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Fourier, 91000 Evry,

e-mail: randal.douc@it-sudparis.eu
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Abstract: In this paper, we study the asymptotic efficiency of the de-
layed rejection strategy. In particular, the efficiency of the delayed rejection
Metropolis-Hastings algorithm is compared to that of the regular Metropo-
lis algorithm. To allow for a fair comparison, the study is carried under
optimal mixing conditions for each of these algorithms. After introducing
optimal scaling results for the delayed rejection (DR) algorithm, we outline
the fact that the second proposal after the first rejection is discarded, with a
probability tending to 1 as the dimension of the target density increases. To
overcome this drawback, a modification of the delayed rejection algorithm
is proposed, in which the direction of the different proposals is fixed once for
all, and the Metropolis-Hastings accept-reject mechanism is used to select
a proper scaling along the search direction. It is shown that this strategy
significantly outperforms the original DR and Metropolis algorithms, espe-
cially when the dimension becomes large. We include numerical studies to
validate these conclusions.
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1. The Delayed Rejection strategy

Markov chain Monte Carlo (MCMC) methods are used to produce samples from
an arbitrary distribution π known up to a scaling factor; see Robert and Casella
(2004). The technique consists in sampling a Markov chain {Xk, k ≥ 0} on a
state space X admitting π as its unique invariant distribution.

Metropolis-Hastings algorithms are an important class of MCMC algorithms.
These algorithms allow for a lot of flexibility, as they can be used to sample
from virtually any probability distribution of interest. Specifically, let us make
an abuse of notation by letting π denote not only the target distribution, but
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also the target density on a state space X with respect to some measure µ. To
become part of a Markov chain currently at a state x, a state y must survive two
stages: it must first be selected as the candidate from the proposal distribution,
and then be retained as a suitable value for the Markov chain (through the
acceptance function). We then define a proposal density q(x; ·) on X with respect
to the same measure µ as before. The Metropolis-Hastings algorithm amounts
to choosing the candidate y with probability

α(x; y) , 1 ∧ π(y)q(y;x)

π(x)q(x; y)
. (1)

If the candidate y is rejected, the chain remains at the current state x. The
acceptance function of this algorithm has been chosen to satisfy the reversibility
property of the chain with respect to π, that is

π(x)q(x; y)α(x; y) = π(y)q(y;x)α(y;x) , ∀ (x, y) ∈ X× X . (2)

This property ensures that π is the invariant distribution of the Markov chain.
The delayed rejection Metropolis algorithm introduced by Tierney and Mira

(1999) and further developed in Mira (2001a) for fixed dimensional problems
(and Green and Mira (2001) for trans-dimensional problems), aims at improving
the proposal scheme of the Metropolis-Hastings algorithm by learning from past
rejections (in a given iteration) to choose the proposal distribution. It allows,
upon the rejection of a move, to retry further candidates before incrementing
time; it thus generates several successive trial values per iteration. In one itera-
tion of the k-step delayed rejection algorithm, we start by proposing a candidate
for the next state of the Markov chain. Upon the rejection of this value, another
candidate is generated from a proposal density possibly different from the first
one. This is repeated until a move is accepted, or until k candidates have been
rejected.

In recent years, the delayed rejection algorithm has been successfully applied
to a number of very challenging simulation problems in different areas, such
as volatility modeling in financial econometrics (Raggi (2005)), gravitational
wave searches (Umstätter et al. (2004); Trias, Vecchio and Veitch (2009)), ob-
ject recognition (Harkness and Green (2000)), and time-series analysis (Haario
et al. (2006)). However, there has not been much research about the theoretical
properties of these algorithms. Furthermore, it is not totally obvious how to se-
lect the different proposal distributions to improve maximally the performance
of the method. In this paper, we focus on the two-step random walk delayed
rejection algorithm mentioned in Green and Mira (2001); we derive asymptotic
optimal scaling results allowing us to determine the proposal scalings for which
this algorithm shall mix optimally.

The first theoretical results about the optimal scaling issue for MCMC al-
gorithms have been obtained by Roberts, Gelman and Gilks (1997) in the
case of the Metropolis algorithm with a Gaussian increment density (see also
Gelfand and Mitter (1991) for related weak convergence results of Metropolis
algorithms). In their article, the authors focused on finding the best scale for the
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algorithm when sampling from T -dimensional product target densities (with T
large). Although the target densities considered form a rather restrictive class,
the results obtained have been illuminating for both researchers and practition-
ers. They opened the door to several generalizations and nowadays, researchers
are starting to consider increasingly realistic target models, some of them includ-
ing correlated components; see Roberts and Rosenthal (2001), Bédard (2007),
Bédard and Rosenthal (2008), Beskos, Roberts and Stuart (2009), Mattingly,
Pillai and Stuart (2012).

The optimal scaling results published in the literature have mainly been re-
stricted to the Metropolis algorithm, the Metropolis-adjusted Langevin algo-
rithm (MALA) and, very recently, to the so-called Hybrid Monte Carlo algo-
rithms; see Mattingly, Pillai and Stuart (2012) and the references therein. One
of the goals of this work is to demonstrate that the scaling limits can be useful
in the context of delayed rejection Metropolis algorithms, in which the succes-
sive candidates are obtained from random walks, possibly with different scales.
We first consider the case where the successive candidates are independent. The
scaling analysis shows that such an algorithm is prone to be inefficient in large
dimension because, rather unexpectedly, the probability of accepting the second
candidate once the first one has been rejected vanishes as the dimension goes
to infinity. This is due to the specific form of the acceptance ratio, which is de-
signed to preserve the reversibility of the kernel with respect to the stationary
distribution π. This suggests generating a candidate which is correlated with
the first one. It is in particular shown that proposing a second candidate anti-
thetically can be very successful; this conclusion is supported by our computer
experiments.

The paper is organized as followed. Section 2 introduces the two-step ran-
dom walk delayed rejection algorithm of Green and Mira (2001); optimal scaling
results for this algorithm are given in Theorem 1 (proof is postponed to Ap-
pendix B). Section 3 introduces the two-step random walk delayed rejection
algorithm with common proposal; optimal scaling results are presented in The-
orem 4 (proof is postponed to Appendix C). We conclude with simulation studies
that validate our findings in Section 4 and with a discussion in Section 5.

2. The two-step random walk delayed rejection algorithm

In this section, we consider the original two-step delayed rejection algorithm.
Denoting the current state of the chain by X = x, one iteration of this algorithm
is defined as follows

Algorithm 1 (Delayed Rejection Algorithm).
(a) Draw a candidate Y 1 from a proposal distribution q1(x; ·);
(b) Accept this proposal with probability α1(x, Y 1), where

α1(x; y1) , 1 ∧ π(y1)q1(y1;x)

π(x)q1(x; y1)
. (3)
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(c) Upon the rejection of the previous candidate, draw a second candidate Y 2

from the transition kernel q2(x, Y 1; ·) and accept it with probability α2(x, Y 1;Y 2),
where

α2(x, y1; y2) = 1 ∧
π
(
y2
)
q1(y2; y1)

[
1− α1(y2; y1)

]
q2
(
y2, y1;x

)
π (x) q1 (x; y1) [1− α1 (x; y1)] q2 (x, y1; y2)

. (4)

The rejection of the first candidate suggests that the proposal distribution
from which it has been generated is not very well suited to the target distribu-
tion. Therefore, it might be worth freezing time and proposing another value y2

for the chain (possibly depending on the first move); this candidate is accepted
with probability α2(x, y1; y2) and is rejected otherwise. Upon the rejection of
both proposed values y1 and y2, we repeat the current value x in our sample,
increment time and start over again with q1. The acceptance probability α2 is
chosen such that the generated Markov chain is reversible with respect to the
target distribution π.

The two-step method outlined illustrates the basic idea of the delayed rejec-
tion Metropolis algorithm, but can of course be extended to the general k-step
delayed rejection algorithm. This is achieved by adjusting the acceptance prob-
ability of every additional layer such as to preserve the reversibility property of
the chain.

Among possible strategies of learning upon a first stage rejection, Tierney
and Mira (1999) suggest choosing an initial independence proposal density
q1(x; y1) = q1(y1) that is believed to be well-fitted to the target distribution,
and to use a second stage random walk proposal q2(x, y1; y2) = q2(y2−x). If q1

is a good approximation of π, the first candidate will be most often accepted. In
the eventuality where q1 is not a good proposal, then the random walk compo-
nent will protect the chain from the bad mixing of an independence MCMC with
poor proposal distribution. Tierney and Mira (1999) also discuss an approach
based on the model-trust region method of optimization. Although potentially
effective, these two strategies remain difficult to study from a theoretical per-
spective.

