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Abstract: In an attempt to improve on the Metropolis algorithm, various MCMC methods involving pools of
proposals, such as the multiple-try Metropolis and delayed rejection strategies, have been proposed. These
methods generate several candidates in a single iteration; accordingly they are computationally more inten-
sive than the Metropolis algorithm. In this paper, we consider three samplers with pools of proposals - the
multiple-try Metropolis algorithm, the multiple-try Metropolis hit-and-run algorithm, and the delayed rejec-
tion Metropolis algorithm with antithetic proposals - and investigate the net performance of these methods
in various contexts. To allow for a fair comparison, the study is carried under optimal mixing conditions
for each of these samplers. The algorithms are used in the contexts of Bayesian logistic regressions, in-
ference for a linear regression model, high-dimensional hierarchical model, and bimodal distribution. The
Canadian Journal of Statistics xx: 1–25; 20?? c© 20?? Statistical Society of Canada

Résumé: Afin d’améliorer l’algorithme Metropolis, plusieurs méthodes MCMC impliquant des cohortes
de candidats ont été proposées, telles que les stratégies à essais multiples et à rejet retardé. Ces méthodes
génèrent plusieurs candidats par itération; leur implémentation est donc associée à un coût computationnel
plus élevé que celui de l’algorithme Metropolis. Dans cet article, nous considérons trois approches avec
cohortes de candidats - l’algorithme Metropolis à essais multiples, le Metropolis “hit-and-run” à essais
multiples et le rejet retardé avec candidats antithétiques - et étudions la perfomance nette de ces méthodes
dans différents contextes. Pour que la comparaison soit équitable, chaque échantillonneur est implémenté
sous des conditions de mélange optimales. Les algorithmes sont utilisés dans des contextes de régression
logistique bayésienne, régression linéaire, modèle hiérarchique en grandes dimensions et distribution bi-
modale. La revue canadienne de statistique xx: 1–25; 20?? c© 20?? Société statistique du Canada

1. INTRODUCTION

Metropolis-Hastings algorithms are commonly used to produce samples from arbitrary distribu-
tions π that may be complex, high-dimensional, or both (Hastings [1970]). The idea is to build
a Markov chain {X[n], n ≥ 0} on a state space X by proposing candidates to be included in
the path according to some acceptance probability. The resulting Markov chain is one that is re-
versible with respect to the target distribution π, and admits π as its unique invariant distribution.
Hereafter, π shall also be used for denoting the target density on a state space X with respect to
Lebesgue measure.

To generate candidates for a Markov chain currently at X[n] = x, a preferred proposal distri-
bution is selected; q(x; ·) denotes the associated proposal density on X with respect to Lebesgue
measure. A candidate Y[n+ 1] is then accepted as the next state of the Markov chain with prob-
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ability α(x;Y[n+ 1]), where

α(x;y) = 1 ∧ π(y)q(y;x)

π(x)q(x;y)
;

if the candidate is rejected (with probability 1− α(x;Y[n+ 1])), then the Markov chain remains
at state x for another time step.

In implementing these methods, many proposal distributions are available. Independence
samplers are obtained by choosing proposal distributions that are independent of the current state
x, so candidates are always drawn according to the same density q(·). In random walk Metropolis
(RWM) algorithms, candidates may be expressed as y = x + z, where z is a realization of the in-
crement random variable Z. If the proposal density is also symmetrical around the current state x,
i.e. q(x;y) = q(|y − x|), then the acceptance probability reduces to α(x;y) = 1 ∧ π(y)/π(x).

In order to improve on available samplers, a number of authors have attempted to optimize the
usual Metropolis-Hastings proposal scheme by generating a pool of candidates at every iteration
(see Tierney and Mira [1999], Liu et al. [2000], Mira [2001a], Mira and Sargent [2003], Craiu
and Lemieux [2007]). The multiple-try Metropolis (MTM) and delayed rejection (DR) strategies
have been sucessfully applied to challenging problems from various fields of applications, and
have recently been studied from a theoretical point of view (see Bédard et al. [2010], Bédard
et al. [2012], and the references therein).

Bédard et al. [2010] and Bédard et al. [2012] respectively study the DR and MTM algorithms;
these reports focus on candidates generated from a N (x, σ2Id), where d is the dimension of the
target distribution and Id the d-dimensional identity matrix. The theoretical developments in
these papers provide ways to quantify efficiency gains in using pools of candidates, and to im-
prove the samplers considered. They also lead to the determination of the proposal variances and
acceptance rates producing optimally mixing chains. The results are derived for high-dimensional
target densities with independent and identically distributed (i.i.d.) components. Although these
assumptions cannot be deemed realistic from a practical point of view, the associated results are
believed to be applicable in greater generality.

Among the samplers considered in these papers, the MTM hit-and-run algorithm (MTM-
HR) and the DR algorithm with antithetic proposals (DR-A) seem the most promising (both with
Gaussian proposals). According to the asymptotic results derived, these samplers are twice as ef-
ficient theoretically as the RWM algorithm with Gaussian proposal (i.e., the speed at which they
explore their state space under stationarity is doubled), and can be implemented at a marginal
additional cost. Although appealing from a theoretical point of view, these methods have only
been applied to a few problems. The aim of this paper is to study the performance of these sam-
plers in various practical settings. Of particular interest are the robustness of the asymptotically
optimal acceptance rates derived in Bédard et al. [2010] and Bédard et al. [2012], as well as the
extra computational effort required to implement samplers involving pools of proposals.

There exist, in MCMC theory, different notions of efficiency. The term efficiency is used here
as a measure of how rapidly the Markov chain explores its state space once stationarity has been
reached. For finite-dimensional chains this might be measured by the average quadratic variation
(AQV) in (2). In an infinite-dimensional setting, the theoretical efficiency is measured through
the speed function of the limiting Langevin diffusion (briefly discussed in Section 3.1). Finally,
net efficiency refers to the AQV, corrected to take into account the associated computational
effort (Section 4).

In the next section, a motivating example is exposed. The MTM, MTM-HR, and DR-A al-
gorithms are then briefly described, and related optimality results are stated. Sections 4 to 7
address, in order, a Bayesian logistic regression, a linear regression model, a high-dimensional
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hierarchical density, and a bimodal distribution.

2. LOGISTIC REGRESSION MODEL WITH LUPUS DATA

In Bédard et al. [2010], a logistic regression model was used to compare the RWM and DR-A
algorithms. The aim of the experiment was to predict the occurrence of latent membranous lupus
in patients with the help of two clinical covariates. The dataset, containing measurements on 55
patients, can be found in Craiu and Lemieux [2007].

The model logitP(Yi = 1) = β0 + β1X1i + β2X2i was considered, where X ′i =
(1, Xi1, Xi2) is the vector of covariates for patient i. To perform a Bayesian analysis, Tan
[2006] suggests a N (0, 1002I3) prior for β = (β0, β1, β2)′; this leads to the posterior density

π(β|x,y) ∝ exp
(
− 0.5

1002
β′β

) 55∏
i=1

[exp(X ′iβ)]yi

1 + exp(X ′iβ)
.

Samples from π were obtained with the RWM and DR-A algorithms; in both cases, a
N (β, σ2I3) proposal was used to generate candidates, where σ2 was adjusted so that each sam-
pler explores the state space as rapidly as possible. These tunings relied on the theoretical results
introduced in Roberts et al. [1997] and Bédard et al. [2010], and shall be discussed in Section 3.

As in Craiu and Lemieux [2007], the goal was to estimate β1 and p25 = 1{β1>25}. The RWM
algorithm was initialized at β[0] = 0, and 3,064,800 iterations were performed. The first 5,000
values were discarded as burn-in; the remaining values were divided into τ = 300 batches of
size η = 10, 000. To reduce correlation, 200 values were discarded between each batch. The
estimates, along with their Monte Carlo mean squared error (MC-MSE), were obtained based on
the 3,000,000 remaining values. The same steps were then repeated with the DR-A algorithm.

