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Markov chain Monte Carlo (MCMC) methods, specifically samplers based on random walks,
often have di�culty handling target distributions with complex geometry such as multi-modality.
We propose an adaptive multiple-try Metropolis algorithm designed to tackle such problems by
combining the flexibility of multiple-proposal samplers with the user-friendliness and optimality
of adaptive algorithms. We prove the ergodicity of the resulting Markov chain with respect
to the target distribution using common techniques in the adaptive MCMC literature. In a
Bayesian model for loss of heterozygosity in cancer cells, we find that our method outperforms
traditional adaptive samplers, non-adaptive multiple-try Metropolis samplers, and various more
sophisticated competing methods.
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1. Introduction

Suppose we wish to find an expectation of the form ⇡(f) = EX⇠⇡{f(X)} for some ⇡-
integrable function f : X ! Rq on some state space X ✓ Rd. Monte Carlo (MC) methods
make use of a law of large numbers, i.e.

1

N

NX

n=1

f(Xn)
C�! ⇡(f) , n ! 1 , (1.1)

for some mode of convergence C 2 {in probability, almost surely}, to estimate ⇡(f) using
the sample average. The conditions under which (1.1) holds rely on the joint distribution

of (Xn)Nn=1
. For example, an iid assumption (Xn

iid⇠ ⇡, n = 1 , . . . , N) is often su�cient
to verify a law of large numbers. When ⇡ is even moderately complex however, it is
generally impossible to sample directly from that distribution. Markov chain Monte Carlo
(MCMC) methods provide a way to produce a sample (Xn)Nn=1

that verifies a law of large
numbers for some class of functions f while not requiring direct sampling from the target
distribution ⇡.
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2 S. Fontaine and M. Bédard

One of the most common MCMC methods is the Metropolis-Hastings (MH) algorithm
(Hastings, 1970), which produces the sample (Xn)Nn=1

sequentially from time n = 1
through n = N . At time n, instead of sampling directly from ⇡, we sample from a
proposal distribution q(·|x) which may or may not depend on the previous sample point
Xn�1 = x. Since the candidate Y ⇠ q(·|x) is sampled from q and not from ⇡, we need
to proceed to an accept/reject step to adjust for that bias. The next point Xn to be
included in the sample is chosen to be equal to y with probability

↵MH (y|x) = min

⇢
1,

⇡(y)q(x|y)
⇡(x)q(y|x)

�
, (1.2)

known as the MH acceptance probability, and equal to the previous observation x with
probability 1�↵MH (y|x). Now, since the distribution of Xn only depends on the previous
time point Xn�1 = x, then X = (Xn)n>1 actually forms a Markov chain.

A homogeneous Markov chain X on a state space X with Markov transition P is
ergodic with respect to some distribution ⇧ for some initial state x 2 X if

lim
n!1

||Pn (·|x)�⇧(·)||
TV

= 0 , (1.3)

where ||µ||
TV

= supB2B(X )
|µ(B)| denotes the total variation norm of the signed measure

µ, and where

P
m (B|x) =

Z

X
P

m�1 (B|y)P ( dy|x) , m > 1

is the iterated Markov transition with base case P
1 (B|x) = P (B|x). Typically, the

ergodicity of a homogeneous Markov chain with respect to a density ⇡ is established
through results such as in Tierney (1994, Theorem 1) where it is required that (1) ⇡

be the stationary density of the Markov transition P with density p, (2) the chain be
⇡-irreducible, and (3) the chain be aperiodic. While ergodicity and laws of large numbers
are two di↵erent concepts, the conditions used to verify the former are su�cient to verify
the latter for all ⇡-integrable functions (Meyn and Tweedie, 2009).

A su�cient condition for X to admit ⇡ as its stationary distribution is the detailed
balance condition on the densities (Robert and Casella, 2004),

p (y|x)⇡ (x) = p (x|y)⇡ (y) , 8x, y 2 X . (1.4)

By construction, the chain X generated using a MH algorithm satisfies the first ergodic-
ity condition since the expression of the MH acceptance probability (1.2) is specifically
chosen to satisfy (1.4). A su�cient condition for aperiodicity and ⇡-irreducibility of MH
chains is the local positivity of the proposal density q,

||x� y||
2
< � ) q (y|x) > " , (1.5)

for some �, " > 0 (||·||
2
is the Euclidean norm), together with the assumption that ⇡ is

bounded above and away from 0 on any compact subset of the state space X (Robert and
Casella, 2004). This type of condition can easily be verified for the Metropolis algorithm
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(Metropolis et al., 1953), a special case of the MH algorithm that uses a symmetric
random-walk proposal density,

q (y|x) = q (y � x) = q (x� y) .

Since its initial development, the MH algorithm—and most notably the Metropolis
sampler—has seen multiple proposed improvements, of which we consider two here. The
Multiple-try Metropolis (MTM) algorithm defines a variant of the Metropolis sampler
where several candidates are generated in a given iteration; this technique produces a
transition that is better adapted to the specific geometry of the target density, leading
to an improved state space exploration. The Adaptive Metropolis (AM) algorithm, on
the other hand, uses a random-walk proposal density at each iteration but adapts it
through time to match the covariance of the target, therefore producing higher-quality
candidates.

Both algorithms improve on the vanilla Metropolis sampler, but each su↵ers from the
exact problem that the other algorithm aims at solving. The MTM sampler requires a
large amount of hand-tuning that adaptive algorithms perform automatically; the AM
algorithm typically uses simple proposal densities that may not be well-suited to target
densities featuring complex geometries, such a multi-modal densities. In this article, we
propose a novel adaptive MCMC algorithm that unites the advantages of these two
samplers and therefore fixes some of their respective flaws.

Related work We review some of the recent attempts at integrating adaptation within
the multiple-try framework. Martino et al. (2018) propose the adaptive independant sticky
multiple-try Metropolis, which uses a non-parametric independent proposal density. Mul-
tiple candidates are sampled from this non-parametric density adapted using rejected
points. Being non-parametric, this method does not extend well beyond a few dimen-
sions for full-dimensional samplers. Casarin, Craiu and Leisen (2013) propose the in-
teracting multiple-try Metropolis in which multiple parallel MTM chains interact with
each other and MTM selection weights are adapted using all chains. Yang et al. (2019)
propose an adaptive component-wise multiple-try Metropolis algorithm that consists of
a multiple-try generalization of the Metroplis-within-Gibbs where one-dimensional pro-
posals are adapted using MTM selection proportions of the chain’s past. Tran, Pitt and
Kohn (2016) briefly mention that their proposed adaptive correlated Metropolis-Hastings
algorithm could be extended to include multiple candidates.

Principal contributions The main contribution of this research is the proposed aMTM
algorithm, which consists of an adaptive MCMC sampler with full-dimensional adapted
multiple-try Metropolis proposal densities. Introducing adaptation in MTM algorithms
is a natural extension to the current literature; it is surprising that nothing has yet been
published on the subject. We derive an ergodicity result under the assumption that both
the sample and parameter spaces are bounded. Intermediary theoretical results are read-
ily extendable to other adaptive MCMC algorithms and provide slightly more general
knowledge about MTM transitions. We provide an implementation of our proposed algo-
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rithm in a R package called aMTM available at https://github.com/fontaine618/aMTM,
which mostly consists of a wrapper for the main sampling function written in C++.

Paper organization In Section 2, we introduce some background on MTM and adap-
tive algorithms. Section 3 contains a general description of our proposed algorithm along
with some variants. The validity of our sampler is discussed in Section 4, where ergodic-
ity is proven. We conduct simulation experiments in Section 5 to assess the performance
of our approach. Supplement A contains additional details on particular variants of the
algorithms, results and proofs omitted from the main text.

2. Background

2.1. Multiple-try Metropolis

A natural extension to the MH algorithm is to consider K candidate points per iteration
instead of a single one (Liu, Liang and Wong, 2000). The resulting multiple-try Metropolis
sampler must therefore include an additional step that randomly selects a proposal among
the set of K candidates Y

(1:K) ⇠ q (·|x) according to some positive sampling weight
function w

(k) (·|x), which may depend on the index k of the candidate and on the previous
state x of the chain. Throughout the text, exponents in parentheses (k) index candidates
with the convention that (1:K) selects all candidates while (�k) omits the k-th candidate.
Standardizing these weights, we obtain the probability of choosing y

(k) = y as the o�cial
candidate:

w̄
(k)(y, y(�k)|x) = w

(k)(y(k)|x)
PK

j=1
w(j)(y(j)|x)

.

Once an o�cial candidate k 2 {1 , . . . ,K} is selected, the proposed value y
(k) = y

must go through an accept/reject step in order to become the next state of the chain.
As before, the acceptance probability is chosen such as to satisfy the detailed balance
condition (1.4), which basically requires that the trajectory produced by a stationary
Markov chain be equally probable when run forward or backward in time. To satisfy this

condition, we thus need to generate a shadow sample x
(j)
⇤ , j = 1 , . . . ,K, that mimics

the generation of a candidate set, and then select the o�cial candidate x for going from

y to x (instead of from x to y). That is, we let X(k)
⇤ = x and sample X

(�k)
⇤ ⇠ q

(�k) (·|y),
where q

(�k) is the conditional proposal distribution given the k-th component X(k)
⇤ = x.

Using the following MTM acceptance probability

↵MTM

⇣
y, y

(�k)|x, x(�k)
⇤

⌘
= min

(
1,

⇡(y)q(k)(x|y)w̄(k)(x, x(�k)
⇤ |y)

⇡(x)q(k)(y|x)w̄(k)(y, y(�k)|x)

)
(2.1)

is then su�cient to verify (1.4), assuming that the marginal density of the k-th candidate,
q
(k)(·|·), satisfies

q
(k)(x|y) > 0 , q

(k)(y|x) > 0 , (2.2)
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for all k = 1 , . . . ,K (see Supplement A, Proposition 3.1).
The MTM design and the detailed balance condition’s verification do not impose any

restriction on the joint distribution of candidates, only on their marginal distributions.
The set of candidates can thus be generated in any way and choosing appropriate correla-
tion structures within the candidate set can greatly improve the algorithm’s performance.
The simplest choice is to generate candidates independently, but this does not make use
of the sampler’s full potential. Indeed, nothing prevents two candidates from being very
close to one another, which does not improve the state space exploration.

Extremely antithetic (EA) candidates are generated so that their pairwise Euclidean
distances be maximized. Craiu and Lemieux (2007, Section 3.1) achieve this by introduc-
ing a correlation of ⇢ = �1/(K � 1) between the K candidates. For example, if marginal
Gaussian proposal distributions with unit spherical covariances Id are used, this yields
the joint covariance matrix

Var
⇣
Y

(1:K)

⌘
=

0

B@
Id · · · ⇢Id
...

. . .
...

⇢Id · · · Id

1

CA 2 RdK⇥dK
. (2.3)

To produce candidates using di↵erent covariance matrices, we can simply generate K

d-dimensional Gaussian observations using (2.3) and transform them using a Cholesky
decomposition. To produce the shadow sample, we need to compute the conditional
distribution of Y (�k) given Y

(k) = y
(k). In the unit spherical covariance case, we can

show (Fontaine, 2019, Section 5.3.4.2) that this corresponds to a Gaussian distribution
with some specific mean and the following joint covariance,

Var
⇣
Y

(�k)|y(k)
⌘
= (1� ⇢)

0

B@
(1 + ⇢)Id · · · ⇢Id

...
. . .

...
⇢Id · · · (1 + ⇢)Id

1

CA 2 Rd(K�1)⇥d(K�1)
.

Randomized quasi-Monte Carlo (RQMC) methods are constructed using a (random)
regularly-spaced grid on the unit hyper-cube before going through a probability integral
transform. For example, Craiu and Lemieux (2007, Section 3.2) construct such a grid
using a Korobov rule. The RQMC candidates were generalized by Bédard, Douc and
Moulines (2012) to common random number candidates, where the regular grid assump-
tion is removed. We refer the reader to Supplement A, Section 1.1, for a summary on
how to perform these various sampling schemes with a multivariate Gaussian random
walk proposal density.

The detailed balance condition (1.4) only requires that weight functions w(k) be pos-
itive everywhere. Users therefore have the freedom to choose functions that favor some
particular behaviour. To encourage large jumps for instance, w(k) could be chosen to con-
tain the factor ||y � x||

2
(see, e.g., Yang et al., 2019). We refer the reader to Martino and

Read (2013) for an extensive study of di↵erent weight functions. The two most common
choices—and the ones that seem to perform best empirically—are importance weights,

w
(k)
imp

(y|x) = ⇡(y)

q(k) (y|x)
, (2.4)
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6 S. Fontaine and M. Bédard

and weights proportional to the target density,

w
(k)
prop

(y|x) = ⇡(y) . (2.5)

The ergodicity of MTM chains can be verified using the same conditions as for the
Metropolis algorithm. The assumption that (1.5) holds for each proposal density q

(k),
k = 1 , . . . ,K, is su�cient to ensure ⇡-irreducibility and aperiodicicity as long as both
⇡ and w

(k)(·|x) are bounded above and below on any compact subset of X for each k

and for each fixed x (see Supplement A, Proposition 3.2). The same conditions are also
su�cient to establish a strong law of large numbers for all ⇡-integrable functions.

Algorithm 1 summarizes the MTM sampler in its most general form—the joint pro-
posal density and weight functions are left completely free.

Algorithm 1 Multiple-try Metropolis (MTM)

Input Target density ⇡ with support X ✓ Rd, MC sample size N , joint proposal distribution
q with marginals q(k) and conditionals q(�k), k = 1 , . . . ,K, weight functions wk, k =
1 , . . . ,K.

Procedure 1. Initialization. Initialize the state to x0 2 X .

2. MCMC iteration. For n = 0 , . . . , N � 1, do:

(a) Candidates generation. Sample y(1:K) ⇠ q(·|xn);

(b) Weights. Compute w(k)(y(k)|xn), k = 1 , . . . ,K;

(c) Proposal selection. Sample k 2 {1 , . . . ,K} with probability proportional to
weights w(k), k = 1 , . . . ,K, and set y = y(k);

(d) Shadow sample. Sample x
(�k)
⇤ ⇠ q(�k)(·|y(k), xn) and set x

(k)
⇤ = xn;

(e) Reverse weights. Compute w(k)(x
(k)
⇤ |y), k = 1 , . . . ,K;

(f) Acceptance probability. Compute ↵MTM(y, y(�k)|x, x(�k)
⇤ ) using (2.1);

(g) Acceptance. Accept the proposal (xn+1 = y) with probability ↵MTM; other-
wise reject the proposal (xn+1 = xn).

Output The MC sample {xn}Nn=1.

2.2. Optimal scaling of MCMC

While a law of large numbers (1.1) guarantees that the sample average converges toward
the desired expected value, it does not provide any insight about the estimation error
for finite samples. The advantage of central limit theorems (CLTs) is that they provide
information about the asymptotic distribution of Monte Carlo estimates. A Markov chain
X ✓ X satisfies a CLT for a function f if there exists a constant �2

f < 1, known as the
asymptotic variance, such that

p
N

"
1

N

NX

n=1

f (Xn)� ⇡(f)

#
D�! N

�
0,�2

f

�
, N ! 1 , (2.6)
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where
D�! denotes convergence in distribution. In MCMC contexts, CLTs are often

used to produce Monte Carlo standard errors by applying the asymptotic result to a
finite sample. Replacing convergence with approximation, (2.6) suggests, for large N ,

1

N

NX

n=1

f (Xn) ⇡ N
�
⇡(f),�2

f/N
�
,

so we may use an estimate of �f/
p
N as the Monte Carlo standard error.