An appealing specific case of the delayed rejection methods later introduced
in Green and Mira (2001) is the two-step random walk delayed rejection algo-
rithm. This method consists in proposing a candidate y1 in the first stage of the
iteration by using a symmetrical increment density, i.e. q1(x; y1) = q1(y1 − x)
with q1(−z) = q1(z). If the candidate is accepted, which happens according to
the usual acceptance probability

α1(x; y1) = 1 ∧ π(y1)/π(x) , (5)

then we move to the next iteration. In the case where y1 is rejected, a second can-
didate y2 is drawn from a different symmetrical increment density q2(x, y1; y2) =
q2(y2 − x) with q2(−z) = q2(z); the second candidate is then accepted with
probability

α2(x, y1; y2) = 1 ∧
π
(
y2
)
q1
(
y1 − y2

) [
1− π(y1)/π(y2)

]
+

π (x) q1 (y1 − x) [1− π(y1)/π(x)]+
, (6)
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where a+ = max(a, 0).
In both stages, candidates are thus generated according to random walk

components. One may, for example, choose to use two increment distributions
from the same family (e.g. Gaussian) but with different scales, qi(y − x) =
σ−1i q((y − x)/σi), i = 1, 2 with q(z) = q(−z). An intuitive approach would
consist in being more aggressive with the first candidate and thus attempting
to perform a large move; if this move is rejected, then a second candidate gen-
erated from a distribution with a smaller scale could be proposed. Under this
setting, the algorithm gets to choose the most appropriate scale for the proposal
distribution locally.

Following the above description of the two-step random walk delayed rejection
(RWDR) algorithm, there would thus be two main questions of interest: (i) does
the RWDR algorithm compare favorably to the usual Metropolis algorithm, and
(ii) what are the proposal scales leading to an optimal mixing of this algorithm
over its state space? In order to answer the first question, we obviously need
answers to the second one. Indeed, if we are to put the RWDR methods against
the Metropolis algorithm, it would only be fair to do so under optimal settings
for both algorithms. The remaining of this section thus focuses on studying this
optimal scaling issue for the two-step random walk delayed rejection algorithm.

To facilitate the comparison to the Metropolis algorithm, we shall work under
assumptions that are similar to those specified in Roberts, Gelman and Gilks
(1997). The first of these assumptions describes the form of the target density:

(A1) The target density is formed of T + 1 i.i.d. components:

π (x) =

T∏
t=0

f (xt) . (7)

The one-dimensional probability density function f is a positive twice
continuously differentiable function, [ln f ]′′ is bounded Lipschitz and∫

f(x)|[ln f ]′(x)|4dx <∞ .

Solving the optimal scaling problem in finite-dimensional settings is a very
difficult task, and has been achieved for a specific class of target distributions
only. Optimal scaling results are more generally obtained by considering the
high-dimensional distributions that arise from letting T →∞. Under this frame-
work, adjustments of the proposal distributions become necessary and are now
discussed.

We denote by
(
X[n] , (Xt[n])

T
t=0 , n ∈ N

)
the sequence of Markov chains on

(RT+1, T ∈ N) defined by the RWDR algorithm with target distribution π given
in (7).

Define F = (Fn, n ≥ 0), the natural filtration of the Markov chain X, i.e. for
any n ≥ 0,

Fn , σ (X[m],m = 0, . . . , n) . (8)
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The assumptions above give rise to a particular case of the classical delayed
rejection sampling, which is presented in more detail:

Algorithm 2 (Two-step RWDR algorithm with independent proposals).
(a) Given the current state X[n] of the Markov chain at time n, two proposals(

Yi[n+ 1]
)
i=1,2

,
(
Y it [n+ 1], 0 ≤ t ≤ T

)
i=1,2

,

are generated according to

Y it [n+ 1] = Xt[n] + T−1/2U it [n+ 1] , 0 ≤ t ≤ T, i = 1, 2 (9)

where

(a) for any t ∈ {0, . . . , T},
(
U1
t [n+ 1]

U2
t [n+ 1]

)
∼ N

(
0,

[
`21 0
0 `22

])
,

(b) The T +1 random vectors {(U1
t [n+1], U2

t [n+1])}Tt=0 are conditionally
independent given Fn, where Fn is defined in (8).

(b) The first proposal Y1[n+ 1] is accepted with probability α1(X[n]; Y1[n+ 1])
where

α1(x; y1) = 1 ∧ π(y1)

π(x)
. (10)

(c) Upon rejection of the first candidate Y1[n+1], propose the second candidate
Y2[n+ 1] and accept it with probability:

α2(X[n],Y1[n+ 1]; Y2[n+ 1])

where

α2(x, y1; y2) = 1 ∧
π
(
y2
)
q1
(
y1 − y2

) [
1− π(y1)/π(y2)

]
+

π (x) q1 (y1 − x) [1− π(y1)/π(x)]+
, (11)

and q1 is the density of a centered Gaussian random vector of dimension
T + 1 with covariance matrix `21IT+1/T and IT+1 is the (T + 1)-dimensional
identity matrix. Otherwise, reject it.

Remark 1. In Step a, both candidates are generated simultaneously whereas in
practice, a given iteration might only require the simulation of the first candidate.
This is convenient here to define the algorithm, but is of course not required in
its implementation.

Before going further, it is worth outlining the form of the covariance matrix
of the proposal distribution stated above. The proposal variances `2i /T , i = 1, 2
are decreasing functions of the dimension; this means that as T increases, the
algorithm generates candidates that are increasingly conservative. This rescaling
of the space keeps the acceptance rates from going to 0. To match this space
adjustment, it is also necessary to speed time up. Formally, denote by ζT the
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projection on the first coordinate, that is ζT : RT+1 → R such that ζT (x) = x0.
Consider the progressive cadlag process WT , (WT [s], s ∈ R+) defined by

s 7→ WT [s] = ζT [X (bTsc)] . (12)

It has been realized over the years that asymptotically, s 7→ WT [s] most
often behaves according to Langevin diffusion processes as T goes to infinity,
and that these limiting processes only differ in the form of their speed measure.
In order to lighten general diffusive limit proofs, Bédard, Douc and Moulines
(2012) have recently introduced some conditions establishing weak convergence
(in the Skorokhod topology) of a general class of MCMC algorithms with mul-
tiple proposals to the appropriate Langevin diffusion process. These conditions
are recalled in Appendix A.

Before stating the first theorem, let us introduce a few quantities of interest.
The conditional probability of accepting the first move is given by ᾱ1 (X), where

ᾱ1 (x) = E
[
A1

(
L0,T (x,U1)

)]
(13)

with
A1(u) = 1 ∧ eu , (14)

and, for s ∈ {0, . . . , T}, Ls,T (x,u) is the log-likelihood ratio

Ls,T (x,u) =

T∑
t=s

{
ln f(xt + T−1/2ut)− ln f(xt)

}
. (15)

For κ ∈ R, define
α̃1(κ) , E

[
A1(κG− κ2/2)

]
, (16)

where G is a standard Gaussian variable, and let

I ,
∫

[ln f ]′(x)f(x)dx . (17)

Hereafter, weak convergence in the Skorokhod topology (see Billingsley (1999))
is denoted by⇒ and the standard Brownian process is denoted by (B[s], s ∈ R+).

Theorem 1. Assume (A1) and consider Algorithm 2. Suppose that the algo-
rithm starts in stationarity, i.e. X[0] is distributed according to the target density
π.

Consider the first component of the rescaled process {WT [t], t ≥ 0} defined in
(12). Then {WT [t], t ≥ 0} ⇒ {W [t], t ≥ 0}, where W [0] is distributed according
to the density f in (A1) and {W [t], t ≥ 0} satisfies the Langevin stochastic
differential equation (SDE)

dW [t] = λ1(`1)1/2dB[t] +
1

2
λ1(`1) [ln f ]

′
(W [t])dt ,

with
λ1(`1) = `21α̃1(`1I1/2) , (18)

where α̃1 and I are defined in (16) and (17) respectively.
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The proof is postponed to Appendix B. It is implicit from this theorem that
when both proposals are independent, the probability of accepting the second
proposal goes to zero as the dimension becomes large. This may be deduced
from the expression for the speed of the limiting diffusion, which coincides with
the result reported in Roberts, Gelman and Gilks (1997) for the Metropolis
algorithm. Indeed, note that we may write

α̃1(`1I1/2) = 2Φ

(
−`1

2

√
I
)
,

where Φ is the cumulative distribution function of a standard normal random
variable. The corresponding asymptotically optimal proposal variance and ac-
ceptance rate are provided in the following corollary.