Denoting the j-th replicate of β1 within the i-th sample by bij , the MC-MSE of β1 is

MC-MSE(β1) = (b̄·· − E[β1|x,y])2 +
1

τ − 1

τ∑
i=1

(b̄i· − b̄··)2, (1)

where b̄i· =
∑η
j=1 bij/η (i = 1, . . . , τ ) and b̄·· =

∑τ
i=1

∑η
j=1 bij/(τη). A similar equation

may be obtained for p25. The MC-MSEs rely on the approximations E[β1|x,y] ≈ 13.57 and
E[p25|x,y] ≈ 0.073, obtained by Tan [2006] through numerical integration.

The ratio MC-MSEDR-A(β1)/MC-MSERWM(β1) is 0.65. Although the bias of b·· (global es-
timator of β1) obtained with the RWM sampler is found to be small, the variability between
batch estimators (bi·, i = 1, . . . , 300) is important, suggesting a slow-mixing Markov chain. The
DR-A algorithm also provides a global estimator that is close to its expected value; futhermore,
it explores the state space more efficiently, resulting in a lower variability between batch estima-
tors. This ratio, combined to the fact that η is large, indicates that the RWM method suffers from
a very slow mixing. The ratio MC-MSEDR-A(p25)/MC-MSERWM(p25) = 0.56 corroborates the
previous assessment.

The average quadratic variation (AQV) is another measure of efficiency, which has the ad-
vantage of being independent of specific estimates that we might be interested in computing from
the Markov chain. In the present context, it is obtained as

AQV =
1

N

d−1∑
i=0

N∑
j=1

(b̃
(i)
j − b̃

(i)
j−1)2, (2)
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where N = 3, 064, 800 is the number of iterations, d = 3 refers to the chain dimensions, and
b̃
(i)
j is the j-th replicate of βi. Interestingly, optimizing the AQV is equivalent to minimizing

first-order autocorrelations of the chain (see Pasarica and Gelman [2010]).
The ratio of AQVs obtained with the DR-A and RWM methods is 1.8. This reveals that

the DR-A sampler makes, on average, larger jumps than the RWM algorithm. Based on these
numbers, the DR-A algorithm appears to be, in certain situations, an appealing alternative to
the usual RWM sampler. Whether this affirmation is true in general, and whether other MCMC
strategies involving pools of proposals may offer a similar improvement, will be discussed in the
rest of the paper.

3. LOCAL ALGORITHMS

We briefly describe the local optimization samplers considered, i.e. the MTM, MTM-HR, and
DR-A algorithms. In implementing these methods, a pool of candidates is generated in a given
iteration. In multiple-try versions, candidates are generated simultaneoulsy while in delayed re-
jection strategies, they are generated successively.

3.1. Multiple-try Metropolis with independent candidates
The MTM algorithm was introduced by Liu et al. [2000], although the idea of generating multiple
candidates per iteration has first appeared in the context of Monte Carlo simulations for molecular
dynamics (see Frenkel et al. [1992] and Frenkel and Smit [1996]). In the original MTM method,
the pool of candidates generated in an iteration is formed of independent values. The global tran-
sition kernel thus consists in the product of the marginal kernels: q(x;y1:K) =

∏K
i=1 qi(x;yi),

where x is the current value of the chain and y1:K = (y1, . . . ,yK) is the pool of K candidates.
We focus here on the case where qi(x;yi) = σ−dφ((yi − x)/σ) for i = 1, . . . ,K, with φ(·)

the d-dimensional standard Gaussian density and σ > 0; i.e., candidates are independent Gaus-
sian variables. Intuitively, the proposal variance σ2 should be a decreasing function of the target
dimensions d. Indeed, a constant σ2 would result in candidates that are rejected more and more
frequently as d grows. If, d = 10 and σ2 is fixed (say), then one must generate 10 independent,
scalar components to form a candidate; it is thus 10 times more likely to generate an unsuitable
component that will lead to the rejection of the candidate than if d = 1. It was shown in Bédard
et al. [2012] that the proposal variance should be expressed as σ2 = `2/d, where ` is a positive
constant. This allows obtaining weak convergence results about the behavior of the Markov chain
(as d→∞), any other proposal scaling leading to asymptotic processes that are degenerate.

Selecting the value to be proposed among the candidates in the pool can be achieved in
different ways; we consider the case where each candidate yi in the pool is assigned a probability
proportional to its target density, π(yi). This approach is also equivalent to the orientational-
biased Monte Carlo described by Frenkel and Smit [1996]. It has been argued in Liu et al. [2000]
that the MTM algorithm does not seem overly sensitive to the choice of the weight function.
Bédard et al. [2012] outline the fact that this simple version results in a faster exploration of
the state space than, for instance, importance weights, under the framework of high-dimensional
target distributions formed of i.i.d. components.

Using the symmetrical proposal kernel described above, the multiple-try RWM sampler can
be implemented as follows.

Algorithm 1. (Multiple-try RWM algorithm)

1) Given the time-n state X[n] = x of the Markov chain, generate K i.i.d. trial candidates
Y1:K [n+ 1] according to Yi[n+ 1] = x + d−1/2`Zi[n+ 1], where ` > 0 and Zi[n+ 1] ∼
N (0, Id) independent for i = 1, . . . ,K.
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2) Obtain the selected candidate Yk∗ [n+ 1] by drawing an indexK∗[n+ 1] = k∗ from a multi-
nomial distribution with parameters proportional to π (Y1[n+ 1]) , . . . , π (YK [n+ 1]).

3) Given K∗[n+ 1] = k∗, generate shadow variables X∗1:K [n+ 1] according to X∗i [n+
1] = Yk∗ [n+ 1] + d−1/2`Z∗i [n+ 1], where Z∗i [n+ 1] ∼ N (0, Id) independent for i =
1, . . . ,K − 1, and X∗K [n+ 1] = x.

4) Given K∗[n+ 1] = k∗, accept the candidate Yk∗ [n+ 1] = yk∗ with probability
α(K∗[n+1]) (X∗1:K [n+ 1];Y1:K [n+ 1]), where

α(k∗)(x∗1:K ;y1:K) = min

{
1,

K∑
i=1

π(yi)/

K∑
i=1

π(x∗i )

}
. (3)

The shadow sample x∗1:K ensures that the reversibility of the Markov chain with respect to π
is preserved, and combined to the usual irreducibility and aperiodicity conditions, that the chain
converges to the target distribution in total variation distance. Note that the pool of candidates
is generated according to the kernel q(x;y1:K) =

∏K
i=1 σ

−dφ((yi − x)/σ) while the shadow
sample is generated according to the kernel q(yk∗;x∗1:(K−1)) =

∏K−1
i=1 σ−dφ((x∗i − yk∗)/σ).

As with other types of RWM algorithms, it is important to pay a particular attention to the
tuning of the proposal variance σ2 (or `) in the MTM method. To this effect, asymptotic results
related to the efficiency of the MTM sampler for high-dimensional target distributions formed of
i.i.d. components have recently been obtained.

(A1) Consider the d-dimensional target density π(x) =
∏d
i=1 f(xi); the one-dimensional density

f is assumed to be a positive, twice continuously differentiable function, [ln f ]′′ is bounded
Lipschitz, and

∫
f(x) |[ln f ]′(x)|4 dx <∞.

In the sequel, an alternative formulation for the proposal variance shall reveal useful:

σ2 =
`2

d
,

˜̀2

Id
, (4)

where I =
∫
f(x) |[ln f ]′(x)|2 dx is a measure of roughness of the density f . The first formula-

tion in (4) is useful to describe algorithms, while the second allows stating asymptotically optimal
scaling results that are independent of the function f in (A1).

By studying the scaling limit of the Markov chain as d→∞, it is usually possible to show
that RWM samplers involving pools of proposals weakly converge (in the Skorokhod topology)
to Langevin diffusion processes. These limiting diffusion processes usually differ through the
form of their speed measure. Optimizing the speed measure (the only term depending on ˜̀in (4))
leads to the asymptotically optimal proposal variance and acceptance rate. The speed measure
is the only available efficiency measure in an asymptotic context; all possible finite-dimensional
efficiency measures converge to this quantity as d→∞. The present work is by no means an
extensive account on the theory behind optimal scaling results; for more detail about this issue,
we refer the reader to Roberts et al. [1997], Bédard et al. [2010], Bédard et al. [2012] for the
algorithms considered in this paper, and more generally to Roberts and Rosenthal [2001], Bédard
and Rosenthal [2008], Mattingly et al. [2012], and the references therein.

