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Abstract

The Heston model is appealing as it possesses a stochastic volatility term as well as semi-
closed formulas for pricing European options. Unfortunately, few simulation schemes for this
model can handle the violation of the Feller Condition.

An algorithm based on the exact scheme of Broadie and Kaya to simulate price paths under
the Heston model is introduced. In order to increase the speed of their exact method, we use
a gamma approximation. According to Stewart et al., it is possible to approximate a complex
gamma convolution (similar to the representation given by Glasserman and Kim) by a simple
moment-matched gamma distribution.

We also perform a review of popular simulation schemes for the Heston model and vali-
date our approach through a simulation study. The gamma approximation scheme appears to
yield small biases on European and Asian option prices when compared to the most popular
schemes.

Keywords: Stochastic volatility, Heston model, Simulation schemes, Gamma expansion,
Asian options.

1 Introduction

Financial stocks are often modelled by stochastic differential equations (SDEs). These equa-
tions describe the behaviour of the underlying asset and also of certain model parameters. Nowa-
days, the models retaining our attention have stochastic volatility. They are known to allow for a

∗The authors acknowledge the financial support from the National Science and Engineering Research Council of
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better calibration to market data; they also efficiently capture the smile of the volatility observed
in financial securities.

Until recently, the Black-Scholes-Merton (BSM) model [5, 23] was widely used. For most
contingent claims, semi-closed formulas exist for this model, which makes it very attractive from
a practical point of view. However, the BSM model includes very coarse assumptions such as
a constant volatility and a deterministic asset growth rate. These shortfalls, combined to several
financial crashes and the introduction of complex products, have forced financial analysts to de-
velop new models. Heston [16] proposes a model based on the square root process with mean
reversion to express variance. This model became very popular among practitioners as it admits
semi-closed formulas for pricing European call options. Moreover, the variance process (square
root process) is widely applied in finance due to the availability of several analytic results about
this SDE; for instance, see the short rate model of Cox, Ingersoll and Ross [8].

Although there exists formulas for pricing European call options under the Heston model, there
does not exist such expressions for complex products involving path dependency. To price such
products, we thus rely on Monte Carlo simulation techniques. Despite the fact that the Heston
model is nearly twenty years old, efficient simulation procedures have interested only a handful of
individuals.

Generally, the scheme named after Leonhard Euler and Gisiro Maruyama and the one in-
troduced by Milstein [25] are the most efficient. They are also the easiest to implement: these
methods can be used with virtually any SDE. However, under the Heston model, these techniques
do not work very well when the time steps are long or when the Feller Condition is not satisfied.

In an attempt to overcome these drawbacks, several researchers have modified these methods
for use with the Heston model. Lord, Koekkoek and van Dijk [21] consider a large number of
fixes for the Euler-Maruyama method. The most convincing, called full truncation, is designed
to minimize the bias on European call option prices. Kahl and Jäckel [19] suggest discretizing
the variance process {V(t) : t ≥ 0} using an implicit Milstein scheme, coupled with their own
discretization method for the asset process. Unfortunately, according to Andersen [2], this scheme
is significantly biased when the Feller Condition is violated.

On a different note, Broadie and Kaya [7] introduce a method said exact to simulate from the
Heston model. Essentially, by obtaining a value for the variance V(t) at some specific time t,
one can then use Fourier inversion techniques to generate the conditional integrated variance over
time given the bounds of the integral. In their paper, they derive a closed-form expression for the
characteristic function of this integral, which renders its simulation possible; subsequently, one can
easily recover the price. This method, though elegant, have serious limitations: the computational
effort required for implementing this algorithm makes it practically unusable (see van Haastrecht
and Pelsser [31]). Nonetheless, the theory of [7] generated enthusiasm and several researchers
used this idea to develop their own technique.
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Among these, Smith [28] proposes an almost exact algorithm by substituting the arithmetic and
geometric averages in the characteristic function by a weighted average of these two quantities.
This results in a characteristic function depending on two variables instead of three. For fixed
values of these two variables, corresponding values of the characteristic function are then cached
in order to accelerate the simulation algorithm. However, this modification barely accelerates the
exact method of Broadie and Kaya [7]: Smith’s scheme is about 70 times slower than the best
methods, according to van Haastrecht and Pelsser [31].

Glasserman and Kim [15] find that the integrated variance over time, available given the
bounds of the integral, can be explicitly represented by a sum of infinite mixtures of gamma
random variables. This random variable can be easily generated by truncating the infinite series.
Consequently, the longest step of Broadie and Kaya’s [7] method becomes much faster.

Andersen [2] takes a similar avenue; he presents an approach aiming at efficiently approximat-
ing the variance using moment-matching methods. The idea behind his scheme, called quadratic
exponential (QE hereafter), is to match the moments of a Gaussian density where the probability
under zero is assigned to a Dirac delta function at the origin. This reproduces the asymptotic be-
haviour of the variance process for large values of V(t). For smaller values of V(t), an alternative
density based on an exponential and a Dirac delta function is preferred. This algorithm is consid-
ered by many, including Tse and Wan [30], as one of the best algorithms for simulating from the
Heston model.

Instead of working with the variance SDE, Zhu [32] works with the root of the variance SDE,
also called the volatility process. Using some approximations for the new parameters of the pro-
cess along with the Euler-Maruyama discretization, he shows that it is possible to obtain an algo-
rithm that gives very similar results to Andersen [2]. However, this scheme does not work well
when the Feller Condition is violated.

Finally, Tse and Wan [30] consider a biased approximation based on the inverse Gaussian
distribution. They show that the integrated variance of the Heston model converges to an inverse
Gaussian when the time step goes to infinity. Using this result, the authors develop an algorithm
that uses an efficient approximation of the inverse Gaussian to simulate from the Heston model.

The scheme introduced in this paper relies on the basics of Broadie and Kaya; in order to speed
up the latter scheme, we use a gamma distribution to approximate the integrated variance over
time. By caching the moments of the real integrated variance over time, we manage to efficiently
approximate this random variable. The contribution of this paper is two-fold: we first propose a
sampling algorithm for the Heston model, and then we compare our method to other schemes used
in practice. The simulation studies are based on realistic and challenging parameters (similar to
those observed in market data). Our applications focus on implied model parameters that can be
considered quite extreme.
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The ability to generate observations for the integrated variance over time is crucial when pric-
ing path-dependent securities. The gamma approximation algorithm introduced in this paper al-
lows us to price any kind of path-dependent derivative. The simulation of the integrated variance
over time is also useful in other contexts. One might be interested, for instance, in computing the
greeks for some derivatives. These quantities need to be computed through simulations, and the
integrated variance over time is a quantity that is recurrently needed in such calculations. Hence,
the proposed sampling scheme could be used to accelerate the valuation of greeks. The implemen-
tation of the conditional expectation method (see [17] for an example and [6] for an application to
the greeks under the Heston framework) often requires generating observations from the distribu-
tion of the integrated variance over time, and so constitutes another example of the applicability
of the proposed algorithm.

This paper is organized as follows: in Section 2, we present the Heston dynamics and we
describe important results about the processes involved. Section 3 is devoted to a complete analysis
of popular simulation schemes for the Heston model. In Section 4, we introduce a new sampling
scheme based on a gamma approximation. Section 5 compares our approach with those mentioned
earlier. Section 6 concludes.

2 Heston Framework

The Heston dynamics are presented; the moments, characteristic function, and probability
distribution of the integrated variance over time are then introduced.

2.1 Heston dynamics

The Heston model is defined, under the risk-neutral probability measure, by two coupled
SDEs: one for the asset price and another for the variance. Let S = {S (t); t ≥ 0} be the asset
price process and V = {V(t); t ≥ 0} the variance process.

Proposition 1 (Heston model). Under the risk-neutral probability measure Q, the Heston model

is given by 
dS (t) = rS (t)dt +

√
V(t)S (t)dWS (t) (1)

dV(t) = κ (θ − V(t)) dt + σ
√

V(t)dWV(t) (2)

S (0) and V(0) are deterministic initial conditions of the SDEs

where

- r is the risk-free rate,
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- κ is the speed of the mean-reversion,

- θ is the average level of the variance process V,

- σ is the volatility of the variance process V,

- WS (t) and WV(t) are the time-t values of two Brownian motions and

- ρ is the correlation coefficient between the Brownian motions.

We refer the reader to Moodley [26] for a derivation of the model under the risk-neutral mea-
sure. From a computational viewpoint, it is generally convenient to apply a transformation to
the asset price process S , which is similar to a geometric Brownian motion. To this end, let
X = log(S ); applying Itô’s Lemma to (1) and (2) leads to the following SDEs.

Proposition 2 (Heston model, log returns dynamics). Under the risk-neutral probability measure

Q, the Heston model is given by
dX(t) =

(
r −

1
2

V(t)
)

dt +
√

V(t)dWX(t) (3)

dV(t) = κ (θ − V(t)) dt + σ
√

V(t)dWV(t) (4)

X(0) and V(0) are deterministic initial conditions of the SDEs

where X(t) = log(S (t)), WX(t) = WS (t), and the parameters are as in Definition 1.