Now, if we fix the function of interest f and the target density ⇡, we find that di↵erent
Markov transitions yield di↵erent values for the asymptotic variance �

2

f , hence di↵erent
Monte Carlo estimation precisions. Therefore, choosing a transition producing a small—
ideally the smallest—asymptotic variance is an important aspect of MCMC theory.

We note that the transition of Metropolis-Hastings samplers is entirely defined by the
proposal density q. In the simple case of iid targets and Metropolis proposal densities with
spherical Gaussian steps, Roberts, Gelman and Gilks (1997) showed that, asymptotically
as the dimension d ! 1, the optimal scaling of the proposal variance �

2

dId is given by
�
2

d = (2.38)2/d and is associated to an optimal acceptance probability of 0.234. Similar
results were eventually obtained for more general target densities (Roberts and Rosenthal,
2001; Bédard, 2007, 2008a; Bédard, 2008b; Bédard and Rosenthal, 2008; Breyer and
Roberts, 2000; Beskos, Roberts and Stuart, 2009; Sherlock and Roberts, 2009), for other
algorithms (Roberts and Rosenthal, 1998; Breyer, Piccioni and Scarlatti, 2004; Pillai,
Stuart and Thiéry, 2012; Bédard, Douc and Moulines, 2014; Beskos et al., 2013), and
also for finite-dimensional targets (Gelman, Roberts and Gilks, 1996; Sherlock, Fearnhead
and Roberts, 2010). These results provide guidelines for MCMC users to choose near-
optimal proposal densities.

Bédard, Douc and Moulines (2012) studied MTM samplers and obtained asymptoti-
cally optimal scaling results (d ! 1) for each fixed number of candidates K = 1 , . . . , 5.
They considered various sampling schemes, including independent and EA candidates;
their results, partially summarized in Table 1, apply to iid targets with spherical mul-
tivariate Gaussian candidates and weights proportional to the target. As K increases,
we notice a growth in the optimal acceptance probability, which indicates that the chain
has access to higher-quality selected proposals. Extremely antithetic candidates lead to
acceptance rates that are significantly larger than those of independent candidates, mean-
ing that an adequate correlation structure may substantially improves the quality of the
selected proposal.

2.3. Adaptive MCMC

Optimal scaling results such as those presented in Section 2.2 implicitly require that
the covariance of the target distribution be known. Indeed, the Gaussian random walk
proposal uses a covariance that should be a multiple of the true covariance. In practice,
the true covariance is never known—recall that we wish to compute some expectation
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MTM optimal acceptance probability

Number of candidates (K)

Sampling scheme 1 2 3 4 5

Independent 0.23 0.32 0.37 0.39 0.41
EA 0.23 0.46 0.52 0.54 0.55

Table 1. Optimal acceptance probability of the MTM with spherical multivariate Gaussian candidates
and weights proportional to ⇡, a target with iid components (Bédard, Douc and Moulines, 2012).

⇡(f) and that variance is the special case f = (I � ⇡(I))2, I(x) = x—so it is a dubious
assumption to make.

To use optimal scaling results without knowledge of the true covariance, Haario, Saks-
man and Tamminen (2001) propose the adaptive Metropolis sampler, which learns the
true covariance over time using the growing sample. Suppose that the time-n estimate of
the covariance is ⌃n. A Metropolis iteration is performed using sd⌃n as the proposal vari-
ance of the Gaussian random walk, where sd = (2.38)2/d (from optimal scaling results).
Once xn+1 is selected as either the proposal y or the previous state xn, we define ⌃n+1 as
the empirical covariance of the sample (xi)

n+1

i=1
(to which a small multiple of the identity

matrix is added to ensure non-singularity). Simple recursions allow the computation of
⌃n+1 from ⌃n without much work so this extra step is computationally cheap.

Since transitions change at every iteration, the chain is no longer homogeneous. The
ergodicity property (1.3) is not defined properly for inhomogeneous chains so we require
di↵erent definitions for studying the convergence of adaptive MCMC: we will use the set-
ting in Roberts and Rosenthal (2007, Section 2). Furthermore, since the proposal variance
depends on all past samples, the Markovian property of the chain is destroyed. Still, under
some mild conditions, Haario, Saksman and Tamminen (2001) verified that AM chains
satisfy a strong law of large numbers for bounded functions. The same conditions also
imply convergence of the adaptive proposal covariance to the true target covariance (up
to the small identity matrix added). Andrieu and Moulines (2006, see also Saksman and
Vihola, 2010) later weakened the su�cient conditions for a strong law of large numbers,
for an expanded class of functions, and provided a central limit theorem.

Following the work of Atchadé and Rosenthal (2005), Roberts and Rosenthal (2007)
developed a simple yet powerful framework to study the ergodicity of adaptive MCMC
in a more general setting. They showed that two main conditions are su�cient to verify
both the ergodicity of adaptive chains and a weak law of large numbers. To state these
su�cient conditions, let Y be some indexing set for the family of possible transitions
{P� : � 2 Y} and let �n denote the (random) index of the chain’s transition at time
n > 0. When the transitions are all within the same parametric family, the indexing set
corresponds to the parameter space where the �n’s lie. For example, the indexing of the
AM transition may be performed using the adapted covariance ⌃n.

The first condition, termed diminishing adaptation (DA), requires that subsequent
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An adaptive multiple-try Metropolis algorithm 9

transitions change less, in probability, as the chain progresses:

dist(P�n , P�n+1)
P! 0 , n ! 1 , (2.7)

where
P! denotes convergence in probability and where

dist(P�n , P�n+1) := sup
x2X

����P�n (·|x)� P�n+1 (·|x)
����
TV

is the distance between two consecutive transitions. In particular, convergence of transi-
tions is not a necessary condition, even though it is often satisfied and desired.

The second condition, coined bounded convergence (BC, also called containment),
states that all transitions are individually ergodic with respect to the target density and
that their convergence rates do not degenerate, at least in probability. For all " > 0,
the process {M"(Xn,�n)}n>0 is bounded in probability conditionally on the initial state
X0 = x⇤ and initial transition index �0 = �⇤, where

M"(x, �) := inf
m

n
m > 1 :

����Pm
� (·|x)� ⇡(·)

����
TV

o
(2.8)

is the "-convergence time of the homogeneous chain using transition P� with parameter
� 2 Y and starting at x 2 X . Following the work of Roberts and Rosenthal (2007), most
adaptive MCMC algorithms have their ergodicity verified using DA and BC, or some
derivatives of these conditions.

3. Description of the algorithm

3.1. Motivation

Before introducing our proposed algorithm, we consider a toy example that exhibits some
of the shortcomings of the AM and MTM samplers taken separately. Let ⇡ be a two-
dimensional mixture of two Gaussian densities with weights w1 = 0.3 and w2 = 0.7, with
means µ1 = (20, 0)> and µ2 = (0, 8)>, and with covariance matrices ⌃1 = diag(9, 1) and
⌃2 = diag(1, 9). An iid sample of size N = 10, 000 from that density may be found in
Figure 1(a).

Multimodal densities are notoriously hard to sample using simple algorithms. Indeed,
two types of moves are required to adequately explore the whole support of such distri-
butions: local moves to explore a given mode and global ones to jump between modes. A
single proposal density generally cannot do both e�ciently because of the di↵erent scales
on which they lie (see, e.g., a Metropolis sampler in Figure 1(b) featuring a very low
acceptance rate). Furthermore, using adaptation to find an optimal proposal covariance
matrix leads to the optimization of a single type of moves. Depending on the initializa-
tion, the AM algorithm will either converge to the covariance of one mode (Figure 1(c))
or to the global covariance of the target (Figure 1(d)). While the latter yields decent
results, the acceptance rate is still small for a two-dimensional target density.
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Acc. rate = 1.000
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Figure 1. Samples for the bimodal density of Section 3.1 obtained using di↵erent samplers and param-
eters. Ellipses show the final proposal covariance(s); P (x1 > 5) is the proportion of points with x1 > 5;
MSJD is the mean squared jumping distance.

MTM samplers are better suited for multimodal densities because the di↵erent pro-
posal densities can model various types of jumps. When proposal densities are well ad-
justed to the target, the resulting chain may o↵er good performances (e.g., Figure 1(e)).
The tuning of proposal densities must however be done by hand, which rapidly becomes
impractical with increasing dimensions.

Hence, adaptation of the MTM’s proposal densities could bring the best of both worlds
together: automatic tuning of the proposal distributions and better fit to the target’s
distinct characteristics. Our proposed method, whose description follows, can achieve
improved performance with minimal tuning (see Figure 1(f)).

3.2. General algorithm

Adaptive MCMC algorithms are essentially defined by two components: a family of tran-
sitions and a way to move from one transition to another. The results of Roberts and
Rosenthal (2007) suggest a way to construct ergodic adaptive MCMC algorithms: we
define both components so that the DA and BC conditions be easy to verify. The BC
condition is mostly related to the family of transitions while the DA condition is related
to the agreement between successive transitions.

With that in mind, we propose to equip the MTM sampler with adaptation in the
following way. The family of transitions is chosen to be MTM transitions in which can-
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didates are generated using Gaussian random walks with a fixed, common correlation
structure between the candidates and a fixed weight function. Keeping the correlation
structure and weight function fixed will help verifying the DA condition since switch-
ing between correlation structures or weight functions would create discontinuous jumps
between transitions. We will consider the four correlation structures described in Sec-
tion 2.1 (independent, EA, RQMC, common random variable) as well as the weight
functions (2.4) and (2.5). Algorithm 2 contains an abstract description of our proposed
algorithm with arbitrary adaptation.

Algorithm 2 Adaptive multiple-try Metropolis (aMTM)

Input Target density ⇡, MC sample size N , adaptation procedure qn 7! qn+1 inside some
family of proposal densities Q, weight functions wk, k = 1 , . . . ,K.

Procedure 1. Initialization. Initialize the state to x0 2 Rd and the joint proposal density to
q0 2 Q.

2. MCMC iteration. For n = 0 , . . . , N � 1, do:

(a) MTM sampling. Generate xn+1 from xn using the current joint proposal
distribution qn and the weight functions wk, k = 1 , . . . ,K, and according
to one MTM sampling iteration (Algorithm 1, Step 2).

(b) Adaptation. Update qn to qn+1 according to the specified adaptation proce-
dure.

Output The MC sample {xn}Nn=1.

3.3. Adaptation variants

When the family of proposal densities is chosen to be multivariate Gaussian random
walks, then the joint proposal density q also is a (possibly singular) multivariate Gaus-
sian density. In particular, each marginal density is uniquely determined by the covariance
matrix ⌃(k), k = 1 , . . . ,K. With a fixed correlation structure, the correlations between
the candidates are all known given the marginal distributions. Hence, adaptation of q
is reduced to adaptation of ⌃(k), k = 1 , . . . ,K; our proposed aMTM algorithm up-
dates only one of these covariance matrices in a given iteration, namely, the one that
was used to generate the selected candidate. The adaptation between two consecutive
marginal covariances ⌃(k) is inspired from existing schemes used to improve upon the
Metropolis algorithm. Additional adaptation variants are also discussed in Supplement
A, Section 1.2.

AM updates A first update rule is given by the AM updates of Haario, Saksman

and Tamminen (2001). At time n, the k-th proposal covariance is sd⌃
(k)
n for some scale
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sd > 0. The recursion for the update ⌃(k)
n satisfies

µ
(k)
n+1

= µ
(k)
n + �n+1

⇣
xn+1 � µ

(k)
n

⌘
, (3.1)

⌃(k)
n+1

= ⌃(k)
n+1

+ �n+1

⇣
xn+1 � µ

(k)
n

⌘⇣
xn+1 � µ

(k)
n

⌘>
� ⌃(k)

n+1

�
, (3.2)

where µ
(k)
n is the running mean of the k-th component and �n+1 > 0 is the adaptation

step.

ASWAM updates Optimal scaling results provide guidelines about the choice of sd
given the dimension d of the target density. The AM algorithm uses that information
to directly scale the proposal covariance. Now, these results also provide an optimal
acceptance rate which can be used, instead of the scale itself, to tune the marginal
covariances. Empirical evidence shows that the optimal acceptance rate is much less
sensitive to a change of target density than the optimal scale. Thus, aiming at an optimal
acceptance rate rather than an optimal scaling is a more robust adaptation principle.

Based on this argument, a second update rule is provided by the adaptive scaling
within adaptive Metropolis (ASWAM) updates of Andrieu and Thoms (2008). The idea
is to compute the running mean and covariance as in the AM updates (3.1) and (3.2), but
to also adapt the scale sd toward a value that yields an acceptance rate approaching some

target rate ↵⇤ 2 [0, 1]. The marginal covariance for candidate k at time n is �
(k)
n ⌃(k)

n ,

where the scale �
(k)
n is updated using

log
⇣
�
(k)
n+1

⌘
= log

⇣
�
(k)
n

⌘
+ �n+1

h
↵MTM

⇣
y, y

(�k)|x, x(�k)
⇤

⌘
� ↵⇤

i
.

RAM updates An alternative to ASWAM updates is the robust adaptive Metropolis
(RAM) of Vihola (2012), whose updates are better suited to target densities with no
finite second moment. In a single step, the marginal covariance is updated to approach
both the (pseudo-)covariance of the target and a target acceptance rate. Given a square

root decomposition ⌃(k)
n = S

(k)
n S

(k)>
n , the next marginal covariance is given by

⌃(k)
n+1

= S
(k)
n

8
><

>:
Id + �n+1

h
↵MTM

⇣
y, y

(�k)|x, x(�k)
⇤

⌘
� ↵⇤

i
z
(k)
n z

(k)>
n���

���z(k)n

���
���
2

2

9
>=

>;
S
(k)>
n ,

where z
(k)
n = (S(k)

n )�1[y � xn] is the standardized proposed step.

4. Validity

The aMTM sampler is first and foremost an adaptive algorithm. The regularity assump-
tions that are imposed to verify the theoretical properties of the aMTM (ergodicity, LLN)
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are therefore very similar to other adaptive methods, such as the AM of Haario, Saksman
and Tamminen (2001).

Although Section 3 describes several variants of the aMTM sampler, it is not possible
to simultaneously consider all these variants when proving the ergodicity of this algo-
rithm. In what follows, we consider some general results that can be used in verifying the
ergodicity, but we relegate the details applicable to specific instances of the algorithm to
the supplementary material. For example, the simple case of independent candidates and
weights proportional to the target density requires no further assumption; other variants
may require stronger assumptions, which are discussed in Supplement A, Section 3.3.

Before pursuing, let us introduce some more notation. The target distribution has
a density ⇡ with respect to Lebesgue measure, with support X = {x 2 Rd |⇡(x) >

0} ✓ Rd. We are interested in the expectation of a function f : Rd ! Rp such that
⇡(|f |) < 1. At time n 2 N, the K proposal covariance matrices of the MTM kernel
are ⌃ = (⌃(1)

, . . . ,⌃(K)) with ⌃(k) 2 C+

d , k = 1 , . . . ,K, where C+

d denotes the cone of
symmetric positive-definite d⇥ d matrices. The parameter space therefore is ⇥ = (C+

d )
K

and the marginal proposal densities are q(k)✓ (y|x) = '(y|x,⌃(k)), where '(·|µ,⌃) denotes
a d-dimensional normal density with mean µ and covariance ⌃.

We assume that X and ⇥ both are compact; these assumptions are similar to those in
Haario, Saksman and Tamminen (2001) and greatly simplify proofs in Section 4.1, where
the algorithm’s ergodicity is studied. Generalizations to unbounded cases are discussed
in Section 4.2, while limit theorems are considered in Section 4.3.