Corollary 2. In the setting of Theorem 1, the proposal scale `1 optimizing
the speed measure of the diffusion is given by `?1 = 2.39I−1/2. The expected
acceptance rate of the algorithm satisfies

α̃1(`?1I1/2) = 0.234 .

In Theorem 1, the dependence on `2 has vanished as T → ∞; this is due
to the form of the second-level proposal variance, `22/T . This scaling results
in proposed increments that are too agressive for second-level candidates, so
setting `2 to any value yields a second-level acceptance rate converging to 0.

Remark 2. It might be of interest to use a different scale adjustment fo second-
level proposal variances. By letting the first-level proposal variance be `21/T (as
before) and the second-level proposal variance take the form `22/T

2 (instead of
`22/T ), we still obtain an algorithm that asymptotically behaves according to
a Langevin diffusion process. For large T , the speed measure of the diffusion
satisfies

λ(`1, `2) = 2`21Φ

(
−`1

2
I1/2

)
+

2`22
T

Φ

(
− `2

2`1

){
1− 2Φ

(
−`1

2
I1/2

)}
.

In order to maximize the efficiency gain from second-level candidates, the pa-
rameters `1, `2 should be chosen so as to maximize the speed measure λ(`1, `2),
leading to asymptotically optimal scales of `?1 = 2.39I−1/2 and `?2 = 5.66I−1/2.
It should however be noticed that the impact of second-level candidates is tuned
down by a factor of T−1; this means that even if an optimal value for `2 can
be found, the generated increments will be too small to have an impact on the
overall mixing of the chain. The 1/T 2 rate thus results in an efficiency gain
coming from second-level candidates that converges to 0.

The random walk delayed rejection algorithm with independent proposals
yields second-level candidates that are always rejected (when the second-level
proposal variance is `22/T ), or second-level increments that become unsignificant
in high dimensions (when the second-level proposal variance is `22/T

2, or any
rate smaller than 1/T ). The second step in the delayed rejection mechanism
thus becomes useless in this limit.
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3. The two-step random walk delayed rejection algorithm with
common proposal

A major problem with the previous version of the delayed rejection algorithm
lies in the fact that both tries are generated independently of each other. In
other words, the information brought by the first rejection remains partly un-
used when it comes to proposing a second candidate. The rejection of the first
candidate might mean that the proposed increment was either too aggressive in
the direction considered, or even that attempting any move in this direction is
unlikely to result in the acceptance of the candidate. To make the most of the
information brought by the rejection of a first-level candidate, it is sensible to
propose a second-level candidate that depends on the first one. We could thus
have better chances of accepting a candidate if we were trying to move from the
current value along the same direction with a more conservative scale, or simply
in the opposite direction. We assume in the sequel that:

DR-Ca Conditionally to the current state X = x, Y 1 is sampled according to
q1(x; ·). The second proposal is then set to Y 2 = Ψ(x;Y 1) where Ψ
is a measurable function from X × X → X. The function Ψ is chosen
such that Y 2 is conditionally distributed according to q2(x; ·) given the
current state.

DR-Cb There exists a measurable function Ψ̄ : X × X → X such that Y 1 =
Ψ̄(x, Y 2).

In words, both proposals are sampled from the same random element using
different transformations. The only constraint is that, given x and Y 2, it is pos-
sible to compute Y 1 and vice versa. Starting from the idea that we wish to use a
common random element to construct two candidates, the existence of functions
Ψ and Ψ̄ satisfying DR-Ca and DR-Cb is a mild restriction in practice. These
functions are just a way to mathematically express the relationship between Y 1

and Y 2.
Supposing that the current state of the chain is X = x, one iteration of the

delayed rejection Metropolis-Hastings algorithm with common random number
is defined as follows.

Algorithm 3 (DR-Common).
(a) Draw Y 1 according to q1(x; ·)
(b) Accept the first move with probability α1(x;Y 1), where α1 is defined in (3).
(c) If the first move is rejected, compute Y 2 = Ψ(x, Y 1) and accept this second

proposal with probability ᾱ2(x;Y 2) where

ᾱ2(x; y) = 1 ∧
π(y)

[
1− α1

(
y; Ψ̄(y, x)

)]
q2(y;x)

π(x)
[
1− α1

(
x; Ψ̄(x, y)

)]
q2(x; y)

, (19)

and reject otherwise.

Because the two proposals are now correlated, the acceptance ratio of the
second candidate should be corrected to preserve the reversibility property of
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the Markov chain. Since the dependence introduced does not affect the first
candidate, the first-level acceptance ratio remains as before. It is worthwhile
noting (and essential to the scaling results below) that the first-level proposal
density q1 does not appear in the acceptance ratio ᾱ2.

For the general DR algorithm, the reversibility property of the chain with
respect to π is satisfied if, for all (x, y1, y2) ∈ X× X× X,

π(x)q1(x; y1)[1− α1(x; y1)]q2(x, y1; y2)α2(x, y1; y2) =

π(y2)q1(y2; y1)[1− α1(y2; y1)]q2(y2, y1;x)α2(y2, y1;x) .

The construction of Y 1, Y 2 from the current state x and the random element Z
defines the functions Ψ and Ψ̄ linking both candidates together. Since knowledge
of x and Y 2 deterministically leads to Y 1 = Ψ̄(x, Y 2), then we may express the
previous equation in terms of x and y2 only :

π(x)[1− α1(x; Ψ̄(x; y2))]q2(x; y2)α2(x; y2) =

π(y2)[1− α1(y2; Ψ̄(y2;x))]q2(y2;x)α2(y2;x) , ∀ (x, y2) ∈ X× X .

Note that, as in Green and Mira (2001), the return path from y2 to x does not
go through y1. It is now easily shown that, with an acceptance ratio as in (19),
the kernel is reversible with respect to π:

Theorem 3. Under assumptions DR-Ca and DR-Cb, the DR-Common algo-
rithm described above satisfies the detailed balance condition and hence induces
a reversible chain with stationary distribution π.

The second-level acceptance ratio thus guarantees reversibility regardless of
the functions Ψ and Ψ̄, provided of course that these are the mathematical
functions linking Y 1 and Y 2 together.

This algorithm is very simple to implement with random walk increments.
In this case, the first candidate is set to Y 1 = x+ `1Z, where Z is a symmetric
random vector and `1 is a scale factor. Taking

Ψ(x, y) = x+ `2`
−1
1 (y − x) , (20)

the second candidate is therefore given by Y 2 = Ψ(x, Y 1) = x + `2Z and the
proposal kernel q2 is also symmetric. In such a case, Y 1 = Ψ̄(x, Y 2) where

Ψ̄(x, y) = x+ `1`
−1
2 (y − x) . (21)

The scale `2 should of course be different from `1. We might, for instance, choose
0 ≤ `2 ≤ `1 if we are willing to try a second step heading in the same direction
but with a smaller scale. Another possibility consists in setting `2 = −`1, in
which case the two candidates are antithetic. As we will see below, antithetic
proposals should generally be preferred. In all cases, the second-level acceptance
ratio might be expressed as

ᾱ2(x; y) = 1 ∧
π(y)

[
1− π

[
Ψ̄(y, x)

]
/π(y)

]
+

π(x)
[
1− π

[
Ψ̄(x, y)

]
/π(x)

]
+

. (22)
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As was done for the random walk delayed rejection algorithm with independent
candidates, we would be interested in comparing the performance of this new
version to the performance of the Metropolis algorithm. Since we are now making
use of more information brought by the rejection of a first-level candidate, we
expect this algorithm to be more efficient than the RWDR with independent
candidates.