Proof. See [2]. �

The performance of simulation schemes sometimes depends on the satisfaction of a specific
condition, known as the Feller Condition [11], for the square root process.

Proposition 3 (Feller Condition). Assume that V(0) > 0. If 2κθ ≥ σ2, then the variance process

V cannot reach zero.

A proof of this proposition can be found in [2]. Note that when the Feller Condition is violated
(i.e. 2κθ < σ2) then the origin is accessible and strongly reflecting; in such cases, the likelihood
of hitting zero is often quite significant. In Figure 1, the cumulative distribution functions (cdf) of
V(T ) given V(t) for two different sets of parameters illustrate the Feller Condition. One can easily
see that the cumulative distribution function is non-zero near the origin if the Feller Condition is
violated (dashed line); this is however not the case when the condition is satisfied (solid line).

2.2 Analysis of the variance dynamics

The mean-reverting square root process V is identical to the process used by Cox et al. [8] to
model short interest rates. Mean-reversion is a realistic (and thus desired) property for a variance
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Figure 1: Plot of FQV(T ) (z|V(t)) against z for two specific cases : one where the Feller Condition is
satisfied (solid line) and another where it is violated (dashed line).

process: broadly speaking, it means that, over time, the process tends to move to its long run
average. This process is well-documented and several related analytical results are available; we
refer the reader to [3], [8] and [10] for more details on the mathematical aspects of this SDE. We
now list two important results, which are proven in [2].

Proposition 4 (Cumulative distribution function of V(T ) given V(t)). Let Fχ2(z; ν, λ) be the cdf of

the non-central chi-square distribution with non-centrality parameter λ and ν degrees of freedom,

Fχ2(z; ν, λ) = e−
λ
2

∞∑
j=0

(
λ
2

) j

j!2
ν
2 + jΓ

(
ν
2 + j

) ∫ z

0
x
ν
2 + j−1e−

x
2 dx. (5)

Let

d =
4κθ
σ2 (6)

and

n(t,T ) =
4κe−κ(T−t)

σ2 (
1 − e−κ(T−t)) , T > t,

where κ, θ and σ are as in Proposition 1. Conditional on V(t), the cdf of V(T ) is

FQV(T )(z|V(t)) = Fχ2

(
zn(t,T )
e−κ(T−t) ; d,V(t)n(t,T )

)
.

Closed-form solutions are available for the moments of the non-central chi-square distribution;
expressions for the expectation and variance of V(T ) conditional on V(t) are provided below.

Proposition 5 (Moments of V(T ) given V(t)). Conditional on V(t), the first two moments of V(T )
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are expressed as

E[V(T )|V(t)] = θ + (V(t) − θ)e−κ(T−t) (7)

and

Var[V(T )|V(t)] =
V(t)σ2e−κ(T−t)

κ

(
1 − e−κ(T−t)

)
+
θσ2

2κ

(
1 − e−κ(T−t)

)2
, (8)

where κ, θ and σ are as in Proposition 1.

2.3 Cumulative distribution function of the integrated variance over time

The integrated variance over time (quadratic variation increment) under Heston, defined as

IV(t,T ) =

∫ T

t
V(s) ds (9)

has been studied by Broadie and Kaya [7]; in particular, the authors derive an expression for the
cdf of this random variable, which is now stated. Hereafter, the parameters κ, θ and σ refer to the
parameters defined in Proposition 1.

Proposition 6. (Cumulative distribution function of the integrated variance over time). Given V(t)
and V(T ), the cdf of the integrated variance over time under the Heston model is expressed as

FQIV(t,T )(z|V(t),V(T )) =
2
π

∫ ∞

0

sin(φz)
φ

Re (Ξ(φ)) dφ,

where

Ξ(φ) =
γ(φ)e−

1
2 (γ(φ)−κ)(T−t)[1 − e−κ(T−t)]
κ[1 − e−γ(φ)(T−t)]

× exp
{

V(t) + V(T )
σ2

(
κ[1 + e−κ(T−t)]

1 − e−κ(T−t) −
γ(φ)[1 + e−γ(φ)(T−t)]

1 − e−γ(φ)(T−t)

)}
× I d

2−1

√V(t)V(T )
4γ(φ)e−

1
2γ(φ)(T−t)

σ2[1 − e−γ(φ)(T−t)]

/
I d

2−1

√V(t)V(T )
4κe−

1
2 κ(T−t)

σ2[1 − e−κ(T−t)]

 , (10)

with

γ(φ) =
√
κ2 − 2σ2iφ, (11)

d is as in (6) and Iν(·) is the modified Bessel function of the first kind with ν degrees of freedom.

An application of Lévy’s Inversion Theorem similar to the one of Gil-Pelaez [14] leads to the
probability distribution function of this random variable.
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Corollary 1 (Probability distribution function of the integrated variance over time). Given V(t)
and V(T ), the probability distribution function (pdf) of the integrated variance over time under

the Heston model is expressed as

f QIV(t,T )(z|V(t),V(T )) =
2
π

∫ ∞

0
cos(φz)Re (Ξ(φ)) dφ. (12)

The formulation provided for the pdf of the integrated variance over time is not computation-
ally friendly. To solve this issue, Glasserman and Kim [15] propose an alternative representation
of the integrated variance over time.

Proposition 7 (Gamma representation of the integrated variance over time). The integrated vari-

ance over time in Equation (9) admits the representation

IV(t,T ) d
= X1 + X2 +

η∑
j=1

Z j

where X1, X2, Z j,∀ j, and η are mutually independent. The random variables X1, X2 and Z j have

the following representations:

X1
d
=

∞∑
n=1

1
γn

Nn∑
j=1

A j,

X2
d
=

∞∑
n=1

1
γn

Bn,

Z j
d
=

∞∑
n=1

1
γn

Cn, j,

where

γn =
κ2(T − t)2 + 4π2n2

2σ2(T − t)2 . (13)

Here, the A js are independent exponential random variables with mean 1, Nn are independent

Poisson random variables with respective means (V(t) + V(T ))λn and

λn =
16π2n2

σ2(T − t)
[
κ2(T − t)2 + 4π2n2] .

The Bns are independent gamma random variables with a shape parameter of d/2 and a scale

parameter of 1, where d is as in Equation (6); Cn, j,∀n, are independent gamma random variables

with a shape parameter of 2 and a scale parameter of 1. Finally, η is a Bessel random variable

with parameter

z =
2κ/σ2

sinh (κ(T − t)/2)

√
V(t)V(T ) (14)

and ν = d/2 − 1 degrees of freedom.
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The moments of this distribution can easily be obtained through the use of a gamma expan-
sion. The expectation and variance of the integrated variance over time shall be employed in the
proposed sampling scheme described in Section 4.

Proposition 8 (Moments of the integrated variance over time). Let C1 = coth (κ (T − t)/2) and

C2 = csch2 (κ(T − t)/2). Given V(t) and V(T ), the mean and variance of IV(t,T ) are expressed as

E[IV(t,T )|V(t),V(T )] = E[X1] + E[X2] + E[η]E[Z]

and

Var [IV(t,T )|V(t),V(T )] = Var[X1] + Var[X2] + E[η] Var[Z] +
(
E[η2] − E[η]2

)
E[Z]2.

The mean and variance of X1 respectively satisfy

E[X1] = [V(t) + V(T )]
(C1

κ
− (T − t)

C2

2

)
,

Var[X1] = [V(t) + V(T )]σ2
(C1

κ3 + (T − t)
C2

2κ2 − (T − t)2 C1C2

2κ

)
;

the mean and variance of X2 respectively satisfy

E[X2] = dσ2
(
−2 + κ(T − t)C1

4κ2

)
,

Var[X2] = dσ4
(
−8 + 2κ(T − t)C1 + κ2(T − t)2C2

8κ4

)
;

the mean and variance of Z respectively satisfy

E[Z] = 4E[X2]/d, Var[Z] = 4 Var[X2]/d,

with d as in Equation (6). Finally,

E[η] =
zId/2(z)

2Id/2−1(z)
, E[η2] =

z2Id/2+1(z)
4Id/2−1(z)

+ E[η],

where z is as in Equation (14) and Iν(·) is a Bessel function of the first kind with ν degrees of

freedom.

Proof. See [30]. �
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3 Simulation Schemes for the Heston Model: A Review

This section aims at describing popular simulation schemes for the Heston model: the generic
Euler-Maruyama and Milstein algorithms are first presented, after which Broadie and Kaya’s ap-
proach [7] is detailed. Several modifications of the latter scheme are available in the literature, and
so we describe some of these algorithms: Smith’s approximation [28], Broadie and Kaya’s drift
interpolation of [31], Andersen’s quadratic exponential [2], and Tse and Wan’s inverse Gaussian
[30].