The asymptotically optimal scaling results in Table 1 have been reproduced from Bédard
et al. [2012] forK ranging from 1 to 5. It was established from these values that the greatest gain
in theoretical efficiency is obtained when going from K = 1 (relative efficiency proportional
to 1.32) to K = 2 (relative efficiency proportional to 2.24). This represents an improvement of
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TABLE 1: Asymptotically optimal scaling constants (˜̀?), relative efficiency (λ?), and optimal acceptance
rates (a?) for the MTM algorithm with independent candidates.

K 1 2 3 4 5
˜̀? 2.38 2.64 2.82 2.99 3.12

λ? 1.32 2.24 2.94 3.51 4.00

a? 0.23 0.32 0.37 0.39 0.41

70% when compared to the RWM method. The marginal efficiency gain brought by additional
candidates was shown to decrease with the number of candidates.

3.2. Multiple-try Metropolis hit-and-run algorithm
In extended versions of the MTM method, correlation is included among the candidates constitut-
ing the proposal pool. Craiu and Lemieux [2007] have shown how to modify the MTM strategy
so as to allow dependent candidates in a given iteration, leading to the multiple correlated-try
Metropolis algorithm. Bédard et al. [2012] have considered a more extreme form of dependence,
in which all the candidates in the pool are drawn using a common random variable, yielding the
multiple-try Metropolis sampler with common proposal (MTM-C algorithm). The acceptance ra-
tio of the latter algorithm has the advantage of not requiring the generation of shadow variables,
which are usually necessary to guarantee the reversibility of the Markov chain.

We now consider a specific variant of the MTM-C strategy that appears to be sucessful,
namely the multiple-try Metropolis hit-and-run (MTM-HR) algorithm. In the MTM-HR method,
candidates in a given iteration are proposed along a common search axis. A Gaussian random
vector first determines the search axis, and candidates at various preset distances from the cur-
rent value are then proposed. There are various ways of selecting the distances; our preferred
method is to use regularly spaced step sizes (γi)Ki=1 in [−`, `] with ` > 0. To this end, it suffices
to divide the interval into K − 1 subintervals of equal lengths. For K = 2, (γ1, γ2) = (−`, `);
for K = 3, (γi)3i=1 = (−`, 0, `); for K = 4, (γi)4i=1 = (−`,−`/3, `/3, `), and so on. A version
of this sampler in which the distances are chosen randomly have been proposed in Liu et al.
[2000]; however, this extra randomization does not seem useful, and requires an shadow sample
to guarantee reversibility.

The multiple-try RWM hit-and-run method with Gaussian proposal distribution can be im-
plemented as follows.

Algorithm 2. (Multiple-try RWM hit-and-run algorithm)

1) Given X[n] = x, generate a Gaussian random vector Z[n+ 1] ∼ N (0, Id) and let the K
candidates satisfy Yi[n+ 1] = x + d−1/2γiZ[n+ 1], i = 1, . . . ,K.

2) Obtain the selected candidate Yk∗ [n+ 1] by drawing an indexK∗[n+ 1] = k∗ from a multi-
nomial distribution with parameters proportional to π (Y1[n+ 1]) , . . . , π (YK [n+ 1]).

3) Given K∗[n+ 1] = k∗, accept the candidate Yk∗ [n+ 1] = yk∗ with probability
α(K∗[n+1]) (X∗1:K [n+ 1];Y1:K [n+ 1]), where α(k∗) is given in (3) and

X∗i [n+ 1] = x + d−1/2(γk
∗
− γi)Z[n+ 1]

= Yk∗ [n+ 1]− d−1/2γiZ[n+ 1]

for i = 1, . . . ,K − 1 and X∗K [n+ 1] = x.
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The marginal kernels qi are multivariate Gaussian with mean x and covariance (γi)2Id/d;
when K = 2 for instance, the covariance of both marginal kernels satisfies `2Id/d, where `2 =
˜̀2/I, see (4). This corresponds to the case Ψi(x;v) = x + d−1/2γiΦ−1(v) and Ψk∗,i(x;y) =
x + (γi/γk

∗
)(y − x) in the MTM-C algorithm of Bédard et al. [2012]; here, Φ denotes the

standard Gaussian cumulative distribution function. Hence, candidates may be expressed as a
function of YK∗[n+1][n+ 1] through Ψk∗;i(x,y), and variables acting as the shadow sample
may also be obtained directly from YK∗[n+1][n+ 1] through the relationship specified in Step
(3) of Algorithm 3.2.

Based on some numerical explorations, this sampler seems quite promising in practice; the
theoretical results derived in Bédard et al. [2012] corroborate these impressions. Asymptotic
results similar to those outlined in Section 3.1 have been obtained for the MTM-C method, and
in particular for the MTM-HR sampler. The asymptotically optimal scaling results of Table 2
have been reproduced from Bédard et al. [2012] for various values of K.

TABLE 2: Asymptotically optimal scaling constants (˜̀?), relative efficiency (λ?), and optimal acceptance
rates (a?) for the multiple-try RWM hit-and-run algorithm.

K 1 2 4 6 8
˜̀? 2.38 2.37 7.11 11.85 16.75

λ? 1.32 2.64 2.65 2.65 2.65

a? 0.23 0.46 0.46 0.46 0.46

It was established that the theoretical efficiency of the MTM-HR algorithm doubles under
optimal conditions when going from K = 1 to K = 2, but then stagnates as the number of
trials continues to grow. The acceptance rate is in fact dominated by the candidates that are
closest to the current value x. To optimize the mixing of the chain as K grows, it is thus nec-
essary to expand the search interval [−`, `] such that the values closest to x remain the same
as when K = 2. Suppose K = 4; from Table 2, the asymptotically optimal search region is
[x− 7.11/(Id)1/2,x + 7.11/(Id)1/2]. In a given iteration, the sampler thus considers the four
candidates x± 7.11/(Id)1/2, x± 2.37/(Id)1/2. The candidates closest to x coincide with the
candidates when K = 2.

MTM-HR algorithms with K = 2 should then generally be favored over algorithms with
K > 2, which suffer from a pathological behavior. The case K = 2 also is interesting from a
computational viewpoint: the symmetry between Y1 and Y2 around the current x often leads to
cheaper evaluations of the target density at these points.

3.3. Delayed rejection algorithm with antithetic proposals
The DR strategy has been introduced in Tierney and Mira [1999], then further studied in Mira
[2001a] and Green and Mira [2001]. This strategy aims at improving the Metropolis algorithm
by reducing the proportion of iterations in which no candidate is accepted. In these methods,
the candidates in a given iteration are generated successively, and the idea is to learn from past
rejections in order to refine the quality of the generated candidates. The delayed rejection scheme
is quite general; it may be applied, for instance, by combining a first-level independence proposal
with a second-level random-walk proposal, or by designing second-level proposals based on the
target density of the rejected candidates, etc.

As mentioned in Mira [2001a], a particularly interesting and easy way to implement the
delayed rejection scheme is to use symmetrical, random walk increments. Given X[n] = x,
generate a Gaussian random vector Z1[n+ 1] ∼ N (0, Id) and let the first candidate satisfy
Y1[n+ 1] = x + d−1/2`1Z1[n+ 1]. Accept this candidate with probability α1(x;Y1[n+ 1]),
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where α1(x,y) = 1 ∧ π(y)/π(x). Upon the rejection of Y1[n+ 1], generate a second candidate
Y2[n+ 1] = x + d−1/2`2Z2[n+ 1] with Z2[n+ 1] ∼ N (0, Id) (independent of Z1[n+ 1]);
accept it with probability α2(x,Y1[n+ 1];Y2[n+ 1]), where

α2(x,y1;y2) = 1 ∧ π(y2)q1(y2;y1)[1− π(y1)/π(y2)]+
π(x)q1(x;y1)[1− π(y1)/π(x)]+

, (5)

a+ = max(a, 0) and q1(x; ·) is a N (x, `21Id/d) density. Then, move on to the next iteration.
The second-level acceptance probability α2 has been determined so as to preserve the re-

versibility of the chain with respect to π; this is achieved by requiring the forward and reverse
paths to go through the same intermediate value. Suppose, for instance, that the chain currently
at x rejects a first candidate y1, and then accepts a second candidate y2. Equation (5) ensures
that the reverse path (denominator) goes from y2 to x via that same intermediate candidate y1.
It is also possible to extend the proposal scheme to K > 2 candidates per iteration, but these
extensions shall not be discussed further.