To facilitate the comparison between the different sampling algorithms, we
shall determine the form of asymptotically optimal proposal scalings. To this
end, we consider the random walk delayed rejection sampling with common
proposal described below:

Algorithm 4 (Two-step RWDR algorithm with common proposal).
(a) Given the current state X[n] of the Markov chain at time n, two proposals(

Yi[n+ 1]
)
i=1,2

,
(
Y it [n+ 1], 0 ≤ t ≤ T

)
i=1,2

,

are generated according to

Y it [n+ 1] = Xt[n] + T−1/2U it [n+ 1] , 0 ≤ t ≤ T, i = 1, 2 (23)

where

(a) for any t ∈ {0, . . . , T},
(
U1
t [n+ 1]

U2
t [n+ 1]

)
∼ N

(
0,

[
`21 `1`2
`1`2 `22

])
,

(b) The T +1 random vectors {(U1
t [n+1], U2

t [n+1])}Tt=0 are conditionally
independent given Fn, where Fn is defined in (8).

(b) The first proposal Y1[n+ 1] is accepted with probability α1(X[n]; Y1[n+ 1])
where α1(x; y1) is defined in (10).

(c) Upon rejection of the first candidate Y1[n+1], propose the second candidate
Y2[n+ 1] and accept it with probability:

ᾱ2(X[n]; Y2[n+ 1])

where

ᾱ2(x; y) = 1 ∧
π (y)

[
1− π

[
Ψ̄(y, x)

]
/π(y)

]
+

π (x)
[
1− π

[
Ψ̄(x, y)

]
/π(x)

]
+

= 1 ∧
[
π (y) /π (x)− π

[
Ψ̄(y, x)

]
/π(x)

]
+[

1− π
[
Ψ̄(x, y)

]
/π(x)

]
+

,

and Ψ̄ : XT+1 × XT+1 → XT+1 such that for all (x, y) ∈ XT+1 × XT+1,

Ψ̄(x, y) = x+ `1`
−1
2 (y − x) .

Otherwise, reject it.
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Similarly to the notation used earlier, the conditional probability of accepting
the first move is given by (13). The conditional probability of rejecting the first
move and accepting the second one is equal to ᾱ2(X[n]), where

ᾱ2 (x) = E
[
A2

(
L0,T (x,U1), L0,T (x,U2), L0,T (x, (1− `1`−12 )U2)

)]
(24)

with L0,T as defined in (15) and

A2(u, v, w) = [1− eu]+ ∧ [ev − ew]+ . (25)

Define, for (κ1, κ2, κ3) ∈ R3,

α̃2(κ1, κ2, κ3) , E
[
A2(κ1G− κ21/2, κ2G− κ22/2, κ3G− κ23/2)

]
, (26)

where G is a standard Gaussian variable. We obtain the following result.

Theorem 4. Assume (A1) and consider Algorithm 4. Suppose that the algo-
rithm starts in stationarity, i.e. X[0] is distributed according to the target density
π.

Consider the first component of the rescaled process {WT [t], t ≥ 0} defined in
(12). Then {WT [t], t ≥ 0} ⇒ {W [t], t ≥ 0}, where W [0] is distributed according
to the density f in (A1) and {W [t], t ≥ 0} satisfies the Langevin stochastic
differential equation (SDE)

dW [t] = λ1/2(`1, `2)dB[t] +
1

2
λ(`1, `2) [ln f ]

′
(W [t])dt ,

with λ(`1, `2) , λ1(`1) + λ2(`1, `2), λ1(`1) = `21α̃1(`1I1/2), and

λ2(`1, `2) = `22α̃2(`1I1/2, `2I1/2, (`2 − `1)I1/2) . (27)

The quantities α̃1, I, and α̃2 are defined in (16), (17), and (26), respectively.

The proof of this theorem is postponed to Appendix C.
As previously mentioned, α̃1

(
`1I1/2

)
is the average acceptance rate of the

first move in stationarity, whereas α̃2

(
`1I1/2, `2I1/2, (`2 − `1)I1/2

)
is the aver-

age acceptance rate of the second move. Note that, in this case, the limiting
acceptance rate of the second move does not vanish: by proposing correlated
proposals, the second move can be accepted with positive probability in this
high-dimensional limit.

From this theorem, we already notice that the random walk delayed rejec-
tion algorithm with common proposal is always more efficient than that with
independent proposals. The actual asymptotically optimal proposal variances
and acceptance rates, which are valid for general target distributions with i.i.d.
components satisfying Assumption (A1), are provided in the following corollary.

Corollary 5. In the setting of Theorem 4, the proposal scales `1 and `2 opti-
mizing the speed measure of the diffusion are given by `?1 = −`?2 = 2.39I−1/2.
The first- and second-level expected acceptance rates of the algorithm respectively
satisfy

α̃1(`?1I1/2) = α̃2(`?1I1/2, `?2I1/2, (`?2 − `?1)I1/2) = 0.234 .
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The optimal values observed in the corollary are perhaps surprising. The size
of the first move should be exactly the same as for the Metropolis algorithm;
the second candidate, which is proposed along the the same direction as the
first candidate, should be exactly symmetrical to the first move with respect to
the current state.

Versions considering random walk increments are natural choices for imple-
menting the DR-Common algorithm described in Algorithm 3. Such versions are
easy to implement and allow the study of scaling limits, which are not generally
available; accordingly, we do not expect optimal scaling results to be obtainable
for an arbitrary function Ψ.

Algorithm 4 is, among algorithms with random walk increments, a specific
case that considers two candidates Y 1 and Y 2 along a common search direction.
It would be possible to consider alternative forms for the covariance matrix in
Algorithm 4. However, as far as optimal scaling results are concerned, we do
not believe that there exists another covariance matrix that yields better re-
sults (higher efficiency and higher asymptotically optimal acceptance rate) un-
der the framework considered (i.e. high-dimensional i.i.d. target distributions).
With such target densities one cannot expect to consistently do better than by
proposing a candidate as far away as possible from the rejected value, i.e. in the
opposite direction.

Delayed rejection algorithms with random walk increments have many simi-
larities with multiple-try Metropolis algorithms, and this also holds in the case
of optimal scaling results. Arbitrary covariance matrices have been considered
in Bédard, Douc and Moulines (2012) for the multiple correlated-try Metropolis
algorithm, where it was established that extreme antithetic candidates result in
an optimal covariance matrix (under the same framework as considered here). In
that paper, an even more extreme form of dependency was considered through
the MTM hit-and-run algorithm, which generates candidates deterministically
(and simultaneously) along a search direction. It was concluded that this algo-
rithm, which is the MTM equivalent of Algorithm 4, was the most efficiency
method in that paper.

4. Numerical Simulations

4.1. Validation of Theorem 1

To illustrate the theoretical results stated in Theorem 1, we perform a simulation
study on a simple standard Gaussian target distribution. Specifically, we suppose
that X ∼ N (0, IT ) and use a two-step random walk delayed rejection algorithm
with independent proposals (RWDR-I) to sample from this distribution. The
first-stage RWDR-I candidates are distributed according to the optimally tuned
N (x, 5.66/T × IT ) (see Corollary 2), while the second-stage RWDR-I proposal
distribution is taken to be a N

(
x, `22/T × IT

)
; we test various values for `22

ranging from 1/T to 0.3× T .
For T = 20 and each of these second-level proposal variances, we run 300,000

iterations of the two-step random walk delayed rejection algorithm described
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Fig 1. Average quadratic variation as a function of proposal variances for the two-step RWDR
algorithm with independent proposals, applied to sample from a Gaussian target. The dotted
lines are the results of simulation studies in different dimensions.

above and estimate efficiency by recording the average quadratic variation (or
average square jumping distance) of the algorithm; similar simulations are then
repeated for T = 50, 100. The average quadratic variation is a convenient effi-
ciency measure as it is a function of the sample obtained only, i.e. it is inde-
pendent of the specific estimates that we might be interested in obtaining from
the Markov chain; it is computed as

∑T
i=1

∑N
j=1 (Xi[j]−Xi[j − 1])

2
/N , where

N is the number of iterations performed (see (Roberts and Rosenthal, 1998)).
The graph in Figure 1 displays average quadratic variations as a function of

proposal variances for T = 20, 50, 100. As the dimension of the target distribu-
tion increases, the optimal proposal variance converges towards 0, and proposal
variances located in the neighborhood of this optimal value tend to generate can-
didates that are automatically rejected, inducing average quadratic variations
that are null.