The main goal of these schemes is to simulate asset price paths for a given partition. Let

P = {0, h, 2h, ...,T },

be an equidistant partition with time step h , 1/m, where m is the number of steps per year. In
order to obtain price paths, observations are thus generated for each time value in P.

3.1 Euler-Maruyama scheme

The Euler-Maruyama algorithm, based on a linear approximation of the processes considered,
is the most easily implemented method for generating price paths under the Heston model. Gener-
ally speaking, it is also one of the most popular schemes as it can be used with virtually any SDE.
It consists in a generalization of the Euler method for ordinary differential equations.

Algorithm 3.1 (Euler-Maruyama scheme under the Heston model). Let X̂ and V̂ denote discrete-

time approximations of X and V respectively. The Euler-Maruyama scheme applied to Equations

(3) and (4) is given by

X̂(hi) = X̂(h(i − 1)) +

[
r −

1
2

V̂(h(i − 1))
]

h +

√
V̂(h(i − 1)ZX

√
h,

V̂(hi) = V̂(h(i − 1)) + κ
[
θ − V̂(h(i − 1))

]
h + σ

√
V̂(h(i − 1))ZV

√
h,

where ZX and ZV are standardized Gaussian random variables such that corr(ZX, ZV) = ρ.

Generally speaking, practitioners cannot rely on Algorithm 3.1 to obtain paths of the under-
lying variance process. When the Feller Condition (Proposition 3) is violated, V̂(hi) may take
negative values since the origin is then accessible and strongly reflecting. To avoid negative vari-
ances, some modifications are then required.

Lord, Koekkoek and van Dijk [21] propose an important number of solutions to this issue. In
particular, their full truncation scheme is a modification of the Euler-Maruyama scheme that is
tailored so as to minimize the positive bias on European options.
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Figure 2: Comparison of a simulated cdf of the price at time 5 using the full truncation scheme
(solid line) versus the real cdf of the price at time 5 based on Bakshi et al.’s [4] formulation (dashed
line). On the left graph, the Feller Condition is satisfied; on the right graph, it is violated.

Algorithm 3.2 (Euler-Maruyama scheme: Lord et al.’s modification [21]). Under the settings of

Algorithm 3.1, let

X̂(hi) = X̂(h(i − 1)) +

[
r −

1
2

f
(
V̂(h(i − 1))

)]
h +

√
f
(
V̂(h(i − 1))

)
ZX

√
h, (15)

and

V̂(hi) = V̂(h(i − 1)) + κ
[
θ − f

(
V̂(h(i − 1))

)]
h + σ

√
f
(
V̂(h(i − 1))

)
ZV

√
h,

where f (x) = max(0, x).

The full truncation scheme ensures that whenever the V̂ process goes below zero it becomes
deterministic with an upward drift of κθ. Although this scheme minimizes the positive bias on
European call options, it still yields poor results when the Feller Condition is violated; Figure 2
illustrates this issue.

3.2 Milstein scheme

This scheme is similar to the Euler-Maruyama algorithm, but relies on the second-order ap-
proximation of a SDE. In practice, the Milstein scheme is applied to the variance process only,
as it usually turns out to be the cause of potential problems. In the following algorithm, the full
truncation argument is also used in order to avoid negative variances.

Algorithm 3.3 (Milstein scheme with full truncation under the Heston model). Under the settings
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Figure 3: Comparison of a simulated cdf of the price at time 5 using the Milstein scheme with
full truncation (solid line) versus the real cdf based on Bakshi et al.’s [4] formulation (dashed
line) when the Feller Condition is satisfied (left graph), when the Feller condition is violated but
4κθ ≥ σ2 (middle graph) and when 4κθ < σ2 (right graph).

of Algorithm 3.1, let X̂ be as in Equation (15) and V̂ satisfy

V̂(hi) = V̂(h(i − 1)) + κ
[
θ − f

(
V̂(h(i − 1))

)]
h + σ

√
f
(
V̂(h(i − 1))

)
ZV

√
h +

σ2

4
(Z2

V − 1)h,

where f (x) = max(0, x).

Gatheral [13] states that if V̂(h(i−1)) > 0 and 4κθ ≥ σ2, then V̂(hi) > 0. When this inequality is
not satisfied, it still is possible to show that the occurence of negative variances is greatly reduced
as compared to the Euler-Maruyama scheme. However, this algorithm still yields poor results
when the condition is violated, as illustrated in Figure 3.

3.3 Broadie and Kaya’s exact scheme

Broadie and Kaya [7] propose an exact simulation scheme for the Heston model. Even if this
method is elegant and theoretically appealing, its practical use is limited. The main issue of this
scheme is the lack of speed. A simple simulation using the Euler-Maruyama outperforms this
scheme in terms of computational efficiency according to [21].

By applying Itô’s Lemma and a Cholesky decomposition to the explicit solution of the asset
price in Equation (1),

S (hi) = S (h(i − 1)) exp
{

rh −
1
2

∫ hi

h(i−1)
V(u) du +

∫ hi

h(i−1)

√
V(u) dWS (u)

}
,
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one obtains an explicit solution for the logarithm of the asset price in (3)

X(hi) = X(h(i − 1)) + rh −
1
2

∫ hi

h(i−1)
V(u) du

+ ρ

∫ hi

h(i−1)

√
V(u) dWV(u) +

√
1 − ρ2

∫ hi

h(i−1)

√
V(u) dWX(u), (16)

where WX(u) and WV(u) are the time-u values of two independent Brownian motions. Integrating
the variance process V in Equation (4) yields

V(hi) = V(h(i − 1)) +

∫ hi

h(i−1)
κ [θ − V(u)] du + σ

∫ hi

h(i−1)

√
V(u) dWV(u). (17)

By isolating the integral in the last term of the previous equation,∫ hi

h(i−1)

√
V(u) dWV(u) = σ−1

[
V(hi) − V(h(i − 1)) − κθh + κ

∫ hi

h(i−1)
V(u) du

]
,

and then substituting it in (16), one obtains

X(hi) = X(h(i − 1)) + rh +
κρ

σ

∫ hi

h(i−1)
V(u) du−

1
2

∫ hi

h(i−1)
V(u) du

ρ

σ
[V(hi) − V(h(i − 1)) − κθh] +

√
1 − ρ2

∫ hi

h(i−1)

√
V(u) dWX(u).

The previous equation involves three stochastic quantities that need to be sampled:

1. V(hi) given V(h(i − 1));

2.
∫ hi

h(i−1)
V(u) du given V(hi) and V(h(i − 1));

3.
∫ hi

h(i−1)

√
V(u) dWV(u) given

∫ hi

h(i−1)
V(u) du .

The exact sampling scheme is now described.

Algorithm 3.4 (Broadie and Kaya’s exact scheme). .

1. Using Proposition 4, generate V̂(hi) given V̂(h(i − 1)). To this end, Broadie and Kaya [7]

use a result of [18]: see Algorithm 3.5.

2. Given V̂(h(i − 1)) and V̂(hi), generate the integrated variance over time, ÎV(h(i − 1), hi),
using the inversion method which requires to invert the cdf

FQIV(h(i−1),hi)(x|V(h(i − 1)),V(hi)) =
2
π

∫ ∞

0

sin ux
u

Re (Ξ(u)) du

13



where Ξ(φ) is given in (10). This can be done numerically using Newton’s second-order

method.

3. Generate an observation zX from an independent standardized Gaussian random variable

and use the exact solution,

X̂(hi) = X̂(h(i − 1)) + rh +
κρ

σ
ÎV(h(i − 1), hi)

−
1
2

ÎV(h(i − 1), hi) +
ρ

σ

[
V̂(hi) − V̂(h(i − 1)) − κθh

]
+

√
1 − ρ2zX

√
ÎV(h(i − 1), hi). (18)

To get better computation times, [7] suggest building a cache to store values of IV given several
values of V(hi) and V(h(i − 1)).

In order to generate V̂(hi) given V̂(h(i − 1)) in Step 1 of Algorithm 3.4, Broadie and Kaya
[7] use results from [18] to propose an algorithm for sampling from the non-central chi-squared
distribution.

Algorithm 3.5 (Sampling from the non-central chi-squared distribution). .

1. A non-central chi-squared distribution with parameter λ and ν > 1 degrees of freedom

satisfies

χ2(ν, λ) d
=

(
Z +
√
λ
)2

+ χ2(ν − 1, 0)

where Z is a standardized Gaussian random variable. Thus, if ν > 1, the non-central

chi-squared can be generated using
(
z +
√
λ
)2

+ c, where z and c are observations from a

standardized Gaussian distribution and a central chi-squared distribution with ν−1 degrees

of freedom, respectively.

2. When ν ≤ 1, a non-central chi-squared random variable may be expressed through a central

chi-squared random variable featuring random degrees of freedom. Specifically, if N is

a Poisson random variable with mean λ/2, then χ2(d + 2N, 0) d
= χ2(d, λ). Thus, if ν ≤

1, generate an observation p from a Poisson distribution with mean λ
2 ; then, generate an

observation from a central chi-squared distribution with ν + 2p degrees of freedom.