The sampler described above is a DR algorithm in which both random walk increments in an
iteration are generated independently from each other, hereafter referred to as DR-I algorithm.
In this case, intuition tells us that upon the rejection of a first candidate, one should try a second,
more conservative candidate (i.e. `2 < `1). It was recently proved in Bédard et al. [2010] that
this combination of proposal distributions leads to a pathological algorithm for high-dimensional
target densities satisfying Assumption (A1). Indeed, this specific DR strategy is shown to be
asymptotically equal to the RWM algorithm, while demanding a higher computational cost. In
high dimensions, it generates second-level candidates that are extremely close to the current x;
in the limit, proposing a second-level candidate in a given iteration thus becomes equivalent to
simply rejecting the candidate and remaining at the same state for another time interval.

As mentioned in Green and Mira [2001], preserving reversibility by requiring the intermedi-
ate candidate y1 to be the same in each direction does not allow an optimal use of the DR strategy.
In that paper, the authors introduce a generalization of the DR strategy for trans-dimensional tar-
get distributions; they achieve this goal by deriving an expression for α2 that preserves reversibil-
ity without forcing the return path from y2 to x to go through y1. It thus becomes necessary to
replace the intermediate value y1 in the reverse path by an alternative auxiliary variable. This
approach can also be enforced in a fixed dimensional setting, possibly preventing the kind of
second-level degeneracy faced with the DR-I sampler. There exist potentially many ways of
making use of this approach; in the remainder of this section, we present one of them.

An issue of the DR-I is its inability to make use of the information available, i.e. the rejection
of a Y1[n+ 1], to propose a second candidate. To fill this gap, Bédard et al. [2010] proposed
a version of the DR method in which candidates are correlated. In particular, if Y1[n+ 1] is
rejected, then it makes sense to believe that a second, more conservative candidate should be
proposed in the same direction Z1[n+ 1], or even in the opposite direction −Z1[n+ 1].

In such a case, the first candidate is set to Y1[n+ 1] = x + d−1/2`1Z[n+ 1], where Z[n+
1] is a symmetrical random vector and `1 is a scale parameter. To propose a second candidate
along the same search axis, let Y2[n+ 1] = x + d−1/2`2Z[n+ 1] = Ψ(x;Y1[n+ 1]), where

Ψ(x;y) = x + `2`
−1
1 (y − x). (6)

Just like Y2[n+ 1] is obtained deterministically from x and Y1[n+ 1], knowledge of x and
Y2[n+ 1] brings us back to Y1[n+ 1]: Y1[n+ 1] = Ψ̄(x;Y2[n+ 1]), where

Ψ̄(x;y) = x + `1`
−1
2 (y − x). (7)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? 9

Under this scheme, `2 > 0 consists in proposing a second candidate heading in the same direction
as Y1[n+ 1], while `2 < 0 corresponds to a move in the opposite direction.

The delayed rejection Metropolis algorithm with common Gaussian random walk increment
(DR-A) is implemented as follows.

Algorithm 3. DR-A algorithm

1) Given X[n] = x, generate a Gaussian random vector Z[n+ 1] ∼ N (0, Id) and let the first
candidate satisfy Y1[n+ 1] = x + d−1/2`1Z[n+ 1]; accept this candidate with probability
α1(x;Y1[n+ 1]), where α1(x;y) = 1 ∧ π(y)/π(x).

2) Upon the rejection of Y1[n+ 1], generate a second candidate

Y2[n+ 1] = x + d−1/2`2Z[n+ 1] = Ψ(x;Y1[n+ 1]),

with Ψ as in (6); accept this candidate with probability α2(x;Y2[n+ 1]), where

α2(x;y) = 1 ∧ π(y)[1− π(Ψ̄(y;x))/π(y)]+
π(x)[1− π(Ψ̄(x;y))/π(x)]+

= 1 ∧ π(y)[1− π(y + `1`
−1
2 (x− y))/π(y)]+

π(x)[1− π(x + `1`
−1
2 (y − x))/π(x)]+

,

with Ψ̄ as in (7).

Bédard et al. [2010] shows that to optimize efficiency among all possible candidates Y1,Y2

along a common search axis, the asymptotically optimal proposal variances should be of the form
σ2
i = `2i /d , ˜̀2

i /(Id), i = 1, 2, with ˜̀
1 = −˜̀

2 = 2.37; in other words, the second candidate
should be exactly symmetrical to the first one around the current value x. This optimal tuning
yields an asymptotically optimal acceptance rate of 0.46 (i.e., an acceptance rate of 0.23 for
both first- and second-level candidates), as well as a speed measure that is doubled compared
to that of the RWM method (relative efficiency of 2.64 versus 1.32) when Assumption (A1) is
satisfied. Although the asymptotic behaviors of the DR-A and MTM-HR algorithms with K = 2
are generally extremely close, there exist significant differences in their implementations.

The DR-A algorithm with K > 2 has yet to be considered; an extension where K candidates
are successively generated along a common search axis is not particularly appealing, as marginal
efficiency gains from the inclusion of additional candidates would necessarily decrease with K.
It would however be possible to consider extensions in which additional candidates would be
moving in a different (but deterministically chosen) direction, see Bédard et al. [2010].

On a related subject, the pinball sampler introduced in Robert and Mengersen [2003], is a
method based on self-avoiding particle filters that shares many similarities with the DR-A sam-
pler. This method generates simultaneously, at time n, a vector of N random variables X1:N [n],
where N is the size of the sample one wishes to obtain. The idea is to implement a Metropolis-
within-Metropolis sampler in which the particles are connected via a repulsive proposal. Using
symmetry arguments, a deterministic delayed rejection mechanism is included (with the possi-
bility of having K > 2), which is referred to as the pinball effect.

Before considering empirical studies in Sections 4 to 8, where we further investigate the
relationships between random walk versions of the Metropolis, MTM, MTM-HR, and DR-A
algorithms, we address the computational effort of these methods.
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3.4. Computational effort
Many researchers have developed new samplers in an effort to improve upon basic methods such
as the RWM algorithm; nonetheless, when taking computational complexity into account, it is
often the case that traditional samplers remain competitive. In implementing MCMC methods, it
is generally the evaluation of the target density π at specific values that requires the greatest effort.
MCMC methods with pools of proposals are not conceptually complex, but involve the evaluation
of π at several points, which generally affects the empirical performance of the algorithm.

It is usually difficult to compare the empirical efficiency of samplers without considering
specific examples with specific estimates. Accordingly, the convention is to scale the chosen ef-
ficiency measures by the number of points at which the density needs to be evaluated during
a given iteration. In the case of the MTM algorithm with independent candidates, this number
rapidly increases with the number of candidates in a given iteration. In a K-try Metropolis sam-
pler, a pool of K candidates is generated, along with a shadow sample of size K − 1; efficiency
measures are thus divided by a factor of 2K − 1.

Just as the previous MTM method, the MTM-HR algorithm requires evaluating the target
density at 2K − 1 points in a given iteration. The design of this method however guarantees that
all candidates are along a common search axis, which likely reduces the overhead introduced
by the computation of several likelihoods. The exact extent of the bargain in evaluating several
likelihoods is however difficult to quantify, but practitioners should recognize the conservative
character of the factor 2K − 1 in this case.