Figure 2 aims at empirically comparing the performance of the Metropo-
lis algorithm with a Gaussian proposal to that of the two-step RWDR-I algo-
rithm described above. For the comparison to be fair, both algorithms should
be tuned according to their respective optimal proposal variances. Accordingly,
the first-stage proposal distribution of the RWDR-I algorithm is identical to the
proposal distribution of the Metropolis algorithm, i.e. N (x, 5.66/T × IT ); the
second-stage candidates of the RWDR-I algorithm are generated according to a
N
(
x, 5.662/T 2 × IT

)
(see Remark 2).

In Figure 2, we performed 200,000 iterations of the Metropolis and RWDR-
I algorithms in dimensions T = 5, 10, 20, 50, 100, and recorded the average
quadratic variations. Both curves quickly converge towards the asymptotic ef-
ficiency value, λ1(ˆ̀

1) = 2(5.66)Φ(−
√

5.66/2); even in small dimensions, the
efficiency gain from the RWDR-I algorithm does not seem worth its extra com-
putational effort.
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Fig 2. Average quadratic variation of the Metropolis algorithm (bottom curve) and of the
two-step RWDR algorithm with independent proposals (top curve) as a function of the target
distribution dimension, T . The constant line represents the theoretical asymptotic efficiency.

4.2. Validation of Theorem 4

To validate the theoretical results and to compare the efficiency of the RWDR
with common proposal (RWDR-C) to that of the Metropolis algorithm, we con-
sider the toy example discussed in the previous section where X ∼ N (0, IT ).
As a first-level proposal distribution, we use a N (x, 5.66/T × IT ); the second-
level proposal distribution is taken to be a N

(
x, `22/T × IT

)
, where we test 100

different values for `2 ranging from −
√

15 to −
√

0.3 and from
√

0.1 to
√

5. For
each of these second-level proposal scaling values, we run 300,000 iterations of
a two-step RWDR-C algorithm and estimate efficiency by recording the average
quadratic variation (AQV); we also record the proportion of second-level can-
didates that have been retained in the process (second-level acceptance rate).

We perform these simulations for T = 20, 50, 100 and combine the three
resulting curves of AQV versus `2 on a graph (Figure 3, left). We also include the
theoretical efficiency curve of λ1(`?1) + λ2(`?1, `2) versus `2. In a similar fashion,
the right graph of Figure 3 illustrates the relationship between the AQV and
the second-level acceptance rates of the algorithm; we however focus here on
second-level candidates that are antithetic, i.e. for which `2 is negative. The solid
line represents the theoretical efficiency curve against α̃2(`?1I1/2, `2I1/2, (`2 −
`?1)I1/2), the second-level asymptotically expected acceptance rate evaluated at
`?1. In both graphs, we also include the theoretical efficiency curve of a Metropolis
algorithm with aN (x, 5.66/T × IT ) proposal distribution (which is independent
of `2, and thus constant).

As expected from Corollary 5, a global mode occurs at `?2 = −`?1 = −2.39 on
the left graph, hence it is optimal in the present setting to favor symmetrically
antithetic candidates. We also notice a local mode around `2 = 1.2; this value
represents the optimal value for `2 in the case where the second-level candidate
is restricted to move in the same direction as `1. A comparison with the constant
efficiency curve of the Metropolis algorithm shows that an optimal tuning of the
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Fig 3. Average quadratic variation as a function of `2 (left) and the second-level acceptance
rate (right) for the two-step RWDR algorithm with common proposal, applied to sample from
a Gaussian target. The symbols are the results of simulation studies in different dimensions,
while the dotted lines represent the theoretical efficiency curves.

proposal variances for the RWDR-C algorithm leads to a sampling algorithm
that is twice as efficient as an optimally tuned Metropolis algorithm.

Before concluding this section, we finally use the toy example to compare the
performances of the RWDR-I and RWDR-C algorithms described in Sections 4.1
and 4.2; to this end, we run simulation studies similar to those described in these
sections. The left graph of Figure 4 illustrates the relationship between the av-
erage quadratic variation and the dimension T , for optimally tuned Metropolis,
RWDR-I, and RWDR-C algorithms; even for small T , the RWDR-C algorithm
is seen to be more efficient than the Metropolis and RWDR-I algorithms. The
right graph of Figure 4 represents the AQV versus the global acceptance rates of
the RWDR-I and RWDR-C algorithms in various dimensions. The symbols are
used to illustrate the behavior of the algorithm with antithetic candidates, while
the dotted lines are used for the independent candidates. Poorly tuned RWDR-
C algorithms have a higher AQV than optimally tuned RWDR-I algorithms. It
is however interesting to note that a poor tuning of the RWDR-C algorithm has
a more significant impact than a poor tuning of the RWDR-I algorithm.

When taking the computational effort into account, the convention is to di-
vide efficiency by the number of candidates to generate at every iteration; in an
algorithm requiring two candidates per iteration, we would thus need to halve ef-
ficiency in adjusting for the computational cost. Given that a RWDR algorithm
with common proposal does not require the generation of two candidates at ev-
ery iteration, but only in about 76.6% of iterations (when tuned optimally), this
signifies that this method shall generally be more efficient than the Metropolis
algorithm, even when taking the computational effort of accepting/rejecting an
extra candidate into consideration (a gain of approximately 15% in efficiency).
If we add this to the fact that computing second-level acceptance probabilities
is often extremely cheap (due to the relationship between `?1 and `?2), imple-
menting the RWDR algorithm with common proposal might bring a significant
advantage over the Metropolis algorithm, and could thus be favored in a large
number of situations.
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Fig 4. Left: AQV of the Metropolis (bottom curve), the RWDR-I (middle curve), and RWDR-
C (top curve) as a function of the target distribution dimension, T . The constant lines rep-
resent the corresponding theoretical asymptotic efficiencies. Right: AQV as a function of the
acceptance rate for the RWDR-I and RWDR-C algorithms. The symbols are the results of
simulation studies in different dimensions for the antithetic proposals, while the dotted lines
are the simulation results for the independent proposals.

Table 1
Number of latent membranous lupus nephritis cases (numerator) and total number of cases

(denominator), for each combination of the covariates values

IgA
IgG 0 0.5 1 1.5 2
-3.0 0/1 - - - -
-2.5 0/3 - - - -
-2.0 0/7 - - - 0/1
-1.5 0/6 0/1 - - -
-1.0 0/6 0/1 0/1 - 0/1
-0.5 0/4 - - 1/1 -
0.0 0/3 - 0/1 1/1 -
0.5 3/4 - 1/1 1/1 1/1
1.0 1/1 - 1/1 1/1 4/4
1.5 1/1 - - 2/2 -

4.2.1. Logistic regression model with lupus data

We finally compare the performances of the RWM algorithm, RWDR algorithm
with independent proposals (RWDR-I), and RWDR algorithm with antithetic
proposals (RWDR-C) in the case of a logistic regression model. The data consid-
ered for that example is the same as Example 4.2 of Craiu and Lemieux (2007);
the aim of the experiment is to predict the occurrence of latent membranous lu-
pus in patients with the help of two clinical covariates, IgG3-IgG4 and IgA, that
respectively measure the levels of type-G and type-A immunoglobulin. Table 1
has been reproduced from Craiu and Lemieux (2007) and shows the measure-
ments of the covariates on 55 patients, of which 18 have been diagnosed with
the disease.

We consider the following logistic regression model

logitP [Yi = 1] = β0 + β1X1i + β2X2i,
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where X ′i = (1, Xi1, Xi2) is the vector of covariates for the i-th patient. The
selected prior distribution for β = (β0, β1, β2)′ is a multivariate normal with
mean (0, 0, 0)′ and covariance matrix 1002I3. It follows that the posterior density
for β satisfies

π(β|x, y) ∝ e−
0.5

1002

∑2
j=0 β

2
j

55∏
i=1

[exp(X ′iβ)]yi

1 + exp(X ′iβ)
.

We obtain samples from π using the RWM, RWDR-I, and RWDR-C algo-
rithms. In all three cases, the proposal distribution q(·|β) is a normal centered
at β; the covariance matrix of the proposal is given by σ2I3, where σ > 0 is de-
pendent upon the chosen sampling method. As the target distribution is neither
high-dimensional nor formed of i.i.d. components, we compare two approaches
to tune the parameters σ of the algorithms considered. In the first approach,
we tune σ so as to yield acceptance rates that are close to the theoretical rates
introduced in Sections 2 and 3: 0.234 for the RWM algorithm and 0.468 for the
RWDR-C algorithm. The target distribution being three-dimensional, it would
not be fair to tune the RWDR-I to accept only 25% of the proposed candidates.
We thus let σ1 = 2.25 as for the RWM algorithm (see Table 2), and then we
find the corresponding σ2 using Remark 2. In the second approach, we select
the proposal variances leading to optimal performances in terms of the average
quadratic variation.