Algorithm 3.5 requires generating observations from a central chi-squared distribution, which
is a special case of the gamma distribution with scale parameter equal to 2. To sample from a
gamma distribution, [7] propose using the methods GS* and GKM3 presented in [12]; in this
paper, we rely on Marsaglia’s method [22]. To generate observations from a Poisson distribution,
we use the method expounded in Devroye [9]: if the mean is small, we use the waiting time
method; if it is large, we use Ahrens and Dieter’s method [1].

The algorithms presented here rely heavily on acceptance-rejection methods. However, we are
fully aware that acceptance-rejection methods are ill-suited for quasi Monte Carlo methods and

14



that these low-discrepancy sequences are widely used in practice.

The acceptance-rejection algorithms presented in this paper are used for simplicity; however,
one could employ the direct inversion method for both chi-squared and gamma distribution. This
would obviously require precomputation in order to achieve greater efficiency. For instance, van
Haastrecht and Pelsser [31] proposed a method to sample from a non-central chi-squared distri-
bution based on direct inversion (so-called NCI). Thus, instead of using Algorithm 3.5, one could
use NCI. For the gamma distribution, a similar approach could be implemented, i.e. a cache for
quantile function values for different sets of parameters.

While Broadie and Kaya’s exact scheme is not directly used in practice, it is the foundation of
several sampling algorithms that have been proposed to sample from various stochastic volatility
models (and especially the Heston model).

3.4 Smith’s approximation

To simplify the implementation of the exact method, Smith [28] uses the similarity between the
geometric and arithmetic means of a sample to approximate the characteristic function in Equation
(10). By taking a weighted average of these two means,

z = ω

[
V(h(i − 1)) + V(hi)

2

]
+ (1 − ω)

√
V(h(i − 1))V(hi)

where ω ∈ [0, 1], Smith reduces the number of variables in (10). The resulting approximation of
the characteristic function is

Ξ̂(φ) =
γ(φ)e−

1
2 (γ(φ)−κ)(T−t)[1 − e−κ(T−t)]
κ[1 − e−γ(φ)(T−t)]

× exp
{

2z
σ2

(
κ[1 + e−κ(T−t)]

1 − e−κ(T−t) −
γ(φ)[1 + e−γ(φ)(T−t)]

1 − e−γ(φ)(T−t)

)}
× I d

2−1

z 4γ(φ)e−
1
2γ(φ)(T−t)

σ2[1 − e−γ(φ)(T−t)]

/ I d
2−1

z 4κe−
1
2 κ(T−t)

σ2[1 − e−κ(T−t)]

 ,
where γ(φ) and d are as in Equations (11) and (6) respectively. Note that this function depends on
V(h(i − 1)) and V(hi) through z only.

Although faster than the exact scheme of the previous section, this approach still suffers from
long computation times as inverting the approximated characteristic function turns out to be a
demanding task.
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Figure 4: Comparison of a simulated cdf of the price at time 5 using the drift interpolation scheme
(solid line) versus the real cdf based on Bakshi et al.’s [4] formulation (dashed line). On the left
graph, the Feller Condition is satisfied; on the right graph, it is violated.

3.5 Van Haastrecht and Pelsser’s drift interpolation scheme

Van Haastrecht and Pelsser’s drift interpolation scheme (BK-I hereafter) [31] aims at speeding
up the second step of Algorithm 3.4. To achieve this, ÎV(h(i − 1), hi) is approximated by using a
simple quadrature rule called the trapezoidal rule:

ÎV (h(i − 1), hi) ≈ h
[V(h(i − 1)) + V(hi)]

2
.

The integrated variance over time is thereby deterministic (since there is no sampling involved in
this step). Thus, based on this approximation and a small time step, one can obtain good results
in seconds. However, this is a coarse approximation when the time step is not extremely small.
Figure 4 illustrates two numerical examples of this method when the time step is small.

As stated earlier, van Haastrecht and Pelsser [31] introduce a new method to sample from
a non-central chi-squared distribution based on direct inversion. Instead of creating a three-
dimensional cache of the inverse of the non-central chi-squared distribution, the authors are able
to project it on a one-dimensional search space. This would allow for low-discrepancy numbers.

3.6 Andersen’s quadratic exponential scheme

This approach is inspired from the drift interpolation scheme, but instead of using NCI to
sample from the non-central chi-squared distribution, Andersen [2] proposes an approximation
based on moment-matching techniques. His goal is then to speed up the first step of Broadie and

16



Kaya [7]’s method.

He observes that a non-central chi-squared random variable with a high non-centrality pa-
rameter can be represented by a power function applied to a Gaussian variable. While a cubic
transformation of a Gaussian variable is preferable, such a scheme would yield negative values.
Accordingly, the quadratic representation of Patnaik [27] is preferred. For a sufficiently large value
of V̂(h(i − 1)), we get

V̂(hi) = a(b + ZV)2, (19)

where ZV is a standardized Gaussian random variable, and a and b are functions of V̂(h(i − 1)),
whose values are determined by moment-matching techniques.

According to [20], V̂(hi) is distributed as a times a non-central chi-squared distribution with
one degree of freedom and non-centality parameter b2. Then,

E
[
V̂(hi)

]
= a(1 + b2) and Var

[
V̂(hi)

]
= 2a2(1 + 2b2). (20)

Equating each moment in (20) to the exact values

m , E
[
V̂(hi)|V̂(h(i − 1))

]
and s2 , Var

[
V̂2(hi))|V̂(h(i − 1))

]
respectively (see Subsection 2.3) yields

a =
m

1 + b2 and b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1, (21)

where ψ = s2

m2 if ψ ≤ 2.

Equation (19) does not work well for small values of V̂(h(i − 1)). In such cases, to get a better
approximated density for V̂(hi), Andersen [2] proposes

Q(V̂(hi) ∈ [x, x + dx]|V̂(h(i − 1))) ≈
[
pδ0(x) + β(1 − p)e−βx

]
dx, (22)

where x ≥ 0, δ0(·) is a Dirac delta function at the origin, and p and β are non-negative constants to
be determined. The resulting density has a probability mass at the origin, supplemented with an
exponential tail. Sampling from Equation (22) using the inverse method is straightforward since
the associated cdf is easily invertible:

Ψ(x; p, β) , F̂Q̂
V̂(hi)

(x|V̂(h(i − 1))) = p + (1 − p)(1 − e−βx), x ≥ 0. (23)

The constants p and β are derived using, once again, a moment-matching argument. Integrating
(22) leads to

Ê
[
V̂(hi)

]
=

1 − p
β

and V̂ar
[
V̂(hi)

]
=

1 − p2

β2 .
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Using the theoretical moments, one obtains for ψ ≥ 1,

p =
ψ − 1
ψ + 1

and β =
1 − p

m
. (24)

Using the appropriate part of the scheme requires the creation of a switching rule. Equations
(19) and (21) may be used when ψ ≤ 2, while (23) and (24) are used when ψ ≥ 1. These domains
of applicability overlap which means that at least one of these schemes can be used; one may thus
introduce a critical level ψc ∈ [1, 2] as a switching rule. Any ψc in this interval is appropriate with
the QE scheme.

For the process X, Andersen uses the following discretization

X̂(hi) = X̂(h(i − 1)) + rh + K0 + K1V̂(h(i − 1)) + K2V̂(hi) +

√
K3

[
V̂(h(i − 1)) + V̂(hi)

]
ZX, (25)

with

K0 = −
ρκθ

σ
h, K1 =

h
2

(
κρ

σ
−

1
2

)
−
ρ

σ
,

K2 =
h
2

(
κρ

σ
−

1
2

)
+
ρ

σ
, K3 =

h
2

(1 − ρ2).

We outline that fact that the constants K0, K1, K2 and K3 described above have been simplified to be
similar to what is already presented in Equation (18); for general formulations of these constants,
see [2].

Algorithm 3.6 (Quadratic exponential scheme). .

1. Compute m and s2 from V̂(h(i − 1)).

2. If ψ = s2

m2 ≤ ψc,

(a) compute a and b;

(b) draw zV , an observation from a standardized Gaussian random variable;

(c) compute V̂(hi) = a(b + zV)2.

3. If ψ > ψc,

(a) compute β and p;

(b) draw uV , an observation from a uniform random variable on (0, 1);

(c) compute V̂(hi) = Ψ−1(uV ; p, β).

4. Draw zX, an observation from an independent standardized Gaussian random variable.
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Figure 5: Comparison of a simulated cdf of the price at time 5 using the quadratic exponential
scheme (solid line) versus the real cdf based on Bakshi et al.’s [4] formulation (dashed line). On
the left graph, the Feller Condition is satisfied; on the right graph, it is violated.