4.1. Ergodicity

First let us recall a result from Roberts and Rosenthal (2007), which will be the basis of
the aMTM algorithm ergodicity’s analysis.

Theorem 4.1 (Roberts and Rosenthal, 2007, Theorem 2). Consider an adaptive MCMC
algorithm using a family of Markov transitions {P✓}✓2⇥ and let x0 2 X and ✓0 2 ⇥ be
the initial state and transition index, respectively. Suppose each transition P✓ admits the
target density ⇡ as its stationary distribution and suppose the algorithm satisfies the di-
minishing adaptation (2.7) and the bounded convergence (2.8) conditions for these initial
values. Then, the algorithm is ergodic to the target density for these initial values.

In this result, there are three main conditions to verify: stationarity, diminishing
adaptation and bounded convergence. In our context, the family of Markov transitions
{P✓}✓2⇥ consists in MTM transitions with some fixed correlation structure and fixed
weight function. The index ✓ corresponds to the collection of marginal covariances ⌃.

4.1.1. Stationary distribution

As mentioned in Section 2.1, a su�cient condition for P✓ to admit ⇡ as its stationary
distribution is to satisfy (2.2). Conveniently, any symmetrical proposal density meets this
requirement; in particular, a multivariate Gaussian random walk assumption is su�cient
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14 S. Fontaine and M. Bédard

to establish the stationarity of ⇡. The proof of (2.2)’s su�ciency (in Supplement A,
Proposition 3.1) is valid for any choice of correlation structure and any weight function.

4.1.2. Bounded convergence

Our study of the aMTM’s bounded convergence relies on Craiu et al. (2015, Proposition
23):

Proposition 4.1 (Craiu et al., 2015, Proposition 23). Consider an adaptive MCMC
algorithm using a family of Markov transitions {P✓}✓2⇥ such that ⇥ is compact, and such
that each P✓ admits the target density ⇡ as stationary distribution and is Harris-ergodic
to ⇡. If, for all n > 1, the application (x, ✓) 7! �n(x, ✓) with

�n(x, ✓) := ||Pn
✓ (·|x)� ⇡(·)||

TV

is jointly continuous in (x, ✓) for all (x, ✓) 2 X ⇥⇥ and if {Xn}n>1 is bounded in proba-
bility, then the algorithm satisfies the bounded convergence condition (2.8).

Based on the previous result, the verification of the bounded convergence further
requires (1) that each MTM transition be Harris-ergodic with respect to ⇡, (2) that
the parameter space ⇥ be compact, (3) that �n(x, ✓) be continuous for each n, and (4)
that {Xn}n>1 be bounded in probability. The intuition behind this result is that each
transition is ergodic with some rate of convergence. We then suppose that this rate of
convergence varies continuously on the compact set X ⇥⇥ (at least in probability) so
that it remains bounded, whence “bounded convergence”.

We can show that Harris erogodicity of MTM transitions only requires the verification
of ⇡-irreducibility and aperiodicity. Indeed, we have the following result.

Proposition 4.2. Let P be a MTM transition for a target density ⇡. If P is ⇡-
irreducible, then P is Harris-recurrent.

Proof. The complete argument may be found in Supplement A, Proposition 3.3, but is
almost identical to the proof by Tierney (1994, Corollary 2) in the Metropolis case.

We note that a similar implication exists for Metropolis-Hastings transitions. It will
then be convenient to observe that ⇡-irreducibility and aperiodicity follow from the con-
dition stated in the following result, which is reminiscent of similar results for Metropolis-
Hastings algorithms with extra assumptions on the weight functions.

Proposition 4.3. Let P be a MTM transition for a target density ⇡ with connected
support X . Suppose that ⇡ is bounded above on X and below on any compact subset of X .
Suppose that, for each k = 1 , . . . ,K, there exist �, " > 0 such that the marginal proposal
densities are symmetric and satisfy

q
(k)(y|x) > " , 8 x, y 2 X : ||y � x||

2
< � .
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Suppose that, for all fixed x 2 X , the weights w
(k)(·|x) are bounded above and below on

any compact set. Then, the kernel P is ⇡-irreducible and aperiodic.

Proof. The complete argument may be found in Supplement A, Proposition 3.2, but is
completely analogous to the proof by Robert and Casella (2004, Lemma 7.6) in the MH
case.

The verification of �n’s continuity is inspired from a proof by Roberts and Rosenthal
(2007, Corollary 11) in the case of a Metropolis-Hastings sampler. We refer the reader to
Supplement A, Section 3.3.4, for a complete proof, which requires no further assumption
other than those already mentioned.

Under the assumption that X is compact, we directly have that {Xn}n>1 is bounded
in probability. The more general case where X is unbounded requires more care and will
be discussed in Section 4.2.

4.1.3. Diminishing adaptation

The diminishing adaptation condition (2.7) is easier to verify in the context of stochastic
approximations. In particular, we recognize the covariance updates described in Sec-
tion 3.3 as those of a Robbins-Monro algorithm (Robbins and Monro, 1951), which con-
sists of updates taking the following form:

✓n+1 = ✓n + �n+1H(✓n, (k, y
(1:K)

, x
(1:K)

⇤ )) , (4.1)

for some function H : ⇥ ⇥ {1 , . . . ,K} ⇥ X 2K ! Rd✓ with ⇥ ✓ Rd✓ . In the case where

running means µ(k)
n or scales �(k)

n are used, we add them to ✓ and augment ⇥ accordingly.
Following the work of Andrieu and Moulines (2006) and Saksman and Vihola (2010),

we can prove the following result for adaptive MCMC algorithms.

Proposition 4.4. Suppose that the transition update function H✓(·) = H(✓, ·) is 1-
Lipschitz in ✓, that is, there exists C < 1 such that for every pair (✓, ✓0) 2 ⇥ ⇥ ⇥ and
for every bounded function f we have

||P✓f � P✓0f ||
1
6 C||f ||

1
||✓ � ✓

0||
2
, (4.2)

where ||·||
1
is defined for a function f : X ! Rp by ||f ||

1
= supx2X ||f(x)||

2
and where

P✓f(z) =

Z
f(x)P✓(x|z) dx.

Suppose that {✓n}n>1 in bounded in probability; if

sup
✓2⇥

||H✓||1 < 1 , 8 x 2 X , ✓ 2 ⇥ , (4.3)

and if the sequence of adaptation steps converges to 0, �n ! 0, then the adaptive MCMC
algorithm satisfies the diminishing adaptation condition (2.7).
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16 S. Fontaine and M. Bédard

Proof. See Supplement A, Proposition 3.4, for a stronger statement of which Proposition
4.4 is a special case when ⇥ is compact.

The previous result reduces the verification of the diminishing adaptation to the ver-
ification of the Lipschitz transitions condition (4.2) and the bounded updates condi-
tion (4.3). Verifying the Lipschitz transitions condition (4.2) does not require any addi-
tional assumption under the simple case of independent proposals and weights propor-
tional to the target density. For other aMTM variants, the verification of the Lipschitz
transition must be made on a case by case basis; see Supplement A, Section 3.3.2, for
a discussion. Verifying the bounded updates condition (4.3) is trivial under the assump-
tion that X is compact because any update rule described in Section 3.3 will only involve
bounded quantities (Supplement A, Section 3.3.3).

4.2. Generalizations to unbounded spaces

The major assumptions made in Section 4.1 were the compactness of the state space
X and parameter space ⇥. These conditions greatly simplify the verification of the al-
gorithm’s ergodicity, but also substantially restrict the theoretical applicability of the
proposed sampler. In this section, we discuss di↵erent approaches that could be used to
relax or even remove these assumptions.

Assuming X to be compact may seem a major impediment to the practical use of the
algorithm since target densities often have unbounded supports. One might then worry
about the fact that the theoretical results of the previous section only apply to a very
restricted class of target densities. Now, a simple workaround is to consider the target
⇡̃ = ⇡|eX , a version of the initial ⇡ restricted to a compact set eX ⇢ X , which can be
chosen arbitrarily large. In that case, the expectation ⇡̃ (f) of the resulting MC estimate
will be virtually indistinguishable from the original expectation ⇡ (f) provided that eX
is chosen large enough. In practice, this approach corresponds to rejecting any proposal
that lies outside of eX .

In contrast, the compactness of ⇥ does not reduce the scope of theoretical results;
in reality, it only restricts the family of MTM transitions on which adaptation can be
performed. In the aMTM algorithm, the space ⇥ lies within the product of K convex
cones of symmetric positive definite matrices. We can therefore simply choose ⇥ compact
by bounding the eigenvalues of the covariance matrices inside some interval. Since users
typically have some idea of their problem’s scaling, it is easy to find reasonable bounds so
that ⇥ contains the most e�cient MTM transitions. In any case, practical implementa-
tions are subject to program and machine limitations so any symmetric positive definite
matrix will lie in some definitive compact set when stored.

4.2.1. Compact coverages

It is important to note that, because of the extensive similarities between MH and MTM
algorithms, results applicable to the AM sampler are expected to have aMTM counter-
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parts holding under fairly similar conditions. Here is an example of a construction used
to prove the ergodicity of the AM algorithm on unbounded domains.

Dating back to the work of Chen, Lei and Gao (1988), compact coverages or troncation
at randomly varying bounds or sequentially constrained adaptive MCMC algorithms is
the idea of performing a Robbins-Monro stochastic approximation—which covers most
adaptive MCMC algorithms as a special case—within some compact set and expanding
that set when necessary. More explicitly, a compact coverage of⇥ is a sequence of compact
sets {Kr}r>0

increasing to ⇥, i.e. such that [r>0 Kr = ⇥ and Kr ⇢ int (Kr+1). Then,
the adaptation step of the sampler is modified so that the parameter ✓n+1 is updated
only if the new value lies in Kn+1.

Subject to some regularity conditions on the target density ⇡, Saksman and Vihola
(2010, Section 5) show that the sequentially constrained AM algorithm is ergodic with
respect to ⇡ for X and ⇥ unbounded (a generalization of Andrieu and Moulines, 2006,
Theorem 2). Furthermore, Vihola (2011, Section 5) extends these results to the ASWAM
sampler and Vihola (2012, Theorem 6) uses results from Vihola (2011) to verify the
ergodicity of the RAM algorithm on unbounded domains.

Unfortunately, the compact coverages method of proof relies heavily on the geometry
of the acceptation and rejection regions around the current state. In the case of MTM
transitions, these regions become incredibly complicated because of the multiple can-
didates and shadow points; it is therefore far from easy to extend these proofs to the
aMTM case.

4.2.2. Bounded adaptation and combocontinuity

Another setting under which the ergodicity of adaptive MCMC algorithms with un-
bounded state space can be studied is that of bounded adaptation, introduced by Craiu
et al. (2015). Consider eX , a compact subset of X , and let us modify the adaptive MCMC
as follows: whenever the current state is outside of eX , a fixed transition is used and the
parameter ✓ is not updated. We also assume bounded jumps; this means that there exists
D < 1 such that the probability of moving from x 2 X to a point that is at most D away
is 1 uniformly in ✓ 2 ⇥. This can be enforced by construction, by using proposal densities
truncated beyond D. Craiu et al. (2015, Theorem 21) then show that the AM algorithm
verifies the bounded convergence condition, provided that the sampler features a con-
tinuous transition (or a continuous proposal in the case of MH algorithms). Note that
we still require the compactness of the parameter space ⇥ in that case. Rosenthal and
Yang (2018) extend this result to more general adaptive MCMC algorithms that verify
a combocontinuity condition, i.e. samplers using a transition density that can be written
as a finite combination of continuous densities. In particular, MTM transitions fall under
the scope of combocontinuity assuming that all proposals are continuous densities.

4.3. Limit theorems

Two other interesting characteristics of MC estimates are satisfying a law of large num-
bers and a central limit theorem. Indeed, ergodicity guarantees that the marginal distri-
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bution of the chain converges to the target distribution, but does not directly inform us
on the properties of the estimate itself.

Under ergodicity, it is not hard to verify a weak law of large numbers for any bounded
function: Roberts and Rosenthal (2007, Theorem 23) show that Bounded Convergence
and Diminishing Adaptation are su�cient conditions in that case. However, extending
the result to a strong LLN or broadening the class of functions over which it applies
generally are trickier tasks.

Typically, strong LLN for adaptive MCMC algorithms require some sort of V -ergodicity
condition, where V is some test function that ultimately controls the convergence rate.
The obtained results thus apply to any V

↵-bounded function f for some ↵ 2 [0, 1), i.e.
such that supx2X |f(x)|/V ↵(x) < 1 (Andrieu and Moulines, 2006, Theorem 8). In our
context, this method of proof however requires V ⌘ 1, which then only allows bounded
functions. Now, the context of compact coverages described in Section 4.2.1 could poten-
tially enable verifying a strong LLN for the aMTM algorithm as was done for the AM
algorithm (Saksman and Vihola, 2010, Theorem 10), the ASWAM algorithm (Atchadé
and Fort, 2010, Proposition 5), and the RAM algorithm (Vihola, 2012, Theorem 6), all
of which allow ⇡

�1-bounded functions.
The story is very similar when it comes to obtaining a central limit theorem for the

aMTM sampler. Andrieu and Moulines (2006, Theorem 9) provide a CLT for adaptive
MCMC using compact coverages assuming ⇡

�↵-ergodicity, which holds for any ⇡
�↵/2-

bounded function with ↵ 2 [0, 1). Saksman and Vihola (2010, Theorem 18) derive a
similar result for the specific case of the AM algorithm with ↵ = 1.

5. Numerical experiments

5.1. Simulation experiments

5.1.1. Summary of findings

Fontaine (2019) contains multiple simulation experiments investigating the many variants
of the aMTM algorithm. For the MTM sampling component of the algorithm, the user
can specify a correlation structure, a weight function and the number of candidates; for
the adaptation component, the user can specify the update scheme, the target acceptance
rate and the step-size sequence. We refer the reader to Fontaine (2019) for the details,
but report here our main observations.

Extremely antithetic and randomized quasi-Monte Carlo candidates tend to perform
slightly better than independent proposals and significantly better than common random
variable proposals. These two correlation structures encourage a better spread of candi-
dates over the sample space and it is therefore not surprising to record better mixing and
space exploration. These results seem consistent both with theory—EA candidates have
larger optimal acceptance rates (Bédard, Douc and Moulines, 2012)—and with practice
(Craiu and Lemieux, 2007). Experimenting with importance weights and weights pro-
portional to the target did not yield a clear favorite; this seems to agree with similar
experiments (see, e.g., the extensive analysis of Martino and Read (2013).)

imsart-bj ver. 2014/10/16 file: article.tex date: January 24, 2022



An adaptive multiple-try Metropolis algorithm 19

It is important to keep in mind that the complexity of the aMTM scales with 2K�1 as
the target evaluation is generally the computational bottleneck of each iteration. Striking
a balance between more e�cient and costlier iterations is thus a crucial problem. Gladly,
we find that a small number of candidates—between 2 and 5, depending on the target—
is generally enough to obtain the largest improvements in performance compared to
single-candidate samplers. The following section contains an empirical study of number
of candidates, computational cost and performance.

In terms of adaptation, we find that updates using a target acceptance rate (RAM,
ASWAM) outperform the simple AM and that RAM updates seem to improve marginally
on the ASWAM in some cases. As for the target acceptance rate, we observe that rates
relatively smaller than the optimal ones (Bédard, Douc and Moulines, 2012) perform
best: these optimal rates are obtained for well-behaved targets, so it not surprising to
find that smaller rates are preferable. Generally, we find that rates in the range [0.2, 0.5]
produce results with somewhat uniform performances. Finally, for step sizes of the form
n
�� , we observe that AM and ASWAM updates tend not to be significantly a↵ected by

the value of � 2 [0.5, 1], while RAM updates seem to benefit from values closer to the
lower bound.