We would be interested in estimating β1 and p25 = 1{β1>25}. For each algo-
rithm, we start the chain at β = 0 and we draw a total of 3,064,800 values, of
which the first 5,000 values in the chain are discarded as burn-in period. The
remaining values are divided into M = 300 samples of size N = 10, 000; this
is achieved by discarding, between each sample, 200 values from the chain. Us-
ing the above samples, we then compute the Monte Carlo mean squared error
(MC-MSE) of our estimates. By denoting the j-th replicate of β1 within the i-th
sample by bij , the Monte Carlo mean squared error is expressed as

M(β1) = (b̄·· − E [β1|data])2 +
1

M − 1

M∑
i=1

(b̄i· − b̄··)2 ,

where b̄i· =
∑N
j=1 bij/N for i = 1, . . . ,M and b̄·· =

∑M
i=1

∑N
j=1 bij/MN . A

similar expression may be obtained for the MC-MSE of p25. As mentioned in
Craiu and Lemieux (2007), we use E [β1|data] ≈ 13.57 and E [p25|data] ≈ 0.073,
which have been obtained through numerical integration.

Table 2 provides, for each algorithm and for each tuning approach considered,
the MC-MSE for β1 and p25, along with the average quadratic variation. It
also specifies the proposal scalings used as well as the global acceptance rates
obtained.

For this example, the RWDR-C algorithm seems to be performing much more
efficiently than the RWM and RWDR-I algorithms. Efficiency is improved by a
factor lying between 1.8 and 2, depending on the efficiency measure considered;
a tuning impact (theoretical versus optimal) is present, as all efficiency measures
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Table 2
For each algorithm (RWM, RWDR-I, RWDR-C) and tuning approach (theoretical,
optimal), the following quantities are provided: proposal scalings, acceptance rate,

MC-MSEs for β1 and p25, AQV.

Tuning Method . σ1 σ2 Acc. rate M(β1) M(p25) AQV

RWM 2.15 - 0.253 1.899 .00204 2.019
Theoretical RWDR-I 2.15 1.00 0.582 1.795 .00182 2.722

RWDR-C 2.15 2.15 0.426 0.987 .00112 3.646

RWM 2.60 - 0.196 1.710 .00171 2.078
Optimal RWDR-I 2.60 2.00 0.364 1.160 .00124 3.095

RWDR-C 2.60 2.60 0.337 0.863 .00090 3.790

(for all three algorithms) are improved under the optimal tuning scheme, but
does not seem major. When tuned optimally, the RWDR-I algorithm offers an
improvement between 40%-50%; in this case, tuning the RWDR-I optimally as
opposed to theoretically seems to have a significant impact.

We note here that the target distribution considered is a low-dimensional,
correlated distribution, which violates important assumptions under which the
optimal scaling results of Theorem 1 and Corollary 5 were obtained. In spite
of the violation of the assumptions, it is important to outline the fact that the
theoretical tuning offers an interesting option for RWDR-C algorithms, as the
results obtained under this tuning scheme are not too different from the optimal
results obtained. The RWDR-C method displays a substantial improvement over
the RWM and RWDR-I algorithms, and thus constitutes an efficient alternative
to these methods. Due to the nature of antithetic proposals, the computation
of second-level acceptance rates is often practically free. This is the case here,
as once the target density is computed for a proposed value, one can directly
compute the same quantity for the antithetic increment without affecting the
computational intensity of the algorithm; this is achieved by a simple manipu-
lation on the target density π(β|x, y).

5. Discussion

General conclusions about the efficiency of delayed rejection methods can hardly
be drawn without considering specific expressions for the target density and the
computational intensity of the algorithm. Nonetheless, the asymptotic theory
previously considered gives us good indications about the potential of these
samplers.

In addition to providing users with optimal scaling values, the asymptotic
theory derived in Section 2 could be seen as a guideline to improve the two-step
RWDR algorithm with independent components. Theorem 1 warns us about the
issues of this algorithm in high dimensions; according to the limiting diffusion
obtained, it is a loss of time and resources to choose such a sampler over the
RWM algorithm to sample from high-dimensional target densities. The main
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problem in its proposal scheme seems to come from the fact that not enough of
the available information is used in the generation of the second-level candidate.
Since this method is asymptotically equivalent to the RWM algorithm but more
expensive computationally, the latter remains a better option.

Nonetheless, it is worth mentioning that regardless of how large is d, the
RWDR algorithm with independent components outperforms the “correspond-
ing” RWM algorithm (i.e. a RWM sampler with the same first-level proposal)
in the Peskun and covariance orderings (see Mira (2001b) and the references
therein). In other words, given that one wishes to estimate the expected value
of any squared integrable function (with respect to the target), the RWDR pro-
duces estimators that have a smaller asymptotic variance than the RWM in the
CLT. This is explained by the fact that the Markov chain has a higher proba-
bility of moving away from the current position under the RWDR strategy, as
discussed in Mira (2001b). This relative advantage washes out as d increases
(expecially if no clever way to construct the higher level candidates is designed)
and does not take into account the additional computational time required to
run higher levels.

The potential in learning from rejected candidates to propose new candidates
before incrementing time should however not be dismissed. By generating cor-
related candidates from a common proposal, it is possible to obtain a nontrivial
limiting process involving second-level candidates, which improves on the RWM
algorithm. It appears that to optimize the efficiency of this version of RWDR
methods, one should favor antithetic candidates, where the second-level pro-
posal is exactly symmetrical to the first-level proposed value around the current
state. This means that upon the rejection of a candidate, one should propose
an increment of equal magnitude, but in the opposite direction. In the current
framework (high-dimensional i.i.d. target densities), the improvement over the
RWM algorithm is significant: the asymptotic efficiency of the algorithm is dou-
bled. Even in assuming that the computation of two acceptance probabilities
(for the first- and second-level candidates) in a given iteration is twice as de-
manding as the computation of only one acceptance probability, the net gain is
positive as delayed rejection methods do not require the generation of two can-
didates at every iteration performed. Moreover, as witnessed in the numerical
studies, the relationship between the optimal values `?1 and `?2 shall often result
in second-level acceptance probabilities that are computationally free, making
the RWDR with common proposal an even more attractive option.

Although the asymptotic results of Section 3 are not directly applicable to
the lupus example of Section 4.2.1, the results obtained with the RWDR with
antithetic proposals still show a significant improvement over the RWM algo-
rithm. Under the violation of the target density assumptions, antithetic pro-
posals might not always be the optimal choice. Candidates in a common direc-
tion, for instance, might become optimal for some target densities with corre-
lated components. Regardless of the optimal relationship between the first- and
second-level proposals in specific problems, it seems like the random walk de-
layed rejection algorithm with common proposal shows a great deal of potential
in many applications. The optimal correlation between the candidates in a given
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iteration might still lead to a reduction in the cost of the second-level acceptance
probability, even when the candidates are not symmetrically antithetic.

The results obtained here could be extended to delayed rejection algorithms
with a larger number of tries per iteration. In the case of random walk incre-
ments, we could propose further candidates based on the random vector Z; this
would yield a proposal scheme similar to the multiple-try Metropolis hit-and-run
algorithm of Bédard, Douc and Moulines (2012), but in which the candidates
are generated successively rather than simultaneously. However, given that the
greatest gain in efficiency is obtained when proposing a second candidate that
is exactly symmetrical to the first one around the current state x, then the
marginal efficiency gain resulting from the inclusion of a third candidate in the
same direction would necessarily be of lesser impact than the gain from a sec-
ond candidate. In fact, we can reasonably expect that the marginal efficiency
gain will decrease with each additional candidate in a given iteration. It is thus
unlikely that futher candidates are worth the additional computational effort
needed for their implementation.

Other types of generalizations would be possible and would require, for in-
stance, determining how to choose the direction in which a third candidate
should be proposed. Let us suppose that Z = (z1, z2); then, the second candi-
date would be based on (−z1,−z2). We could thus consider a new, non-random
direction for a third candidate, say (−z1, z2), as well as its opposite (z1,−z2) for
a fourth candidate. Again, such a generalization could be managed theoretically,
but it is still unclear whether the marginal efficiency gain would be worth the
extra computational effort.