5. Compute X̂(hi) based on V̂(h(i − 1)), V̂(hi), X̂(h(i − 1)) and zX, as in BK-I.

This sampling scheme generally yields good results, even when the Feller Condition is violated
(see Figure 5).

3.7 Tse and Wan’s inverse Gaussian scheme

Tse and Wan’s inverse Gaussian (hereafter, IG) scheme [30], which relies on the basics of
Broadie and Kaya [7], uses the fact that the integrated variance over time converges in distribution
to a moment-matched inverse Gaussian random variable as h goes to infinity.

Simulating observations from an inverse Gaussian random variable is accessible; we refer the
reader to [24] for more detail. To increase the speed of their algorithm, Tse and Wan however
propose a modification to Michael, Schucany and Haas’ algorithm.

Algorithm 3.7 (Sampling from an inverse Gaussian distribution). To generate observations from

an inverse Gaussian distribution with mean µ and shape parameter λ:

1. Generate an observation z from a standardized Gaussian distribution.

2. Let

x = 1 +
z2

2λ
−

1
2λ

√
4λz2 + z4.

3. Generate an observation u from a uniform distribution on (0, 1).
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Figure 6: Comparison of a simulated cdf of the price at time 5 using the inverse Gaussian scheme
(solid line) versus the real cdf based on Bakshi et al.’s [4] formulation (dashed line). On the left
graph, the Feller Condition is satisfied; on the right graph, it is violated.

4. If u ≤ 1/(1 + x), then return µx; otherwise, return µ/x.

Proof. See [24] and [30]. �

Tse and Wan [30] also propose a new algorithm to generate a value of V(hi) given V(h(i −
1)). The IPZ scheme is based on precomputation of quantile function values for some cases that
could take more time to be generated. For the other cases, the authors used something similar to
Algorithm 3.5.

Figure 6 illustrates the results of a simulation study using the IG scheme (without implement-
ing the IPZ scheme). This approach seems to yield good results, even when the Feller Condition
is violated.

4 Gamma Approximation Scheme

This section discloses the details about the gamma approximation (hereafter GA) algorithm
for simulating from the Heston model. The basics of the scheme are first discussed, after which a
formal version of the algorithm is presented. The caches used in this scheme are finally described.
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4.1 Approximating the integrated variance over time

As several of the algorithms discussed in Section 3, the GA algorithm focuses on generating an
observed integrated variance over time so as to improve the computational efficiency of the exact
algorithm while eliminating the issues inherent to the variants previously discussed. The resulting
approach is thus a modification of Broadie and Kaya’s exact algorithm. Note that the first step of
Algorithm 3.4 could also be improved, but this matter is not pursued here.

As detailed in Proposition 7, Glasserman and Kim [15] propose an alternative representation
for the integrated variance over time defined in (9). Furthermore, Tse and Wan [30] use Laplace
transforms to provide the first two moments of this random variable; see Proposition 8. In their
paper, they also demonstrate the convergence in distribution of the integrated variance over time
towards a moment-matched inverse Gaussian as h→ ∞, and use this argument to justify the use of
this distribution in their proposed algorithm (see Subsection 3.7). The validity of this justification
is however questionable, as small time steps h are more appealing for pricing some path-dependent
securities (i.e. Bermudian options, lookback options, among others). Accordingly, a convergence
result available for large h does not necessarily seem appropriate in such cases.

One may find it more convincing to study the distribution of the integrated variance over time
for small values of h. In fact for small h, it is easily verified that γn in (13),

γn =
κ2h2 + 4π2n2

2σ2h2

diverges rapidly as n increases. Indeed, γn < γn+1 ⇔ n2 < (n + 1)2 and 1/γn tends to zero rapidly.
Consequently, the mixtures X1, X2 and Z j of Proposition 7 can be accurately approximated by
a finite sum of independent gamma random variables. The exact expression for the convolution
of independent gamma distributions with different scale parameters is nontrivial. According to
Stewart et al. [29], one may approximate this complex distribution by a simple moment-matched
gamma distribution. Visual inspection (see Figure 7) corroborates this affirmation, and thus a
gamma distribution seems like a good approximation for the integrated variance over time. The
inverse Gaussian betrays a lack of precision when h tends to zero.

Practically speaking, the use of a cache shall allow to efficiently determine the moment-
matched parameters of the gamma distribution at every iteration.

4.2 Path simulation of the asset price process

We now introduce the gamma approximation scheme.

Algorithm 4.1 (Gamma approximation scheme). .

1. Create caches for the moments of IV(h(i−1), hi); Subsection 4.3 details the caching method
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Figure 7: Comparison between the inverse Gaussian approximation (dashed-dot line), the gamma
approximation (dashed line), and the real pdf (solid line) of the integrated variance over time, for
a small time step; h = 0.1 in the left graph, h = 0.05 in the right graph.

implemented for this scheme.

2. Using Proposition 4 and Algorithm 3.5, generate V̂(hi) given V̂(h(i − 1)).

3. Given V̂(hi) and V̂(h(i − 1)), generate the integrated variance over time, ÎV(h(i − 1), hi),
from a moment-matched gamma distribution using the moments available in the caches.

4. Generate zX, an observation from an independent standardized Gaussian random variable,

and use the exact solution in (18) to obtain X̂(hi).

4.3 Caches implementation

We now describe a method to obtain the moments of IV(h(i− 1), hi). This task is crucial as the
approximated gamma distribution used to generate observations from the integrated variance over
time depends on these moments.

Definition 1. Let IV∗(h(i − 1), hi) , IV(h(i − 1), hi) − X1, where IV(h(i − 1), hi) and X1 are given

in Proposition 7. From Proposition 8,

E[IV∗(h(i − 1), hi)|V(h(i − 1)),V(hi)] = E[X2] + E[η]E[Z]

and

Var [IV∗(h(i − 1), hi)|V(h(i − 1)),V(hi)] = Var[X2] + E[η] Var[Z] +
(
E[η2] − E[η]2

)
E[Z]2.
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The previous two moments depend on V(h(i − 1)) and V(hi) through the product V(h(i − 1)) ×
V(hi) only. Again from Proposition 8,

E[IV(h(i − 1), hi)|V(h(i − 1)),V(hi)] = E[IV∗(h(i − 1), hi)|V(h(i − 1)),V(hi)] + E[X1]

and

Var[IV(h(i − 1), hi)|V(h(i − 1)),V(hi)] = Var[IV∗(h(i − 1), hi)|V(h(i − 1)),V(hi)] + Var[X1].

Since E[X1] and Var[X1] depend only on V(h(i−1))+V(hi) and do not require any modified Bessel
evaluation, it is thus computationally inexpensive to compute these quantities at a later moment.

Proposition 9 (Moments computations). For fast moments computations using a cache:

1. Precompute E[IV∗(h(i−1), hi)|V(h(i−1)),V(hi)] and Var[IV∗(h(i−1), hi)|V(h(i−1)),V(hi)]
using a special grid (see Definition 2) containing specific values for V(h(i−1))×V(hi). These

values are called the caches.

2. Compute E[X1] and Var[X1].

3. Use linear interpolation to approximate E[IV∗(h(i−1), hi)|V(h(i−1)), V(hi)] and Var[IV∗(h(i−
1), hi)|V(h(i − 1)),V(hi)] from their respective cache.

4. Add E[X1] and Var[X1] to the previous moments respectively to obtain E[IV(h(i−1), hi)|V(h(i−
1)),V(hi)] and Var[IV(h(i − 1), hi)|V(h(i − 1)),V(hi)].

Step 1 of the previous proposition refers to the need of building the caches, i.e. determining
values V(h(i − 1)) × V(hi) at which the moments of IV∗(h(i − 1), hi) should be evaluated. It turns
out that when E[IV∗(h(i− 1), hi)|V(h(i− 1)),V(hi)] and Var[IV∗(h(i− 1), hi)|V(h(i− 1)),V(hi)] are
regarded as functions of V(h(i − 1)) × V(hi), their graphs look like piecewise linear curves on a
log-log scale. Figure 8 illustrates this behaviour. This suggests using a grid as described below.

Definition 2. To build the moments’ caches, a naturally arising grid for the values V(h(i − 1)) ×
V(hi) is {

0, δ−ζ , δ−ζ+1, δ−ζ+2, . . . , δξ−1, δξ
}

(26)

where δ is a constant selected in (1,∞) and ζ, ξ are constants in N.

Using such an exponentially spaced grid allows caching a representative behaviour of the mo-
ments of IV∗(h(i − 1), hi). As mentioned earlier, the expectation and variance exhibit an almost
linear behaviour on a log-log scale, meaning that in reality, these moments display an exponential
behaviour.
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Figure 8: Log-log graph of E[IV∗(h(i − 1), hi)|V(h(i − 1)),V(hi)] (left) and Var[IV∗(h(i −
1), hi)|V(h(i − 1)),V(hi)] (right) as a function of V(h(i − 1)) × V(hi).

