their respective conditional space.170

This approach allows us to quantify the mixing rate of each component Xi conditionally on171

the others, and to propose optimal scalings for the sampler.172

To obtain non-trivial limiting processes describing the behaviour of the RWM sampler as173

n → ∞, we need to fix the form of the proposal scalings σ21(n), σ2(n). Whilst the proposals174

are independent, a single accept-reject step is used, which makes the paths of the components175

dependent. We aim to choose the maximal scalings that avoid a degenerate limit (of either176

0 or 1) for this acceptance probability. Since the distribution of X1 conditional on X2:n177

contracts at a rate of
√
n, then if σ1(n)/

√
n → ∞ the proposed jumps in X1 will be too178

large. If σ1(n)/
√
n → 0, then the change in X1 makes no contribution to the acceptance179

probability in the limit; to maximise movements we, therefore, require σ1(n) ∝ 1/
√
n. Now,180

the conditional distribution of X2:n given X1 does not contract with n. Nonetheless, when181

proposing jumps in X2:n using σ2 (n) = σ2, the odds of rejecting an n-dimensional candidate182

increase with n and lead to a degenerate (null) acceptance probability. To overcome this183

problem we then let the proposal variance be a decreasing function of the dimension. In fact,184

since Lipschitz conditions control the contribution to the accept-reject ratio coming from the185

movements of X1, a similar argument to that which leads to σ(n) ∝ 1/
√
n in the case of i.i.d.186

targets applies again here. We therefore set Dn = `2In/n, where ` > 0 is a tuning parameter187

and In the n-dimensional identity matrix.188

As n→∞, it becomes necessary to speed up time to compensate for the reduced movement189

along components X2:n. The time interval between each proposed candidate is thus set to190

1/n and we study the continuous-time, sped up version of the initial Markov chain defined191

as {W(n)(t); t ≥ 0} = {X(n)[bntc]; t ≥ 0}, where b·c is the floor function. Similarly to the192

i.i.d. case, a limiting diffusion is obtained for the rescaled one-dimensional process related to193

Xi (i ≥ 2), but this time its behaviour is conditional on X1.194

Since the first coordinate X1 converges to a point µ, a transformation X̃1 =
√
n(X1 − µn) is195

required to obtain the limiting behaviour of this component. We thus study the continuous-196

time process {W̃(n)(t); t ≥ 0} = {(X̃(n)
1 [btc],X(n)

2:n[btc]); t ≥ 0}; in other words, we are now197

looking at a magnified, centered version of the path associated to X1. This transformation198

leads to proposal distributions Ỹ1 =
√
n(Y1 − µn) ∼ N (x̃1, `

2) and Yi ∼ N (xi, `
2/n), i =199

2, . . . , n with ` > 0; it thus cancels the effect of n in σ21(n). Without the speed up of time,200

the limiting process for X̃1 is then a propose-accept-reject on the conditional density for X̃1,201

given the current values of X2:n; this is made precise in Theorem 1. When considering the202

diffusion limit for Xi (i ≥ 2) with time sped-up, this effectively means that at every instant,203

X1 is simply a sample from its conditional distribution given the current values of X2:n; this204

is made precise in Theorem 2.205

We note that an alternative scaling of σ1(n) ∝ 1/n could also be applied. The sped-up206

limiting process would then be a diffusion for all coordinates, and would be easier to describe.207

However, this would also be a deliberate handicapping of the algorithm since the change in208

X1 would make no contribution to the acceptance probability in the limit. A suboptimal209

σ21(n), besides altering the movements of X1, would thus also indirectly affect the efficiency210

according to which X2:n explores its state space.211
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3. Asymptotics of the RWM algorithm212

In this section we introduce results about the limiting behaviour (as n→∞) of the time- and213

scale-adjusted univariate processes {W̃ (n)
1 (t); t ≥ 0} and {W (n)

i (t); t ≥ 0} (i = 2, . . . , n). From214

these results we determine the asymptotically optimal scaling (AOS) values and acceptance215

rate (AOAR) that optimize the mixing of the algorithm.216

Hereafter, we let⇒ denote weak convergence in the Skorokhod topology and B(t) a Brownian217

motion at time t; the cumulative distribution function of a standard normal random variable218

is denoted by Φ(·).219

Theorem 1. Consider a RWM algorithm with proposal distribution N (x, `2In/n) used to220

sample from a target density π as in (1). Suppose that π satisfies the conditions on f1 and f221

specified in Section 2.1, and that X(n)(0) is distributed according to π in (1).222

If 1
n

∑n
i=2

(
∂
∂Xi

log f(Xi|X1 = µn + X̃1√
n

)
)2
→p γ̃(µ) with223

γ̃(µ) = EX
[(

∂
∂X log f(X|µ(X))

)2]
=

∫
R

(
∂
∂x log f(x|µ(X))

)2
f(x|µ(X))dx <∞ ,

then the magnified process {W̃ (n)
1 (t); t ≥ 0} ⇒ {W̃1(t); t ≥ 0}. Here, W1(0) and Wi(0)224

(i = 2, 3, . . .) are distributed according to the densities f1 and f respectively, which implies that225

W̃1(0) is distributed according to the density g1 in Section 2.1. Given the time-t state W̃(t) =226

(x̃1,x), the process {W̃1(t); t > 0} evolves as the continuous-time version of a special RWM227

algorithm applied to the target density g1(x̃1|x); the proposal distribution of this algorithm is228

a N (x̃1, `
2) and the acceptance rule is defined as229

α∗ (x̃1, ỹ1|x) = Φ

 log g1(ỹ1|x)
g1(x̃1|x) −

`2

2 γ̃(µ)

`γ̃1/2(µ)

+
g1(ỹ1|x)

g1(x̃1|x)
Φ

− log g1(ỹ1|x)
g1(x̃1|x) −

`2

2 γ̃(µ)

`γ̃1/2(µ)

 .(4)

Proof. See Appendix A.1.230

This result describes the limiting path associated to the coordinate X̃1 as n → ∞, which is231

Markovian with respect to the history of the multidimensional chain FW̃(t). We recall that232

the conditional distribution ofX1 given X2:n contracts at a rate of
√
n and that σ1(n) ∝ 1/

√
n.233

Conditionally on X, the transformed X̃1 thus mixes according to O(1) and explores its234

conditional state space much more efficiently than the other components, as shall be witnessed235

in Theorem 2. The asymptotic process found can be described as an atypical one-dimensional236

RWM algorithm, whose acceptance rule α∗(x̃1, ỹ1|x) and target density g1(x̃1|x) both vary237

according to x at every iteration. The acceptance function α∗ in (4) satisfies the reversibility238

condition with respect to g1(x̃1|x) (see [3] for more details about this acceptance function).239

Theorem 1 is interesting from a theoretical perspective, but cannot be used to optimize240

the global mixing of the algorithm. Although we could try to determine the value of `241

leading to the optimal mixing of X1 on its conditional space, it will be wiser to focus instead242

on optimizing the mixing rate of X2:n on its own conditional space given X1. Since the243

distribution of X1 contracts about µn, the position of this coordinate heavily depends on the244
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current state of X2:n. We shall also see in Theorem 2 that given X1, the coordinates Xi245

(i ≥ 2) explore their conditional state space according to O(n). Since these coordinates take246

more time exploring their conditional distribution and heavily affect the position of X1, then247

the global performance of the sampler is subjected to the mixing of X2:n conditionally on248

X1.249

Theorem 2. Consider a RWM algorithm with proposal distribution N (x, `2In/n) used to250

sample from a target density π as in (1). Suppose that π satisfies the conditions on f1 and f251

specified in Section 2.1, and that X(n)(0) is distributed according to π in (1).252

For i = 2, . . . , n, we have {W (n)
i (t); t ≥ 0} ⇒ {Wi(t); t ≥ 0}, where Wi(0) (i ≥ 2) is253

distributed according to f , and W1(0) according to f1. Conditionally on W1(t), the evolution254

of {Wi(t); t > 0} over an infinitesimal interval dt satisfies255

dWi(t) = υ1/2(`,W1(t))dB(t) +
1

2
υ(`,W1(t))

∂
∂Wi(t)

log f (Wi(t)|W1(t)) dt, (5)

with256

υ(`, x1) = 2`2EZ1

[
Φ
(
− `

2γ
1/2(x1, Z1)

)]
, (6)

Z1 =
√
n(Y1 − x1)/` ∼ N (0, 1), and257

γ(x1, z1) = z21 EX
[(

∂
∂x1

log f(X|x1)
)2]

+ EX
[(

∂
∂X log f(X|x1)

)2]
. (7)

Proof. See Appendix A.2.258

Equation (5) describes the behaviour of the process at the next instant, (t + dt), given its259

position at t. This expression should not come as a surprise: each rescaled component Xi260

(i = 2, . . . , n) asymptotically behaves according to a diffusion process that is Markovian261

with respect to F (W1,Wi)(t). Examination of (5) also tells us that f(Wi(t)|W1(t)) is invariant262

for this diffusion process (see [19], for instance). We finally recall that σ(n) ∝ 1/
√
n and263

therefore, conditionally on X1, the rescaled Xi mixes according to O(n). Each coordinate264

Xi thus requires more iterations than were required by the coordinate X1 to explore its265

conditional state space.266

Since X1 and Xi (i ≥ 2) use different time rescaling factors, the asymptotic behaviour of these267

coordinates cannot be expressed as a bivariate diffusion process. To obtain such a diffusion,268

we would have to rely on inhomogeneous proposal variances to ensure that X1 also mixes in269

O(n) iterations; as mentioned at the end of Section 2, this would require setting σ1(n) = `/n,270

σ(n) = `/
√
n for ` > 0. This framework would of course be suboptimal as it would restrain271

the X1 movements. Proposed jumps for X1 would then become insignificant, and so the first272

term in (7) would be null.273

Remark 3. Studying the limiting behaviour of X1 and Xi (i = 2, . . . , n) separately does274

not cause information loss. In fact, studying the paths of X1, X2 simultaneously would re-275

quire letting the test function h of the generator in (A.3) be a function of (X1, X2). Such276

a generator would however be developed as an expression in which cross-derivative terms277

(e.g. ∂2

∂x1∂x2
h(x1, x2)) are null, which confirms that given the current state of the asymptotic278

process, one-dimensional moves are performed independently for each coordinate.279
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The limiting processes in Theorems 1 and 2 indicate that the component X1 explores its280

conditional state space at a different (higher) rate than X2:n explores its own. Combined to281

the specific Markovian forms of the limiting processes obtained (with respect to FW̃(t) and282

F (W1,Wi)(t) respectively), this points towards the need for updating X1 and X2:n separately,283

assessing the superiority of RWM-within-Gibbs samplers for sampling from hierarchical tar-284

gets. These algorithms update blocks of components successively, a design that allows fully285

exploiting the characteristics of the target considered. To our knowledge, this is the first time286

that asymptotic results are used to theoretically validate the superiority of RWM-within-287

Gibbs over RWM samplers for hierarchical target distributions. This theoretical superiority288

is obviously tempered in practice by an increased computational effort; the extent of this289

computational overhead is however difficult to quantify in full generality. To this end, Sec-290

tion 5 presents two examples that illustrate the performance of the RWM-within-Gibbs and291

compare it to RWM and Adaptive Metropolis samplers.292

3.1. Optimal tuning of the RWM algorithm293

To be confident that the n-dimensional chain has entirely explored its state space, we must294

be certain that every one-dimensional path has explored its own space. In the correlated295

framework considered, the overall mixing rate of the RWM sampler is only as fast as the296

slowest component. As explained in Section 3, optimal mixing of the algorithm shall be297

attained by optimizing the mixing of the coordinates Xi, i = 2, . . . , n. In the limit, the only298

quantity that depends on the proposal variance (i.e. on `) is υ(`,W1(t)) in (6). To optimize299

mixing, it thus suffices to find the diffusion process that goes the fastest, i.e. the value of `300

for which the speed measure υ(`,W1(t)) is optimized.301

The speed measure in (6) is quite intuitive; it is in fact similar to that obtained when studying302

i.i.d. target densities. The main difference lies in the form of γ(x, z) which, in the i.i.d. case, is303

given by the constant term γ = E[( ∂
∂X log f(X))2]. The second term in (7) is thus equivalent304

to γ, and consists in a measure of roughness of the conditional density f(xi|x1) under a305

variation of xi (i ≥ 2). In the case of hierarchical target distributions, we find an extra term306

that might be viewed as a measure of roughness of f(xi|x1) under a variation of x1. This307

term is weighted by z21 , the square of the (standardized) candidate increment for the first308

component; in other words, the further the candidate y1 is from the current x1, the greater309

is the weight attributed to the associated measure of roughness. Of course, in optimizing the310

speed measure function, we do not need to know in advance the exact value of the proposed311

standardized increment z1; the speed measure averages over this quantity.312

It is interesting to note that optimizing the speed measure leads to local proposal variances of313

the form ˆ̀2(W1(t))/n. Such proposal variances would then be used for proposing a candidate314

at the next instant t+ dt, given the position of the mixing coordinate at time t. These local315

proposal variances thus vary from one iteration to another, by opposition to usual tunings in316

the literature that are fixed for the duration of the algorithm. Naturally, if both expectations317

in (7) are constant with respect to x1, then the proposal variance obtained by maximizing318

the speed measure also is constant.319

Remark 4. It turns out that local proposal variances optimizing (6) are bounded above by320