Appendix A: Scaling Approximations - General Results

We recall in this section some theoretical results obtained in Bédard, Douc and
Moulines (2012) that shall be useful for proving Theorems 1 and 4. Although
these results were derived for the analysis of multiple-try Metropolis algorithms,
they provide a set of conditions that might be used for the analysis of general
MCMC algorithms involving auxiliary random variables. As a compromise be-
tween self-containment and conciseness, we include all of the results needed but
omit their proofs; the reader may refer to Bédard, Douc and Moulines (2012)
for more detail about concepts discussed in this section.

Recall that ζT : RT+1 → R is the projection on the first coordinate, that is
ζT (x) = x0. For any function h : R→ R, define by Ph the function on RT+1

Ph : x 7→ Ph(x) = h(x0) = h ◦ ζT (x) . (A.1)

Let (X[n], n ∈ N) be homogeneous Markov chains taking values in RT+1 with
transition kernel Q. For all s ≥ 0, denote

WT [s] = ζT (X [bTsc]) . (A.2)

Define GT = T (Q − I) and denote by C∞c the set of compactly supported
indefinitely continuously differentiable functions defined on R. Let {FT }T≥0 be
a sequence of Borel subsets of RT and consider the following assumptions:
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(B1) For all T ∈ N, the transition kernel Q has a unique stationary distribution
denoted by π. Moreover, for any Borel non negative function h on R,

π(Ph) =

∫
h(x0)f(x0)dx0 , (A.3)

where f : R→ R is a probability density function.

(B2) limT→∞ π (R× FT ) = 1.

(B3) There exist p > 1 such that for any h ∈ C∞c ,

sup
T≥0

∫
sup

x1:T∈RT

|GT [Ph] (x)|p f(x0)dx0 <∞ ,

where x1:T , (x1, . . . , xT ).

(B4) There exists a Markov process (W [s], s ∈ R+) with cadlag sample paths
and (infinitesimal) generator G such that C∞c is a core for G and for any
h ∈ C∞c ,

lim
T→∞

∫
sup

x1:T∈FT

|GT [Ph] (x)−Gh(x0)| f(x0)dx0 = 0 .

Theorem 6. Assume (B1-4). Then, WT =⇒ W in the Skorokhod topology
where W [0] is distributed according to f .

Now, consider a sequence of homogeneous Markov chains (X[n], n ∈ N) tak-
ing values in RT+1 with transition kernel Q satisfying, for any measurable
bounded function h on R

Q [Ph] (x)− h(x0) (A.4)

= E [h(ζT (X[1])) |X[0] = x]− h(x0)

=

K∑
j=1

E
[{
h(x0 + T−1/2U j)− h(x0)

}
βj(x, T−1/2, x0 + T−1/2U j)

]
where {U j}1≤j≤K are random variables and, for j ∈ {1, . . . ,K}, βj : RT+1 ×
R× R→ [0, 1],

(x, η, y) 7→ βj(x, η, y) , (A.5)

are nonnegative measurable functions. When applied to delayed rejection algo-
rithms, βj(x, η, y) will be the average probability of accepting the j-th try at a
given iteration when the Markov chain is in state x; it is however not required
to specify this function further at this stage.

For j ∈ {1, . . . ,K}, η ≥ 0, and u ∈ R, define

β̃j(x, η, u) = βj(x, η, x0 + ηu) . (A.6)

Alternatively, Eq. (A.6) can be rewritten as follows: for any x ∈ RT+1, η ∈ R
and y ∈ R,

β̃j(x, η, y) = βj(x, η, (y − x0)/η) , (A.7)
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with the convention 0/0 = 0. Whereas (WT [s], s ∈ R+), defined in (A.2), is not
itself a Markov process, it is a progressive R-valued process and this section
presents conditions under which (WT [s], s ∈ R+) converges in the Skorokhod
topology to the solution of a Langevin SDE. As stated in Bédard, Douc and
Moulines (2012), in practice (B3-4) may be obtained by checking the following
practical assumptions:

(C1) There exist constants {aj}Kj=1 ∈ RK such that for all j ∈ {1, . . . ,K},

lim
T→∞

∫
sup

x1:T∈FT

∣∣βj(x, 0, x0)− aj
∣∣ f(x0)dx0 = 0 .

(C2) There exists a family {wj}Kj=1 of measurable functions wj : R → R such
that for all j ∈ {1, . . . ,K},

lim
T→∞

∫
sup

x1:T∈FT

∣∣∣∣∂βj∂y
(x, 0, x0)− wj(x0)

∣∣∣∣ f(x0)dx0 = 0 . (A.8)

(C3) There exists p > 1 such that for any j ∈ {1, . . . ,K},

sup
T≥0

∫
sup

x1:T∈RT

∣∣∣∣∂βj∂y
(x, 0, x0)

∣∣∣∣p f(x0)dx0 <∞ , (A.9)

sup
T≥0

∫
sup

x1:T∈RT

(
E

[
(U j)2 sup

0≤η≤T−1/2

∣∣∣∣∣∂β̃j∂η

(
x, η, U j

)∣∣∣∣∣
])p

f(x0)dx0 <∞ ,

(A.10)

sup
T≥0

∫
sup

x1:T∈RT

(
E

[
|U j | sup

0≤η≤T−1/2

∣∣∣∣∣∂2β̃j∂η2
(x, η, U j)

∣∣∣∣∣
])p

f(x0)dx0 <∞ .

(A.11)

(C4) For any j ∈ {1, . . . ,K}, E
[
U j
]

= 0 and E
[
|U j |3

]
<∞.

Theorem 7. Assume (B1-2) and (C1-4). Then, WT =⇒W in the Skorokhod
topology where W [0] is distributed according to f and (W [s], s ∈ R+) satisfies
the Langevin SDE

dW [t] =
√
λdB[t] +

1

2
λ [ln f ]

′
(W [t])dt , (A.12)

with

λ =

K∑
j=1

Var[U j ]aj . (A.13)

In addition, for any x ∈ R,

K∑
j=1

Var[U j ]wj(x) =
λ

2
[ln f ]

′
(x) . (A.14)
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Lemma 8. Assume (C1-4). Then (B3-4) are satisfied where G is the generator
of the Langevin diffusion (A.12)

Gh(x) ,
λ

2

(
h′(x) [ln f ]

′
(x) + h′′(x)

)
. (A.15)

Theorems 6 and 7 will be used for the analysis of the RWDR with independent
(respectively common) proposals. To this end, some further definitions, lemmas
and propositions issued from Bédard, Douc and Moulines (2012) shall be useful.
Let η such that

0 < η < 1/4 . (A.16)

Then, define the sequence of sets {FT }∞T=0 by

FT =
{
x1:T ∈ RT , |IT (x1:T )− I| ∨ |JT (x1:T )− I| ∨ ST (x1:T ) ≤ T−η

}
,

(A.17)
where, for any x1:T ∈ RT , we let

IT (x1:T ) = T−1
T∑
t=1

{
[ln f ]

′
(xt)

}2
, (A.18)

JT (x1:T ) = −T−1
T∑
t=1

[ln f ]
′′

(xt) , (A.19)

ST (x1:T ) = T−1/2IT−1/2(x1:T ) sup
t=1,...,T

∣∣[ln f ]
′
(xt)

∣∣ , (A.20)

and I is as in (17). Lemma 9 is useful for checking Assumption (B2) and Lemma
10 for Assumptions (C1-2).

Lemma 9. Assume (A1). Then (B2) is satisfied with FT defined in (A.17).

Lemma 10. Let A : R` → R be a bounded Lipschitz function. Let Γ be a
(` × `) nonnegative symmetric matrix and {Vt = (V 1

t , . . . , V
`
t )}Tt=1 be i.i.d. `-

dimensional random vectors with zero-mean and covariance matrix Γ. For i =
1, . . . , `, let Hi : R2 → R be functions such that for all x ∈ R, y 7→ Hi(x, y) is
differentiable at y = x and Hi(x, x) = 0. Finally, for x ∈ RT+1 and y ∈ R, let

Υ(x, y) , E
[
A
{(
L1,T (x, V i) +Hi(x0, y)

)`
i=1

}]
,

where L1,T is the log-likelihood ratio defined in (15). Then,

(i) limT→∞ supFT
|Υ(x, x0)− a(A, IΓ)| = 0, where I is defined in (17) and

a(A,Γ) , E
[
A
{(
Gi − Var[Gi]/2

)`
i=1

}]
, (A.21)

where (G1, . . . , G`) ∼ N(0,Γ)
(ii) If in addition A is differentiable and ∇A is a bounded Lipschitz function,

then for all x ∈ RT+1, the function y 7→ Υ(x, y) is differentiable at y = x0
and

lim
T→∞

sup
FT

∣∣∣∣∂Υ

∂y
(x, x0)−

〈
∂H

∂y
(x0, x0), a(∇A, IΓ)

〉∣∣∣∣ = 0 ,
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where ∂H
∂y (x0, y) =

(
∂Hi

∂y (x0, y)
)K
i=1

.