This grid is somewhat different than the one used by Tse and Wan [30]: the authors used an
equidistant spaced grid for

√
V(h(i − 1)) × V(hi). Moreover, they grid seems to require a lot of

points (i.e. 215+ceil(log2(N)) + 1). Ours requires far less points and is very efficient.

It could be argued that a clever type of interpolation, rather than a linear interpolation, would
be more appropriate to approximate the moments at a value V(h(i − 1)) × V(hi) not explicited
in the cache. In addition to be unecessary, this approach would be significantly more intensive
computationally. A simple linear interpolation computationally outperforms the other types of
interpolation in this case (the exactness acquired is not significant and the time needed to perform
such an algorithm is momentous). Cubic spline and shape-preserving piecewise cubic interpola-
tion were used for comparison.

5 Numerical Study

5.1 Description of the scenarios

In order to evaluate the gamma approximation scheme, we define six cases that are described
in Table 1. The first three cases correspond to those introduced in Andersen [2]. In all these
scenarios, the Feller Condition (see Proposition 3) is violated. The main difference between these
cases is the strike price. The first one corresponds to an “at-the-money” option (K = 100), the
second one to an “out-of-the-money” option (K = 140) and the last one to an “in-the-money”
option (K = 70). The following two cases (4 and 5) describe a volatile asset featuring a strong
underlying correlation structure. The first one has a maturity of ten years and the second a maturity
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of five years. The last scenario (Case 6) is studied in Smith [28]; in this case, the Feller Condition
is satisfied.

We price two types of options. The first type is a vanilla European call option that pays
max(S (T ) − K, 0) at maturity; the second type is an Asian call payout option, which is defined
below. The “exact” prices of the European and Asian options for the various scenarios considered
may be found in Table 1.

Definition 3 (Asian call payout option). Let S (t) be the price of an asset at time t. The payout at

time T of the Asian option considered in this paper is

A ({S (t)}t≥0,K,T ) = max (M(T ) − K, 0)

where K is the strike price and M(T ) is based on the arithmetic mean, i.e.

M(T ) =
1
T

T∑
i=1

S (i)

here, S (i) is the price of the asset at the end of the i-th year. Thus, the price of this option at time

0 is

E
[
e−rT A ({S (t)}t≥0,K,T )

]
(27)

The computation times are obtained by running Matlab programs on a desktop computer with
an 4.5 GHz Intel Core i7-2600K and 16 GB RAM. Three sampling schemes are used for the com-
parison: Andersen’s quadratic exponential (QE), van Haastrecht and Pelsser’s drift interpolation
(BK-I) and Tse and Wan’s inverse Gaussian (IG). The Euler-Marayuma and Milstein schemes are
discarded since they do not yield good results when some conditions are violated.

The exact prices of European call options are obtained using Bakshi et al.’s [4] formulation.
The “exact” prices of Asian options are obtained with the GA scheme using N = 230 paths and
m = 32 steps per year. We also used the other schemes to see whether this price is robust. There
were virtually no difference between the prices given by each other method.

The parameters used to compute the moments’ caches are ζ = 52,

ξ =
log(10σ)

log(δ)
,

and
δ = exp

(
log(10σ)

(75 − ζ) + log2(N)

)
.

They yield accurate results in a reasonable time and they are dependent on the on the volatility of
V parameters. Moreover, δ and ξ depend on N to keep the precomputation time proportional to the
total simulation time as N varies. The new grid seems to yield good results for a large selection
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of these parameters. The efficiency of the method does not seem to be affected by a change in δ, ζ
and ξ; though, they need to be large enough.

For each method and each case, the price is obtained for different numbers of steps per year.
We modify the number of steps per year, m, by keeping the number of paths constant at 223.

Table 1: Heston model parameters for Cases 1 to 6.
Case 1 2 3 4 5 6

σ 1 1 1 1 1 0.5196
κ 0.5 0.5 0.5 1 1 1.0407
θ 0.04 0.04 0.04 0.04 0.04 0.0586
V(0) 0.04 0.04 0.04 0.04 0.04 0.0194
ρ -0.9 -0.9 -0.9 -0.999 -0.999 -0.6747
r 0 0 0 0 0 0
T 10 10 10 10 5 4
S (0) 100 100 100 100 100 100
K 100 140 70 100 100 100

Exact price (European) 13.0847 0.2958 35.8498 9.5868 6.2001 5.5871
“Exact” price (Asian) 8.1941 0.0243 32.6236 9.9975 7.2683 9.7103

[1] The exact prices of European call options are obtained using Bakshi et al.’s [4] formulation.
[2] The “exact” prices of Asian call options are obtained with the GA scheme using N = 230 paths and m = 32 steps
per year. We also used the other schemes to see whether this price is robust.

5.2 European option

Let α be the exact price of an option and α′ the estimator returned by a simulation scheme.
Then, the bias of the estimator (or, more precisely, the numerical error) is given by (E[α′]−α) and
the standard deviation is given by

√
E[(α′ − E[α′])2].

In order to assess our new GA scheme and compare it with the three other schemes (QE, BK-I
and IG), we estimate these performance metrics by using Monte Carlo simulations to estimate
E[α′] and by calculating the sample standard deviation.

The standard deviation divided by the square root of the sample size (in our case N = 223) helps
us measuring how statistically significant the numerical error estimate is. In the figures, we draw
horizontal lines to show the levels of one, three and five standard deviations divided by the square
root of the sample size. Note that our standard deviations are computed with the GA scheme when
m = 1. Within each parametric case, the standard deviations do not change substantially between
the schemes and the choice of m.

Panel A of Tables 2 provides relative biases and computation times for the first case. Results
for Cases 2 to 6 are given in Tables 3 and 4 of Appendix A. The relative biases for which their
absolute counterparts are not statistically different from zero are in bold in the tables. In other
words, absolute biases that are less than three standard deviations divided by the square root of
N are considered statistically nonsignificant. The number of steps were chosen in order to obtain
similar computational times among the schemes. However, sometimes, it was difficult to yield
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comparable computational times; in those cases, we use larger m values for QE, BK-I and IG.
For example, we use a partition going from 0.4 to 2.0 (by steps of 0.1) for GA in the first case.
However, we use 0.6 to 2.2 (by steps of 0.1) for IG, 0.8 to 4.0 (steps of 0.2) for BK-I and 1.6 to
8.0 (steps of 0.4) for QE. The first, fourth, seventh and tenth columns of Tables 2, 3, and 4 contain
the different m values for each case and each scheme.

The time needed to pre-compute the caches were included in all the timing presented through-
out this paper. However, one could store the caches to yield even better results for IG and GA (if
he is using the same model’s parameters).

In most cases, the numerical errors yielded by these other approaches were greater than the
one obtained by GA. Thus, for these occurrences, GA appears to be more efficient than the other
schemes in terms of numerical errors and computational times.

Essentially, the proposed scheme performs well when pricing European call options. The
results from our GA scheme are similar or better than what is obtained using QE, BK-I and IG
schemes according to Tables 2, 3 and 4. In many cases, the GA scheme performs better than the
other schemes. For the second case where T is large and K is 140 (“out-of-the-money” option), it
is not clear which scheme yields the best results. IG and GA seem to be quite similar in this case.

Figure 9 illustrates the relationships between absolute numerical errors and computational
times for the four sampling schemes mentioned above on a log-log scale. Absolute numerical
errors are now used to be able to compare them efficiently with standard deviations computed
earlier. Each dot in a given curve corresponds to a simulated price bias. By varying m, absolute
price biases are obtained for a given scheme (each corresponding to a dot in a given curve). The
number of steps per year m varies across the different schemes to take account of the fact that
BK-I and QE are faster than the other two methods (but not necessarily better). The simulated
price biases in a given curve were all obtained according to a common number of simulated paths
N. When we compare the four schemes with larger values of m, the comparison is more tricky.
Graphically, the curves oscillate as the number of steps per year becomes larger (mainly for GA
and IG). Fortunately, these cases represent bias levels so low that they are likely to be accurate
enough in practice.

All six cases represented in Figure 9 show very convincing results. In general, even if the num-
ber of steps is not very large, GA yields small biases on European options and leads to decreasing
biases as m increases.