2.38/E1/2
X [( ∂

∂X log f(X|x1))2], the asymptotically optimal scaling (AOS) values for targets321
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with i.i.d. components given a fixed X1 = x1. Indeed, if X1 = x1 is fixed across itera-322

tions, we find ourselves in an i.i.d. setting and the associated speed measure is expressed as323

2`2Φ(−`E1/2
X [( ∂

∂X log f(X|x1))2]/2). The mentioned upper bounds then follow from the fact324

that the function Φ(·) in (6) decreases faster in ` than Φ(·) in the above expression.325

Relying on a local variance ˆ̀(x1) to propose a candidate for the next time interval is usually326

time-consuming, as it involves numerically solving for the appropriate local proposal variance327

at every iteration. Since the process is assumed to start in stationarity and X1 explores its328

conditional state space faster than the other coordinates, we might determine a value ˆ̀ that329

is fixed across iterations by integrating the speed measure υ(`, ·) over X1 with respect to the330

marginal distribution f1. Hence, the global (unconditional) asymptotically optimal scaling331

value ˆ̀ maximizes the function332

EX1 [υ (`,X1)] = 2`2EX1,Z1

[
Φ

(
− `

2
γ1/2(X1, Z1)

)]
= 2`2

∫
X1

∫
R

Φ

(
− `

2
γ1/2(x1, z1)

)
φ(z1)f1(x1) dz1 dx1 ,

where φ(·) is the probability density function of a standard normal random variable.333

Remark 5. The asymptotic process introduced in Theorem 2 naturally leads us to the concept334

of local proposal variances. It is however unclear whether the local tunings obtained by maxi-335

mizing (6) really optimize the mixing rate of the algorithm. Indeed, the proof of Theorem 2 is336

carried out with `2 constant; this allows, among other things, relying on the simplified form337

for the acceptance probability. In order to claim that the local proposal variances obtained are338

optimal, a weak convergence result would need to be proven using a general proposal variance339

of the form σ2(n, x1) = `2(x1)/n. This extension is not trivial, as the ratio of proposal den-340

sities qn(x; y)/qn(y; x) would then need to be included in the acceptance probability. Since341

the concept of locally optimal proposal variances is numerically demanding in the current342

framework, we choose to focus on `2 constant.343

In RWM-within-Gibbs, the blocks X1 and X2:n are updated consecutively and the situation is344

therefore different. In that case, local variances of the form σ2(n, x1) = `2(x1)/n obtained by345

maximizing (6) may be used to update the block X2:n. Since X1 is updated separately, the346

first term in (7) is null, which makes local variances easier to compute. Furthermore, since347

local variances only depend on X1 (which is updated separately), the ratio qn(x; y)/qn(y; x)348

is equal to 1 and does not need to be included in the acceptance probability. Local variances349

are thus very appealing in that context and shall be studied in Section 5.350

Rather than tuning the sampler using the global AOS value, one may instead monitor the351

acceptance rate in order to work with an optimally mixing version of the RWM algorithm.352

To express optimal scaling results in terms of acceptance rates, we introduce the expected353

acceptance rate of the n-dimensional stationary RWM algorithm with a normal proposal:354

an(`) =

∫ ∫
α(x,y)

(
`√
n

)−n
φn

(
y − x

`/
√
n

)
π(x) dy dx ,

where φn(·) denotes the probability density function of an n-dimensional standard normal355

random variable. Optimal mixing results for the RWM sampler are summarized in the fol-356

lowing corollary.357

10



Corollary 6. In the settings of Theorem 2, the global asymptotically optimal scaling value ˆ̀358

maximizes359

2`2
∫
X1

∫
R

Φ

(
− `

2
γ1/2(x, z)

)
φ(z)f1(x) dz dx .

Furthermore, we have that360

lim
n→∞

an(`) = a(`) ≡ 2

∫
X1

∫
R

Φ

(
− `

2
γ1/2(x, z)

)
φ(z)f1(x) dz dx ,

and the corresponding asymptotically optimal acceptance rate is given by a(ˆ̀).361

In contrast to the i.i.d. case, the AOAR found is not independent of the densities f1 and f .362

Hence, there is not a huge advantage in choosing to tune the acceptance rate of the algorithm363

over the proposal variance; in fact, both approaches involve the same effort. Although it would364

also be possible to compute an overall acceptance rate associated to using local proposal365

variances, it could not be used to tune the algorithm. Building an optimal Markov chain366

based on local proposal variances would imply modifying the proposal variance at every367

iteration, which cannot be achieved by solely monitoring the acceptance rate.368

For simplicity, the theoretical results expounded in this section attribute the same tuning369

constant ` to all n components. In practice, when a RWM algorithm is used to sample from370

a hierarchical target, users will likely want to use a different proposal variance for the mixing371

component X1. In fact, the proofs of Theorems 1 and 2 easily generalize to the case of372

inhomogeneous proposal variances.373

Corollary 7. Let Y1 ∼ N (x1, `
2κ21/n) with 0 < κ1 < ∞ and Y2:n ∼ N (x2:n, `

2In−1/n),374

where Y1,Y2:n are independent. Then, Theorems 1 and 2 hold as stated, except that the375

limiting proposal distribution in Theorem 1 is Ỹ1 ∼ N (x̃1, `
2κ21) and the random variable Z1376

in Theorem 2 is such that Z1 ∼ N (0, κ21).377

In this paper, we consider the simple, yet useful hierarchical model described in (1) and378

featuring a single mixing component X1. This is a natural starting point to study weak379

convergence of RWM algorithms for hierarchical targets, and even for correlated targets in380

general. There exist many generalizations of (1), just as there are many extensions of the381

proposal distribution considered. Some extensions of the hierarchical target are considered382

in the discussion, but we do not aim at presenting a detailed treatment of these cases.383

4. Numerical studies384

To illustrate the theoretical results of Section 3, we consider two toy examples: the first tar-385

get distribution considered is a normal-normal hierarchical model in which the components386

X2, . . . , Xn are related through their mean, while the second one is a gamma-normal hierar-387

chical model in which X2, . . . , Xn are related through their variance. In both cases, we show388

how to compute the optimal variance ˆ̀. We also study the performance of RWM samplers389

and conclude that even in relatively low-dimensional settings, the samplers behave according390

to the asymptotic results previously detailed.391
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4.1. Normal-normal hierarchical distribution392

Consider an n-dimensional hierarchical target such that X1 ∼ N (0, 1) and Xi|X1 ∼ N (X1, 1)393

for i = 2, . . . , n. To sample from this distribution, we use a RWM algorithm with a394

N (x, `2In/n) proposal distribution. This simple target shall relate Theorem 2 to the theo-395

retical results derived in [3].396

Standard calculations lead to X1|X2:n ∼ N (
∑n

i=2Xi/n, 1/n); as n → ∞, V(X1|X2:n) → 0397

almost surely. If we let µn =
∑n

i=2Xi/n and X̃1 = n1/2(X1 − µn), then X̃1|X2:n ∼ N (0, 1).398

Furthermore, the term
∑n

i=2(Xi − µn − X̃1/
√
n)2/n is reexpressed as

∑n
i=2(Xi −X1)

2/n =399 ∑n
i=2 Z

2
i /n and thus converges in probability to E[Z2] =

∫
( ∂
∂x log f(x|µ))2f(x|µ)dx = 1,400

where Z1, . . . , Zn denote independent standard normal random variables. By Theorem 1, we401

can thus affirm that the component X̃1 asymptotically behaves according to a one-dimensional402

RWM algorithm with a standard normal target and acceptance function as in (4); these do403

not, in the current case, depend on x.404

Evaluating the function γ(x1, z1) in (7) is a simple task and leads to γ(x1, z1) = z21 + 1. The405

AOS value is then found by maximizing406

υ(`) = 2`2EZ1

[
Φ

(
− `

2

√
Z2
1 + 1

)]
with respect to `, where Z1 ∼ N (0, 1). This yields an AOS of ˆ̀2 = 4.00 and a corresponding407

AOAR of υ(ˆ̀)/ˆ̀2 = 0.205. These values are naturally smaller than those obtained for a408

target with i.i.d. components (5.66 and 0.234, respectively); indeed, the proposal distribution409

is formed of i.i.d. components and accordingly better suited for similar targets. Relying on a410

proposal with correlated components would however require a certain understanding of the411

target correlation structure, which goes against the general framework we wish to consider.412

It is worth pointing out that the speed measure of the limiting diffusion process does not413

depend on X1 in the present case. This holds for arbitrary densities f1 and f satisfying the414

conditions in Section 2.1, provided that X1 is a location parameter for Xi (i ≥ 2). Since a415

variation in the location parameter does not perturb the roughness of the distribution, the416

AOS and AOAR found are valid both locally and globally. This means that ˆ̀, which remains417

fixed across iterations, is the best possible proposal scaling conditionally on the last position418

of the component X1 (i.e. ˆ̀= ˆ̀(x1)).419

A second peculiarity of this example is that the target distribution is jointly normal with420

mean 0 and n × n covariance matrix Σn given by σ21 = 1, σ2j = 2 (j = 2, . . . , n), and421

σi,j = 1 ∀i 6= j (i, j = 1, . . . , n). Normal distributions being invariant under orthogonal422

transformations, we can find a transformation under which the target components become423

mutually independent. The covariance matrix Σn is thus transformed into a diagonal matrix424

whose diagonal elements consist in the eigenvalues of Σn. In moderate to large dimensions,425

the eigenvalues can be approximated by 1/(n + 1), (n + 1), 1, . . . , 1. It turns out that the426

optimal scaling problem for target distributions of this sort (i.e. formed of components that427

are i.i.d. up to a scaling term) has been studied in [1]. Solving for the AOS value and AOAR428

of the transformed target using Theorem 1 and Corollary 2 in [3] leads to values that are429

consistent with those obtained using Theorem 2 in Section 3.430

To illustrate these theoretical results, we consider the 20-dimensional normal-normal target431

described above and run 50 RWM algorithms that differ by their proposal variance only.432
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Figure 1: Efficiency of RWM algorithm against acceptance rate for the normal-normal hierarchical target.
Left: efficiency of X1 only; the top set of curves corresponds to homogeneous proposal variances. Right:
efficiency of all n components; the top set of curves now corresponds to inhomogeneous proposal variances.

For each sampler, we perform 100,000 iterations (sufficient for convergence according to the433

autocorrelation function) and measure efficiency by recording the average squared jumping434

distance435

ASJD =
1

N

N∑
j=1

n∑
i=1

(
x
(n)
i [j]− x(n)i [j − 1]

)2
; (8)

here, N is the number of iterations and n is the dimension of the target distribution. We436

also record the average acceptance rate of each algorithm, expressed as437

AAR =
1

N

N∑
j=1

1{x(n)[j] 6= x(n)[j − 1]}.