5.1.2. Computation time and number of proposals

As mentioned previously, one major drawback of MTM algorithms is their increased
computational cost: each MTM sampling step requires 2K � 1 target evaluations. In
comparison, the adaptation step within the aMTM algorithm is typically computationally
cheap. Indeed, full scale samplers such as the aMTM can only be reasonably used on small
to moderate dimensions, so the covariance update usually is insignificant compared to
additional target evaluations.

Setting. We perform a numerical experiment to study how performance and compu-
tational cost are a↵ected by the number of candidates. To this end, we compare the
MSJD and the multivariate e↵ective sample size (mESS, Vats, Flegal and Jones, 2019)
of the output chain, divided by computing time (/CPU) or by the number of evaluations
per step (/NbEval). The mESS leads to natural comparisons in terms of equivalent iid
samples; as with other MCMC estimates however, this value can be made arbitrarily
large by prolonging the chain. It is then convenient to report the statistics mESS/CPU
and mESS/NbEval, which tell us how many equivalent iid samples are produced every
second and every target evaluation, respectively.

We consider a variation on the famous “banana” target example (see, among many
others, Haario, Saksman and Tamminen, 2001; Andrieu and Thoms, 2008; Sejdinovic
et al., 2014; Martino and Read, 2013; Yang et al., 2019). The 5-dimensional target density
is expressed as

⇡(x) / exp

⇢
�1

2


x
2

1

a
2

1

+ (x2 �B1x
2

1
)2 + x

2
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+
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2

4
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2

2

+ (x5 �B2x
2

4
)2
��

(5.1)

with a1 = 1, a2 = 1, B1 = 3, and B2 = 1. In particular, the pairs of components
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(1, 2) and (4, 5) each marginally forms a “banana”, as can be seen from the iid sample1

in Figure S1 of Supplement A. This target has 5 connected but fairly di↵erent regions
(defined in Table S2 and depicted in Figure S1, both in Supplement A) that may require
di↵erent proposal densities to be explored e�ciently. We use these regions to construct a
lower bound on the TV distance by comparing the weight of each region in the MCMC
sample to the weight in an iid sample. Since we have access to iid samples, the mESS will
be computed using the true target covariance (estimated from a large iid sample). As the
target density is cheap to compute— we would not see the impact of K on CPU—, we
artificially slow down its evaluation by repeating the computations 20 times.

We consider four adaptation variants (None, AM, ASWAM, and RAM) and vary the
number of candidates K between 1 and 10. This therefore includes the Metropolis al-
gorithm (None; K = 1), MTM algorithms (None; K > 1), and adaptive Metropolis
algorithms (AM, ASWAM, RAM; K = 1). Initial values (or fixed values in the case of no
adaptation) for proposal covariances are chosen to be somewhat adjusted to the target,
but not so much as to give an unrealistic advantage to non-adaptive samplers: in particu-
lar, all proposal covariance matrices are chosen to be scalar multiples of diag(1, 3, 1, 1, 3),
where the scales are a log-spaced sequence of length K between 10�2 and 102. Each
algorithm is run for 200,000 iterations and the first half of the chain is discarded as
burn-in.

Results. Results are illustrated in Figure 2. First, we note that for an expensive target,
the computing time (CPU, panel (d)) is virtually una↵ected by the adaptation; the
computational cost is mostly explained by the number of target evaluations, as well as a
fixed cost independent of K.

In terms of TV distance (panel (a)), we find that the best adjustment to the target
density is obtained using adaptive algorithms (especially AM or ASWAM) and around 4
to 8 proposals. Interestingly, we find that the TV distance increases beyond 7 proposals
for adaptive samplers: a possible explanation is that each proposal is getting updated
less often as K increases, leading to candidates of worse quality. Non-adaptive samplers
struggle to adequately sample from regions 1–4, regardless of the number of candidates.

The mESS statistic (panel (b)) indicates that adaptive samplers do not gain much
e�ciency beyond the first 5 proposals; the MSJD statistic (panel (c)) shows a similar
trend, where the increase seems to slow down around the same number of proposals. Once
we take into account computing time (panels (e) and (f)), we observe a small decrease in
e�ciency with the number of candidates for both mESS and MSJD and for all adaptation
schemes, but we have to keep in mind that fewer than 4 candidates leads to inadequate
samples. In terms of target evaluations (panels (g) and (h)), we see a sharp decrease in
e�ciency starting from the 2nd candidate—this is not surprising as the increase in mESS
or MSJD is insu�cient to counteract the division by 3, 5, etc. instead of by 1.

1This density emerges as the transformation

(z1, z2, z3, z4, z5) 7! (a1z1, z2 +B1z
2
1 , z3, a2z4, z5 +B2z

2
4)

where the zi are iid standard normals.
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Figure 2. MCMC chain statistics for the banana target (5.1). TV distance is a lower bound on the
total variation distance of the empirical distributions between a MCMC sample and an iid sample using
regions defined in Table S1; mESS is the multivariate e↵ective sample size using a target covariance
estimated from an iid sample; MSJD is the mean squared jumping distance; CPU is the computing time
in seconds; NbEval is the number of target evaluations per MCMC iteration (i.e. 2K � 1 where K is the
number of candidates). Statistics are shown as means (line) with one standard error (band) over 100
random initializations.

Overall, this experiment indicates that there is a sweet spot balancing the e�ciency
(fewer proposals is always preferable) and the adjustment to the target (more proposals is
generally better). In this instance, the target has 5 regions with varying local covariances
and we find that around the same number of candidates works best.

5.2. Loss of heterozygosity in esophageal cancer cells

Problem description. During a cancer’s progression, a↵ected cells undergo genetic
changes such as loss of chromosomes sections. This abnormality, called loss of heterozy-
gosity (LOH), can be detected in laboratory: the Seattle Barrett’s Esophagus research
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project (Barrett et al., 1996) collected LOH rates for 40 di↵erent regions of the genome.
For each region i = 1 , . . . , 40, we denote by Xi the number of cells with detected LOH
and by Ni the total number of cells analyzed; Figure 3 (top) contains an histogram of
the proportions of LOH within each region.

It is hypothesized that there are two causes for LOH in cancer cells: a “background”
LOH, possibly caused by the cancer’s progression, and a “systematic” LOH, due to
the presence of tumor suppressor genes (TSGs). Regions with higher rates of LOH are
therefore suspected to contain TSGs: modeling LOH rates is thus of interest for cancer
researchers in order to identify regions with such TSGs. The existence of these two
regimes suggests modeling LOH rates using mixture models: component membership
probabilities may provide insight on the presence of TSGs. For more information on
localization of TSGs and on LOH, we refer to Desai (2000) and references therein.

Desai (2000) suggests several two-components mixture models for LOH in cancer cells,
where each component is either a binomial or a beta-binomial distribution. Following the
analysis of this dataset by Warnes (2001), we consider a mixture of a binomial component
and a beta-binomial component. The likelihood is given by

Xi | Ni, ⌘,⇡1,⇡2, � ⇠ ⌘Binomial (Ni,⇡1) + (1� ⌘)BetaBinomial (Ni,⇡2, �) ,

where ⌘ 2 [0, 1] controls the mixture weights, ⇡1,⇡2 2 [0, 1] control the center of each com-
ponent, and � 2 R controls the (logit) spread of the Beta-binomial component (� ! �1
corresponds to a binomial distribution and � ! 1 to a discrete uniform distribution).
The prior on the four model parameters is taken to be uniform over a set of plausible
values:

(⌘,⇡1,⇡2, �) ⇠ Uniform
�
[0, 1]3 ⇥ [�30, 30]

�
.

Depending on which component is used to model each regime, the mixture model
features some clear multi-modality. Indeed, the posterior distribution exhibits a first
mode (Figure 3, top left) where the binomial component models the lower (background)
LOH rates and the beta-binomial component models the higher (systematic) LOH rates;
the second mode (Figure 3, top right) exchanges this assignment. A few cross-sections of
the posterior distribution are depicted in Figure 3 (bottom).

Experiment. Obtaining samples from a multi-modal posterior is a notoriously hard
task for standard MCMC algorithms and multiple samplers have been proposed to ap-
proach such problems. We detail some proposals that were applied to this very LOH mix-
ture model problem. First, Warnes (2001) proposes the normal kernel coupler (NKC),
which uses interacting chains forming a normal kernel density estimate of the target.
Conveniently, in their analysis of the LOH data, they provide global and per-mode pos-
terior means computed using numerical integration (adaptive quadrature, AQ) against
which we can compare our results. Second, a variety of MCMC algorithms using regional
adaptation have been proposed: Mixed RAPT (Craiu, Rosenthal and Yang, 2009), RAP-
TOR (Bai, Craiu and Di Narzo, 2011), and OPRA (Grenon-Godbout and Bédard, 2021).
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Figure 3. (Top) Histogram of observed proportions of LOH (Barrett et al., 1996) together with the
distribution of each mixture component (dotted: Beta-Binomial; dashed: Binomial) and of the resulting
mixture (solid) for the two posterior modes (⌘,⇡1,⇡2, �). (Bottom) Contours of the posterior density
plots in (⇡1,⇡2) for some fixed values of (⌘, �).

Third, VanDerwerken and Schmidler (2013) propose to sample from multimodal distri-
butions using parallel sampling (PS). Fourth, Casarin, Craiu and Leisen (2013) propose
an interacting multiple-try Metropolis algorithm and apply it to the LOH model, but no
numerical results are reported.

We compare our proposed aMTM algorithm to these methods both in terms of esti-
mate quality and in terms of MCMC chain metrics. Across the di↵erent analyses of the
LOH model posterior in the literature, we find multiple reportings such as means, stan-
dard deviations and quantiles, either calculated globally or restricted to each of the two
modes; we will provide all those estimates for comparison. Inspecting slices of the poste-
rior density (Figure 3, bottom) and various scatter plots emerging from other samplers
(Warnes, 2001; Craiu, Rosenthal and Yang, 2009; Bai, Craiu and Di Narzo, 2011), we
define the two regions of interest. Specifically, by dividing the space using the boundary
⇡1 = 0.4 we find that each region contains one mode, with Mode 1 being assigned to the
region ⇡1 < 0.4. In addition to parameter estimates, we will be interested in estimating
the weight of each mode: numerical integration (Warnes, 2001) indicates that Mode 2
carries 3.0% of the target weight. Furthermore, we provide some chain statistics: the
mean squared jumping distance (MSJD), the acceptance rate and the average marginal
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autocorrelation (|ACF|) as described in Bai, Craiu and Di Narzo (2011). 2

For comparative purposes, we include AM, ASWAM, and RAM as single-candidate
samplers as well as a non-adaptive MTM sampler with K = 3 candidates. The MTM
samplers’ proposal covariances are chosen to be (1) all equal to an estimate of the target’s
covariance (Common), (2) a downscaled version of that same global covariance (factors
of 1, 0.1 and 0.01, Scaled), and (3) adjusted to each mode (a global component, plus one
component for each mode, Oracle). We produce chains for di↵erent tuning parameters
(target acceptance rate, adaptation parameter, etc.) and report the best instances. For
our aMTM algorithm, we use RAM updates with a target acceptance rate of ↵ = 0.2
and proposal initialized using the scaled covariances. In all cases, we produce chains of
length N = 10, 000 with a burn-in of 1, 000 iterations; we proceed to 100 replications
with random initializations of the chain uniform on the support and we report means
and standard errors across those replications.

Results. Table 2 contains chain statistics obtained from all of our methods, along with
results from other sources. One of the hardest elements to get right while sampling mul-
timodal distributions using MCMC samplers is the respective weight of each mode. We
observe that only MTM methods achieve weight estimates that are close to the truth
(0.030), while single candidate samplers often find a single mode. This phenomenon also
explains why AM and ASWAM exhibit higher MSJD and acceptance rates as sampling
from a unimodal distribution leads to better mixing. Inspecting the non-adaptive MTM
samplers, we find that relatively well-adjusted proposals can lead to decent chain prop-
erties: using proposals on varying scales yields large MSJD and acceptance rates while
these samplers still spend an appropriate amount of time in each mode. Our aMTM
sampler, which does not require such fine tuning, achieves similar if not better chain
statistics and maintains accurate estimates of the modes’ respective weights.

Turning to the global parameter estimates presented in Table 3, we compare our
method to other proposed algorithms. We find that estimating correctly the modes’
weights greatly improves the accuracy of the estimates. Indeed, the NKC slightly over-
samples from the smaller mode which introduces a fairly large bias, especially for quantile
estimates with probabilities that are close to the smaller mode’s weight. Our estimates
agree with those obtained from numerical integration and those from RAPTOR, and
seem to improve on the estimates obtained from NKC, Mixed RAPT, OPRA, and PS.
Furthermore, the mixing of the marginal chains, evaluated through |ACF|, seems to be
slightly better in aMTM chains than in the RAPTOR chain, which is not surprising given
the larger acceptance rate of aMTM (26.5 % vs. 19.4 %).

When restricting the estimates to either of the two regions (Table 4), we find that our
method yields estimates that agree more closely with numerical integration than NKC
and Mixed RAPT, especially for the smaller mode.

2The authors mention averaging the first 40 absolute lag-correlations while their code averages the
first 1600; we use the latter here to obtain comparable results.
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LOH Binomial-BetaBinomial mixture model: Chain statistics

Algorithm Details MSJD Acc. rate P(mode 2)

AM 1.338 (0.043) 0.191 (0.006) 0.280 (0.045)
ASWAM ↵ = 0.4 1.674 (0.043) 0.312 (0.006) 0.262 (0.044)
RAM ↵ = 0.3 0.257 (0.006) 0.034 (0.001) 0.086 (0.025)

MTM(K = 3) Common proposals 0.104 (0.002) 0.011 (0.000) 0.032 (0.008)
Scaled proposals 0.858 (0.002) 0.259 (0.000) 0.047 (0.008)
Oracle proposals 0.381 (0.003) 0.041 (0.000) 0.028 (0.009)

aMTM(K = 3) RAM, ↵ = 0.2 0.864 (0.005) 0.265 (0.001) 0.038 (0.010)

NKC 0.047
RAPTOR 0.194

Table 2. MCMC chain statistics for the LOH mixture model. MSJD is the mean squared jumping
distance; Acc. rate is the acceptance rate of the chain; P(mode 2) is the proportion of points in Region
2 (defined by ⇡1 > 0.4). Statistics are shown as mean (standard error) over 100 random initializations.

6. Discussion

The proposed adaptive multiple-try Metropolis algorithm is a natural extension of both
the adaptive Metropolis (AM) sampler (Haario, Saksman and Tamminen, 2001) and the
multiple-try Metropolis (MTM) algorithm (Liu, Liang and Wong, 2000). It combines
the flexibility of the MTM and the ease of use of adaptive samplers. Indeed, in our
multimodal LOH example, the aMTM sampler produces accurate samples with limited
tuning: in terms of mixing, space exploration and estimates, our method outperforms
non-adaptive MTM and single candidate adaptive samplers, and is at least on par with
more sophisticated methods such as RAPTOR (Bai, Craiu and Di Narzo, 2011).