The DR-A algorithm involves evaluating the target density at 3 points for some, but not all
iterations. Indeed, if the first-level candidate Y1 is accepted, then a second-level candidate is not
required. Accordingly, for optimally tuned DR-A algorithms (i.e. a first-level acceptance rate of
0.23, see Section 3.3), we should correct efficiency measures by a factor of 2.5 (instead of 3)
to account for computational effort. All likelihoods are again evaluated along a common search
axis, so the computational effort in evaluating the target density at three values (instead of one
in the RWM method) is generally modest. Because of the sequential rather than parallel strategy
used to generate additional samples, we thus expect an additional efficiency gain of the DR-A
versus the MTM-HR. However, it is still difficult to quantify in general terms.

Following the previous discussion we realize that although samplers with pools of proposals
are more efficient from a theoretical viewpoint, it is still unclear whether these methods are worth
implementing in practice. This uncertainty is mainly due to the complexity of quantifying gains
in terms of computational effort that stem from the evaluation of several likelihoods in a common
search axis. Specifically, we strongly suspect that correcting efficiency by a factor of 2K − 1 is
too conservative in such cases, but to what extent? We attempt to provide a partial answer to
this question by considering four empirical studies in which the performances of the algorithms
previously discussed are compared. Based on the theoretical results previously exposed, we shall
focus on cases where the pool of candidates is formed of two candidates only. Apart from the fact
that extensions of the DR-A method to the case K > 2 are a separate ongoing line of research,
this decision is mainly based on the fact that the most significant efficiency gains are obtained
when going from K = 1 to K = 2 candidates in both the MTM and MTM-HR algorithms.

4. BAYESIAN ANALYSIS FOR A LOGISTIC REGRESSION MODEL

In this section, we apply various local MCMC methods to estimate a logistic regression model for
the number of survivals in a sample of 79 subjects suffering from a certain illness. The dataset,
which has been analyzed by Dellaportas et al. [2002], illustrates the effects of the patients’ con-
dition (more or less severe) and the treatment received (antitoxin or not) on survival.
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We consider the full logistic regression model where the number of survivals is the response
variable, and where the patient’s condition (a) and the received treatment (b), are the explanatory
variables. The full model is given by

Yij ∼ Bin(nij , pij) , log

(
pij

1− pij

)
= µ+ ai + bj + (ab)ij , i, j = 1, 2,

where Yij , nij and pij respectively represent the number of survivals, the total number of patients
and the probability of survival given condition i and treatment j. The parameter of the model may
be expressed as β = (β0, β1, β2, β3)′ = (µ, a2, b2, (ab)22)′ by considering the intercept µ as the
coefficient for a baseline group (condition less severe with no treatment), and by interpreting the
other parameters as incremental effects for other groups compared to the baseline group.

As in Dellaportas et al. [2002], we use a Bayesian approach and rely on a N (0, 8I4) prior
distribution for β. The posterior distribution may thus be expressed as

π(β|data) ∝
(
eβ0+β1+β2+β3

)6
(1 + eβ0+β1+β2+β3)

21

(
eβ0+β1

)4
(1 + eβ0+β1)

26

(
eβ0+β2

)15
(1 + eβ0+β2)

20

(
eβ0
)5

(1 + eβ0)
12 e−

1
2(8)

∑3
i=0 β

2
i .

We compare the performances of four samplers in the estimation of the model parameter
β: a random walk Metropolis (RWM) algorithm, a two-step multiple-try RWM algorithm with
independent candidates (MTM), a hit-and-run version of the two-step multiple-try RWM algo-
rithm (MTM-HR), and a delayed rejection algorithm with antithetic candidates (DR-A). Gaus-
sian proposal distributions are chosen in all four cases. To allow for a fair comparison, we rely
on optimal versions of the various algorithms. This is achieved by tuning the acceptance rates of
the algorithms to be as close as possible to the asymptotically optimal acceptance rates (AOARs)
mentioned in Section 3. Numerical exploration confirms that these acceptance rates are close to
optimal, even in the current low-dimensional, correlated context.

To estimate β, we perform runs of 5,104,900 iterations with a starting value of β[0] = 0.
The first 5,000 iterations are discarded as burn-in; the rest of the sample is divided into batches
of 5,100 values, of which the last 100 are discarded in order to create approximately independent
batches. Each of the 1,000 batches is used to estimate the parameters of the model, and we then
record the sample mean of these 1,000 estimates to obtain a global estimate. As a measure of
efficiency for the algorithms, we also record the sample variance of the 1,000 batch estimators
obtained; this is represented by the second term of the MC-MSE in (1), and approximates the
asymptotic variance of the MCMC estimator. As a second measure of efficiency, we record the
AQV of each algorithm, as defined in (2).

Candidates may be expressed as β̃ = β + σz, where β is the current value and z comes from
a N (0, I4). The target density at β̃ is thus

π(β̃|data) ∝

(
e
∑3

i=0 βi+σ
∑3

i=0 zi
)6

(
1 + e

∑3
i=0 βi+σ

∑3
i=0 zi

)21
(

e
∑1

i=0 βi+σ
∑1

i=0 zi
)4

(
1 + e

∑1
i=0 βi+σ

∑1
i=0 zi

)26
×

(
e
∑

i=0,2 βi+σ
∑

i=0,2 zi
)15

(
1 + e

∑
i=0,2 βi+σ

∑
i=0,2 zi

)20
(
eβ0+σz0

)5
(1 + eβ0+σz0)

12 e−
1

2(8)

∑3
i=0(βi+σzi)

2

.

Evaluating the posterior density at β̃ involves terms of the form
∑
βi + σ

∑
zi. Summations

involving βis are already available from the computation of the posterior density at β. In a
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TABLE 3: Estimates of the parameters and their corresponding simulation variances for the logistic
regression model of Section 4.

β0 β1 β2 β3

RWM Estimate -0.3186 -1.4535 1.4118 -0.5875

(Simul. var.) (0.00345) (0.00812) (0.00702) (0.01627)

MTM Estimate -0.3205 -1.4487 1.4133 -0.5920

(Simul. var.) (0.00209) (0.00453) (0.00414) (0.00923)

MTM-HR Estimate -0.3204 -1.4480 1.4122 -0.5927

(Simul. var.) (0.00205) (0.00445) (0.00406) (0.00863)

DR-A Estimate -0.3227 -1.4455 1.4151 -0.5951

(Simul. var.) (0.00222) (0.00484) (0.00436) (0.00968)

TABLE 4: Proposal variances selected and acceptance rates obtained for the samplers implemented. AQVs,
net AQVs, and computational time (in seconds) are provided. Asymptotically optimal acceptance rates

(AOARs) are also included for comparison.

σ2 Acc. rate AQV Time Net AQV AOAR

RWM 0.35 0.223 0.1976 592 0.1976 0.23

MTM 0.45 0.311 0.3297 1635 0.1194 0.32

MTM-HR 0.35 0.405 0.3785 1236 0.1813 0.46

DR-A 0.35 0.404a 0.3771 794 0.2812 0.46

a The first- and second-level acceptance rates respectively are 0.223 and 0.180.

RWM algorithm, all that is needed to obtain the acceptance probability are thus the summa-
tions involving zis. It turns out that once these summations are available, evaluating the posterior
density at values β + κσz (κ ∈ R) is straight-forward. Obtaining the acceptance probabilities
of the MTM-HR and DR-A (for which κ = −1, 1) at a reasonable computational cost therefore
becomes possible. This is generally true, among other cases, for logistic regression analyses.

Table 3 provides estimates of β using the four samplers, along with estimates of their asymp-
totic variance (hereafter referred to as simulation variance). Table 4 contains the proposal vari-
ances used, along with the resulting acceptance rates and AQVs. The time (in seconds) for run-
ning the various methods is provided (using system.time on the freeware R), along with an
adjusted measure of the AQV that takes into account the computation time of each method. The
adjustment is simple: by consering the RWM algorithm as the baseline method, the net AQV for
the MTM sampler (say) is obtained by applying the factor time(RWM)/time(MTM).