We repeat these steps for 50- and 100-dimensional normal-normal targets, and combine all438

three curves of efficiency versus acceptance rate on a graph along with the theoretical ef-439

ficiency curve of υ(`) versus the expected acceptance rate υ(`)/`2 (Figure 1, right graph,440

bottom set of curves). To assess the limiting behaviour of the coordinate X1, we also plot441

the ASJD of this single component (for the 20-, 50-, and 100-dimensional cases) along with442

the ASJD for the limiting one-dimensional RWM sampler described in Theorem 1 (Figure 1,443

left graph, top set of curves).444

We now repeat the numerical experiment by taking advantage of the available target vari-445

ances in the tuning of the proposal distribution. Specifically, we let Y1 ∼ N (x1, `
2/2n) be446

independent of Y2:n ∼ N (x2:n, `
2/n) and run the RWM algorithm in dimensions 20, 50, and447

100. The resulting simulated and theoretical efficiency curves are illustrated in Figure 1 (left448

graph, bottom set of curves; right graph, top set of curves). Although efficiency curves for449

X1 are lower when using inhomogeneous proposal variances, this approach still results in a450

better overall performance (the curves in the right graph are higher than with homogeneous451

variances). The optimized theoretical efficiency is 0.974, which is related to an AOAR of452
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0.221. Despite the fact that Theorems 1 and 2 are valid asymptotically, the simulation study453

yields efficiency curves that are very close together; the theorems thus seem applicable in454

relatively low-dimensional settings.455

Each set of curves on the right graph of Figure 1 agrees about the optimal acceptance rates456

0.205 and 0.221, respectively. These optimal rates have been obtained by running an ho-457

mogeneous sampler with optimal variance ˆ̀2/n = 4/n and an inhomogeneous sampler with458

optimal variance 4.4/n, each optimizing (6). Any other proposal variance leads to a point459

that is lower on the efficiency curve.460

According to the shape of these curves, tuning the acceptance rate anywhere between 0.15461

and 0.3 would yield a loss of at most 10% in efficiency, and would still result in a Markov chain462

that rapidly explores its state space; in particular, using the usual 0.234 for this target would463

yield an almost optimal algorithm. Beyond finding the exact AOAR for a specific target464

distribution, there is thus a need for understanding when and why AOARs significantly differ465

from 0.234. At the present time, the only way to answer this question is by solving the466

optimal scaling problem for target distributions of interest.467

4.2. Gamma-normal hierarchical distribution468

As a second example, consider a gamma-normal hierarchical target such that X1 ∼ Γ(α, λ)469

and Xi|X1 ∼ N (0, 1/X1), i = 2, . . . , n. Although Xi (i ≥ 2) are still normally distributed,470

the coordinate X1 now acts through the variance of the normal variables. This results in471

a target that significantly differs from the distribution considered in the previous section,472

falling slightly outside the framework of Section 2 ( ∂
∂x1

log f(x|x1) is now only locally Lipschitz473

continuous). We run the usual RWM algorithm to obtain a sample from this distribution.474

Standard calculations lead to X1|X2:n ∼ Γ(α + (n − 1)/2, λ +
∑n

i=2X
2
i /2) and as n →475

∞, V(X1|X2:n) →p 0. The WLLN-type expression in Theorem 1 may be reexpressed as476 ∑n
i=2(µn+X̃1/

√
n)2X2

i /n = (µn+X̃1/
√
n)(
∑n

i=2 Z
2
i /n), where Z1:n are independent standard477

normal random variables. The condition is thus satisfied as it converges in probability to478

µ(X) = EX [( ∂
∂X log f(X|µ))2]. Using Stirling’s formula, it is not difficult to show that the479

density of X̃1|X2:n converges almost surely to that of a N (0, 2/µ2(X)). By Theorem 1,480

the coordinate X̃1 asymptotically behaves according to an atypical one-dimensional RWM481

algorithm with a normal target; the target variance however varies from one iteration to the482

next, and so does the acceptance function in (4).483

To optimize the efficiency of the algorithm, we analyze the speed measure in (6); in the484

present case, it is expressed as485

υ(`, x1) = 2`2EZ1

[
Φ

(
− `

2

√
1
2
Z2
1

x21
+ x1

)]
,

where Z1 ∼ N (0, 1). Maximizing the function EX1 [υ(`,X1)] in Corollary 6 with respect to486

` leads to the global AOS value, which is fixed across iterations; when (α, λ) = (3, 1) for487

instance, we find ˆ̀2 = 2.40 and AOAR = 0.204.488

The simulation study described in Section 4.1 has been performed for the gamma-normal489

target model with various α and λ. Specifically, for fixed α, λ, we consider a 10-dimensional490
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Table 1: Optimal efficiency and acceptance rate of chains in various dimension (n = 10, 20, 50), for different
parameters α, λ of the gamma distribution for X1. The theoretical optimal efficiency and acceptance rate are
also included for comparison.

Optimal efficiency Optimal acceptance rate

Parameters Theoretical n = 10 n = 20 n = 50 Theoretical n = 10 n = 20 n = 50

α = 2, λ = 1 0.6381 0.6036 0.6246 0.6456 0.1934 0.1984 0.1968 0.1857

α = 2, λ = 2 0.8169 0.7430 0.7862 0.8239 0.1815 0.1888 0.1759 0.1886

α = 2, λ = 3 0.8420 0.7623 0.8170 0.8608 0.1517 0.1682 0.1527 0.1593

α = 3, λ = 1 0.4889 0.4503 0.4736 0.4926 0.2037 0.2370 0.2158 0.2001

α = 3, λ = 2 0.7541 0.6739 0.7139 0.7405 0.2038 0.2265 0.2233 0.2040

α = 3, λ = 3 0.8648 0.7554 0.8075 0.8497 0.1922 0.1931 0.1930 0.1882

gamma-normal target distribution and run 50 RWM algorithms possessing their own proposal491

variance. For each sampler, we perform 1,000,000 iterations (again sufficient for convergence492

according to the autocorrelation function) and measure efficiency by recording the ASJD of493

each chain. We then repeat these steps for 20- and 50-dimensional targets. Table 1 presents494

the optimal efficiency and acceptance rate for various α, λ. Those results are compared to495

the theoretical optimal values obtained by maximizing EX1 [υ(`,X1)].496

Although the corresponding graphs are omitted here, they yield curves similar to those ob-497

tained in Figure 1 for the normal-normal target. We note that even if the gamma-normal498

departs from a jointly normal distribution assumption and does not yield as nice a target499

distribution as in the previous example, the AOAR obtained is not too far from the 0.234500

found for i.i.d. targets. The AOAR however tends to decrease as λ increases (e.g. 0.152 for501

(α, λ) = (2, 3)).502

In the current example, it also turns out that the agreement between theoretical and sim-503

ulation results is altered for some values (α, λ). As mentioned above, one of the Lispchitz504

conditions is only valid locally and so the change in ∂
∂x1

log f(x|x1) becomes arbitrarily steep505

as X1 → 0. The amplitude of X1 movements is, therefore, not adequately controlled for some506

choices of (α, λ) that yield a density f1 assigning a significant probability close to 0. In cases507

where regularity assumptions are not all satisfied, the applicability of theoretical results may508

thus be affected by the choice of hyperparameters.509

5. Applications in Bayesian contexts510

The theoretical results presented in this paper have wide applicability and may be used511

to improve not only RWM algorithms, but other samplers as well (RWM-within-Gibbs, for512

instance). The examples below study the performance of optimally tuned samplers in the513

context of hierarchical Bayesian models. They show that the RWM-within-Gibbs sampler514

with local variances (i.e. variances that are a function of the current state of the chain) is515

superior to its counterpart with a fixed variance. It is also superior to traditional RWM516

algorithms and even Adaptive Metropolis (AM) samplers, which use the history of the chain517

to recursively update the covariance matrix of their proposal distribution (see [11]).518
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5.1. Scottish secondary school scores519

The dataset ScotsSec in the package mlmRev in R contains the scores attained by 3,435520

Scottish secondary school students on a standardized test taken at age 16. The primary521

schools attended by students are also recorded in this dataset; there are n = 148 different522

primary schools, and the number of students per primary school varies between 1 and 72.523

We use the following multilevel Bayesian framework to model these data524

µ
↙ ↓ ↘

θ1 . . . . . . θn θi ∼ tν(µ, 1/η) , (1 ≤ i ≤ n)
↓ ↓ ↓

Y1,1, . . . , Y1,r1 Yn,1, . . . , Yn,rn Yij ∼ N (θi, 1/τ) , (j = 1, . . . , ri) .

In this model, the variables yi,1:ri represent the observed scores obtained by the ri students525

having attended primary school i, i = 1, . . . 148. These observations are modeled according526

to a normal distribution with mean θi and variance 1/τ . The group sizes range from r148 = 1527

to r61 = 72. The variables θ1:148, which represent the mean scores of the standardized test528

for students having attended each of the 148 primary schools, are modeled using a Student529

distribution with ν = 4 degrees of freedom. A translated and scaled Student distribution530

tν(µ, 1/η) has a density proportional to [1 + η(x − µ)2/ν]−(ν+1)/2. The mean and precision531

of the Student distribution, along with the precision of the normally distributed data, are532

attributed non-informative priors: π(µ) ∝ 1, π(η) ∝ η−1, and π(τ) ∝ τ−1.533

This model leads to the (n+ 3)-dimensional posterior density534

π(µ, η, τ,θ1:n|{Yij}) ∝ η−1 τ−1
n∏
i=1

√
η

[
1 +

η (θi − µ)2

ν

]−(ν+1)/2

n∏
i=1

ri∏
j=1

√
τ exp

{
−τ

2
(yij − θi)2

}
. (9)

The posterior density is too complex for analytic computation, and numerical integration535

must be ruled out due to the dimensionality of the problem. This distribution is best sampled536

with MCMC methods, although a classical Gibbs sampler must be ruled out, as the Student537

distribution destroys conjugacy. In the current setting, we propose to use a RWM-within-538

Gibbs with four blocks of variables: µ, η, τ , and θ1:n. We are also interested in assessing539

the performance of full-dimensional RWM and AM algorithms in which µ, η, τ , and θ1:n are540

updated at once.541

The RWM-within-Gibbs performs one-dimensional updates of µ, η, and τ using target densi-542

ties f(µ|η, τ,θ1:n, {Yij}), f(η|µ, τ,θ1:n, {Yij}), and f(τ |µ, η,θ1:n, {Yij}). It then performs an543

n-dimensional update of θ1:n with respect to the conditional density f(θ1:n|µ, η, τ, {Yij}) =544 ∏n
i=1 f(θi|µ, η, τ,Yi,1:ri).545

Since each block of variables is updated individually using a RWM sampler, we may compute546

local proposal variances for the fourth block using (6) and (7) in Theorem 2. The proposal547

variances maximizing (6) are adjusted according to the roughness of their corresponding548

16



target component’s distribution, and should offer a better performance than a fixed proposal549

variance.550

The target distribution of the fourth block satisfies551

f(θ1:n|µ, η, τ, {Yij}) ∝
n∏
i=1

[
1 +

η (θi − µ)2

ν

]− ν+1
2

exp

−τ2
ri∑
j=1

(yij − θi)2
 ,

hence the partial derivative of the one-dimensional log density with respect to θi is552

∂

∂θi
log f(θi|µ, η, τ,Yi,1:r) = τ

ri∑
j=1

(yij − θi)−
ν + 1

ν

√
η

(
Ti

1 + T 2
i /ν

)
, (10)

where Ti =
√
η(θi − µ) ∼ tν(0, 1), i = 1, . . . , n. Since the variables µ, η, τ are updated553

separately, then the first term in (7) is null, leading to554

γi(µ, η, τ) = E

[(
∂

∂θi
f(θi|µ, η, τ,Yi,1:ri)

)2
]
. (11)

Optimizing (6) leads to local, inhomogeneous proposal variances of the form 2.382/{nγi(µ, η, τ)}.555

The terms γi(µ, η, τ) in the proposal variances are not easy to obtain explicitly as the ex-556

pectation in (11) must be computed with respect to the conditional distribution of θi given557

(µ, η, τ,Yi,1:ri), which is not a Student distribution anymore. However, the terms γi(µ, η, τ)558

may be averaged over the random variables Yi,1:ri . Squaring (10) and computing the expec-559

tation first with respect to Yi,1:ri and then with respect to θi easily leads to560

E [γi(µ, η, τ)] = ri τ + η
(ν + 1)2

ν(ν + 2)

Γ((ν + 1)/2) Γ((ν + 4)/2)

Γ(ν/2) Γ((ν + 5)/2)
.

These terms yield local proposal variances that have been averaged over all possible datasets;561

these are the best local variances for the model under study when no information about the562

observations is available.563

The RWM-within-Gibbs is then implemented using Gaussian proposal distributions with σ1 =564

0.95, σ2 = 0.025, and σ3 = 0.0005 for µ, η, and τ . This yields acceptance rates in the range565

35%-50% for each sub-algorithm, as prescribed in the literature for one-dimensional target566

distributions (see [18]). We update θ1:148 using a Gaussian proposal with local variances567

2.382/{nE[γi(µ, η, τ)]}.568

These steps are then repeated by running a RWM-within-Gibbs in which θ1:148 is updated569

using a fixed proposal variance of 52. We also run a 151-dimensional RWM sampler with570

a N ((µ, η, τ,θ1:148), 4
2/151 ∗ diag(1, 0.01, 0.001, 1, . . . , 1)) proposal distribution, and an AM571

algorithm in which the tuning factor of the proposal covariance matrix is 8.572

The ASJD of the chain in (8) offers a reliable way of comparing the four samplers; it is reported573

in the first column of Table 2. A large value of this measure (relative to other samplers) is574

indicative of a process that rapidly explores its space, and is equivalent to ordering samplers575

according to their lag-1 autocorrelations. We also compare the relative efficiency of these576

samplers by calculating the effective sample size (ESS) of the variables µ, η, τ , and θ2. The577
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Table 2: Scottish dataset : Efficiency and time-adjusted efficiency measures for the four samplers tested.