The flexibility induced by the multiple proposals and the adaptation makes it an
interesting option for MCMC users dealing with target exhibiting multimodality or, more
generally, complex geometry. The computational overhead of this method mostly emerges
from the multiple target evaluations, but performance improvement can be observed with
just a few additional proposals. For well-behaved targets, theory tells us that as few as
K = 2 candidates provides the largest e�ciency increase; for the more complex target
of Section 5.1.2, K ⇡ 5 produced the best balance between accuracy and e�ciency. In
additional synthetic experiments (Fontaine, 2019), we also find that few candidates, in
the range 2–5, is generally enough, with lower values being preferable for simpler targets
and larger values for more complicated targets.

The diminishing adaptation and bounded convergence conditions provide simple guide-
lines to follow when proposing adaptive MCMC algorithms. Indeed, our proposed adapta-
tion scheme is one of many that can be imagined for MTM transitions. We experimented
with other valid adaptations described in Supplement A, Section 1.2, which did not sig-
nificantly improve on aMTM. Still, our proposal may not be the optimal way to introduce
adaptation in MTM samplers. In particular, as experimental results suggest, updating
only the selected proposal may not be the most e�cient adaptation method: on average,
proposals are updated only once every K iterations.
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LOH Binomial-BetaBinomial mixture model: Global estimates

Parameter
(AQ mean) Method Mean Std dev. Q0.025 Q0.975 |ACF|

⌘ (0.832) aMTM 0.823 (0.008) 0.124 (0.008) 0.507 (0.025) 0.963 (0.000) 0.105 (0.015)
NKC 0.82 0.075 0.965
RAPTOR 0.828 0.155 0.15
Mixed RAPT 0.838
OPRA 0.901
PS 0.816 (0.001)

⇡1 (0.246) aMTM 0.252 (0.006) 0.062 (0.008) 0.193 (0.000) 0.408 (0.025) 0.092 (0.017)
NKC 0.257 0.193 0.829
RAPTOR 0.248 0.106 0.19
Mixed RAPT 0.275
OPRA 0.230
PS 0.299 (0.001)

⇡2 (0.617) aMTM 0.613 (0.005) 0.170 (0.002) 0.293 (0.004) 0.906 (0.001) 0.104 (0.009)
NKC 0.612 0.230 0.912
RAPTOR 0.614 0.174 0.05
Mixed RAPT 0.679
OPRA 0.729
PS 0.678 (0.002)

� (12.82) aMTM 12.542 (0.317) 11.321 (0.205) �13.479 (0.963) 29.119 (0.030) 0.106 (0.010)
NKC 12.3 �21.2 29.3
RAPTOR 12.732 11.561 0.09
Mixed RAPT 13.435
OPRA 12.401
PS 9.49 (0.51)

Table 3. Global estimates for the LOH mixture model. Qp denotes the p-th quantile; |ACF| is the
average marginal autocorrelation as defined in Bai, Craiu and Di Narzo (2011). Statistics are shown as

mean (standard error) over 100 random initializations for the aMTM sampler. See text for a
description of the methods.

While we provided significant theoretical guarantees about the validity of our pro-
posed algorithm, some improvements still are desirable. In particular, the state space
and parameter space compactness assumptions are fairly restrictive, but we remind the
reader about the promising avenues that could extend our results to unbounded spaces
and that are discussed in Section 4.2. Additionally, although we did not provide a central
limit theorem for our MCMC algorithm, we still expect one to hold considering related
work discussed in Section 4.3.
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LOH Binomial-BetaBinomial mixture model: Mode estimates

Parameter
(AQ mean) Method Mean Std dev. Q 0.025 Q 0.975

Mode 1 estimates

⌘ (0.854) aMTM 0.852 (0.008) 0.082 (0.008) 0.649 (0.025) 0.964 (0.000)
NKC 0.856 0.656 0.966
Mixed RAPT 0.897

⇡1 (0.229) aMTM 0.229 (0.000) 0.019 (0.000) 0.193 (0.000) 0.267 (0.000)
NKC 0.229 0.192 0.266
Mixed RAPT 0.229

⇡2 (0.629) aMTM 0.628 (0.002) 0.162 (0.001) 0.317 (0.002) 0.907 (0.001)
NKC 0.631 0.319 0.913
Mixed RAPT 0.714

� (13.73) aMTM 13.709 (0.105) 10.401 (0.105) �9.519 (0.825) 29.175 (0.021)
NKC 13.7 �4.97 29.3
Mixed RAPT 15.661

Mode 2 estimates

⌘ (0.091) aMTM 0.089 (0.001) 0.044 (0.001) 0.021 (0.001) 0.188 (0.003)
NKC 0.084 0.017 0.219
Mixed RAPT 0.079

⇡1 (0.825) aMTM 0.814 (0.006) 0.062 (0.008) 0.694 (0.000) 0.930 (0.025)
NKC 0.832 0.741 0.914
Mixed RAPT 0.863

⇡2 (0.232) aMTM 0.231 (0.000) 0.018 (0.000) 0.198 (0.000) 0.267 (0.001)
NKC 0.23 0.199 0.261
Mixed RAPT 0.237

� (-16.28) aMTM �16.559 (0.296) 7.422 (0.124) �28.743 (0.162) �4.303 (0.328)
NKC �17.5 �29.5 �4.11
Mixed RAPT �14.796

Table 4. Per-mode estimates for the LOH mixture model. Qp denotes the p-th quantile. Statistics are
shown as mean (standard error) over 100 random initializations for the aMTM sampler. See text for a

description of the methods.

Supplementary Material

Supplement A: Supplement to “An adaptive multiple-try Metropolis algo-
rithm”
(doi: TBD; .pdf). Additional details on aMTM variants and on experiments. Intermediary
results and proofs.

Supplement B: Package aMTM: Adaptive multiple-try Metropolis algorithm
(; R package). The main sampling routine is implemented in C++; the R package consists
of a wrapper for the sampler as well as some utility functions for chain statistics and
plotting. The output is compatible with the R package coda.
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Supplement C: Code producing the results
(; R code). Contains the R code defining and running the experiments, processing the
results and generating the output.
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1. Additional details on aMTM variants

1.1. Sampling schemes

Table S1 contains an algorithmic description of di↵erent types of candidates used in the
aMTM algorithm. The derivations for the EA candidates can be found in Fontaine (2019,
Section 5.3.4.2); those for the RQMC candidates can be found in Fontaine (2019, Example
4.3). Independent and common random variable candidates have trivial formulations.

1.2. Update variations

Local updates A notable di↵erence between (ASW)AM and RAM updates is the use

of the running mean µ
(k)
n . While the (ASW)AM update uses the di↵erence between the

new point and the current estimate for the mean (xn+1 � µ
(k)
n ) to update the covari-

ance, the RAM update rather uses the proposed step (y � xn). The latter seems more
appropriate to locally adjust proposal densities to the target distribution. Indeed, using
a running mean will potentially produce marginal covariances that are all similar to one
another; using the proposed step may prevent this uniformization. We thus propose to

modify the (ASW)AM updates in (3.2) by making local updates in which xn+1 � µ
(k)
n is

replaced by y � xn. In that case, the running mean update (3.1)is no longer required.
Up to this point, the only marginal covariance updated in a given iteration is that of the

selected candidate. We now propose two adaptation schemes imposing some conditions
on the other marginal covariances.

1
imsart-bj ver. 2014/10/16 file: supplementary_material.tex date: January 24, 2022

http://isi.cbs.nl/bernoulli/
mailto:simfont@umich.edu


2 S. Fontaine and M. Bédard

Global proposal We propose to consider the first proposal density (k = 1) as a global
one. Its marginal covariance is thus adapted at each iteration—using any of the three
update rules—no matter if the candidate was generated from this proposal or not. Then,
we expect that marginal covariance to approach the target’s global covariance, while
the covariance matrices of the other densities should explore more local properties of
the target density. This approach is particularly well-suited to multimodal densities as
the global density provides a way to jump between modes, while other densities propose
jumps within specific modes. Computationally, adapting a second covariance at every
iteration doubles the adaptation cost.

Scale adaptation In the ASWAM case, we propose to adapt the scale parameter �(k)
n

of densities that are not selected very often; indeed, these densities are rarely adapted
and may therefore never recover from a bad initialization. Given a target floor selection
rate s⇤ 2 [0, 1], we decrease the scale parameter whenever a proposal density’s selection
rate drops below s⇤. Indeed, for importance weights (2.4) or weights proportional to the
target (2.5), the fact of being selected too rarely is generally related to the scale being
too large.
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Supplement to aMTM 3

Type Candidates (Step (a)) Shadow points (Step (d))

Independent Sample

Y (j) ⇠ q(j)✓ (·|xn)

independently for j = 1 , . . . ,K.

Sample

Y (j) ⇠ q(j)✓ (·|y)

independently for j 6= k.

EA
⇢ = �1

K�1

Beforehand, compute the singular
value decomposition (SVD)

 K = (X⇤1/2)(X⇤1/2)> ,

where

 K = ⇢IK ⌦ Id + (1� ⇢)IdK .

For k = 1 , . . . ,K:

– Sample Z(k) iid⇠ N d(0d, Id),
– Compute u(k) = X⇤1/2z(k),
– Compute y(k) = xn + S(k)u(k).

Beforehand, compute the SVD

�K�1 = (X 0⇤01/2)(X 0⇤01/2)>,

where

�K�1 = ⇢IK�1 ⌦ Id + Id(K�1) .

For j 6= k:

– Sample Z(j) iid⇠ N d(0d, Id),

– Compute u(j)
⇤ = X 0⇤01/2z(j),

– Compute

x(j)
⇤ = y + S(j)

⇣
u(j)
⇤ � ⇢u(k)

⌘
.

RQMC
Koborov rule
with 1 6 a < K

Sample

U ⇠ Uniform[0, 1)d .

For k = 1 , . . . ,K:
– Compute

u(k) ⌘1
k � 1
K

⇣
1, a , . . . , ad�1

⌘
+u ,

– Compute z(k) = F�1(u(k)),
– Compute y(k) = xn + S(k)z(k).

Compute

u⇤ = F
⇣
(S(k))�1(y � xn)

⌘
.

For j 6= k:
– Compute

u(j)
⇤ ⌘1

j � 1
K

⇣
1, a , . . . , ad�1

⌘
+u⇤ ,

– Compute z(j)⇤ = F�1(u(j)
⇤ ),

– Compute x(j)
⇤ = y + S(j)z(j)⇤ .

Common RV Sample

Z ⇠ N d(0d, Id) .

For k = 1 , . . . ,K, compute

y(k) = xn + S(k)z .

Compute

z⇤ = (S(k))�1(y � xn) .

For j 6= k, compute

x(j)
⇤ = y + S(j)z⇤ .

Table S1. Summary of the di↵erent types of candidates used in the aMTM algorithm at the MTM
sampling step; the rest of the MTM sampling remains unchanged. The sampling of candidates and
shadow points is described algorithmically. Notation: xn is the current state of the chain, F is the

standard normal CDF, y = y(k) is the selected proposal, ⌃(k) = S(k)S(k)> is the square root
decomposition and ⌦ denotes the usual Kronecker product.
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4 S. Fontaine and M. Bédard

2. Additional details on experiments

Region x1 x2 x4 x5 iid weight

1 (orange) – – > 0 > 3 3.5%
2 (blue) – – < 0 > 3 3.5%
3 (green) > 0 > 3 – – 16.7%
4 (yellow) < 0 > 3 – – 16.6%
5 (black) not in regions 1-4 59.7%

Table S2. Definition of regions used to compute the lower bound on the total variation distance
between empirical distributions coming from MCMC samples and iid samples. Color codes refer to

Figure S1.

x1 x2 x3 x4 x5

x1
x2

x3
x4

x5

-2 0 2 4 0 10 20 30 40 -2 0 2 -2 0 2

0
10
20
30
40
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2

-2

0

2

-4
0
4
8

12

Region
1

2

3

4

5

Figure S1. 1,000 iid samples from the banana target (5.1). Regions are defined in Table S2.
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3. Proofs

3.1. Results on MTM transitions

Consider a MTM transition P with joint proposal density q(·|x). For k = 1 , . . . ,K, the
conditional density of y(�k) given y

(k) is q(�k)(·|y(k), x) and the marginal density of y(k)

is q(k)(·|x). The generalized MTM acceptance probability is given by

↵MTM

⇣
y, y

(�k)|x, x(�k)
⇤

⌘
= min

(
1,

⇡(y)q(k)(x|y)w̄(k)(x, x(�k)
⇤ |y)

⇡(x)q(k)(y|x)w̄(k)(y, y(�k)|x)

)
,

where x
(�k)
⇤ ⇠ q

(�k)(·|x, y) are the shadow points, and where

w̄
(k)(y, y(�k)|x) = w

(k)(y|x)
P

K

j=1 w
(j)(y(j)|x)

is the probability of choosing the k-th candidate.
We define some notation in order to simplify the MTM transition. The transition

admits the following (pseudo-)density:

p(y|x) = a(y|x) +R(x)�x(y) ,

where a(y|x) is the density for transitioning from x to y using any of the K candidates
and any shadow sample, and where R(x) = 1 �

R
X a(y|x) dy is the integrated rejection

probability. Since moving from x to y can be achieved through any of the K candidates,
we therefore decompose

a(y|x) =
KX

k=1

A
(k)(y|x)q(k)(y|x) ,

where A
(k)(y|x) is the density for accepting a move from x to y through the k-th candi-

date. We have

A
(k)(y|x) =

Z

XK�1

Z

XK�1

q
(�k)(y(�k)|y, x)w̄(y; y(�k)|x)↵MTM(y, y(�k)|x, x(�k)

⇤ )

⇥ q
(�k)(x(�k)

⇤ |y, x) dy(�k) dx(�k)
⇤ .

Finally, we define the integrated probability of accepting the k-th candidate as the new
point,

A
(k)

(x) =

Z

X
A

(k)(y|x)q(k)(y|x) dy ,

so that we may write

R(x) = 1�
KX

k=1

A
(k)

(x) .

Naturally, when we want to make the dependence of a MTM transition on its set of
parameters ✓ explicit, we simply index position each of the above definitions by ✓.

imsart-bj ver. 2014/10/16 file: supplementary_material.tex date: January 24, 2022



6 S. Fontaine and M. Bédard

Proposition 3.1. Suppose that the marginal proposal densities satisfy

q
(k)(y|x) > 0 , q

(k)(x|y) > 0 , k = 1 , . . . ,K .

Then, the MTM transition satisfies the detailed balance condition,

p(x|y)⇡(y) = p(y|x)⇡(x) , 8x, y 2 X , (S1)

for any weight function w
(k)(y|x) that is positive whenever x, y 2 X .

Proof. If x = y, then (S1) trivially holds. Thus, we may assume that y 6= x, in which
case �X(y) = 0 and

p(y|x) = a(y|x)

=
KX

k=1

Z

XK�1

Z

XK�1

q(y, y(�k)|x)w̄(y; y(�k)|x)↵MTM(y, y(�k)|x, x(�k)
⇤ )

⇥ q
(�k)(x(�k)

⇤ |y, x) dy(�k) dx(�k)
⇤ .

Then, we decompose the joint proposal density as

q(y, y(�k)|x) = q
(�k)(y(�k)|y, x)q(k)(y|x) .

We also rewrite the MTM acceptance probability in a more symmetric form,

↵MTM(y, y(�k)|x, x(�k)
⇤ ) = ⇡(y)q(k)(x|y)w̄(k)(x;x(�k)

⇤ |y)

⇥min

(
1

⇡(y)q(k)(x|y)w̄(k)(x;x(�k)
⇤ |y)

,
1

⇡(x)q(k)(y|x)w̄(k)(y; y(�k)|x)

)
.