Normally, if we witness a bias less than 3 times the standard deviation, it is assumed to be
statistically nonsignificant (just like we did previously). Thus, our scheme produces numerical
errors that are statistically nonsignificant for almost all scenarios. Case 2 seems to be problematic
in the way that it is the only one where IG performs slightly better than GA. However, the price of
this option is only 30 cents, which means that an error of 0.001 for the GA scheme is not serious
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Table 2: Results for the European call option and Asian call option using Case 1.
Panel A: Case 1, European call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

1.6 3.836 18.79 0.4 2.660 17.94 0.6 0.762 21.99 0.8 2.551 18.54
2 2.511 23.07 0.5 1.464 22.34 0.7 0.674 25.86 1 1.984 23.72
2.4 1.723 28.22 0.6 0.757 26.78 0.8 0.472 29.39 1.2 1.525 28.15
2.8 1.189 33.00 0.7 0.425 31.15 0.9 0.363 32.98 1.4 1.235 33.02
3.2 0.878 37.59 0.8 0.268 35.61 1 0.347 36.82 1.6 1.071 37.92
3.6 0.661 42.43 0.9 0.182 40.07 1.1 0.284 40.50 1.8 0.841 42.95
4 0.399 47.09 1 0.063 44.47 1.2 0.247 44.23 2 0.665 47.92
4.4 0.410 51.10 1.1 0.075 48.97 1.3 0.140 47.99 2.2 0.531 52.92
4.8 0.256 55.80 1.2 0.094 53.64 1.4 0.099 51.81 2.4 0.492 58.01
5.2 0.193 60.45 1.3 0.005 57.95 1.5 0.067 55.55 2.6 0.453 63.14
5.6 0.120 65.69 1.4 0.091 64.72 1.6 0.080 60.22 2.8 0.363 67.94
6 0.055 69.41 1.5 0.002 66.63 1.7 0.161 63.06 3 0.327 73.85
6.4 0.007 75.05 1.6 0.106 72.44 1.8 0.046 67.21 3.2 0.300 78.87
6.8 0.034 79.43 1.7 0.029 75.97 1.9 0.004 70.92 3.4 0.282 84.14
7.2 0.026 85.62 1.8 0.068 81.07 2 0.082 74.99 3.6 0.256 88.47
7.6 0.052 87.81 1.9 0.032 84.84 2.1 0.019 78.26 3.8 0.189 94.17
8 0.025 92.62 2 0.028 89.19 2.2 0.019 82.21 4 0.172 99.49
Panel B: Case 1, Asian call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

4 0.284 45.97 1 0.216 44.59 1 0.413 36.50 2 0.220 47.85
8 0.118 95.50 2 0.013 89.65 2 0.067 75.49 4 0.073 102.06
12 0.100 272.82 3 0.007 159.35 3 0.006 115.40 6 0.009 329.79
16 0.059 344.24 4 0.006 219.24 4 0.010 153.18 8 0.010 518.82

[1] The relative biases are in percent.
[2] Relative biases in bold show that their absolute counterparts are statisically nonsignificant (i.e. absolute bias less
than three time the standard deviation).

compared to the actual price of the option!

When the relative biases of IG are smaller than the ones produced by GA, the errors resulting
from the gamma approximation scheme are quite close to the ones produced by IG. Thus, again,
our scheme yields more than adequate results.

When m is small, IG seems to slightly outperform our new scheme. This is not surprising,
as the IG scheme has been designed so that the approximated integrated variance over time’s
behaviour be close to the real one when the time step is large (Tse and Wan’s main result).

5.3 Asian option

Panel B of Table 2 provides relative numerical errors and computational times for Case 1.
Results for Cases 2 to 6 are given in Table 5 of Appendix A. Values in bold still mean that the
numerical errors are less than three standard deviations divided by the square root of the number
of paths N.

Again, the numbers of steps were chosen in order to obtain similar computational times among
the schemes. Nonetheless, it was even more difficult in the Asian option case than it was with the
European option case. Our numbers of steps per year needed to be integers since the payoff of the
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Figure 9: Absolute bias against computational time on pricing European options. The light blue
line (circle marker) is used for the GA scheme, navy blue (dot marker) for QE, yellow (cross
marker) for BK-I, and turquoise (plus marker) for IG. Standard deviation of the price (dotted line),
3 times the standard deviation (dashed-dot line), and 5 times the stardard deviation (large-dash
line) are included.
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option depends on the arithmetic mean of the prices of the asset at the end of each year.

Essentially, our scheme seems to perform efficiently when pricing Asian call options. For all
scenarios, the results from our GA scheme are better (or, at worst, equal) to QE, BK-I, and IG
methods. Note that Case 2 does not appear to be problematic anymore for the Asian option. The
numerical errors generated by GA are smaller than one standard deviation divided by the square
root of N when m = 3 and m = 4. When m = 2, it is not statistically different from zero for Cases
1, 2, 3, 4, and 6.

Figure 10 is the equivalent of Figure 9 for Asian options; however, we have considered only
one data point for GA (m = 3) and IG (m = 4) in order to show how little is the bias for these two
when compared to QE and BK-I. All the scenarios considered in these graphs depict convincing
results as far as the GA method is concerned.

According to our tables, when m becomes larger, the results produced by GA seem to be
consistent with those obtained with QE, BK-I, and IG. The biases are generally lower than one
standard error, thus almost every bias is statistically nonsignificant.

Again, when the relative numerical errors of QE, BK-I, and IG are smaller than the ones
produced by GA, the errors resulting from the gamma approximation scheme are quite close to
the ones produced by other methods.

6 Concluding Remarks

This paper introduces a new method to simulate stock price paths under the Heston framework.
When the Feller Condition is violated, generic schemes generally fail to provide accurate results.
After an exhasutive review of available simulation schemes under the Heston model, the gamma
approximation algorithm is introduced. This method is based on Stewart et al. [29]: using a
moment-matched gamma distribution to sample observations for the integrated variance over time,
price paths can be found in an efficient way. This new algorithm is quick and often appears to be
slightly more efficient than the most popular schemes for sampling under the Heston model.

Simulation studies demonstrate that the GA scheme performs as well as the most popular
schemes available in the literature. In several cases, the GA algorithm seems to outperform QE,
BK-I, and IG (for the same computational times). In the remaining cases, the relative biases ob-
tained are close to those witnessed with QE, BK-I, and IG. When m becomes larger, the numerical
errors tend to become smaller for the GA scheme than for the other schemes considered.

A deeper analysis of the integrated variance over time distribution could lead to another ap-
proximation; the simple gamma approximation however appears to be a good compromise be-
tween accuracy and efficiency. The use of gamma mixtures or convolutions could provide a better
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Figure 10: Absolute bias against computational time on pricing Asian options. The light blue line
(circle marker) is used for the GA scheme, navy blue (dot marker) for QE, yellow (cross marker)
for BK-I, and turquoise (plus marker) for IG. Standard deviation of the price (dotted line), 3 times
the standard deviation (dashed-dot line), and 5 times the stardard deviation (large-dash line) are
included.
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Table 3: Results for the European call option using Cases 2 and 3.
Panel A: Case 2, European call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

1.6 169.690 18.79 0.4 117.691 17.94 0.6 33.708 21.99 0.8 112.856 18.54
2 111.098 23.07 0.5 64.779 22.34 0.7 29.820 25.86 1 87.770 23.72
2.4 4.564 28.13 0.6 0.879 27.03 0.8 2.231 29.71 1.2 5.917 28.57
2.8 3.009 33.24 0.7 0.575 31.55 0.9 2.198 33.26 1.4 4.497 33.34
3.2 1.657 37.77 0.8 1.014 35.96 1 1.082 36.97 1.6 3.212 38.40
3.6 0.710 42.14 0.9 1.116 40.61 1.1 1.285 41.06 1.8 3.516 43.63
4 0.811 46.94 1 1.352 45.02 1.2 0.642 44.64 2 2.637 48.60
4.4 0.575 51.27 1.1 0.676 49.42 1.3 0.575 48.23 2.2 1.555 53.50
4.8 0.913 55.55 1.2 0.710 53.99 1.4 0.744 52.07 2.4 1.454 58.61
5.2 0.744 63.30 1.3 0.642 59.74 1.5 0.473 55.88 2.6 1.082 63.84
5.6 0.135 65.08 1.4 0.879 62.31 1.6 0.135 59.25 2.8 0.879 68.35
6 0.541 69.47 1.5 0.879 66.85 1.7 0.068 63.10 3 1.386 73.37
6.4 0.068 74.30 1.6 0.473 71.39 1.8 0.744 66.90 3.2 1.048 78.67
6.8 0.237 79.03 1.7 0.642 75.88 1.9 0.034 70.86 3.4 0.845 83.58
7.2 0.169 83.73 1.8 0.034 80.49 2 0.473 74.55 3.6 0.981 89.25
7.6 0.068 88.63 1.9 0.068 85.01 2.1 0.169 78.52 3.8 0.237 94.47
8 0.710 93.08 2 0.068 89.48 2.2 0.034 82.43 4 0.541 99.80
Panel B: Case 3, European call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