Efficiency Time-adjusted efficiency

Sampler Mean ASJD Min ESS Mean time a/s e/s

(a) (e) (s) (×100) (×100)

RWM 2.9712 74.30 145.50 2.0421 51.07

Fixed RWM-w-G 6.4279 157.09 147.77 4.3499 106.31

Local RWM-w-G 8.4108 272.70 148.06 5.6807 184.18

Adapt. Met. 5.2476 473.83 1,081.52 0.4852 43.81

effective sample size represents the number of uncorrelated samples that are produced from578

the output of the sampler. It is also used as a convergence diagnostic: when its value is too579

small (< 100), we may have reasonable doubts that the chain really has converged. It is580

computed as581

ESS =
N

1 + 2
∑∞

k=1 γ(k)
,

where N is the number of samples and
∑∞

k=1 γ(k) is the sum of lag-k sample autocorrelations.582

An ESS is produced for each variable; since we want to measure the number of samples that583

are uncorrelated over all variables, we report the minimum ESS (2nd column of Table 2).584

The ASJD and minimum ESS values are averaged over 10 runs of 100,000 iterations each,585

with a burn-in period of 1,000. These quantities are then normalized relative to the average586

running time of samplers (3rd column); this respectively yields the average square jumping587

distance per second (4th column), and the number of uncorrelated samples generated every588

second (5th column).589

According to these results, the RWM-within-Gibbs with local variances is 1.3 times more590

efficient than the one with a fixed variance; the efficiency gain is even greater (1.7) if we591

consider the minimum ESS instead of the ASJD. Although the RWM sampler offers a slight592

improvement in terms of running time, it still results in efficiency measures that are sig-593

nificantly smaller than those of the RWM-within-Gibbs. The Adaptive Metropolis sampler594

could be an interesting alternative to the RWM-within-Gibbs, if it were not as expensive595

in terms of computational resources. Indeed, even if its ASJD is smaller than that of the596

RWM-within-Gibbs, its minimum ESS is greater. This sampler however requires significantly597

more time than the other samplers to complete its 100,000 iterations. When correcting for598

computational effort, it thus badly loses ground to its competitors.599

The results in Table 2 thus illustrate that there is an important efficiency gain that is available600

from preferring a local RWM-within-Gibbs over its constant counterpart. Given that running601

times for both approaches are equivalent, we should clearly use local proposal variances602

whenever possible.603

5.2. Stochastic volatility model604

As a second example, we wish to study the performance of MCMC samplers in the context605

of a Bayesian hierarchical model that does not respect the regularity assumptions imposed606
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by the theory of Section 3. We consider a stochastic volatility model in which the latent607

volatilities form an order-1 autoregressive process. The model, similar to those studied in608

[10] and [13], expresses the mean corrected returns di and log volatilites Xi, for i ≥ 1, as609

di = εi exp{Xi/2} ,
Xi+1 = φXi + ηi+1 .

The variables εi ∼ N (0, 1) and ηi ∼ N (0, τ2) are uncorrelated white noises and we set X1 ∼610

N (0, τ2/(1−φ2)). Priors for the parameters τ2 and φ are τ2 ∼ IΓ(δ, λ) and (φ+1)/2 ∼ β(a, b),611

where IΓ(δ, λ) is the inverse gamma distribution with density proportional to x−(δ+1)e−λ/x.612

This model leads to an (n+ 2)-dimensional posterior density π(τ2, φ,X1, . . . , Xn|d1:n).613

Before pursuing the analysis, we note that τ2 and φ are constrained to subsets of R; since the614

target density is rather sensitive to changes in these parameters, this will potentially affect615

the performance of MCMC approaches. To ensure fluidity in the samplers implemented, we616

apply the transformations τ2 = exp{κ} and φ = tanh(ω). The new variables κ, ω take values617

in R and the resulting (n+ 2)-dimensional posterior density is given by618

π(κ, ω,x1:n|d1:n) ∝ exp
{
−κ(n2 + δ)

} e−ω(2b+1)

(1 + e−2ω)a+b+1
exp

{
−1

2

n∑
i=1

(xi + d2i e
−xi)

}

× exp

{
−e−κ

2

[
2λ+

4e−2ω

(1 + e−2ω)2
x21 +

n∑
i=2

(
xi − (1−e

−2ω

1+e−2ω )xi−1

)2]}
.

Using a 100-dimensional dataset d1:100 exhibiting low correlation (obtained from the stochas-619

tic volatility model with φ = 0.1 and τ2 = 0.75), we sample this posterior density using620

RWM-within-Gibbs (local and fixed variances), traditional RWM, and AM algorithms. Hy-621

perparameters are set to δ = 1, λ = 0.75, a = 10, and b = 6.622

For the RWM-within-Gibbs, we propose to divide the variables into 3 blocks: κ, ω, and X1:n.623

The proposal standard deviations associated to κ and ω are set to 0.2 and 0.27 respectively;624

each sub-algorithm thus accepts candidates according to a rate of ≈ 45%. The n-dimensional625

update of X1:n is performed according to the conditional target density π(x1:n|κ, ω,d1:n). In626

the case of the RWM-within-Gibbs with local variances, the terms627

γi(κ, ω) = E[( ∂
∂Xi

log π(X1:n|κ, ω,d1:n))2] , i = 1, . . . , n

in (7) are not easy to obtain as the full conditional distribution (given the data) is not nor-628

mally distributed anymore. As before, we solve this problem by computing the expectation629

above with respect to d1:n first, and then with respect to X1:n. The resulting proposal vari-630

ances are thus averaged over all possible datasets; they are the best local proposal variances,631

independently of the specific dataset considered. Optimizing (6) for i = 1, . . . , n yields the632

n-dimensional vector633

2.382

n

(
1
2 + e−κ, 12 + e−κ

(
1 + (1−e

−2ω

1+e−2ω )2
)
, . . . , 12 + e−κ

(
1 + (1−e

−2ω

1+e−2ω )2
)
, 12 + e−κ

)−1
. (12)

For the RWM-within-Gibbs with a fixed proposal variance, the proposal standard deviations634

associated to κ and ω are still 0.2 and 0.27. We then use the theory of Section 3 to obtain635
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Table 3: Stochastic volatility - Efficiency and time-adjusted efficiency measures for the four samplers tested.

Efficiency Time-adjusted efficiency

Sampler Mean ASJD Min ESS Mean time a/s e/s

(a) (e) (s) (× 1,000) (× 1,000)

RWM 0.3994 103.37 367.34 1.0873 281.40

Fixed RWM-w-G 0.6420 116.58 371.93 1.7261 313.45

Local RWM-w-G 0.6740 132.40 371.38 1.8149 356.51

Adapt. Met. 0.6320 347.76 1,149.26 0.5499 302.59

an approximately optimal acceptance rate of 0.2 for the block X1:n. We reach a similar con-636

clusion for the traditional RWM sampler. Naturally, we have to keep in mind that regularity637

assumptions are violated in the current context; the theoretical results might not be robust638

to a departure from those assumptions. In fact, given that the Xis are correlated, we expect639

the Adaptive Metropolis sampler to better capture this design and to outdo its competitors.640

The initial covariance matrix of the Adaptive Metropolis algorithm is the (n+2)-dimensional641

identity matrix. We tune its acceptance rate as close as possible to 0.234, as suggested in the642

literature. For each sampler, we average the ASJD and minimum ESS over 10 runs of 200,000643

iterations each, from which the first 10,000 iterations are discarded as burn-in. Time-adjusted644

ESJD and minimum ESS are again used a measures of efficiency; their values are reported645

in Table 3.646

In terms of ASJD, the RWM-within-Gibbs with local variances is the best option, although its647

competitors also offer decent performances. The AM sampler does better, in absolute, for the648

minimum ESS; when accounting for computational effort however, the AM ends up outdone649

by the RWM-within-Gibbs (local and fixed). As before, we notice a net efficiency gain when650

preferring local variances to a fixed one in the RWM-within-Gibbs (net gain between 5%651

and 13%, depending on the efficiency measure). This modest gain is explained by the fact652

that, for the specific model studied, variations in κ and ω do not have a huge impact on653

the value of the local variances in (12). In spite of this, the impact of using local variances654

remains positive; generally, there does not seem to be a risk associated to using such local655

variances. Furthermore, the theoretical results seem applicable to contexts where regularity656

assumptions are violated (to some extent).657

6. Discussion658

In this paper, we have studied the tuning of RWM algorithms applied to single-level hierar-659

chical target distributions. The optimal variance of the Gaussian proposal distribution has660

been found to depend on a measure of roughness of the density f with respect to x as before,661

but also with respect to the mixing coordinate x1. This leads to local proposal variances that662

are a function of the mixing parameter x1. It is however possible to average over the random663

variable X1 to find a globally optimal proposal variance. In the case where X1 is a location664

parameter, it does not affect the roughness of the density f and the optimal proposal scaling665
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is valid both locally and globally.666

Higher-level hierarchies could be studied using a similar approach. A target featuring p667

mixing components, expressed as668

π (x) =

p∏
j=1

fj (xj)
n∏

i=p+1

f (xi |x1:p ) ,

with x1:p = (x1, . . . , xp) would lead to a result similar to Theorem 2, but with the function669

γ(x1:p, z1:p) = EX

 p∑
j=1

zj
∂
∂xj

log f(X|x1:p)

2+ EX
[(

∂
∂X log f(X|x1:p)

)2]
,

where z1:p = (z1, . . . , zp) come from independent N (0, 1) random variables. For a tar-670

get whose mixing component (Xp say) depends itself on higher-level mixing components671

X1, . . . , Xp−1, expressed as π (x) = f1 (x1:p)
∏n
i=p+1 f (xi |xp ), the conclusions of Theorem672

2 are still valid. These generalizations also hold for Corollary 7, with obvious adjustments673

(Z1 ∼ N (0, `2κ21/n), . . . , Zp ∼ N (0, `2κ2p/n)). Similar extensions may be derived for other674

hierarchical models.675

In the simulation study of Section 4, we found that the optimal acceptance rate most often676

lies around 0.2. In the gamma-normal example, there were some values of α, λ that led to677

significantly lower optimal acceptance rates (0.15 when α = 2, λ = 3). The usual 0.234 is678

thus quite robust and, if preferred, should lead to an efficient version of the sampler. In the679

case of correlated targets, it would however be wiser to settle for an acceptance rate slightly680

below 0.234. Since we investigate correlated targets with a proposal distribution featuring a681

diagonal covariance matrix, it is not surprising to find an AOAR lower than 0.234; the latter682

is the AOAR for exploring a target distribution with independent components, which is an683

ideal situation when relying on a proposal distribution with independent components.684

We conclude by outlining that the concept of locally optimal proposal variances reveals685

itself to be of interest with other types of samplers, such as RWM-within-Gibbs algorithms.686

Indeed, the asymptotic results of Section 3 are proof of the theoretical superiority of RWM-687

within-Gibbs over RWM when sampling from hierarchical targets. The examples of Section 5688

illustrate the efficiency gain from using a RWM-within-Gibbs with local variances over some689

competitors, including an adaptive sampler. Similar ideas may also be applied to different690

samplers such as Metropolis-adjusted Langevin algorithms (MALA), but this goes beyond691

the scope of this paper.692
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A. Appendix : Proofs of theorems744

We now proceed to prove Theorems 1 and 2. To assess weak convergence of the processes745

{W̃ (n)
1 (t); t ≥ 0} and {W (n)

2 (t); t ≥ 0} in the Skorokhod topology, we first verify weak con-746

vergence of finite-dimensional distributions. Whereas these processes are not themselves747

Markovian, they are FW̃(n)
(t)-progressive and F (W

(n)
1 ,W

(n)
i )(t)-progressive R-valued processes748

respectively, and the aim of this section is to establish their convergence to some Markov pro-749

cesses. According to Theorem 8.2 of Chapter 4 in [9], we thus look at the pseudo generator of750

{W̃ (n)
1 (t); t ≥ 0} (resp. {W (n)

2 (t); t ≥ 0}), the univariate process associated to the component751

X1 (resp. X2) in the rescaled RWM algorithm introduced at the end of Section 2. We then752

verify L1-convergence to the generator of the special RWM sampler with acceptance rule (4)753