On the one hand, by naively looking at the simulation variances and AQVs in Tables 3 and 4,
one could be tempted to conclude that all three samplers with pools of proposals are significantly
more efficient than the RWM algorithm. On the other hand, by naively adjusting for computa-
tional effort according to the rule of thumb mentioned in Section 3.4 (i.e. by applying a factor
of 3 in the present case), one might incorrectly claim that the RWM algorithm remains the best
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available option.
In the present setting, this rule of thumb is reasonable for the MTM method with independent

candidates since the target density should be evaluated at three independent values per iteration;
this is supported by the running times in Table 4. Based on net performances, the MTM sampler
with independent candidates is thus less efficient than the usual RWM algorithm.

In the case of the MTM-HR method, dividing the AQV by a factor of 3 would be too conser-
vative an adjustment, but the extra computational effort required for implementing this sampler is
hard to quantify theoretically. For this specific example, running the MTM-HR is twice as long as
the RWM. Given that the theoretical efficiency is doubled, the RWM and MTM-HR algorithms
are equivalent.

Finally, the DR-A strategy seems to constitute the best of the four available options: its AQV
is roughly twice that of the RWM method. We find that dividing the AQV by a factor of 3 would
again be too conservative an adjustment. This algorithm does not generate a second candidate at
every iteration, but only when the first candidate is rejected; the correction factor should thus be
closer to 2.5 than to 3. Further gains are also available from the symmetry between the candidates.
In this case, running the DR-A algorithm results in an increase of 35% in terms of computational
time. Given that the AQV is almost doubled, this results in a net AQV that is about 40% higher
than for the RWM sampler. The DR-A algorithm seems like the most efficient option to estimate
the parameters of this model.

It is interesting to note that the tunings of the RWM, MTM, MTM-HR, and DR-A algo-
rithms seem quite robust to the dimension of the target density and the correlation between its
components: despite the fact that the target density is a four-dimensional, correlated density, the
relationships among the various samplers are concordant with the theoretical results available
for infinite-dimensional target densities with independent components. Finally, despite the sim-
ilarities between the MTM-HR and DR-A methods, the former appears to be significantly more
demanding computationally.

5. CLASSICAL INFERENCE FOR A LINEAR REGRESSION MODEL

We now analyze a dataset concerning the cost of construction of nuclear power plants (Example
G, Cox and Snell [1981]). We possess information about the capital cost of 32 light water reactor
power plants constructed in the U.S.A., each of which is associated to 10 explanatory variables.

According to the analysis in Cox and Snell [1981] and Brazzale et al. [2007], this dataset is
modeled using a linear regression model in which the quantitative variables are log-transformed.
The model is described using 6 explanatory variables that have been deemed significant (see the
ANOVA in Cox and Snell [1981]). Of particular interest is how the capital cost depends on the
cumulative number of power plants constructed by each architect-engineer.

As in Brazzale et al. [2007], the errors are assumed to be distributed according to a Student
distribution with 4 degrees of freedom. The model is thus expressed as

f (y;β, σ) dy = σ−m
m∏
i=1

h

(
yi −Xiβ

σ

)
dyi,

where h (·) is the Student(4) density, β = (β1, . . . , β7)′ is the vector of parameters (including an
intercept), and Xi is the ith row of the 32× 7 design matrix X (containing the chosen explana-
tory variables plus a constant).

We record the observed standardized residuals as r0 =
(
y0 −Xb0

)
/s0, where b contains

the least squares regression coefficients and s represents the related error standard deviation:
s2 =

∑m
i=1(yi − ŷi)2/(m− d) withm = 32 and d = 7. As the residuals r0 have an effect on the
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precision of the estimates of β and σ, we use the model f
(
y
∣∣r0 ;β, σ

)
, obtained by conditioning

on the identified standardized residuals r0:

f
(
b, s

∣∣r0 ;β, σ
)
db ds = cσ−m

m∏
i=1

h

(
sr0i −Xi (β − b)

σ

)
sm−d−1db ds,

where m = 32, m− d− 1 = 24, and c > 0 is constant. Performing the hypothesis testing with
the model f (y;β, σ) would not take this available information into account.

We are interested here in β6, the 6th regression coefficient. The observed standardized depar-
ture of data from parameter value is t06(β6) = (b06 − β6)/c

1/2
6,6 s

0, where c6,6 is the (6, 6) element
of the matrix (X ′X)−1; this quantity obviously depends on the value β6 being assessed.

To obtain a statistical interpretation of this measure, we need information about the distribu-
tion of possible values for the standardized departure t6 = (b6 − β6)/c

1/2
6,6 s in the context where

the true parameter value is β6. The observed p-value is thus the percentage position of the data
with respect to the hypothesized value β6.

There exists various methods for approximating p-values in the classical framework. In the
present context, computing exact p-values can be achieved by sampling the conditional model
f
(
b, s

∣∣r0 ;β, σ
)

using MCMC methods. Due to invariance properties of the model, it in fact
suffices to compare the observed standardized departure t06 to the distribution of t6 = b6/c

1/2
6,6 eu

obtained from the (reparameterized) null model with β = 0 and σ = 1:

f
(
b, u

∣∣r0 ) db du = c

m∏
i=1

h
(
eur0i +Xib

)
eu(m−d)db du (8)

on Rd+1. The previous reparameterization has been performed in order to avoid boundary prob-
lems when implementing MCMC methods.

Sampling the latter density allows us to evaluate the p-value function p(β6) that gives the
probability left to the data point under the hypothesis considered; this probability is computed
as p (β6) = {# t6 (b, s) < t06 (β6)}/N , where N is the size of the simulation and the numerator
gives the number of instances (b, s) yielding a value less than the observed t06(β6).

5.1. Simulations
Exact p-values for this problem have been obtained in Bédard and Fraser [2009] using a direc-
tionally adaptive (DA) algorithm and a RWM sampler. The DA method consists in fixing the
mode of the proposal density, and then adjusting its tails at each iteration to mimic the target
density as closely as possible in a given direction. The potential of a (global) DA method is
greater than that of a (local) RWM algorithm, but as expected its implementation requires more
work: the mode of the target density needs to be identified and the Hessian needs to be evalu-
ated at the mode. While the performance of the DA sampler was excellent for obtaining p-values
in the current context, the RWM algorithm behaved erratically; the results obtained were also
compared to the theoretical third-order p-values (see Figure 1).

This figure, reproduced from Bédard and Fraser [2009], shows two different runs of the
RWM sampler (the dashed curves). The p-values for various hypotheses in a given curve were all
obtained from a common RWM algorithm with N = 4, 000, 000. The instability of these curves
suggests that the chain cannot freely move between the tails of the target density in various
directions. A numerical exploration yielded the optimal proposal scaling 0.0001I8; the small
proposal variance indicates that the i.i.d. assumption among the proposal components should be
relaxed. Indeed, a bad convergence of the algorithm might be due to a few target components
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FIGURE 1: Graph of p-values versus hypotheses H0 obtained with the DA (solid) and RWM (dashed)
algorithms, as well as third-order approximations (symbols).

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

0.0
0.2

0.4
0.6

0.8
1.0

H0

p−
va

lue

DA algorithm

RWM algorithm

Third order

exhibiting a smaller variance and restricting other components in the exploration of their state
space, or to the unacknowledged correlation between certain pairs of target components.

5.2. Covariance estimation
Although the RWM algorithm should theoretically converge to the exact p-value, it is clear that
in practice, it would take an unrealistic number of iterations to reach such a goal. Given the
magnitudes of the proposed increments (based on the scaling 0.0001I8), including an estimate
of the target covariance structure in the proposal distribution might reveal advantageous.

Unsurprisingly, using this same RWM sampler to estimate the covariance matrix is not an
option due to the instability of the Markov chain. One could turn towards the adaptive Metropolis
(AM) algorithm introduced by Haario et al. [2001], which updates the proposal covariance matrix
at each iteration through a recursive formula. Relying on adaptive versions of algorithms with
pools of proposals is however a delicate matter; although an adaptive version of the DR strategy
has been introduced in Haario et al. [2006], no such result has been published, to our knowledge,
about the MTM strategy. For the time being, we simply rely on the DA sampler (or the adaptive
Metropolis algorithm) to obtain an estimate Σ̂ of the target covariance matrix. This estimate
will then be included in the proposal distribution of the RWM, MTM, MTM-HR, and DR-A
algorithms in order to evaluate the performance of these methods.