1.6 0.830 18.67 0.4 0.214 17.96 0.6 0.240 21.96 0.8 1.155 18.59
2 0.429 23.41 0.5 0.005 22.42 0.7 0.171 25.56 1 0.808 23.31
2.4 0.246 28.85 0.6 0.053 27.15 0.8 0.046 29.65 1.2 0.552 28.59
2.8 0.122 33.05 0.7 0.037 31.69 0.9 0.047 33.28 1.4 0.388 33.64
3.2 0.057 38.11 0.8 0.072 36.31 1 0.025 37.28 1.6 0.336 38.86
3.6 0.023 43.05 0.9 0.003 40.87 1.1 0.013 40.86 1.8 0.267 43.65
4 0.023 47.19 1 0.003 45.04 1.2 0.022 44.70 2 0.210 48.64
4.4 0.023 51.64 1.1 0.016 49.57 1.3 0.013 48.65 2.2 0.177 53.52
4.8 0.033 55.95 1.2 0.041 54.05 1.4 0.015 52.23 2.4 0.181 58.69
5.2 0.038 60.93 1.3 0.015 58.80 1.5 0.041 56.07 2.6 0.111 63.98
5.6 0.032 65.19 1.4 0.012 62.44 1.6 0.023 59.31 2.8 0.093 68.34
6 0.021 69.78 1.5 0.006 66.91 1.7 0.009 63.24 3 0.090 73.60
6.4 0.071 74.47 1.6 0.003 71.39 1.8 0.013 67.03 3.2 0.086 78.82
6.8 0.005 79.35 1.7 0.018 75.94 1.9 0.015 70.98 3.4 0.064 83.90
7.2 0.050 84.23 1.8 0.001 80.51 2 0.025 74.67 3.6 0.052 89.23
7.6 0.035 88.48 1.9 0.001 85.07 2.1 0.031 78.66 3.8 0.052 94.57
8 0.006 93.20 2 0.013 89.66 2.2 0.013 82.48 4 0.066 99.90

fit and could approximate the true behaviour of the integrated variance over time.

Some extensions could be made in that direction, but whether this could be achieved in a
computationally competitive algorithm is still an open question.

A European and Asian options, Cases 2 to 6

The relative biases for which their absolute counterparts are not statistically different from zero
are in bold in Tables 3, 4 and 5.
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Table 4: Results for the European call option using Cases 4, 5 and 6.
Panel A: Case 4, European call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

1.6 9.453 19.03 0.4 2.655 18.62 0.6 1.744 22.98 0.8 14.868 18.48
2 5.934 23.45 0.5 1.404 22.94 0.7 1.560 26.61 1 10.580 23.51
2.4 3.970 27.90 0.6 0.947 27.34 0.8 1.301 30.46 1.2 7.707 27.94
2.8 2.657 32.52 0.7 0.209 31.91 0.9 1.053 34.33 1.4 5.838 32.85
3.2 1.868 37.31 0.8 0.080 36.42 1 0.791 38.31 1.6 4.581 37.78
3.6 1.314 41.95 0.9 0.158 40.92 1.1 0.556 42.10 1.8 3.596 42.77
4 0.966 46.40 1 0.194 45.44 1.2 0.329 46.08 2 2.958 47.82
4.4 0.602 51.07 1.1 0.133 49.96 1.3 0.294 50.01 2.2 2.452 52.99
4.8 0.529 55.60 1.2 0.137 54.55 1.4 0.192 53.92 2.4 2.057 58.11
5.2 0.342 60.30 1.3 0.042 59.10 1.5 0.101 57.89 2.6 1.732 63.26
5.6 0.231 65.12 1.4 0.043 63.77 1.6 0.031 61.94 2.8 1.566 68.55
6 0.210 69.71 1.5 0.026 68.34 1.7 0.007 66.01 3 1.314 73.86
6.4 0.084 74.33 1.6 0.012 73.54 1.8 0.052 72.76 3.2 1.216 79.17
6.8 0.083 79.13 1.7 0.003 77.50 1.9 0.013 74.14 3.4 1.049 84.56
7.2 0.025 83.79 1.8 0.043 82.10 2 0.061 78.12 3.6 0.903 89.88
7.6 0.031 88.56 1.9 0.006 86.80 2.1 0.004 82.16 3.8 0.835 95.36
8 0.044 93.41 2 0.025 91.72 2.2 0.022 86.22 4 0.793 100.79
Panel B: Case 5, European call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

1.6 8.958 9.45 0.4 7.629 9.38 0.6 1.722 11.54 0.8 7.762 9.28
2.4 4.034 13.97 0.6 1.854 13.75 0.8 1.415 15.30 1.2 4.834 14.02
3.2 1.938 18.58 0.8 0.127 18.29 1 0.944 19.14 1.6 2.999 18.94
4 0.875 23.21 1 0.328 22.78 1.2 0.599 23.07 2 1.981 23.94
4.8 0.392 27.97 1.2 0.342 27.31 1.4 0.368 27.02 2.4 1.413 29.08
5.6 0.220 32.40 1.4 0.199 31.88 1.6 0.168 30.98 2.8 1.011 34.29
6.4 0.009 37.31 1.6 0.077 36.53 1.8 0.087 35.07 3.2 0.848 39.65
7.2 0.098 41.93 1.8 0.086 41.09 2 0.002 39.12 3.6 0.601 45.05
8 0.045 46.47 2 0.042 45.70 2.2 0.038 43.16 4 0.540 50.46
8.8 0.102 51.00 2.2 0.009 50.35 2.4 0.041 47.35 4.4 0.404 56.03
9.6 0.110 55.82 2.4 0.016 55.03 2.6 0.009 51.38 4.8 0.371 61.63
10.4 0.084 60.45 2.6 0.036 59.65 2.8 0.011 55.52 5.2 0.307 67.34
11.2 0.108 65.14 2.8 0.036 64.36 3 0.002 59.58 5.6 0.290 73.02
12 0.125 69.46 3 0.029 69.06 3.2 0.046 63.81 6 0.211 78.75
Panel C: Case 6, European call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

2 1.770 8.92 0.5 0.394 7.31 0.25 0.267 7.65 1 4.668 10.00
3 0.752 13.25 0.75 0.133 11.30 0.5 0.191 11.71 1.5 2.188 15.85
4 0.466 17.26 1 0.027 15.25 0.75 0.153 11.78 2 1.206 22.31
5 0.264 21.53 1.25 0.046 19.46 1 0.123 15.93 2.5 0.804 29.23
6 0.189 26.21 1.5 0.015 23.92 1.25 0.034 20.23 3 0.607 36.52
7 0.101 30.08 1.75 0.019 27.97 1.5 0.025 24.86 3.5 0.317 43.88
8 0.017 34.14 2 0.115 32.60 1.75 0.119 34.22 4 0.291 51.82
9 0.043 38.25 2.25 0.015 37.28 2 0.003 38.99 4.5 0.198 60.14
10 0.129 42.41 2.5 0.067 42.01 2.25 0.031 44.05 5 0.088 68.64
11 0.080 46.70 2.75 0.046 47.02 2.5 0.133 49.25 5.5 0.220 77.40
12 0.048 50.82 3 0.034 51.97 2.75 0.009 54.30 6 0.131 86.38
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Table 5: Results for the Asian call option using Cases 2 to 6.
Panel A: Case 2, Asian call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

4 1.645 47.63 1 1.645 45.09 1 2.878 37.35 2 4.934 48.82
8 0.411 95.59 2 0.822 90.61 2 1.645 76.05 4 1.234 101.83
12 0.822 287.94 3 0.082 145.39 3 0.411 116.82 6 0.165 320.60
16 0.130 373.66 4 0.057 228.58 4 0.028 152.57 8 0.195 541.43
Panel B: Case 3, Asian call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

4 0.071 49.89 1 0.010 49.58 1 0.042 40.82 2 0.033 48.04
8 0.060 93.86 2 0.018 89.56 2 0.025 74.43 4 0.014 100.38
12 0.052 272.05 3 0.000 144.20 3 0.016 113.97 6 0.006 306.57
16 0.033 373.24 4 0.036 223.69 4 0.006 153.08 8 0.010 547.00
Panel C: Case 4, Asian call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

4 0.895 46.11 1 0.318 45.36 1 0.938 38.05 2 2.035 47.72
8 0.078 92.65 2 0.042 90.82 2 0.015 77.45 4 0.443 100.52
12 0.095 295.40 3 0.004 143.12 3 0.007 118.58 6 0.224 273.60
16 0.111 383.22 4 0.030 211.19 4 0.025 160.99 8 0.078 534.27
Panel D: Case 5, Asian call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

4 0.806 23.15 1 0.142 22.79 1 1.164 19.12 2 0.670 23.88
8 0.131 45.73 2 0.098 0.10 2 0.043 38.90 4 0.189 50.37
12 0.173 68.93 3 0.017 68.80 3 0.047 59.28 6 0.099 78.33
16 0.176 100.49 4 0.034 92.47 4 0.085 80.36 8 0.039 107.93
Panel E: Case 6, Asian call option

QE GA IG BK-I

m Bias Time m Bias Time m Bias Time m Bias Time

4 0.310 17.16 1 0.036 15.02 1 0.044 15.70 2 1.270 22.00
8 0.143 35.00 2 0.063 33.90 2 0.037 34.84 4 0.274 51.74
12 0.132 50.09 3 0.002 51.82 3 0.063 54.05 6 0.068 86.29
16 0.006 67.29 4 0.004 72.24 4 0.004 75.27 8 0.038 123,53
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