(resp. the generator of the diffusion in (5)).754

To complete the proofs, Theorem 7.8 of Chapter 3 in [9] says that we must also assess the755

relative compactness of {W̃ (n)
1 (t); t ≥ 0} and {W (n)

2 (t); t ≥ 0}) for n = 2, 3, . . ., as well as756

the existence of a countable dense set on which the finite-dimensional distributions weakly757

converge. This is achieved by using Corollary 8.6 of Chapter 4 in [9]; in the setting of Theorem758

1, the satisfaction of applicability conditions is immediate; in the setting of Theorem 2, the759

satisfaction of the first condition is immediate, while the verification of the second condition760

is briefly discussed in Section A.2.761

A.1. Proof of Theorem 1762

In Theorem 1, it is assumed that {W̃ (n)
1 (t); t ≥ 0} is the component of interest in {W̃(n)(t); t ≥763

0}. Define the pseudo generator of {W̃ (n)
1 (t); t ≥ 0} as764

G̃nh(W̃
(n)
1 (t)) = E

[
h(W̃

(n)
1 (t+ 1))− h(W̃

(n)
1 (t))

∣∣∣FW̃(n)
(t)
]
,

where h is an arbitrary test function. By setting ξn(t) = h(W̃
(n)
1 (t)) and ϕn(t) = G̃nh(W̃

(n)
1 (t)),765

conditions in part (c) of Theorem 8.2 (Chap. 4 in [9]) reduce to E
[∣∣∣G̃nh(W̃1

(n)
(t))− G̃h(W̃1(t))

∣∣∣]766
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→ 0 as n → ∞ for h ∈ C (the space of continuous and bounded functions on R), where767

G̃h(W̃1(t)) is the generator of the special RWM sampler described in Theorem 1.768

The above may be reexpressed as E
[∣∣∣G̃nh(X̃1)− G̃h(X̃1)

∣∣∣]→ 0 as n→∞, where769

G̃nh(x̃1) = EỸ1
[(
h(Ỹ1)− h(x̃1)

)
EY2:n

[
α(x̃(n), Ỹ(n))

]]
with x̃(n) = (x̃1, x2, . . . , xn) and similarly for Ỹ(n). The density of x̃(n) is 1√

n
π(µn+ x̃1√

n
,x2:n)770

with π as in (1), and thus α(x̃(n), Ỹ(n)) = 1 ∧ π(µn+Ỹ1/
√
n,Y2:n)

π(µn+x̃1/
√
n, x2:n)

; hereafter, 1 ∧ x = min(1, x).771

Furthermore,772

G̃h(x̃1) = EỸ1
[(
h(Ỹ1)− h(x̃1)

)
α∗(x̃1, Ỹ1|x)

]
with α∗ as in (4). Note that there is a slight abuse of notation as, although h is a function773

of x1 only, the generator G̃nh(x̃1) is a function of x̃(n); a similar remark holds for G̃h(x̃1).774

We now proceed to verify this condition. Hereafter, we use →a.s., →p, and →d to denote775

convergence almost surely, in probability, and in distribution.776

In the current context where there is no time-rescaling factor, the limiting process shall777

remain a RWM algorithm. For h ∈ C and some K > 0, the triangle inequality implies778

E
[∣∣∣G̃nh(X̃1)− G̃h(X̃1)

∣∣∣] ≤ K E
[∣∣∣α(X̃(n), Ỹ(n))− α2(X̃

(n), Ỹ(n))
∣∣∣] (A.1)

+K E
[∣∣∣α2(X̃

(n), Ỹ(n))− α1(X̃
(n), Ỹ(n))

∣∣∣]
+ K E

[∣∣∣EY2:n

[
α1(X̃

(n), Ỹ(n))
]
− α∗(X̃1, Ỹ1|X)

∣∣∣] ,
where the function α2(X̃

(n), Ỹ(n)) shall be defined in Lemma B.1 and α1(X̃
(n), Ỹ(n)) =779

1 ∧ exp
{
ε1(X̃

(n), Ỹ(n))
}

. Here,780

ε1(x̃
(n), Ỹ(n)) = log

f1(µn + Ỹ1√
n
|x2:n)

f1(µn + x̃1√
n
|x2:n)

+
n∑
i=2

∂
∂x log f(x|µn + x̃1√

n
)
∣∣∣
x=xi

(Yi − xi)

− `
2

2n

n∑
i=2

(
∂
∂x log f(x|µn + x̃1√

n
)
∣∣∣
x=xi

)2

, (A.2)

with 1√
n
f1(µn + x̃1√

n
|x2:n) representing the conditional density of X̃1 given x2:n.781

By Lemmas B.1 and B.2, the first and second terms in (A.1) respectively converge to 0 as782

n → ∞; in the sequel, we thus study the last term. Since Y2:n ∼ N (x2:n, `
2In−1/n), the783

second and third terms on the right of (A.2) are normally distributed with mean M and784

variance V , where V = −2M = `2

n

∑n
i=2

(
∂
∂x log f(x|µn + x̃1√

n
)
∣∣∣
x=xi

)2

.785

By assumption, this variance term converges in probability to `2γ̃(µ); hence, the last two786

terms on the right of (A.2) converge in probability to a N (−`2γ̃(µ)/2, `2γ̃(µ)). Regularity787

conditions allow us to invoke the (multivariate) Continuous Mapping Theorem, which implies788

α1(X̃
(n), Ỹ(n)) →p 1 ∧ exp

{
N

(
log

g1(Ỹ1|X)

g1(X̃1|X)
− `2

2
γ̃(µ), `2γ̃(µ)

)}
.
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Proposition 2.4 in [17] then claims that the expectation of 1 ∧ exp{Z}, where Z is the789

normal random variable just introduced, is equal to α∗(X̃1, Ỹ1|X). The Bounded Convergence790

Theorem can then be used to conclude that the last term in (A.1) converges to 0 as n→∞.791

A.2. Proof of Theorem 2792

In Theorem 2, it is assumed that {W (n)
i (t); t ≥ 0} (i = 2, . . . , n) is the component of interest793

in the rescaled process {W(n)(t); t ≥ 0}. Without loss of generality, fix i = 2 and define the794

pseudo generator of {W (n)
2 (t); t ≥ 0} as795

Gnh(W
(n)
2 (t)) = nE

[
h(W

(n)
2 (t+ 1

n))− h(W
(n)
2 (t))

∣∣∣F (W
(n)
1 ,W

(n)
2 )(t)

]
,

where h is an arbitrary test function.796

By setting ξn(t) = h(W
(n)
2 (t)) and ϕn(t) = Gnh(W

(n)
2 (t)), part (c) of Theorem 8.2 (Chapter797

4 in [9]) reduces to the conditions supn sups≤T E[|Gnh(W
(n)
2 (s))|] <∞ for T > 0 and h ∈ C,798

and E
[∣∣∣Gnh(W

(n)
2 (t))−Gh(W2(t))

∣∣∣] → 0 as n → ∞ for h ∈ C, where Gh(W2(t)) is the799

generator of the diffusion process described in Theorem 2.800

Hereafter, we use the notation Y1,3:n = (Y1, Y3, . . . , Yn). The latter condition may be reex-801

pressed as EX1:2 [|Gnh(X2)−Gh(X2)|]→ 0 as n→∞, where802

Gnh(X2) = nEY2
[
(h(Y2)− h(X2))EX3:n,Y1,3:n

[
α(X(n),Y(n))

]]
(A.3)

with α(x(n),Y(n)) = 1 ∧ π(Y(n))

π(x(n))
and π as in (1), and803

Gh(X2) = υ(`,X1)

{
1

2
h′′(X2) +

1

2
∂

∂X2
log f(X2|X1)h

′(X2)

}
. (A.4)

There is again a slight abuse of notation as, although h is a function of x2 only, the generators804

Gnh(x2) and Gh(x2) are functions of x1, x2. Due to the form of (A.4), we can resort to805

Theorem 2.1 of Chapter 8 in [9] to assert that C∞c , the space of continuous and infinitely806

differentiable functions that are compactly supported on R, forms a core for the generator of807

the diffusion in Theorem 2. The test function h in (A.3) and (A.4) might then be restricted808

to functions h belonging to C∞c .809

We note that the condition supn sups≤T E[|Gnh(W
(n)
2 (s))|] < ∞ for T > 0 and h ∈ C may810

be reexpressed as supn E[|Gnh(X2)|] <∞ for h ∈ C∞c . In fact, it is straight-forward to verify811

that E[(Gnh(X2))
2] ≤ Kh + O(n−1) for some Kh ∈ (0,∞) which implies that the former is812

satisfied (this is achieved by considering a function similar to (B.6), in which the acceptance813

function is Taylor expanded to first order only, and by proceeding as in the proof of Lemma814

B.3). It also implies the satisfaction of the second applicability condition of Corollary 8.6815

(Chapter 4 in [9]), which may be simplified as lim supn→∞ E[(Gnh(X2))
2] <∞ for h ∈ C∞c .816

We now proceed to verify that Gnh(X2) converges in L1 to Gh(x2). To begin, we have from817

Lemma B.3 that EX1:2

[∣∣∣Gnh(X2)−G(1)
n h(X2)

∣∣∣] → 0 as n → ∞, where G
(1)
n h(x2) is the818
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generator of a diffusive process :819

G(1)
n h(X2) =

`2

2
h′′(X2)EX3:n,Y1,3:n

[
α(X(n),Y

(n)
X2

)1X1(Y1)
]

+`2h′(X2)
∂

∂X2
log f(X2|X1)EX3:n,Y1,3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]
. (A.5)

Note that it is not necessary to precise this expression further at this stage. Now, we have820

EX1:2

[∣∣∣G(1)
n h(X2)−Gh(X2)

∣∣∣] ≤
K1 EX1:2

[∣∣∣`2EX3:n,Y1,3:n

[
α(X(n),Y

(n)
X2

)1X1(Y1)
]
− υ(`,X1)

∣∣∣] (A.6)

+ K2 EX1:2

[
| ∂
∂X2

log f(X2|X1)|
∣∣∣∣`2EX3:n,Y1,3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]
− 1

2
υ(`,X1)

∣∣∣∣]
for some K1,K2 > 0, since h ∈ C∞c and thus |h′| and |h′′| are bounded.821

Using the triangle inequality, the first term on the RHS of (A.6) satisfies822

EX1:2

[∣∣∣`2EX3:n,Y1,3:n

[
α(X(n),Y

(n)
X2

)1X1(Y1)
]
− υ(`,X1)

∣∣∣]
≤ `2EX1:n,Y1,3:n

[∣∣∣α(X(n),Y
(n)
X2

)− α̂(X(n),Y
(n)
X2

)
∣∣∣1X1(Y1)

]
+EX1:2

[∣∣∣`2EX3:n,Y1,3:n

[
α̂(X(n),Y

(n)
X2

)1X1(Y1)
]
− υ(`,X1)

∣∣∣] ,
where the function α̂ is as in Lemma B.4. Using Lemmas B.4 and B.5, the above converges823

to 0 as n→∞. It thus only remains to verify that the second term on the right hand side of824

(A.6) also converges to 0; Lemma B.6 leads us to that conclusion.825

B. Appendix : Intermediate results826

Lemma B.1. As n → ∞, we have E
[∣∣∣α(X̃(n), Ỹ(n))− α2(X̃

(n), Ỹ(n))
∣∣∣] → 0, with α as in827

Appendix A.1 and α2(X̃
(n), Ỹ(n)) = 1 ∧ exp

{
ε2(X̃

(n), Ỹ(n))
}

, with828

ε2(x̃
(n), Ỹ(n)) = log

f1(µn + Ỹ1√
n
|x2:n)

f1(µn + x̃1√
n
|x2:n)

+
n∑
i=2

∂
∂x log f(x|µn + Ỹ1√

n
)
∣∣∣
x=xi

(Yi − xi)

− `
2

2n

n∑
i=2

(
∂
∂x log f(x|µn + Ỹ1√

n
)
∣∣∣
x=xi

)2

. (B.1)

Proof. The acceptance function satisfies α(x̃(n), Ỹ(n)) = 1 ∧ exp{ε(x̃(n), Ỹ(n))}, where829

ε(x̃(n), Ỹ(n)) = log
f1(µn + Ỹ1√

n
)
∏n
i=2 f(xi|µn + Ỹ1√

n
)

f1(µn + x̃1√
n

)
∏n
i=2 f(xi|µn + x̃1√

n
)

+
n∑
i=2

log
f(Yi|µn + Ỹ1√

n
)

f(xi|µn + Ỹ1√
n

)

 .
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Applying obvious changes of variables allows us to express ε in terms of x(n) and Y(n) :830

ε(x(n),Y(n)) = log
f1(Y1|x2:n)

f1(x1|x2:n)
+

n∑
i=2

(log f(Yi|Y1)− log f(xi|Y1)) .