We can now write

a(y|x)⇡(x) =
KX

k=1

Z

XK�1

Z

XK�1

⇡(x)q(�k)(y(�k)|y, x)q(k)(y|x)w̄(y; y(�k)|x)

⇥ ⇡(y)q(k)(x|y)w̄(k)(x;x(�k)
⇤ |y)q(�k)(x(�k)

⇤ |y, x)

⇥min

(
1

⇡(y)q(k)(x|y)w̄(k)(x;x(�k)
⇤ |y)

,
1

⇡(x)q(k)(y|x)w̄(k)(y; y(�k)|x)

)

dy(�k) dx(�k)
⇤ .

By direct inspection, we see that the expression is completely symmetric under the swap

(y, y(�k)) $ (x, x(�k)
⇤ ). Hence,

a(y|x)⇡(x) = a(x|y)⇡(y) ,

and the detailed balance condition (S1) is satisfied.
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Remark 3.1. Note that a similar result was obtained by Casarin, Craiu and Leisen
(2013, in the appendix) for a slightly less general form of MTM acceptance probability.

Proposition 3.2. Let ⇡ be a target density with connected support X . Suppose that
⇡ and the weight function w

(k)(·|x) are bounded above on X and below on any compact
subset of X , for any fixed x 2 X . Further suppose that there exists �, " > 0 such that the
marginal proposal densities are locally positive, that is,

||x� y||2 < � ) q
(k)(y|x) > " , k = 1 , . . . ,K .

Then, the MTM transition is ⇡-irreducible and aperiodic.

Proof. The proof of ⇡-irreducilibity appeals to Meyn and Tweedie (2009, Proposition
4.2.1) which states that a transition P is �-irreducible if and only if, for all x 2 X and for
all measurable B such that �(B) > 0, there exists m 2 N with P

m(B|x) > 0. Thus, let
us consider x 2 X as well as a measurable set B ✓ X with positive probability ⇡(B) > 0.
By connectedness of X , we can find a path between x and any point in B. In particular,
we can always find a path of length m 2 N from x to some xm 2 B such that each step
is at most of size �, i.e. ||xi � xi�1||2 < � (i = 1, , . . . ,m) and each xi has positive density
⇡(xi) > 0. Around each xi, we consider the ball of radius �, denoted

B�(xi) = {x 2 Rd | ||xi � x||2 6 �} .

Since xi is in the support of ⇡, then ⇡ (B�(xi)) > 0 by the definition of a support. Now,
we show that the transition from one ball to the next happens with positive probability.
Consider i 2 {0 , . . . ,m�1} and x 2 B�(xi). Then, the probability of landing in the next
ball is bounded below by the probability of landing in the next ball through an accepted
proposal, i.e.

P (B�(xi+1)|x) >
KX

k=1

Z

B�(xi+1)
A

(k)(y|x)q(k)(y|x) dy .

Now, A(k) is positive for any y 2 B�(xi+1) since it is the expectation of a positive function
(w̄ > 0 and ↵MTM > 0 both follow from the assumptions). Then, since the marginal den-
sity q

(k) is also positive on B�(xi+1) and since B�(xi+1) has positive probability, we find
P (B�(xi+1)|x) > 0. By induction, we can show that the i-step transition P

i(B�(xi)|x)
is positive for i = 1 , . . . ,m. In particular, it holds for m so that P

m(B�(xm)|x) > 0
from which we find P

m(B|x) > 0 because xm 2 B \ X . By Meyn and Tweedie (2009,
Proposition 4.2.1), P is ⇡-irreducible.

To prove aperiodicity, we show that P is strongly aperiodic, meaning that there exists
a (⌫, 1)-small measurable set B with ⌫(B) > 0. A (⌫, 1)-small set is such that, for all
x 2 B and for all measurable sets C,

P (C|x) > ⌫(C) . (S2)

We now consider B = B�/2(x) and construct a measure ⌫ concentrated on B satisfying
the minorization condition (S2). Thus, let us consider x 2 B and C measurable. Then, we
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8 S. Fontaine and M. Bédard

can bound P (C|x) > P (C\B|x); we can also bound the latter using accepted proposals,
leading to

P (C|x) >
KX

k=1

Z

C\B

A
(k)(y|x)q(k)(y|x) dy .

We now define K partitions of the support, one for each candidate. Given the current

state x, the candidates y(�k), and the shadow sample x(�k)
⇤ , this partition groups together

all the proposals y that are automatically accepted, given that the k-th candidate was
selected:

D
(k)(x) =

(
y 2 X

���
⇡(y)w̄(k)(x;x(�k)

⇤ |y)
⇡(x)w̄(k)(y; y(�k)|x)

6 1

)
.

Note that, contrarily to what is suggested by the notation, D(k)(x) also is a function of

y
(�k) and x

(�k)
⇤ . For y 2 D

(k)(x), we have

↵MTM(y, y(�k)|x, x(�k)
⇤ ) =

⇡(y)w̄(k)(x;x(�k)
⇤ |y)

⇡(x)w̄(k)(y; y(�k)|x)
,

while for y 62 D
(k), we have ↵MTM(y, y(�k)|x, x(�k)

⇤ ) = 1. We can now split the integral
over B \ C into two parts over which the form of ↵MTM is known.

For y 2 D
(k), the integrand takes the form

w̄
(k)(y; y(�k)|x)⇡(y)w̄

(k)(x;x(�k)
⇤ |y)

⇡(x)w̄(k)(y; y(�k)|x)
q
(�k)(y(�k)|y, x)q(�k)(x(�k)

⇤ |x, y)q(k)(y|x)

= w̄
(k)(x;x(�k)

⇤ |y)⇡(y)
⇡(x)

q
(�k)(y(�k)|y, x)q(�k)(x(�k)

⇤ |x, y)q(k)(y|x) .

Since we will integrate over y(�k) and x
(�k)
⇤ , we try to bound all terms that are not the

densities of these variables. In particular, we search a lower bound for

w̄
(k)(x;x(�k)

⇤ |y)⇡(y)
⇡(x)

q
(k)(y|x) .

When x 2 B and y 2 C \ B ✓ B, we can bound each term by making use of the
assumptions. Indeed, we have ||y � x||2 6 � so that q(k)(y|x) > ". Furthermore, from the
conditions on the weight functions, there exists 0 < a < A < 1 such that w(k)(x|y) > a

and w
(j)(x(j)

⇤ |y) 6 A so that w̄(k)(x;x(�k)
⇤ |y) > a/KA for all ||y � x||2 6 � and all x(�k)

⇤ .
Hence, we find

w̄
(k)(x;x(�k)

⇤ |y)⇡(y)
⇡(x)

q
(k)(y|x) > a"

KA

⇡(y)

⇡(x)
> a"

KA

infy2B ⇡(y)

sup
y2B

⇡(y)
,

which is positive because all quantities are positive (⇡ is bounded below and above on
B = B�/2(x) compact).
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On y 62 D
(k), the integrand takes the form

w̄
(k)(y; y(�k)|x)q(�k)(y(�k)|y, x)q(�k)(x(�k)

⇤ |x, y)q(k)(y|x) ,

which means we aim to bound

w̄
(k)(y; y(�k)|x)q(k)(y|x) .

For the same reasons as before, we have w̄
(k)(x;x(�k)

⇤ |y) > a/KA and q
(k)(y|x) > ".

Then, we note that infB ⇡/ sup
B
⇡ is always less than 1 so we find the same bound as in

the case y 2 D
(k), i.e.

w̄
(k)(y; y(�k)|x)q(k)(y|x) > a"

KA
> a"

KA

infy2B ⇡(y)

sup
y2B

⇡(y)
.

We therefore find the following bound on P (C|x):

P (C|x) >
KX

k=1

Z

C\B

A
(k)(y|x)q(k)(y|x) dy

=
KX

k=1

 Z

C\B\D(k)

+

Z

C\B\(D(k))c

!
A

(k)(y|x)q(k)(y|x) dy

>
KX

k=1

 Z

C\B\D(k)

+

Z

C\B\(D(k))c

!Z

XK�1

Z

XK�1

q
(�k)(y(�k)|y, x)q(�k)(x(�k)

⇤ |x, y) a"

KA

infB ⇡

sup
B
⇡
dx(�k)

⇤ dy(�k) dy

=
KX

k=1

Z

C\B

a"

KA

infB ⇡

sup
B
⇡

Z

XK�1

Z

XK�1

q
(�k)(y(�k)|y, x)q(�k)(x(�k)

⇤ |x, y) dx(�k)
⇤ dy(�k) dy

=
KX

k=1

Z

C\B

a"

KA

infB ⇡

sup
B
⇡
dy

=
a"

A

infB ⇡

sup
B
⇡
�
Leb (C \B) ,

where �
Leb is the Lebesgue measure on Rd. Since

a"

A

infB ⇡

sup
B
⇡

=: c0 > 0 ,

we have that

P (C|x) > ⌫(C) ,

where ⌫(C) = c0�
Leb (C \B) is a non-trivial measure concentrated on B, as required.

Finally, we note that ⌫(B) = c0�
Leb(B) > 0 since c0 > 0 and �

Leb(B) > 0, where B is a
ball with positive radius �/2 > 0.

imsart-bj ver. 2014/10/16 file: supplementary_material.tex date: January 24, 2022



10 S. Fontaine and M. Bédard

In the context of Markov transitions, a function h : Rd ! [0,1] is said to be harmonic
for a transition P if h = Ph everywhere, that is,

h(x) =

Z

X
h(y)P ( dy|x) , x 2 Rd

.

From Tierney (1994, Theorem 2), we know that a recurrent Markov transition P is
Harris-recurrent if and only if every bounded harmonic function is a constant function.
We use this result to show that recurrence and Harris-recurrence happen simultaneously
for MTM transitions.

Proposition 3.3. Let P be a MTM transition for a given target density ⇡. If P is
⇡-irreducible, then P is Harris-recurrent.

Proof. By Proposition 3.1, the MTM transition satisfies the detailed balance condi-
tion. By Robert and Casella (2004, Theorem 6.46), the MTM transition admits ⇡ as its
invariant distribution. By Tierney (1994, Theorem 1), the MTM transition is positive re-
current. From Nummelin (1984, Proposition 3.13), we know that a recurrent ⇡-irreducible
Markov transition P is such that every bounded harmonic function h is constant at least
⇡-almost everywhere. Hence, we only require to extend that result to every x 2 Rd.

We define the set H as containing the points over which a function h is not constant,
i.e.,

H = {x 2 X |h(x) 6= ⇡h} .
By the above argument, we find ⇡(H) = 0. Then, since the measure of H is null, the
probability of transitioning from x 2 X to H must also be 0:

a (H|x) =
Z

H

KX

k=1

A
(k)(y|x)q(k)(y|x) dy = 0 ,

since q
(k) is assumed to be a density and H has zero measure.

Now, since h is harmonic with respect to P , we can decompose

h(x) =

Z

Rd

h(y)P ( dy|x) =
Z

H

h(y)P ( dy|x) +
Z

Hc

h(y)P ( dy|x) .

The former term satisfies
Z

H

h(y)P ( dy|x) =
Z

H

h(y)
KX

k=1

h
A

(k)(y|x)q(k)( dy|x)
i
+

Z

H

h(y)R(x)�x( dy)

= 0 + h(x)R(x) I (h(x) 6= ⇡h) .

For the latter term, we obtain

Z

Hc

h(y)P ( dy|x) =
Z

Hc

⇡h

KX

k=1

h
A

(k)(y|x)q(k)( dy|x)
i
+

Z

Hc

⇡hR(x)�x( dy)

= ⇡h(1�R(x)) + ⇡hR(x) I (h(x) = ⇡h) .
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Supplement to aMTM 11

Combining both expressions, we find that h must satisfy

h(x) = ⇡h+R(x)(h(x)� ⇡h) I(h(x) 6= ⇡h) .

Factorizing yield

0 = (h(x)� ⇡h)(R(x) I(h(x) 6= ⇡h)� 1) . (S3)

Thus, if h(x) 6= ⇡h, we must have R(x) = 1, but this would contradict the ⇡-irreducibility
of the transition whenever x 2 X because this means that the probability of staying at
x is 1. Hence, the only points where we can have h(x) 6= ⇡h are x 62 X . Then, by
construction of MTM transitions, 0 < R(x) < 1 so that h(x) = ⇡h must hold to satisfy
(S3). This shows h ⌘ ⇡h.

3.2. Results on adaptive MCMC

3.2.1. Additional background on adaptive algorithms

We say that a family of MCMC transitions {P✓}✓2⇥ satisfies the uniform geometric
ergodicity on compact sets condition (Andrieu and Moulines, 2006, Assumption A1) if
there exists a test function V : X ! [1,1) with supX V < 1 such that, for any compact
K ✓ ⇥, the following two conditions hold :

(i) Minorisation. There exists C 2 B(X ), � > 0 and a probability measure ⌫ with
⌫(C) > 0 such that

P✓(A|x) > �⌫(A) , 8 A 2 B(X ), ✓ 2 K, x 2 C .

(ii) Geometric drift. There exists � 2 [0, 1) and b 2 (0,1) such that

P✓V (x) 6
(
�V (x), x 62 C,

b, x 2 C,
8 ✓ 2 K ,

where P✓V (x) =
R
V (z)P✓(z|x) dz.

We say that a family of update functions {H✓}✓2⇥ is V -Lipschitz for some test function
V (typically the same as in the geometric drift condition) if, for any compact K ✓ ⇥, we
have

sup
✓2K

||H✓||V < 1 and sup
✓ 6=✓02K⇥K

||✓ � ✓
0||�1

2 ||H✓ �H✓0 ||
V
< 1,

where ||µ||
V

defines the V -norm of the function f for some test function V , that is,

||f ||
V
= sup

x2X

||f(x)||2
V (x)

.

We say that a family of transitions is V -Lipschitz on K if there exists C < 1 such
that, for all functions f : X ! R, with ||f ||

V
< 1, and all r 2 [0, 1],

||P✓f � P✓0f ||
V r 6 C||f ||

V r ||✓ � ✓
0||2, 8 ✓, ✓

0 2 K .

imsart-bj ver. 2014/10/16 file: supplementary_material.tex date: January 24, 2022



12 S. Fontaine and M. Bédard

3.2.2. Diminishing adaptation

Define the V -norm of a (possibly signed) measure µ as

|||µ|||
V
= sup

g:|g|6V

|µ(g)|,

where we use the triple bar notation to di↵erentiate with the V -norm of a function defined
earlier. Note that |||·|||1 is equivalent to ||·||TV:

||µ||TV = sup
B2B(X )

|µ(B)| = 1

2
sup

g:|g|61
|µ(g)| = 1

2
|||µ|||1.

Proposition 3.4. Suppose {P✓}✓2⇥ satisfies the uniform geometric ergodicity on com-
pact sets, {H✓}✓2⇥ is V -Lipschitz and {P✓}✓2⇥ is V -Lipschitz on any compact subset
of ⇥ for the same test function V . If sup

✓2K ||H✓||V < 1 for any K ✓ ⇥ compact and
{✓n}n>0 is bounded in probability, then the adaptive MCMC algorithm is such that

������P✓n+1 � P✓n

������
V

P�! 0, n ! 1.

In particular, if V ⌘ 1, then the algorithm satisfies the Diminishing Adaptation condition.

Proof. From the condition onH✓, for any compactK ✓ ⇥, we have eH(K) := sup
✓2K ||H✓||V <

1 . In particular, we have

||H(✓, x)||2 6 eH(K)V (x) , 8 x 2 X , ✓ 2 K .