As in Bédard and Fraser [2009], we are interested in testing β6 = −0.1,−0.01, and 0.02;
for each of these hypotheses, p-values are obtained using the DA and RWM samplers, as well
as versions of the RWM, MTM, MTM-HR, and DR-A algorithms with proposal covariance pro-
portional to Σ̂. For local methods, a Gaussian proposal distribution is tuned to attain acceptance
rates that are close to the AOARs available in the literature. Since an estimate of the covariance
matrix is included in proposal distributions, we expect the theoretical AOARs to yield algorithms
that are close to optimality, depite the violation of the i.i.d. assumption among the target com-
ponents (see Roberts and Rosenthal [2001]). This assessment has been validated by a numerical
optimality study that is not presented here.

Using the target density in (8), we generate a sample of size N = 4, 004, 950 for b6, and
discard the first 5,000 values as burn-in. The remaining values are divided into 4,000 batches
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TABLE 5: p-values for testing various hypotheses for β6 using various MCMC algorithms. The frequentist
third-order p-values are included for comparison.

β6 = −0.1 β6 = −0.01 β6 = 0.02

Third-order .75283 .10936 .03646

DA .75697 .11693 .03730

(MC-MSE) (.034639) (.03266) (.047498)

RWM .85794 .06137 .01116

(MC-MSE) (.01957) (.01371) (.02135)

RWM with covariance .75650 .11699 .03787

(MC-MSE) (.02367) (.02213) (.03592)

MTM with covariance .75792 .11714 .03747

(MC-MSE) (.02222) (.02128) (.03371)

MTM-HR with covariance .75761 .11707 .03750

(MC-MSE) (.02180) (.02102) (.03285)

DR-A with covariance .75687 .11637 .03794

(MC-MSE) (.02183) (.02102) (.03287)

each containing 1,000 values; the p-values are computed using the first 950 values in a batch,
and the last 50 values are discarded to reduce correlation between batches. From the resulting
vector of 4,000 p-values, the sample mean and MC-MSE in (1) are obtained for each sampler
considered. The exact p-value required in (1) is approximated by the corresponding third-order
p-value. The results of these simulations are recorded in Table 5. In the present context, it is clear
that the RWM algorithm stands out as extremely poor; the other methods all yield good results.

Table 6 provides information about the efficiency and computational time of the various
methods. The DA algorithm yields the best results, even when accounting for the running time.
This sampler, although applicable in a general context, has been designed for computing p-values
from smooth, unimodal target densities; it thus pays a particular attention to the tails of the target
distribution.

A covariance estimate seems necessary in the current context to obtain good results with
local algorithms. Among local methods, the MTM-HR and DR-A methods again yield the best
results, with the DR-A our favourite due to its reduced computational intensity. In this case,
evaluating the target density at various points along a given axis is not necessarily cheaper than
evaluation at independent points. However, generating a pool of candidates has a lesser impact
computationally than dealing with the covariance matrix at every iteration. Therefore, rather than
implementing the plain RWM algorithm including Σ̂, one might as well use a MTM-HR or DR-A
version, which increase the net AQV by about 50% and 65% respectively.

The MTM method with a covariance estimate is not competitive, with a net AQV slightly
below that of the RWM sampler with covariance. Why is there such a large difference between
the times required to run the MTM and MTM-HR (or DR-A) algorithms? When relying on a
covariance estimate, proposed increments are generated from a multivariate Gaussian distribution
with correlated components, which is more intensive computationally than generating increments

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? 17

TABLE 6: AQVs, computational times (in seconds), and net AQVs using different algorithms. The
proposal scalings selected and acceptance rates obtained are also included.

σ2 Acc. rate AQV Time Net AQV

DA .717 1287.4 1074 360.81

RWM .015 .243 .03388 301 .03388

RWM - covariance .800 .230 138.7 1137 36.72

MTM - covariance .970 .321 226.0 2411 28.21

MTM-HR - covariance .800 .448 274.1 1478 55.82

DR-A - covariance .800 .447a 273.9 1334 61.80

a The first- and second-level acceptance rates respectively are and 0.229 and 0.218.

from a distribution with independent components. In the MTM sampler, 3 such increments are
generated at every iteration, against only one in the MTM-HR and DR-A algorithms. In this
case, although the Student target does not directly allow for a bargain in computing the density
at points in a common direction, the MTM-HR and DR-A algorithms remain the best options.

6. HIGH-DIMENSIONAL POSTERIOR DENSITY

As in Roberts and Rosenthal [2009], consider the following statistical model:

µ

↙ ↓ ↘
θ1 . . . . . . θd θi ∼ Cauchy(µ,A), (1 ≤ i ≤ d)

↓ . ↓ ↓
Y11, . . . , Y1r1 Yd1, . . . , Ydrd Yij ∼ N (θi, V ), (1 ≤ j ≤ ri)

with priors µ ∼ N (0, 1),A ∼ Γ−1(1, 1), and V ∼ Γ−1(1, 1). A Cauchy(m, s) is a translated and
scaled Cauchy distribution with density proportional to [1 + ((x−m)/s)2]−1, Γ−1(a, b) is the
inverse gamma distribution with density proportional to e−b/xx−(a+1), and {Yij} are observed
data. This model leads to a (d+ 3)-dimensional posterior density π(A, V, µ, θ1, . . . , θd|{Yij}).

We fix d = 210 and let ri vary between 11 and 30. The posterior density is too complex for
analytic computation, and numerical integration must be ruled out due to the high-dimensionality
of the problem. This distribution is best sampled with a Metropolis-within-Gibbs algorithm
(a classical Gibbs sampler cannot be used, as the Cauchy distribution destroys conjugacy). In
fact, we propose to sample five groups of variables in turn: µ,A, V,θL,θU . In other words,
µ,A, V shall be updated individually while the θis will be splitted into two distinct groups:
L = {i : 11 ≤ ri ≤ 20} and U = {i : 21 ≤ ri ≤ 30}. Using (θL,θU ) allows more precise es-
timates (a common proposal variance for updating θ would result in a chain that moves very
slowly due to the discrepancy in variances when ri = 11 or ri = 30), while retaining a large
enough dimensionality to rely on optimal scaling results.

We estimate two parameters, (θ48, θ172) = (2.644, 17.564) using the four sam-
plers initialized as follows: µ = 0, A = 1, θi = r−1i

∑ri
j=1 Yij (1 ≤ i ≤ d), and

V = d−1
∑d
i=1

∑ri
j=1(Yij − θi)2/(ri − 1). The simulations are as before: N = 4, 004, 950
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TABLE 7: Comparison of AQVs, computational times (in seconds) and net AQVs using different
algorithms. Estimates for (θ48, θ172) along with MC-MSEs are also provided.

Acceptance rate AQV Time Net AQV θ48 θ172

θL θU (ri = 15) (ri = 28)

True value 2.644 17.564

RWM .220 .251 .113 2478 .113 2.635 17.561

(MC-MSE) (.0137) (.00845)

MTM .335 .338 .191 7591 .062 2.634 17.560

(MC-MSE) (.0085) (.00434)

MTM-HR .440 .474 .227 4768 .118 2.635 14.560

(MC-MSE) (.0075) (.00434)

DR-A .430a .484b .223 4810 .115 2.634 17.560

(MC-MSE) (.0074) (.00431)

aThe first- and second-level acceptance rates respectively are 0.218 and 0.212 for updating θL.
bThe first- and second-level acceptance rates respectively are 0.247 and 0.237 for updating θU .

iterations are performed, a burn-in period of 5,000 iterations is applied, and we consider
τ = 4, 000 batches containing η = 950 values (50 sample values are discarded between each
batch). From the resulting vector of 4,000 batch means, the sample means (θ48, θ171) and the
related MC-MSEs in (1) are obtained for each sampler. Gaussian proposal distributions are
tuned to attain acceptance rates that are close to the theoretical AOARs. Due to the independence
assumption between the θis and high-dimensional context, this yields optimally mixing chains.