Using a second-order Taylor expansion with respect to Yi around xi (i = 2, . . . , n) to reexpress831

the last term on the right hand side (RHS) leads to832

ε(x(n),Y(n)) = log
f1(Y1|x2:n)

f1(x1|x2:n)
+

n∑
i=2

∂
∂xi

log f(xi|Y1)(Yi − xi)

+
1

2

n∑
i=2

∂2

∂U2
i

log f(Ui|Y1)(Yi − xi)2

for some Ui ∈ (xi, Yi) or Ui ∈ (Yi, xi).833

We note that a candidate Y1 that does not belong to X1 is automatically rejected by the834

algorithm, i.e. functions α, α2, α1, and α∗ are identically 0. Applying changes of variables835

to the function ε2(x̃
(n), Ỹ(n)) and using the Lispchitz property of 1 ∧ exp{·} along with the836

fact that Yi ∼ N (xi, `
2/n), i = 2, . . . , n yield837

E
[∣∣∣α(X̃(n), Ỹ(n))− α2(X̃

(n), Ỹ(n))
∣∣∣] ≤ E

[∣∣∣ε(X(n),Y(n))− ε2(X(n),Y(n))
∣∣∣1X1(Y1)

]
≤ E

[∣∣∣∣∣12
n∑
i=2

∂2

∂X2
i

log f(Xi|Y1)(Yi −Xi)
2 +

`2

2n

n∑
i=2

(
∂
∂Xi

log f(Xi|Y1)
)2∣∣∣∣∣1X1(Y1)

]

+
`2

2

(
n− 1

n

)
E
[∣∣∣ ∂2∂U2

2
log f(U2|Y1)− ∂2

∂X2
2

log f(X2|Y1)
∣∣∣Z2

21X1(Y1)
]
,

where Z2 =
√
n(Y2 − X2)/` ∼ N (0, 1), and 1X1(y) = 1 if y ∈ X1 and 0 otherwise. From838

Proposition C.1 in Appendix C, the first term on the RHS converges to 0 as n→∞. We now839

study the second term on the right. Since Y2 →a.s. x2, it implies that U2 →a.s. x2; from the840

Continuous Mapping Theorem, we have
∣∣∣ ∂2∂U2

2
log f(U2|Y1)− ∂2

∂X2
2

log f(X2|Y1)
∣∣∣→a.s. 0, for all841

Y1 ∈ X1. Furthermore,842

E
[(

∂2

∂U2
2

log f(U2|Y1)− ∂2

∂X2
2

log f(X2|Y1)
)2
Z4
21X1(Y1)

]
≤ 12 E[K2(Y1)1X1(Y1)]

≤ 24 E[(K(Y1)−K(X1))
2
1X1(Y1)] + 24 E[K2(X1)] ≤ 24K∗

`2

n
+ 24 E[K2(X1)] < ∞

for some K∗ > 0 (since K(x1) satisfies a Lipschitz condition). We conclude, by invoking the843

Uniform Integrability Theorem, that the second term converges to 0 as n→∞.844

845

Lemma B.2. As n→∞, we have E
[∣∣∣α2(X̃

(n), Ỹ(n))− α1(X̃
(n), Ỹ(n))

∣∣∣]→ 0, with α1 as in846

Appendix A.1 and α2(X̃
(n), Ỹ(n)) as in Lemma B.1.847
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Proof. Applying obvious changes of variables to α1, α2 and using the Lipschitz property of848

1 ∧ exp{·} yield849

E
[∣∣∣α2(X̃

(n), Ỹ(n))− α1(X̃
(n), Ỹ(n))

∣∣∣] ≤ E
[∣∣∣ε2(X(n),Y(n))− ε1(X(n),Y(n))

∣∣∣1X1(Y1)
]

≤ E

[∣∣∣∣∣
n∑
i=2

(
∂
∂Xi

log f(Xi|Y1)− ∂
∂Xi

log f(Xi|X1)
)

(Yi −Xi)

∣∣∣∣∣1X1(Y1)

]
(B.2)

+
`2

2

(
n− 1

n

)
E
[∣∣∣∣( ∂

∂Xi
log f(Xi|Y1)

)2
−
(

∂
∂Xi

log f(Xi|X1)
)2∣∣∣∣1X1(Y1)

]
.

The summation in (B.2) is distributed according to a normal random variable with null mean850

and variance `2

n

∑n
i=2

(
∂
∂Xi

log f(Xi|Y1)− ∂
∂Xi

log f(Xi|X1)
)2

. Using Hölder’s inequality, the851

corresponding expectation is bounded by852 {
`2
(
n− 1

n

)
E
[(

∂
∂Xi

log f(Xi|Y1)− ∂
∂Xi

log f(Xi|X1)
)2
1X1(Y1)

]}1/2

. (B.3)

Since Y1 →a.s. x1, we use the Continuous Mapping Theorem to affirm that the integrand853

converges to 0 almost surely. By assumption, we know that E[( ∂
∂Xi

log f(Xi|X1))
4] < ∞.854

From the proof of Proposition C.1, we also know that E[( ∂
∂Xi

log f(Xi|Y1))41X1(Y1)] < ∞.855

We can thus use the Uniform Integrability Theorem to deduce that the expectation in (B.3)856

converges to 0 as n→∞. The exact same arguments may be used to conclude that the last857

term in (B.2) converges to 0 as n→∞.858

Lemma B.3. As n→∞ we have EX1:2

[∣∣∣Gnh(X2)−G(1)
n h(X2)

∣∣∣]→ 0, where Gnh(X2) and859

G
(1)
n h(X2) are in (A.3) and (A.5) respectively, with Y

(n)
x2 = (Y1, x2, Y3, . . . , Yn),860

g(x(n),Y(n)) = exp{ε(x(n),Y(n))} 1
{

exp{ε(x(n),Y(n))} < 1
}
, (B.4)

and861

ε(x(n),Y(n)) = log
f1(Y1)

f1(x1)
+ log

f(Y2|Y1)
f(x2|x1)

+
n∑
i=3

(log f(Yi|Y1)− log f(xi|x1)) . (B.5)

Proof. The acceptance rule in (A.3) may be written α(x(n),Y(n)) = 1 ∧ exp{ε(x(n),Y(n))},862

where the candidates are generated according to Y(n) ∼ N (x(n), `2In/n). We note that a863

candidate Y1 /∈ X1 is automatically rejected by the algorithm, and thus corresponds to an864

acceptance probability that is null. It thus not cause any problem to express the acceptance865

function as α(x(n),Y(n))1X1(Y1) wherever necessary.866

We first Taylor expand the acceptance function α(x(n),Y(n)) = 1 ∧ exp{ε(x(n),Y(n))} with867

respect to Y2 around x2. As argued in [16], this function is not everywhere differentiable.868

However, the points (x(n),y(n)) at which the derivatives do not exist have a Lebesgue measure869

that is either null or converging exponentially to 0 as n→∞; hence this shall not cause any870

concern when considering expectations of generators. (The latter may happen if f1 and f871

are constant over some interval of the state space, for instance, in which case we could have872
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P(π(Y(n)) = π(x(n))) > 0. The occurence of such values x(n) however has a probability873

converging exponentially rapidly to 0 as n→∞).874

The first-order derivative of α(x(n),Y(n)) with respect to Y2 is given by875

∂
∂Y2

α(x(n),Y(n)) = ∂
∂Y2

log f(Y2|Y1) g(x(n),Y(n)) ,

where the function g is as in (B.4); the second-order derivative is expressed as876

∂2

∂Y 2
2
α(x(n),Y(n)) =

{
∂2

∂Y 2
2

log f(Y2|Y1) +
(

∂
∂Y2

log f(Y2|Y1)
)2}

g(x(n),Y(n)).

The generator in (A.3) is thus developed as877

Gnh(X2) = nEY2 [h(Y2)− h(X2)]EX3:n,Y1,3:n

[
α(X(n),Y

(n)
X2

)1X1(Y1)
]

+ nEY2 [(h(Y2)− h(X2)) (Y2 −X2)]EX3:n,Y1,3:n

[
∂
∂Y2

α(X(n),Y(n))
∣∣∣
Y2=X2

1X1(Y1)

]
+ Rn(X1:2, U2), (B.6)

where878

Rn(X1:2, U2) =
n

2
EY2

[
(h(Y2)− h(X2)) (Y2 −X2)

2EX3:n,Y1,3:n

[
∂2

∂U2
2
α(X(n),Y

(n)
U2

)1X1(Y1)
]]
(B.7)

for some U2 ∈ (X2, Y2) or U2 ∈ (Y2, X2). This leads to879

EX1:2

[∣∣∣Gnh(X2)−G(1)
n h(X2)

∣∣∣] ≤ E [|Rn(X1:2, U2)|]

+ EX1:2

[∣∣∣nEY2 [h(Y2)− h(X2)]− `2

2 h
′′(X2)

∣∣∣EX3:n,Y1,3:n

[
α(X(n),Y

(n)
X2

)1X1(Y1)
]]

(B.8)

+ EX1:2

[∣∣∣∣nEY2 [(h(Y2)− h(X2)) (Y2 −X2)]EX3:n,Y1,3:n

[
∂
∂Y2

α(X(n),Y(n))
∣∣∣
Y2=X2

1X1(Y1)

]
−`2h′(X2)

∂
∂X2

log f(X2|X1)EX3:n,Y1,3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]∣∣∣] .

The remainder term in (B.7) converges to 0 in L1, as now detailed. By using a first-order880

Taylor expansion of h with respect to Y2 around x2 along with the fact that h ∈ C∞c , it follows881

that |h(Y2) − h(x2)| ≤ K1|Y2 − x2| for some K1 > 0. Furthermore, since ∂
∂x2

log f(x2|x1) is882

Lipschitz continuous on R for all fixed x1 ∈ X1, then | ∂2
∂x22

log f(x2|x1)| ≤ K(x1). Using the883

fact that the function g in (B.4) is bounded by 1, we then write884

E [|Rn(X1:2, U2)|] ≤
n

2
K1

23/2√
π

`3

n3/2
E[K(Y1)1X1(Y1)]

+
n

2
K1 E

[
|Y2 −X2|3

(
∂
∂U2

log f(U2|Y1)
)2
1X1(Y1)

]
.

Since | ∂∂U2
log f(U2|Y1)| ≤ | ∂∂x2 log f(x2|x1)|+L(x2)|Y1−x1|+K(Y1)|Y2−x2| and (a+b+c)2 ≤885

4(a2 + b2 + c2) for a, b, and c in R, then886

E [|Rn(X1:2, U2)|] ≤
√

2

π
K1

`3

n1/2

{
E[K(Y1)1X1(Y1)] + 4E

[(
∂

∂X2
log f(X2|X1)

)2]}
+

√
2

π
4K1

`5

n3/2
E[L2(X2)] +

√
32

π
4K1

`5

n3/2
E[K2(Y1)1X1(Y1)] .
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As argued in the proof of Lemma B.1, E[K2(Y1)1X1(Y1)] <∞; furthermore, the other expec-887

tations on the right are finite by assumption. The three terms on the right thus are O(n−1/2),888

O(n−3/2), and O(n−3/2), which implies that E [|Rn(X1:2, U2)|]→ 0 as n→∞.889

We now turn to the second term on the RHS of (B.8); since the acceptance function takes890

values in [0, 1], this term is bounded by891

EX2

[∣∣∣∣nEY2 [h(Y2)− h(X2)]−
`2

2
h′′(X2)

∣∣∣∣] ≤ n

6
EX2

[∣∣EY2 [h′′′(U2)(Y2 −X2)
3
]∣∣]

for some U2 ∈ (X2, Y2) or U2 ∈ (Y2, X2). The term on the right arises from a third-order Tay-892

lor expansion of h with respect to Y2 around X2, along with the fact that Y2 ∼ N (X2, `
2/n).893

Since |h′′′| is bounded by a constant, the previous expression is bounded by K2`
3/
√
n for894

some K2 > 0, which converges to 0 as n→∞.895

In a similar fashion, by Taylor expanding h to second order and using the fact that the896

functions |h′′| and g are bounded by K3 > 0 and 1 respectively, the third term on the RHS897

of (B.8) satisfies898

EX1:2

[∣∣∣nEX3:n,Y1:n

[
(h(Y2)− h(X2)) (Y2 −X2)

∂
∂X2

log f(X2|Y1)g(X(n),Y
(n)
X2

)1X1(Y1)
]

−`2h′(X2)
∂

∂X2
log f(X2|X1)EX3:n,Y1,3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]∣∣∣]

≤ `2E
[
|h′(X2)|

∣∣∣ ∂
∂X2

log f(X2|Y1)− ∂
∂X2

log f(X2|X1)
∣∣∣1X1(Y1)

]
+

1√
2π
K3

`3

n1/2
E
[∣∣∣ ∂
∂X2

log f(X2|Y1)
∣∣∣1X1(Y1)

]
.