The uniform geometric ergodicity on compact sets ensures that {V (Xn)}n>0 is bounded

in probability (Fontaine, 2019, Proposition 3.5). Hence, for all " > 0, there exists eV =
eV (") < 1 such that Px0,✓0

⇣
V (Xn) 6 eV

⌘
> 1 � "

4 for all n > 1, where (x0, ✓0) are the

initial values of the joint chain {(Xn, ✓n)}n>0. Then,

Px0,✓0

⇣
||H(✓, Xn)||2 6 eH(K)eV | ✓ 2 K

⌘
> 1� "

4
.

Then, for ✓n+1 � ✓n = �n+1H(✓n, Xn), we find

Px0,✓0

⇣
||✓n+1 � ✓n||2 6 �n+1

eH(K)eV | ✓n 2 K
⌘
> 1� "

4
, 8 ✓n 2 K .

Since {✓n}n>0 is bounded in probability, there exists a compact K ⇢ ⇥ such that

Px0,✓0 (✓n 2 K) > 1� "

4
,

from which we find

Px0,✓0

⇣
||✓n+1 � ✓n||2 6 �n+1

eH(K)eV
⌘
>
⇣
1� "

4

⌘2
.
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Supplement to aMTM 13

The Lipschitz transition condition implies that there exists C < 1 with
����P✓n+1f � P✓nf

����
V
6 C||f ||

V
||✓n+1 � ✓n||2, 8 x 2 X , ✓n+1, ✓n 2 K .

Thus, we can bound
������P✓n+1(· | x)� P✓n(· | x)

������
V
= sup

f :|f |6V

��(P✓n+1f � P✓nf)(x)
��

6 sup
f :|f |6V

sup
y2X

��(P✓n+1f � P✓nf)(y)
��

= sup
g:|g|61

sup
y2X

1

V (y)

��(P✓n+1g � P✓ng)(y)
��

= sup
g:|g|61

����P✓n+1g � P✓ng
����
V

6 sup
g:|g|61

C||g||
V
||✓n+1 � ✓n||2

= C||✓n+1 � ✓n||2.

We then find

Px0,✓0

⇣������P✓n+1 � P✓n

������
V
6 �n+1C

eH(K)eV | ✓n+1 2 K
⌘
>
⇣
1� "

4

⌘2
.

Using the boundedness in probability of ✓n+1 2 K :

Px0,✓0

⇣������P✓n+1 � P✓n

������
V
6 �n+1C

eH(K)eV
⌘
>
⇣
1� "

4

⌘3
.

Finally, �n ! 0 implies that, for any "
0
> 0, there exists M = M("0) 2 N such that

�n+1C
eH(K)eV 6 "

0 whenever n > M . Hence, for all n > M , we have

Px0,✓0

�������P✓n+1 � P✓n

������
V
6 "

0� >
⇣
1� "

4

⌘3
> 1� " .

3.3. Results on the aMTM algorithm

3.3.1. Diminishing adaptation

Theorem 3.1. Let ⇡ be a target density with compact support X ✓ Rd. Consider
a family of MTM transitions {P✓}✓2⇥ with compact parameter space ⇥ and satisfying
the V -Lipschitz condition on ⇥. An adaptive MTM algorithm on {P✓}✓2⇥ using the V -
Lipschitz update family H✓ satisfying

sup
✓2K

||H✓||V < 1 ,

with V ⌘ 1 satisfies the diminishing adaptation condition.
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14 S. Fontaine and M. Bédard

Proof. We verify the conditions of Proposition 3.4. When ⇥ and X are assumed to be
compact, we can simply choose V ⌘ 1 as the test function in the uniform geometric er-
godicity condition. Since ⇥ is assumed to be compact, we directly have {✓n}n>0 bounded
and therefore bounded in probability. The conditions on the family of updates are verified
by hypothesis.

3.3.2. Lipschitz transitions

Proposition 3.5. Let {'⌃}⌃2S be a collection of d-dimensional Gaussian densities
with mean 0d and covariance ⌃ 2 S ✓ C+

d
. If S is compact, then

Z

Rd

|'⌃(z)� '⌃0(z)|�( dz) 6 d

�min
||⌃� ⌃0||

F
,

where �min > 0 is the smallest possible eigenvalue of a covariance ⌃ 2 S and where ||·||
F

denotes the usual Frobenius norm.

Proof. Since S is compact, we can find 0 < �min 6 �max < 1 such that all eigenvalues
of any ⌃ 2 S are contained in [�min,�max]. Inspired by a step in the proof of Haario,
Saksman and Tamminen (2001, Theorem 1), we consider the convex combination of
⌃,⌃0 2 S, i.e.

⌃t = (1� t)⌃+ t⌃0 = ⌃+ t(⌃0 � ⌃) .

While we do not require S to be convex, we know that Cd

+ is indeed convex so that

⌃t 2 Cd

+ for any t 2 [0, 1]. In particular, '⌃t is a well-defined d-dimensional Gaussian
distribution for any t 2 [0, 1]. The purpose of this convex combination is the following
identity, resulting from the fundamental theorem of calculus:

Z 1

0

✓
@

@t
'⌃t(z)

◆
dt = '⌃t(z)

���
t=1

t=0
= '⌃(z)� '⌃0(z) .

This identity holds as long as '⌃t(z) is di↵erentiable w.r.t. t, but this will be verified
implicitly in the following calculations. We then proceed to relate the previous identity
to ||⌃� ⌃0||

F
.

Logarithmic di↵erentiation gives us

@

@t
'⌃t(z) = '⌃t(z)

@

@t
log'⌃t(z)

= �1

2
'⌃t(z)

@

@t

⇥
d log(2⇡) + log det(⌃t) + z

>⌃�1
t

z .
⇤

Then, using matrix derivative identities (Petersen and Pedersen, 2008), we find

@

@t
z
>⌃�1

t
z = tr

�
�⌃�1

t
zz

>⌃�1
t

(⌃0 � ⌃)
�
,
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which yields

@

@t
'⌃t(z) = �1

2
'⌃t(z) tr

�
⌃�1

t
(⌃0 � ⌃)� ⌃�1

t
zz

>⌃�1
t

(⌃0 � ⌃)
�
.

Therefore, we find

@

@t
log'⌃t(z) = �1

2
tr
�
⌃�1

t
(⌃0 � ⌃)� ⌃�1

t
zz

>⌃�1
t

(⌃0 � ⌃)
�
,

which can be bounded, using the triangle inequality, by
����
@

@t
log'⌃t(z)

���� 6
��tr
�
⌃�1

t
(⌃0 � ⌃)

���+
��tr
�
⌃�1

t
zz

>⌃�1
t

(⌃0 � ⌃)
��� .

Now, we may use the general matrix norm inequality |tr(AB)| 6 ||A||
F
||B||

F
to bound

��tr
�
⌃�1

t
(⌃0 � ⌃)

��� 6
����⌃�1

t

����
F
||⌃0 � ⌃||

F
,

as well as

��tr
�
⌃�1

t
zz

>⌃�1
t

(⌃0 � ⌃)
��� 6

����⌃�1
t

zz
>⌃�1

t

����
F
||⌃0 � ⌃||

F

6 z
>⌃�2

t
z||⌃0 � ⌃||

F
.

Hence,
����
@

@t
log'⌃t(z)

���� 6
�����⌃�1

t

����
F
+ z

>⌃�2
t

z
�
||⌃0 � ⌃||

F
.

Now, from the theory of Gaussian quadratic forms, we have
Z �

z
>⌃�2

t
z
�
'⌃t(z)�( dz) = tr

�
⌃�2

t
⌃t

�
= tr

�
⌃�1

t

�
,

which allows us to compute
Z �����⌃�1

t

����
F
+ z

>⌃�2
t

z
�
'⌃t(z)�( dz) =

����⌃�1
t

����
F
+ tr

�
⌃�1

t

�
.

Finally, the bounded eigenvalues yield the following bounds,

����⌃�1
t

����2
F
=

dX

i=1

�
2
i
(⌃�1

t
) =

dX

i=1

�
�2
i

(⌃t) 6 d�
�2
min ,

tr
�
⌃�1

t

�
=

dX

i=1

�i(⌃
�1
t

) 6 d�
�1
min ,
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16 S. Fontaine and M. Bédard

which, in turn, give
Z �����⌃�1

t

����
F
+ z

>⌃�2
t

z
�
'⌃t(z)�( dz) 6

p
d�

�1
min + d�

�1
min 6 2d��1

min .

We conclude that
Z

|'⌃(z)� '⌃0(z)|�( dz) =
Z ����
Z 1

0

@

@t
'⌃t(z) dt

�����( dz)

6
Z Z 1

0

1

2
'⌃t(z)

����
@

@t
log'⌃t(z)

���� dt�( dz)

=
1

2

Z 1

0

Z ����
@

@t
log'⌃t(z)

����'⌃t(z)�( dz) dt

6 1

2

Z 1

0
2d��1

min||⌃
0 � ⌃||

F
dt

=
d

�min
||⌃0 � ⌃||

F
.

Proposition 3.6. Consider a family of MTM transitions {P✓}✓2⇥ with Gaussian ran-
dom walk marginal proposal densities whose covariances are contained in a compact sub-
set of C+

d
, the cone of symmetric positive-definite matrices. Suppose that the following

Lipschitz condition holds: there exists L < 1 such that, for all x, y 2 X
���A(k)

✓
(y|x)�A

(k)
✓0 (y|x)

��� 6 L||✓ � ✓
0||2 . (S4)

Then, there exists C < 1 such that, for all functions f : X ! R with ||f ||1 < 1,

||P✓f � P✓0f ||1 6 C||f ||1||✓ � ✓
0||2 .

In particular, {P✓}✓2⇥ is V -Lipschitz for V ⌘ 1.

Proof. By definition, we have

||P✓f � P✓0f ||1 = sup
x2X

|P✓f(x)� P✓0f(x)| .

For ||f ||1 < 1, we have

|f(x)|
||f ||1

6 1 , 8 x 2 X . (S5)

imsart-bj ver. 2014/10/16 file: supplementary_material.tex date: January 24, 2022



Supplement to aMTM 17

We first consider the following development of P✓f(x)� P✓0f(x) :

P✓f(x)� P✓0f(x) =

Z

X
f(y)P✓(y|x)�( dy)�

Z

X
f(y)P✓0(y|x)�( dy)

=

Z

X
f(y) [P✓(y|x)� P✓0(y|x)]�( dy)

=

Z

X
f(y) [R✓(x)�x(y) + p✓(y|x)�R✓0(x)�x(y)� p✓0(y|x)]�( dy)

=

Z

X
f(y) [(R✓(x)�R✓0(x)) �x(y) + (p✓(y|x)� p✓0(y|x))]�( dy) .

Then, using properties of integrals and the inequality (S5), we find

|P✓f(x)� P✓0f(x)|
||f ||1

6
Z

X

f(y)

||f ||1
[|R✓(x)�R✓0(x)|�x(y) + |p✓(y|x)� p✓0(y|x)|]�( dy)

6
Z

X
[|R✓(x)�R✓0(x)|�x(y) + |p✓(y|x)� p✓0(y|x)|]�( dy)

= |R✓(x)�R✓0(x)|+
Z

X
|p✓(y|x)� p✓0(y|x)|�( dy) .

Now, we note that

|R✓(x)�R✓0(x)| =
����1�

Z

X
p✓(y|x)�( dy)� 1 +

Z

X
p✓0(y|x)�( dy)

����

=

����
Z

X
[p✓0(y|x)� p✓(y|x)]�( dy)

����

6
Z

X
|p✓(y|x)� p✓0(y|x)|�( dy) ,

which allows us to bound

|P✓f(x)� P✓0f(x)| 6 2||f ||1
Z

X
|p✓(y|x)� p✓0(y|x)|�( dy) . (S6)

Rearranging terms, we can write

p✓(y|x)� p✓0(y|x) =
KX

k=1

A
(k)
✓

(y|x)q(k)
✓

(y|x)�
KX

k=1

A
(k)
✓0 (y|x)q(k)

✓0 (y|x)

=
KX

k=1

h
A

(k)
✓

q
(k)
✓

�A
(k)
✓0 q

(k)
✓0

i
(y|x)

=
KX

k=1

h
A

(k)
✓

q
(k)
✓

�A
(k)
✓

q
(k)
✓0 +A

(k)
✓

q
(k)
✓0 �A

(k)
✓0 q

(k)
✓0

i
(y|x)

=
KX

k=1

h
A

(k)
✓

⇣
q
(k)
✓

� q
(k)
✓0

⌘
+
⇣
A

(k)
✓

�A
(k)
✓0

⌘
q
(k)
✓0

i
(y|x) . (S7)
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In that last expression, it is possible to directly bound the first term. Indeed, A(k)
✓

6 1

and q
(k)
✓

� q
(k)
✓0 may be bounded by Proposition 3.5:

Z

X

�����

KX

k=1

A
(k)
✓

⇣
q
(k)
✓

� q
(k)
✓0

⌘
(y|x)

������( dy) 6
KX

k=1

Z

X
1 ·
���q(k)

✓
(y|x)� q

(k)
✓0 (y|x)

����( dy)

6
KX

k=1

Z

X
|'⌃(k)(z)� '⌃0(k)(z)|�( dz)

6 d

�min

KX

k=1

���
���⌃(k) � ⌃0(k)

���
���
F

6 d

�min

KX

k=1

||✓ � ✓
0||2 ,

=
Kd

�min
||✓ � ✓

0||2 , (S8)

where �min > 0 is the smallest eigenvalue over covariances in K compact. The second

term of (S7) can be bounded using the Lipschitz condition on A
(k)
✓

:
Z

X

���A(k)
✓

�A
(k)
✓0

���q(k)
✓0 (y|x)�( dy) 6

Z

X
L||✓ � ✓

0||2q
(k)
✓0 (y|x)�( dy) = L||✓ � ✓

0||2 . (S9)

Combining (S8) and (S9), we can finally bound the integral in (S6). Indeed, we find

Z

X
|p✓(y|x)� p✓0(y|x)|�( dy) 6

KX

k=1

Z

X
A

(k)
✓

���q(k)
✓

� q
(k)
✓0

���(y|x)�( dy)

+
KX

k=1

Z

X

���A(k)
✓

�A
(k)
✓0

���q(k)
✓0 (y|x)�( dy)

6 Kd

�min
||✓ � ✓

0||2 +KL||✓ � ✓
0||2

6 K

✓
d

�min
+ L

◆
||✓ � ✓

0||2 ,

which concludes the proof.

The Lipschitz condition on the acceptance probability (S4) highly depends on the

specific instance of the aMTM algorithm implemented. In particular, the expression A
(k)
✓

involves the weight function w
(k)
✓

, the acceptance probability ↵
(k)
✓

and the conditional

densities q(k)
✓

. Hence, the choices of weights and covariance structure among candidates
influence how we can verify (S4) so we must resort to a case-by-case approach. Fontaine
(2019, Section 5.5.2) contains all the details so we only report the general ideas here.
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First, when the weight function is independent of ✓ (e.g. proportional to the target
density) and candidates are chosen to be independent, then we do not require any addi-
tional assumption.

When the weight function depends on ✓, then we can extract some general su�cient
conditions. We require that the weight function and acceptance probability be Lipschitz
in ✓ uniformly over their arguments; for any ✓ 6= ✓

0 2 ⇥2,

sup
y,y(�k),x,✓ 6=✓0

��w̄✓(y, y(�k)|x)� w̄✓0(y, y(�k)|x)
��

||✓ � ✓0||2
< 1 ,

sup
y,y(�k),x,x

(k)
⇤ ,✓ 6=✓0

���↵✓(y, y(�k)|x, x(k)
⇤ )� ↵✓0(y, y(�k)|x, x(k)

⇤ )
���

||✓ � ✓0||2
< 1 .