Appendix B: Proof of Theorem 1

Denote by G1 the generator of the Langevin diffusion dW [t] =
√
λ1dB[t] +

1
2λ1 [ln f ]

′
(W [t])dt , that is:

G1h(x) ,
λ1
2

(
h′(x) [ln f ]

′
(x) + h′′(x)

)
, (B.1)

where λ1 is defined in (18). Moreover, define GT = T (Q − I) where Q is the
transition kernel of the Markov chain defined in Algorithm 2. To prove Theo-
rem 1, we will apply Theorem 6. Under (A1), Assumption (B1) follows from
standard properties of MCMC algorithms and (B2) is direct from Lemma 9.
It remains to check (B3-4) for some p > 1. Considering Algorithm 2, GT is
decomposed into two terms: GT = G1

T +G2
T where

G1
T [Ph](x) = T

∫
q1(x; y1)α1(x; y1)

[
h(y10)− h(x0)

]
µ(dy1) (B.2)

G2
T [Ph](x) = T

∫∫ [
1− α1(x; y1)

]
α2(x,y1; y2) (B.3)

q1(x; y1)q2(x,y1; y2)
[
h(y20)− h(x0)

]
µ(dy1)µ(dy2)

where α1 and α2 are defined in (10) and (11), respectively. Note that G1
T =

T (QRW − I) where QRW is the transition kernel of a random walk Metropolis
algorithm, that is, a particular case of the multiple correlated-try Metropolis
(MTCM) algorithm with only one proposal. As shown in the proof of (Bédard,
Douc and Moulines, 2012, Theorem 2), (C1-4) (and consequently (B3-4), ac-
cording to Lemma 8) are satisfied with GT replaced by G1

T , and G replaced by
G1. To check (B3-4) with GT = G1

T + G2
T , it finally remains to show that for

some p > 1,

sup
T≥0

∫
sup

x1:T∈RT

∣∣G2
T [Ph] (x)

∣∣p f(x0)dx0 <∞ , (B.4)

lim
T→∞

∫
sup

x1:T∈FT

∣∣G2
T [Ph] (x)

∣∣ f(x0)dx0 = 0 . (B.5)

The latter condition comes from the fact that

lim
T→∞

∫
sup

x1:T∈FT

∣∣G1
T [Ph] (x) +G2

T [Ph] (x)−G1h(x0)
∣∣ f(x0)dx0

≤ lim
T→∞

∫
sup

x1:T∈FT

∣∣G1
T [Ph] (x)−G1h(x0)

∣∣ f(x0)dx0

+ lim
T→∞

∫
sup

x1:T∈FT

∣∣G2
T [Ph] (x)

∣∣ f(x0)dx0 .
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Since [ln f ]” is bounded, there exist β, γ > 0 such that for all (x, y) ∈ R2,

| ln f(y)− ln f(x)| ≤ β(y − x)2 + γ|y − x| .

This implies that[
1− α1(x; y1)

]
α2(x,y1; y2)

≤ 1 ∧ π(y2)

π(x)

q1(y1 − y2)

q1(y1 − x)

≤ 1 ∧ exp

(
T∑
s=0

[
−(y1s − y2s)2 + (y1s − xs)2

2`21/T
+ β(y2s − xs)2 + γ|y2s − xs|

])
.

(B.6)

Now, define

ST =
1

T

T∑
s=0

(
(U2

s )2 − 2U1
sU

2
s

2`21
− β (U2

s )2

T
− γ |U

2
s |

T 1/2

)
.

Plugging Eq. (B.6) into the expression (B.3) of G2
T yields, for any η > 0,∣∣G2

T [Ph](x)
∣∣ ≤ osc(h)TE [1 ∧ exp(−TST )]

≤ osc(h)T (exp(−Tη) + P [ST < η]) , (B.7)

where osc(h) is the oscillation of the function h, and osc(h) <∞ as h is bounded.
Markov’s inequality for i.i.d. random variables (U1

s , U
2
s )0≤s≤T , where (U1

s , U
2
s ) ∼

N
(

0,

(
`21 0
0 `22

))
, implies that for any ε > 0, there exists C1, C2, Cε > 0 such

that for all T ≥ 1,

P
[
|ST − (`22/2`

2
1)| > ε

]
≤

E
[
|ST − (`22/2`

2
1)|4
]

T 4ε4

≤ TC1 + 3T (T − 1)C2

T 4ε4
≤ CεT−2 .

This implies that for some sufficiently small η > 0, there exists a constant C > 0
(that may depend on η) such that for any T ≥ 1,

P [ST < η] ≤ CT−2 .

Finally, ∣∣G2
T [Ph](x)

∣∣ ≤ osc(h)T
(
e−Tη + CT−2

)
.

The right-hand side, which does not depend on x, is bounded with respect to T
(showing (B.4)) and converges to 0 as T tends to∞ (showing (B.5)). The proof
of Theorem 1 follows.
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Appendix C: Proof of Theorem 4

The transition kernel Q of the Markov chain associated to Algorithm 4 clearly
satisfies

Q [Ph] (x)− h(x0)

=

2∑
j=1

E
[{
h(x0 + T−1/2U j0 [1])− h(x0)

}
βj(x, T−1/2, x0 + T−1/2U j0 [1])

]
with

β1(x, η, y0) = E
[
1 ∧ π([y0, x1:T + T−1/2U1:T [1]])

πT (x0:T )

]
β2(x, η, y0) = E

[
A2

{(
L1,T (x, V i1:T ) +Hi(x0, y0)

)3
i=1

}]
where A2 is defined in (25), L1,T is defined in (15) and

V 1
1:T = U1

1:T , H1(x, y) = ln f(Ψ̄0(x, y))− ln f(x) ,

V 2
1:T = U2

1:T , H2(x, y) = ln f(y)− ln f(x) ,

V 3
1:T = (1− `1`−12 )U2

1:T , H3(x, y) = ln f(Ψ̄0(y, x))− ln f(x) .

Again, Assumptions (B1-2) follow from standard properties of MCMC algo-
rithms, Assumption (A1), and Lemma 9. Thus, to apply Theorem 7, we only
need to check that {βi}2i=1 satisfies (C1-4). Note that β1 is the acceptance
probability of a classical RW-MH algorithm, which can be seen as a MCTM
algorithm with a single proposal. Thus, as seen in the proof of (Bédard, Douc
and Moulines, 2012, Theorem 2), Assumptions (C1-4) are satisfied with β1.

It remains to check that β2 satisfies (C1-4). This is an easy adaptation of
the proof of (Bédard, Douc and Moulines, 2012, Theorem 2). Nevertheless, to
provide a self-contained proof, we quickly repeat the main arguments. Since A2

is Lipschitz and bounded, and since Hi(x, x) = 0 for 1 ≤ i ≤ 3, Lemma 10 and
the Dominated Convergence Theorem ensure that β2 satisfies (C1-2). Noting
that the first and second order derivatives of A are all bounded and the fact
that there exists a constant M such that for all u ∈ R,

|[ln f ]′(u)| ≤M |u| , |[ln f ]′′(u)| ≤M ,

we obtain the existence of constants C and D (which do not depend on x nor
on η and u) such that for all η ≤ T−1/2 ≤ 1,

sup
x1:T∈RT

∣∣∣∣∣∂β̃2

∂η
(x, η, u)

∣∣∣∣∣ ≤ C|u|(|x0|+ |u|) +D ,

sup
x1:T∈RT

∣∣∣∣∣∂2β̃2

∂η2
(x, η, u)

∣∣∣∣∣ ≤ C|u|2(|x0|+ |u|)2 +D ,

where β̃2 is defined in (A.6). This proves Assumption (C3) for any p > 1. (C4)
is immediate.
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