From the Lipschitz continuity of ∂
∂x2

log f(x2|x1) and the fact that h′ is bounded in absolute899

value, the first term on the right of the inequality is bounded by `2K4E[L(X2)|Y1 −X1|] ≤900

`3
√

2K4E[L(X2)]/
√
πn for some K4 > 0; it is thus O(n−1/2). The second term also is901

O(n−1/2) since E
[
| ∂
∂X2

log f(X2|Y1)|1X1(Y1)
]
<∞ (from the proof of Proposition C.1).902

903

Lemma B.4. As n→∞, we have904

EX1:n,Y1,3:n

[∣∣∣α(X(n),Y
(n)
X2

)− α̂(X(n),Y
(n)
X2

)
∣∣∣1X1(Y1)

]
→ 0 ,

where α(x(n),Y(n)) = 1 ∧ exp{ε(x(n),Y(n))} with ε as in (B.5) and α̂(x(n),Y(n)) = 1 ∧905

exp{ε̂(x(n),Y(n))} with906

ε̂(x(n),Y(n)) = log
f1(Y1)

f1(x1)
+ log

f(Y2|Y1)
f(x2|x1)

+
n∑
i=3

∂
∂x1

log f(xi|x1)(Y1 − x1) (B.9)

+
1

2

n∑
i=3

∂2

∂x21
log f(xi|x1)(Y1 − x1)2 +

n∑
i=3

∂
∂xi

log f(xi|x1)(Yi − xi)−
`2

2n

n∑
i=3

(
∂
∂xi

log f(xi|x1)
)2

.

30



Proof. The function ε in (B.5) is reexpressed as907

ε(x(n),Y(n)) = log
f1(Y1)

f1(x1)
+ log

f(Y2|Y1)
f(x2|x1)

+
n∑
i=3

(log f(Yi|Y1)− log f(Yi|x1))

+
n∑
i=3

(log f(Yi|x1)− log f(xi|x1)) .

Using second-order Taylor expansions with respect to Yi around xi (i = 3, . . . , n) to reexpress908

the last two terms on the right hand side leads to909

ε(x(n),Y(n)) = log
f1(Y1)

f1(x1)
+ log

f(Y2|Y1)
f(x2|x1)

+

n∑
i=3

(log f(xi|Y1)− log f(xi|x1))

+

n∑
i=3

(
∂
∂xi

log f(xi|Y1)− ∂
∂xi

log f(xi|x1)
)

(Yi − xi)

+
1

2

n∑
i=3

(
∂2

∂U2
i

log f(Ui|Y1)− ∂2

∂U2
i

log f(Ui|x1)
)

(Yi − xi)2

+
n∑
i=3

∂
∂xi

log f(xi|x1)(Yi − xi) +
1

2

n∑
i=3

∂2

∂x2i
log f(xi|x1)(Yi − xi)2

+
1

2

n∑
i=3

(
∂2

∂V 2
i

log f(Vi|x1)− ∂2

∂x2i
log f(xi|x1)

)
(Yi − xi)2

for some Ui, Vi ∈ (xi, Yi) or Ui, Vi ∈ (Yi, xi). Furthermore, by Taylor expanding the third910

term of the previous expression to second order (with respect to Y1 around x1) we obtain911

n∑
i=3

(log f(xi|Y1)− log f(xi|x1))

=

n∑
i=3

∂
∂x1

log f(xi|x1)(Y1 − x1) +
1

2

n∑
i=3

∂2

∂x21
log f(xi|x1)(Y1 − x1)2

+
1

2

n∑
i=3

(
∂2

∂U2
1

log f(xi|U1)− ∂2

∂x21
log f(xi|x1)

)
(Y1 − x1)2

for some U1 ∈ (x1, Y1) or U1 ∈ (Y1, x1).912
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Using the Lispchitz property of 1 ∧ exp{·} yields913

E
[∣∣∣1 ∧ exp{ε(X(n),Y

(n)
X2

)} − 1 ∧ exp{ε̂(X(n),Y
(n)
X2

)}
∣∣∣1X1(Y1)

]
≤ 1

2
E

[∣∣∣∣∣
n∑
i=3

(
∂2

∂U2
1

log f(Xi|U1)− ∂2

∂X2
1

log f(Xi|X1)
)

(Y1 −X1)
2
1X1(Y1)

∣∣∣∣∣
]

+E

[∣∣∣∣∣
n∑
i=3

(
∂
∂Xi

log f(Xi|Y1)− ∂
∂Xi

log f(Xi|X1)
)

(Yi −Xi)1X1(Y1)

∣∣∣∣∣
]

+
1

2
E

[∣∣∣∣∣
n∑
i=3

(
∂2

∂U2
i

log f(Ui|Y1)− ∂2

∂U2
i

log f(Ui|X1)
)

(Yi −Xi)
2
1X1(Y1)

∣∣∣∣∣
]

+E

[∣∣∣∣∣12
n∑
i=3

∂2

∂X2
i

log f(Xi|X1)(Yi −Xi)
2 +

`2

2n

n∑
i=3

(
∂
∂Xi

log f(Xi|X1)
)2∣∣∣∣∣
]

+
1

2
E

[∣∣∣∣∣
n∑
i=3

(
∂2

∂V 2
i

log f(Vi|X1)− ∂2

∂X2
i

log f(Xi|X1)
)

(Yi −Xi)
2

∣∣∣∣∣
]
. (B.10)

It remains to show that each term on the right hand side converges to 0 as n→∞. We look914

at the first term of (B.10). Using the triangle’s inequality and the fact that (Y1 − X1) ∼915

N (0, `2/n), we have916

1

2
E

[∣∣∣∣∣
n∑
i=3

(
∂2

∂U2
1

log f(Xi|U1)− ∂2

∂X2
1

log f(Xi|X1)
)

(Y1 −X1)
2
1X1(Y1)

∣∣∣∣∣
]

≤ `2

2

(
n− 2

n

)
E
[∣∣∣ ∂2∂U2

1
log f(X3|U1)− ∂2

∂X2
1

log f(X3|X1)
∣∣∣Z2

11X1(Y1)
]
,

where Z1 =
√
n(Y1 − x1)/` ∼ N (0, 1). Since |U1 − X1| ≤ |Y1 − X1| and Y1 ∈ X1, then917

U1 ∈ X1; in addition, Y1 →a.s. X1 implies that U1 →a.s. X1. By the Continuous Mapping918

Theorem, | ∂2
∂U2

1
log f(X3|U1)− ∂2

∂X2
1

log f(X3|X1)|1X1(Y1)→a.s. 0. Since this term is bounded919

by 2M(X3) ≥ 0 and that 2E[M(X3)Z
2
1 ] = 2E[M(X3)] < ∞, the Dominated Convergence920

Theorem can be used to conclude that the first term on the right of (B.10) converges to 0 as921

n→∞.922

We now consider the second term. Given x1, Y1 ∈ X1 and xi ∈ R (i = 3, . . . , n),923

n∑
i=3

(
∂
∂xi

log f(xi|Y1)− ∂
∂xi

log f(xi|x1)
)

(Yi − xi)

∼ N

(
0,
`2

n

n∑
i=3

(
∂
∂xi

log f(xi|Y1)− ∂
∂xi

log f(xi|x1)
)2)

.

Computing the expectation of the half-normal distribution, applying Jensen’s inequality (for924
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the square root function, which is concave), and then the triangle inequality lead to925

EX1,3:n,Y1,3:n

[∣∣∣∣∣
n∑
i=3

(
∂
∂Xi

log f(Xi|Y1)− ∂
∂Xi

log f(Xi|X1)
)

(Yi −Xi)1X1(Y1)

∣∣∣∣∣
]

≤

√
2`2

π

(
n− 2

n

)(
EX1,3,Y1

[(
∂

∂X3
log f(X3|Y1)− ∂

∂X3
log f(X3|X1)

)2
1X1(Y1)

])1/2

.

Since Y1 →a.s. X1, then
(
∂
∂X log f(X|Y1)− ∂

∂X log f(X|X1)
)2 →a.s. 0 by the Continuous926

Mapping Theorem. Furthermore, we know that927

E
[(

∂
∂X log f(X|Y1)− ∂

∂X log f(X|X1)
)4
1X1(Y1)

]
≤ E

[
L4(X)(Y1 − x1)4

]
= 3

`4

n2
E
[
L4(X)

]
<∞ ;

the Uniform Integrability Theorem can then be used to conclude that the second term on928

the right hand side of (B.10) converges to 0 as n→∞.929

Using the triangle’s inequality and the fact that (Yi − Xi) ∼ N (0, `2/n) (i = 3, . . . , n), the930

third term on the right hand side of (B.10) is bounded by931

`2

2

(
n− 2

n

)
E
[∣∣∣ ∂2∂U2

3
log f(U3|Y1)− ∂2

∂U2
3

log f(U3|X1)
∣∣∣Z2

31X1(Y1)
]
,

where Z3 =
√
n(Y3−X3)/` ∼ N (0, 1). Given that Y1 →a.s. X1, the Continuous Mapping The-932

orem implies that
∣∣∣ ∂2∂U2

3
log f(U3|Y1)− ∂2

∂U2
3

log f(U3|X1)
∣∣∣→a.s. 0 as n→∞. We again invoke933

the Uniform Integrability Theorem to conclude that the third term on the right converges to934

0 as n→∞, since935

E
[(

∂2

∂U2
3

log f(U3|Y1)− ∂2

∂U2
3

log f(U3|X1)
)2
Z4
31X1(Y1)

]
≤ 6E

[
K2(Y1)1X1(Y1)

]
+ 6E

[
K2(X1)

]
<∞ .

Replacing Y1 by X1 in the proof of Proposition C.1, the fourth term on the right of (B.10) is936

easily seen to converge towards 0 as n→∞. Finally, the last term is bounded by937

`2

2

(
n− 2

n

)
E
[∣∣∣ ∂2∂V 2

3
log f(V3|X1)− ∂2

∂X2
3

log f(X3|X1)
∣∣∣Z2

3

]
,

with Z3 =
√
n(Y3−X3)/`. Given that Y3 →a.s. X3 and |V3−X3| ≤ |Y3−X3|, we have V3 →a.s.938

X3 and the Continuous Mapping Theorem implies that the integrand converges to 0 almost939

surely. Furthermore, the integrand is bounded by 2K(X1)Z
2
3 and since 2E[K(X1)Z

2
3 ] =940

2E[K(X1)] <∞, the Dominated Convergence Theorem is used to conclude the proof.941

942

Lemma B.5. As n→∞, we have943

EX1:2

[∣∣∣`2EX3:n,Y1,3:n

[
α̂(X(n),Y

(n)
X2

)1X1(Y1)
]
− υ(`,X1)

∣∣∣]→ 0 ,

where α̂(x(n),Y(n)) = 1∧ exp{ε̂(x(n),Y(n))} with the function ε̂ as in (B.9) and the function944

υ as in (6).945
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Proof. We have from the triangle inequality946

EX1:2

[∣∣∣`2EX3:n,Y1,3:n

[
α̂(X(n),Y

(n)
X2

)1X1(Y1)
]
− υ(`,X1)

∣∣∣] ≤
`2EX1:2,Z1

[∣∣∣∣EX3:n,Y3:n

[
1 ∧ exp{ε̂(X(n),Y

(n)
X2

)}1X1 (Y1)
]
− 2Φ

(
− `

2
γ1/2(X1, Z1)

)∣∣∣∣] ,

where Z1 =
√
n(Y1 − x1)/` ∼ N (0, 1). From the boundedness of the absolute value in the947

above expression, it is sufficient to show that, conditionally on x1 ∈ X1, x2, Z1 ∈ R,948 ∣∣∣∣EX3:n,Y3:n

[
1 ∧ exp{ε̂(X(n),Y

(n)
X2

)}1X1 (Y1)
]
− 2Φ

(
− `

2
γ1/2(X1, Z1)

)∣∣∣∣→ 0 as n→∞ .