Due to the presence of the Cauchy distribution, there is no bargain in evaluating the target
density at various points along a common axis. Although the MTM-HR and DR-A should the-
oretically lead to higher AQV measurements, the extra computational effort required may offset
this advantage.

Table 7 provides estimates for (θ48, θ172), along with their MC-MSEs. The values obtained
are exactly as prescribed by the theoretical results. AQVs, acceptance rates, and computational
times are also included. As there is no available simplification for evaluating the target density
at various points, we would expect the MTM-HR and DR-A to be at a disadvantage compared to
the RWM. It is interesting to note that it only takes approximately twice as long to run a MTM-
HR or DR-A compared to a RWM. However, AQVs and MC-MSEs are improved by a factor of
two in both cases, hence no difference in net AQV is observed compared to the RWM algorithm.
MTM strategy is again too intensive computationally to be worth implementing.

7. A BIMODAL EXAMPLE

Consider a multivariate mixture of two normals with non-diagonal covariance structures :

1

3
N20(µ1,Σ1) +

2

3
N20(µ2,Σ2) ,
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TABLE 8: Proposal variances, acceptance rates, AQVs, and computational times for the four samplers. The
sample mean of X1 and its MC-MSE are also provided.

σ2 Acc. rate AQV Time Net AQV x1 MC-MSE

RWM 0.85 0.224 2.920 1550 2.920 6.88 2.260

MTM 0.89 0.345 4.940 3760 2.036 7.07 2.005

MTM-HR 0.85 0.449 5.855 3475 2.612 6.96 2.123

DR-A 0.85 0.454a 5.930 3628 2.533 7.133 1.940

aThe first- and second-level acceptance rates respectively are 0.229 and 0.225.

with µ1 = 5 and µ2 = 8. This is similar to the example of Section 4.1.2 in Casarin et al. [2013],
to the exception that we rely on different covariance matrices Σ1,Σ2 : each covariance term is
uniformly distributed in [−0.1, 0.1], while the variance terms each satisfy 2 + U [−0.1, 0.1].

We wish to estimate E[X1] using the four samplers initialized at X[0] = 5. To obtain rel-
atively stable estimates, N = 20, 024, 250 iterations are performed, a burn-in period of 5,000
iterations is discarded, and we consider τ = 4, 000 batches containing η = 950 values (50 sam-
ple values are discarded between batches). From the resulting vector of 4,000 batch means, the
sample mean and MC-MSE are obtained for each sampler. Gaussian proposal distributions are
tuned to attain acceptance rates that are close to AOARs. Due to the “weak” covariance structure,
this yields almost optimal chains.

Obviously, we cannot expect multiple-try and delayed rejection strategies to succeed where
the plain RWM fails; in other words, these samplers are single-chain methods and thus two modes
separated by a low-density region should preferably be sampled using multiple-chain methods
such as in Casarin et al. [2013], or population-based methods such as in Jasra et al. [2007].
We could even possibly consider including the MTM-HR or DR-A in a multiple-chain method.
For the target distribution introduced above, for which a RWM sampler succeeds in eventually
visiting both modes, the results obtained appear in Table 8.

In terms of evaluating the target density at various points and computing the acceptance
probability, the RWM method is computationally quite efficient. Although there is an efficiency
gain resulting from the evaluation of the target density at several points along a common axis, the
RWM remains significantly less demanding computationally than the other samplers. The target
density is so easy to evaluate that the whole second-level acceptance rate in the delayed rejection
method, for instance, is more expensive computationally than the evaluation of the target density
itself. Although the AQVs of the DR-A and MTM-HR almost double compared to the RWM,
the extra time required to run these samplers does not seem worth the effort. Furthermore, it is
impossible to affirm, based on the estimates obtained, that one method is more accurate than the
others. The DR-A has the largest bias, but the smallest MC-MSE. The MTM-HR has the smallest
bias but, in spite of the large number of iterations performed, this ranking may vary from one
run to another. The results are inconclusive, and we cannot affirm that algorithms with pools of
proposals should be favored over the RWM algorithm in this multimodal setting.

If one was to include a covariance estimate in the proposal distribution, efficiency results
would change dramatically. Generating a candidate would become much more demanding than
the extra steps required by the MTM-HR or DR-A samplers. Since only one random vector per
iteration is generated with these methods, we would obtain running times proportional to those
in Section 5.
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8. DISCUSSION

We described and compared four local RWM algorithms; three of these methods require pools
of proposals for their implementation. The efficiency of these samplers is theoretically advanta-
geous compared to the usual RWM algorithm. Of course, fancier methods usually imply a greater
computational effort; it is however difficult to measure this quantity in general terms without be-
ing too conservative. As witnessed in this paper, the usual factor of 3 seems on the conservative
side for accounting for the computational cost of MTM algorithms (K = 2), and accordingly is
far too conservative for MTM-HR (K = 2) and DR-A strategies.

We tested these samplers in four different contexts: a Bayesian logistic regression model, a
classical linear regression model, a high-dimensional Bayesian hierarchical model, and a bimodal
target density. The first two examples were based on datasets found in the literature, while the
last two dealt with simulated datasets. We used various measures of efficiency to assess the
performance of the methods: the accuracy of the estimates (through their simulation variance or
Monte Carlo mean squared errors), the average quadratic variations of the Markov chains, the
running times of the algorithms, as well as the acceptance rates produced by the samplers.

In brief we have found that the DR-A algorithm performs at least as well, and in some cases
much better, than the RWM method, with net efficiency gains going up to 65%. The theoretical
superiority of the DR-A in terms of AQV is not surprising, as AQV is directly related to first-order
autocorrelations of the chain, which in turn are related to Peskun ordering (see Mira [2001b]).
Although the theoretical behaviors of the MTM-HR and DR-A algorithms are similar, the latter
seems to outperform the former in many situations. The fact that the DR-A sampler does not
generate two candidates at every iteration, but only upon the rejection of the first candidate, seems
to have a relatively important impact on the computational cost of the method. The version of
the MTM sampler considered here is not competitive, sometimes even when ignoring the extra
computational effort required. The motivating example of Section 2 corroborates these rankings:
the DR-A sampler only takes 30% longer to run than the RWM, leading to a net efficiency gain
of 50%. In comparison, the net gain from using the MTM-HR is 10%, while the MTM suffers a
net efficiency loss of 34%.

The analyses in this paper have been performed based on a traditional programming ap-
proach. In implementing a multiple-try strategy, one could however take advantage of the avail-
ability of multiple cores by parallelizing the algorithm. This could potentially have an impact on
the efficiency balance, particularly for the MTM and MTM-HR samplers. The examples consid-
ered in the previous sections were also simulated in parallel on a system comprised of 4 cores,
using the package parallel in R. In these particular cases, parallelizing the samplers results in
running times significantly longer than under a linear programming approach. In fact, the com-
putations performed in parallel are not extremely intensive and the time gained by parallelizing
is largely offset by the time needed for the child processes to compile results and communicate
with the parent process. When dealing with extremely demanding target distributions, a parallel
approach may of course be worthwhile.

It is not clear whether or not the DR-A and MTM-HR methods could be favored over the
RWM algorithm in general. However, they certainly cannot be discarded based on their compu-
tational intensity, as they often seem to constitute an interesting and efficient alternative to the
RWM. On the one hand, we do not expect the DR-A and MTM-HR algorithms to consistently
outperform the RWM algorithm. When the target density is extremely cheap to evaluate, the
RWM method will likely remain the best available option. On the other hand, situations in which
the DR-A and MTM-HR samplers outperform the RWM algorithm are certainly not exceptions.
From the examples of Sections 5 and 7, we deduce that algorithms with pools of proposals do not
solve fundamental problems faced with the RWM algorithm (badly designed proposal covariance
matrix, for instance). However, in several situations, they certainly seem to offer a significant im-
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provement on performance.
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