In the independent case, such conditions are easily verified by choosing functions that
have continuous gradients and by supposing ⇥ compact and convex. In the extremely
antithetic case, we can use similar arguments, but the details are more tedious since
the conditional densities q(k) lie in some strict subspace of XK�1. When candidates are
deterministic (e.g. RQMC or common random variable), these conditions become simpler
as the conditional densities become degenerate: we can then drop the dependence on y

(�k)

and on x
(�k)
⇤ .

3.3.3. Bounded updates

The set of parameters is given by

✓ =
⇣
✓
(1)

, . . . , ✓
(K)
⌘

where, in general, each component consists of a moving average, a covariance and a scale
factor:

✓
(k) =

⇣
µ
(k)

,⌃(k)
, l

(k)
⌘
, k = 1 , . . . ,K,

where l(K) = log �(K). We denote by ||·||2 the L2-norm; for elements of ✓ that are matrices,
the contribution to ||✓|| will thus be the Frobenius norm ||·||

F
which corresponds to the

L2-norm of the vectorized matrix. At iteration n, the available information to be used
by the adaptation function is given by

⌅n =
⇣
kn, y

(1:K)
, x

(1:K)
⇤

⌘
.

Hence, we can describe the update function as

H✓ (⌅n) =

0

BB@

H
(1)
✓

(⌅n)
...

H
(K)
✓

(⌅n)

1

CCA ,
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where H
(k)
✓

corresponds to the update of ✓(k) as introduced in (4.1). Then

H
(k)
✓

(⌅n) =

 
H

(k)
µ,⌃ (⌅n)

H
(k)
l,↵

(⌅n)

!
,

where H
(k)
µ,⌃ corresponds to the (joint) update of µ(k) and ⌃(k), and where H

(k)
l,↵

corre-

sponds to the update of l(k) using the acceptance probability.

Bounding H
(k)
l,↵

is easily achieved. In the ASWAM case, we have

H
(k)
l,↵

(⌅n) = I ({kn = k})
h
↵✓

⇣
y; y(�k)|xn;x

(�k)
⇤

⌘
� ↵⇤

i
,

which can be bounded by
���H(k)

l,↵
(⌅n)

��� 6 I ({kn = k})
���↵✓

⇣
y; y(�k)|xn;x

(�k)
⇤

⌘
� ↵⇤

��� 6 1 .

For AM or RAM updates, H(k)
l,↵

= 0.

Lemma 3.1. Let H(k)
µ,⌃ denote the AM or ASWAM update of (µ(k)

,⌃(k)). Then, if the
sample space X and parameter space ⇥ are both compact,

sup
✓2K

���
���H(k)

µ,⌃

���
���
1
< 1 .

Proof. The AM and ASWAM updates are such that

H
(k)
µ,⌃ (⌅n) = I({kn = k})

✓
xn+1 � µ

(k)

(xn+1 � µ
(k))(xn+1 � µ

(k))> � ⌃(k)

◆
.

Thus, H(k)
µ,⌃ only depends on ✓, kn, and xn+1.

By definition, we have
���
���H(k)

µ,⌃

���
���
1
= sup

(xn+1,kn)2X ⇥{1 ,..., K}

���
���H(k)

µ,⌃ (⌅n)
���
���
2
.

Obviously, the supremum over kn 2 {1 , . . . ,K} is attained for kn = k because of the
term I ({kn = k}). Hence, we find the following bound

���
���H(k)

µ,⌃

���
���
2
6
���
���xn+1 � µ

(k)
���
���
2
+
���
���(xn+1 � µ

(k))(xn+1 � µ
(k))> � ⌃(k)

���
���
F

6 ||xn+1||2 +
���
���µ(k)

���
���
2
+
����xn+1x

>
n+1

����
F

+ 2
���
���µ(k)

x
>
n+1

���
���
F

+
���
���µ(k)

µ
(k)>

���
���
2
+
���
���⌃(k)

���
���
F

.

Assuming X and ⇥ compact, then xn+1, µ(k), and ⌃(k) are all bounded so that
���
���H(k)

µ,⌃

���
���
2

is uniformly bounded for (x, k) 2 X ⇥{1 , . . . ,K}, as well as for ✓ 2 K.

imsart-bj ver. 2014/10/16 file: supplementary_material.tex date: January 24, 2022



Supplement to aMTM 21

For the RAM update, we rewrite it as a Robbins-Monro recursion:

⌃(k)
n+1 = S

(k)
n

 
Id + �n+1 I ({kn = k})

h
↵✓(y; y

(�k)|xn;x
(�k)
⇤ )� ↵⇤

i
un+1u

>
n+1

||un+1||22

!
S
(k)>
n

= S
(k)
n

S
(k)>
n

+ �n+1 I ({kn = k})S(k)
n

 h
↵✓(y; y

(�k)|xn;x
(�k)
⇤ )� ↵⇤

i
un+1u

>
n+1

||un+1||22

!
S
(k)>
n

=: ⌃(k)
n

+ �n+1H
(k)
⌃n

(⌅n) ,

where

H
(k)
⌃n

(⌅n) = I ({kn = k})S(k)
n

 h
↵✓(y; y

(�k)|xn;x
(�k)
⇤ )� ↵⇤

i
un+1u

>
n+1

||un+1||22

!
S
(k)>
n

,

with un+1 = y � xn and ⌃(k) = S
(k)

S
(k)>.

Lemma 3.2. Let H(k)
⌃ denote the RAM update function of ⌃(k). Then, if the sample

space X and parameter space ⇥ are both compact,

sup
✓2K

���
���H(k)

⌃

���
���
1
< 1 .

Proof. The norm of H(k)
⌃ can be bounded as follows:

���
���H(k)

⌃ (⌅n)
���
���
2
6
�����

�����S
(k)

 h
↵✓(y; y

(�k)|xn;x
(�k)
⇤ )� ↵⇤

i
un+1u

>
n+1

||un+1||22

!
S
(k)>

�����

�����
2

6
���
���S(k)

���
���
2

�����

�����

h
↵✓(y; y

(�k)|xn;x
(�k)
⇤ )� ↵⇤

i
un+1u

>
n+1

||un+1||22

�����

�����
2

���
���S(k)>

���
���
2

6
���
���S(k)

���
���
2

����un+1u
>
n+1

����
2

||un+1||22

���
���S(k)

���
���
2

6
���
���S(k)

���
���
2

||un+1||22
||un+1||22

���
���S(k)

���
���
2
=
���
���S(k)

���
���
2

2
.

For ⇥ compact, we find
����S(k)

����
2
to be uniformly bounded, which implies that

���
���H(k)

⌃

���
���
1

is uniformly bounded for ✓ 2 ⇥ as well as for all ⌅n. That is, sup✓2K

���
���H(k)

⌃

���
���
1
< 1.

3.3.4. Continuity of the convergence metric

Recall the metric used to compare the iterated transition to the target density:

�n(x, ✓) = ||Pn

✓
(·|x)� ⇡(·)||TV .
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Lemma 3.3. Let F : W ! R be a function defined by

F (w) =

Z

T
f(w, t)�( dt) ,

where f : W ⇥ T ! R is continuous w.r.t. (w, t) and where � denotes the Lebesgue
measure on R. Suppose there exists a function g : T ! R such that |f(w, t)| 6 |g(t)| for
all (w, t) 2 W ⇥ T with �(|g|) < 1. Then, F is a continuous function of w on the whole
of W.

Proof. The function F is continuous on the whole of W if and only if limn!1 F (wn) =
F (w) for any sequence wn ! w. Then, let {wn}n2N ✓ W be an arbitrary sequence with
wn ! w 2 W and define, for all n 2 N, fn : T ! R by fn(t) = f(wn, t). By the continuity
of f w.r.t. w, we know that fn(t) ! f(w, t) point-wise. By hypothesis, we have

|fn(t)| = |f(wn, t)| 6 |g(t)| , n 2 N .

Now, write

lim
n!1

F (wn) = lim
n!1

Z

T
f(wn, t)�( dt) = lim

n!1

Z

T
fn(t)�( dt) = lim

n!1
�(fn(·)) .

By the Monotone Convergence Theorem, we find

lim
n!1

F (wn) = �

⇣
lim
n!1

fn(·)
⌘
= � (f(w, ·)) = F (w) ,

which concludes the proof.

Lemma 3.4. Let P✓ be a MTM transition using a given set parameters ✓ 2 ⇥. Then,
the acceptance probability through candidate k from the current state x to some other

state y, A(k)
✓

(y|x), is a continuous function of (x, y, ✓) assuming that each of q(�k)
✓

, w̄(k)

and ↵MTM are continuous functions of their arguments and parameters, and that the

conditional densities q(�k)
✓

are uniformly bounded above by some integrable function q
+ :

XK�1 ! R>0.

Proof. This result is a direct consequence of Lemma 3.3. The complete argument may
be found in Fontaine (2019, Lemma 5.11).

Lemma 3.5. Let P✓ be a MTM transition using a given set parameters ✓ 2 ⇥. Then, the

integrated acceptance probability through candidate k from the current state x, A
(k)
✓

(x),

is a continuous function of (x, ✓) assuming that A
(k)
✓

(y|x) is a continuous function of

(x, y, ✓) and assuming that each q
(k)
✓

(y|x) is a density, with respect to the Lebesgue

measure on Rd, such that there exists an integrable function q
+ : X ! R>0 with

q
(k)
✓

(y|x) 6 q
+(y) uniformly for (x, ✓, k). Furthermore, the rejection probability R✓(x)

is also a continuous function of (x, ✓).
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Proof. This result is a direct consequence of Lemma 3.3. The complete argument may
be found in Fontaine (2019, Lemma 5.12).

For a Markov transition taking the form of a MH density, i.e.

P ( dy|x) = p(y|x)�( dy) +R(x)�x( dy) , (S10)

we can write the iterated transition using the following recursion,

P
n( dy|x) = p

n(y|x)�( dy) +R
n(x)�x( dy),

where

p
n(y|x) =

Z

X
p
n�1(y|z)p(z|x)�( dz) ,

with the convention p
0(y|x) = �x(y).

Corollary 3.1. Under the setup and conditions of Lemma 3.5, the iterated MTM tran-
sition, pn

✓
(y|x), is a continuous function of (x, y, ✓) for all n 2 N.

Proof. We proceed by induction over n > 1 to show that p
n

✓
(y|x) is continuous with

respect to (x, y, ✓) and is uniformly bounded by K
n
q̄
n�1

q
+(y), where q̄ = supX q

+
< 1.

For n = 1, we have

p
1
✓
(y|x) =

Z

X
�z(y)p✓(z|x)�( dz) = p✓(y|x) =

KX

k=1

A
(k)
✓

(y|x)q(k)
✓

(y|x) ,

which is a sum of products of continuous functions and is therefore continuous. The
uniform bound is direct:

��p1
✓
(y|x)

�� 6
KX

k=1

���A(k)
✓

(y|x)q(k)
✓

(y|x)
��� 6

KX

k=1

1 · q+(y) = K · q+(y) = K
1
q̄
1�1 · q+(y) .

For n > 1, we suppose that pn�1
✓

(y|x) is continuous and uniformly bounded byK
n�1

q̄
n�2

q
+(y).

We use Lemma 3.3; to this end, we let

F (w) = p
n

✓
(y|x) =

Z

X
p
n�1
✓

(y|z)p✓(z|x)�( dz) ,

the variables (x, y, ✓) = w 2 W with W = X 2 ⇥⇥, the integrated variable z = t 2 T
with T = X , and the integrand

f(w, t) = p
n�1
✓

(y|z)p✓(z|x) .
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Since p
n�1
✓

(y|z) is continuous w.r.t. (y, z, ✓) by induction hypothesis and since p✓(z|x) is
continuous w.r.t. (x, z, ✓) by assumption (see the case n = 1), we find that f is a contin-
uous function of all its arguments. Also, the induction hypothesis implies the following
uniform bound

��pn�1
✓

(y|z)
�� 6 K

n�1
q̄
n�2

q
+(y) 6 K

n�1
q̄
n�2 sup

X
q
+ = K

n�1
q̄
n�1

.

Hence, we find

|f(w, t)| 6
��pn�1

✓
(y|z)

��|p✓(z|x)| 6 K
n
q̄
n�1

q
+(z) =: g(t) .

Since q+ is integrable and K, q̄ < 1, we find that g is integrable for each fixed n. Finally,
Lemma 3.3 implies that F is continuous w.r.t. w, that is, pn

✓
(y|x) is continuous w.r.t.

(x, y, ✓) 2 X 2 ⇥⇥ for each fixed n.

Theorem 3.2. Let {P✓}✓2⇥ be a family of MTM transitions indexed by its set of pa-
rameters ✓, and suppose that the target density ⇡ and each P✓ satisfy the conditions of
Proposition 3.2. Further suppose that ⇥ is compact and that the resulting chain {Xn}n2N
is bounded in probability. Then, if the conditions of Lemma 3.5 hold, the adaptive chain
satisfies the bounded convergence condition.

Proof. We use a result by Craiu et al. (2015, Proposition 23) restated as Theorem 4.1
in the main text.

All conditions of the result are verified except the continuity of (x, ✓) 7! �n(x, ✓).
Indeed, the MTM transitions all admit ⇡ as their invariant distribution because of the
detailed balance condition (Proposition 3.1). They are also ergodic with respect to ⇡ by
Proposition 3.2 and then Harris-ergodic with respect to ⇡ by Proposition 3.3.

To verify the continuity of �n, we proceed in a similar fashion to Roberts and Rosen-
thal (2007, Corollary 11) in the MH case. We develop �n using the decomposition of the
iterated transition (S10):

�n(x, ✓) = ||Pn

✓
(·|x)� ⇡(·)||TV

= sup
B2B(X )

|Pn

✓
(B|x)� ⇡(B)|

= sup
B2B(X )

����
Z

B

P
n

✓
( dy|x)�

Z

B

⇡( dy)

����

= sup
B2B(X )

����R
n

✓
(x)�x(B) +

Z

B

p
n

✓
( dy|x)�

Z

B

⇡( dy)

����

= R
n

✓
(x) +

1

2

Z

X
|pn

✓
(y|x)� ⇡(y)|�( dy) .

By inspection of the last expression, we can show that �n is indeed a continuous function
of its arguments.

By Lemma 3.5, we know that Rn

✓
(x) is a continuous function of (x, ✓).
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We then use Lemma 3.3 to show that the integral is indeed continuous w.r.t. (x, ✓). By
Corollary 3.1, we know that pn

✓
(y|x) is continuous w.r.t. (x, y, ✓). Since ⇡ is assumed to be

a density w.r.t. the Lebesgue measure, we have that |pn
✓
(y|x)� ⇡(y)| is continuous w.r.t.

(x, y, ✓). Thus, we only need a (x, ✓)-uniform and integrable bound on |pn
✓
(y|x)� ⇡(y)|.

By the triangle inequality, we have

|pn
✓
(y|x)� ⇡(y)| 6 p

n

✓
(y|x) + ⇡(y) .

By Corollary 3.1, we find a uniform and integrable bound on the first term; the target
density is independent of (x, ✓) and integrable:

|pn
✓
(y|x)� ⇡(y)| 6 K

n
q̄
n�1

q
+(y) + ⇡(y) 2 L1(�) .

Hence, all conditions of Lemma 3.3 are verified, which implies that
R
X |pn

✓
(y|x)� ⇡(y)|�( dy)

is continuous w.r.t. (x, ✓). We conclude that �n is continuous w.r.t. (x, ✓) since it corre-
sponds to a linear combination of continuous functions.
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