The function ε̂ being evaluated at Y2 = x2, it is reexpressed as949

ε̂(x(n), (x1 + √̀
n
Z1, x2,Y3:n)) = log

f1(x1 + √̀
n
Z1)

f1(x1)
+ log

f(x2|x1 + √̀
n
Z1)

f(x2|x1)
(B.11)

+
`√
n

n∑
i=3

∂
∂x1

log f(xi|x1)Z1 +
`2

2n

n∑
i=3

∂2

∂x21
log f(xi|x1)Z2

1

+
n∑
i=3

∂
∂xi

log f(xi|x1)(Yi − xi)−
`2

2n

n∑
i=3

(
∂
∂xi

log f(xi|x1)
)2

.

In the sequel, we thus condition on x1 ∈ X1, x2, Z1 ∈ R, and study the convergence of950

every term in (B.11) as n → ∞. Given any x1 ∈ X1 and Z1 ∈ R, ∃n∗ ≥ 1 such that951

x1 + √̀
n
Z1 ∈ X1 for all n ≥ n∗; it therefore follows from the continuity of functions that952

log{f1(Y1)/f1(x1)} → 0 and log{f(x2|Y1)/f(x2|x1)} → 0 for any given x2 ∈ R. We now show953

that conditionally on x1, Z1, the remaining terms are asymptotically distributed according954

to a normal random variable.955

Given any x1 ∈ X1, Z1 ∈ R, applying the Central Limit Theorem to the third term of (B.11)956

yields957

`√
n
Z1

n∑
i=3

∂
∂x1

log f(Xi|x1)→d N
(

0, `2Z2
1 EX

[(
∂
∂x1

log f(X|x1)
)2])

.

This follows from the regularity assumptions in Section 2, which imply that ∂
∂x1

f(x|x1) is958

locally integrable and thus that we can differentiate outside of the integral sign to obtain959

EX
[
∂
∂x1

log f(X|x1)
]

= d
dx1

∫
R
f(x|x1) dx = 0.

To study the fourth term, we condition on x1 ∈ X1, Z1 ∈ R and use the SLLN to get960

`2

2n
Z2
1

n∑
i=3

∂2

∂x21
log f(Xi|x1) →a.s.

`2

2
Z2
1 EX

[
∂2

∂x21
log f(X|x1)

]
.

Again from the regularity assumptions, ∂2

∂x21
f(x|x1) is locally integrable and thus the following961

identity holds :962

EX
[
∂2

∂x21
log f(X|x1)

]
+ EX

[(
∂
∂x1

log f(X|x1)
)2]

= d2

dx21

∫
R
f(x|x1) dx = 0 ;
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therefore, EX
[
∂2

∂x21
log f(X|x1)

]
= −EX

[(
∂
∂x1

log f(X|x1)
)2]

for all x1 ∈ X1.963

Combining the previous developments and making use of Slutsky’s Theorem allows us to964

conclude that given any x1 ∈ X1, Z1 ∈ R,965

`√
n
Z1

n∑
i=3

∂
∂x1

log f(Xi|x1) +
`2

2n
Z2
1

n∑
i=3

∂2

∂x21
log f(Xi|x1)

→d N
(
−`

2

2
Z2
1EX

[(
∂
∂x1

log f(X|x1)
)2]

, `2Z2
1EX

[(
∂
∂x1

log f(X|x1)
)2])

.

Now, given any x1 ∈ X1, the last two terms on the right of (B.11) satisfy966

`√
n

n∑
i=3

∂
∂Xi

log f(Xi|x1)Zi −
`2

2n

n∑
i=3

(
∂
∂Xi

log f(Xi|x1)
)2
,

→p N
(
−`

2

2
EX
[(

∂
∂X log f(X|x1)

)2]
, `2EX

[(
∂
∂X log f(X|x1)

)2])
;

this follows from the WLLN and the fact that Zi ∼ N (0, 1) independently for i = 3, . . . , n.967

Given x1 ∈ X1, Z1 ∈ R, the two normal random variables just introduced are asymptotically968

independent (this is easily seen from the fact that
√
n(Y3:n − x3:n)/`2 is independent of x3:n969

∀n ≥ 3). We therefore conclude that given any X1 ∈ X1 and Z1 ∈ R, ε̂(X(n),Y
(n)
X2

) →d970

η(X1, Z1), where η(x1, Z1) ∼ N
(
−`2γ(x1, Z1)/2, `

2γ(x1, Z1)
)
, with971

γ(x1, Z1) = Z2
1 EX

[(
∂
∂x1

log f(X|x1)
)2]

+ EX
[(

∂
∂X log f(X|x1)

)2]
.

It easily follows from the fact that 1X1(x1 + √̀
n
Z1)→ 1 given any x1 ∈ X1, Z1 ∈ R, Slutsky’s972

Theorem, and the Continuous Mapping Theorem, that 1 ∧ exp{ε̂(X(n),Y
(n)
X2

)}1X1 (Y1) →d973

1 ∧ exp{η(X1, Z1)}. From Proposition 2.4 in [17], we know that given x1, Z1,974

Eη[1 ∧ exp{η(x1, Z1)}] = 2Φ

(
− `

2
γ1/2(x1, Z1)

)
.

From the convergence in distribution and the boundedness (and thus uniform integrability) of975

the random variables, the means are known to converge, i.e. given any x1 ∈ X1 and x2, Z1 ∈ R976 ∣∣∣∣EX3:n,Y3:n

[
1 ∧ exp{ε̂(X(n),Y

(n)
X2

)}1X1 (Y1)
]
− 2Φ

(
− `

2
γ1/2(X1, Z1)

)∣∣∣∣→ 0 ,

which concludes the proof.977

978

Lemma B.6. As n→∞, we have979

EX1:2

[
| ∂
∂X2

log f(X2|X1)|
∣∣∣∣`2EX3:n,Y1,3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]
− 1

2
υ(`,X1)

∣∣∣∣]→ 0 ,

where the function g is as in (B.4).980
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Proof. Making use of the triangle inequality, we may bound the expectation in the statement981

of the lemma by982

`2EX1:2,Z1

[
| ∂
∂X2

log f(X2|X1)|
∣∣∣∣EX3:n,Y3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]
− Φ

(
− `

2
γ1/2(X1, Z1)

)∣∣∣∣] ,

which is itself bounded by 2E
[
| ∂
∂X2

log f(X2|X1)|
]
< ∞ since each term in the difference is983

bounded by 1 in absolute value. We can thus use the Dominated Convergence Theorem to984

bring the limit inside the first expectation. To conclude the proof, all is left to do is to verify985

that given any X1 ∈ X1, X2, Z1 ∈ R,986 ∣∣∣∣EX3:n,Y3:n

[
g(X(n),Y

(n)
X2

)1X1(Y1)
]
− Φ

(
− `

2
γ1/2(X1, Z1)

)∣∣∣∣→ 0 ,

where Z1 =
√
n(Y1 −X1)/`.987

In the proof of Lemma B.4 we have verified, among other things, that E[|ε(X(n),Y
(n)
X2

) −988

ε̂(X(n),Y
(n)
X2

)|1X1(Y1)]→ 0 as n→∞. This L1-convergence thus entails that |ε(X(n),Y
(n)
X2

)−989

ε̂(X(n),Y
(n)
X2

)|1X1(Y1) →p 0. From the proof of Lemma B.5 we know that given any X1 ∈990

X1 and X2, Z1 ∈ R, ε̂(X(n),Y
(n)
X2

)1X1(Y1) →d η(X1, Z1). Using Slutsky’s Theorem, these991

convergences imply that, conditionally on X1 ∈ X1 and X2, Z1 ∈ R, ε(X(n),Y
(n)
X2

)1X1(Y1)→d992

η(X1, Z1).993

From the Continuous Mapping Theorem, we deduce that given any X1 ∈ X1, Z1 ∈ R,994

g(X(n),Y
(n)
X2

)1X1(Y1)→d exp{η(X1, Z1)} 1 {exp{η(X1, Z1)} < 1} .

The function under study is obviously not continuous; however, the discontinuities of the995

function on the right have null Lebesgue measure and thus the Continuous Mapping Theorem996

is applicable as stated in [8] (Theorem 5.1 and its corollaries).997

By examining the proof of Proposition 2.4 in [17] we obtain, conditionally on X1 ∈ X1,998

Z1 ∈ R,999

Eη [exp{η(X1, Z1)} 1 {exp{η(X1, Z1)} < 1}] = Φ

(
− `

2
γ1/2(X1, Z1)

)
.

From the convergence in distribution and the fact that the random variables under consid-1000

eration are bounded (and thus uniformly integrable), the means are known to converge; this1001

concludes the proof of the lemma.1002

C. Appendix1003

Proposition C.1. Define1004

W (X(n),Y(n)) =
1

2

n∑
i=2

∂2

∂X2
i

log f(Xi|Y1)(Yi −Xi)
2 +

`2

2n

n∑
i=2

(
∂
∂Xi

log f(Xi|Y1)
)2

;

then, E[|W (X(n),Y(n))|1X1(Y1)]→ 0 as n→∞.1005
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Proof. By Jensen’s inequality, E[|W |] ≤
√
E[W 2]. Developing the square and taking the1006

expectation with respect to Y2:n yield1007

EY2:n

[
W 2(X(n),Y(n))

]
=

`4

2n2

n∑
i=2

(
∂2

∂X2
i

log f(Xi|Y1)
)2

+
`4

4n2

{
n∑
i=2

(
∂2

∂X2
i

log f(Xi|Y1) +
(

∂
∂Xi

log f(Xi|Y1)
)2)}2

,

which implies1008

EY2:n

[
|W (X(n),Y(n))|

]
≤ `2√

2n

(
1

n

n∑
i=2

(
∂2

∂X2
i

log f(Xi|Y1)
)2)1/2

+
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2

∣∣∣∣∣ 1n
n∑
i=2

(
∂2

∂X2
i

log f(Xi|Y1) +
(

∂
∂Xi

log f(Xi|Y1)
)2)∣∣∣∣∣ .

Reapplying Jensen’s inequality on the first term and developing the second term lead to1009

E[|W (X(n),Y(n))|1X1(Y1)] ≤
`2√
2n

{
E
[(

∂2

∂X2 log f(X|Y1)
)2
1X1(Y1)

]}1/2

+
`2

2
E

[∣∣∣∣∣ 1n
n∑
i=2

(
∂2

∂X2
i

log f(Xi|X1) +
(

∂
∂Xi

log f(Xi|X1)
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]

+
`2

2

(
n− 1

n

)
E
[∣∣∣ ∂2∂X2

i
log f(Xi|Y1)− ∂2

∂X2
i

log f(Xi|X1)
∣∣∣1X1(Y1)

]
+
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2

(
n− 1
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E
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∂Xi
log f(Xi|Y1)

)2
−
(

∂
∂Xi

log f(Xi|X1)
)2∣∣∣∣1X1(Y1)

]
.

The first term on the right is bounded by `2
{
E
[
K2(Y1)1X1(Y1)

]
/(2n)

}1/2
, which converges1010

to 0 as n → ∞ from the argument at the end of the proof of Lemma B.1. From Lemma 121011

in [2], we know that ∂
∂x log f(x|x1) → 0 as x → ±∞, ∀x1 ∈ X1; hence, given x1, we have1012

EX [ ∂2

∂X2 log f(X|x1) +
(
∂
∂X log f(X|x1)

)2
] =

∫
∂2

∂x2
f(x|x1)dx = 0 and by the WLLN,1013 ∣∣∣∣∣ 1n

n∑
i=2

(
∂2

∂X2
i

log f(Xi|X1) +
(

∂
∂Xi

log f(Xi|X1)
)2)∣∣∣∣∣→p 0 .

To invoke the Uniform Integrability Theorem for the second term, we use the finiteness of1014

E[( ∂2

∂X2 log f(X|X1))
2] ≤ E[K2(X1)] and E[( ∂

∂X log f(X|X1))
4].1015

From Y1 →a.s. x1 and the Continuous Mapping Theorem, the integrands of the last two1016

terms are seen to converge to 0 almost surely. Since E[K2(Y1)1X1(Y1)] < ∞ (Section A.2)1017

and E[K2(X1)] <∞, the third term converges to 0 using the Uniform Integrability Theorem.1018

We come to the same conclusion for the fourth term, using E[( ∂
∂X log f(X|X1))

4] <∞ and1019

E
[(

∂
∂X log f(X|Y1)

)4
1X1(Y1)

]
≤ 8E

[(
∂
∂X log f(X|Y1)− ∂

∂X log f(X|X1)
)4
1X1(Y1)

]
+8E

[(
∂
∂X log f(X|X1)

)4]
≤ 24

`4

n2
E
[
L4(X)

]
+ 8E

[(
∂
∂X log f(X|X1)

)4]
<∞ .
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