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What differential geometry says about Bayesian
marginalization

D.A.S. Fraser∗ and Mylène Bédard†‡

Abstract. The statistical tool box offers many methods for applied statistics,
but reliability in the sense of ‘reproducibility of frequency properties’ can often be
unclear or even ignored. We examine this for default Bayes methods and develop
a prior that leads to full second-order inference for any regular scalar parameter of
interest in presence of nuisance parameters; the new prior is Jeffreys based. Also,
in parallel, we show that such second-order accuracy is widely unavailable for
vector parameters of interest by Bayes, unless the interest parameter has a special
linearity. Detailed examples, including simulations, are presented and discussed.
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1 Introduction

As part of discussing Lindley’s (Lindley, 1975) view of a Bayesian 21st century, Efron
(2013) proposed a simple classification for Bayes priors: ‘genuine priors’ where there is
a valid frequency source for the parameter value, and ‘uninformative or mathematical
priors’ for formal calculations without such a valid source. The conditional probability
lemma of course says that when parameter values are actually sourced from a specified
prior and the model itself is valid, then the posterior distribution exhibits the stated
frequency property for the parameter. But in cases where other priors describe the
sourcing, then the lemma says nothing in terms of frequency properties for the partic-
ular context. Our view is that such subjective priors (mathematical or other) should
be recorded along side the confidence-based presentation, so that an end user knows
the sources of the information presented and can reweight posterior draws to explore
alternative analyses. This is not to say that such posteriors might not have attrac-
tive properties; for example, if a quantile bound obtained from some posterior exhibits
the frequency-under-repetitions claimed by its labeling, then that frequency is de facto
confidence for the quantile bound.

Berger (2006) and Goldstein (2011) refer to the unification of Bayesian and fre-
quentist procedures in terms of coverage-matching. This property arises when a Bayes
calculation is examined under repetitions and found to exhibit the stated posterior
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2 Differential geometry for Bayesian marginalization

value; such a concept of course is just confidence with an alternative labelling. This

indicates that a Bayes calculation can provide a route to confidence but needs checking.

This viewpoint is also largely in conformity with Laplace (1812) who didn’t have the

‘confidence’ concept available, but did have major experience in science and the remark-

able insight of a great scientist. Over the years, various researchers have made progress

on achieving reproducibility through Bayes. Tibshirani (1989), for instance, proposed a

coverage-matching prior for the case where a scalar parameter of interest is orthogonal

to the complementing nuisance parameter. More recently, Fraser et al. (2010) devel-

oped a prior based on matching Bayesian and frequentist higher-order approximations;

we refer the reader to that article and the references therein for more details on the

subject. Datta and Sweeting (2005) also provide a comprehensive review of available

coverage-matching priors.

In this paper, we develop a new prior that leads to second-order accuracy in terms

of frequency reproducibility for a scalar parameter of interest. The construction of this

new prior, which was foreseen in the explorations of Fraser et al. (2016b), builds on

regular models and likelihood asymptotics. Its development requires useful properties

stemming from exponential models in their canonical form and, as such, involves several

reparameterizations and changes of variables. This however does not jeopardize the

applicability of the new prior, which can be obtained from general regular models, not

only exponential ones. We record, in §2, the distributional results that are necessary to

the development of the new prior.

Then in §3 we introduce the prior, which is in fact just Jeffreys prior (Jeffreys, 1946)

but curiously used ‘off-label’, strictly on the one-dimensional profile contour for the in-

terest parameter. In the case where the interest parameter is non-linear with respect to

the canonical parameter, then a Jacobian allowance is needed and uses a rotationally

symmetric reparameterization of the model. We present a clear and systematic approach

for computing the prior, waving the need for potentially restrictive nuisance correction

terms that are contingent on the geometry of the interest parameter with respect to the

canonical parameterization, see Fraser et al. (2016b). The resulting single-dimensional

posterior, which may be seen as emerging from the new Jeffreys-based prior combined

to the profile likelihood of the interest parameter, can then be used for second-order

Bayesian inference. Following this line of reasoning, further Bayesian calculations are

then accessible through the use of the one-dimensional statistical model that is propor-

tional to the profile likelihood of interest (instead of the initial full-dimensional statistical

model).

In parallel we also show, through a revealing example in §4, that posteriors for

vector parameters quite generally do not have such confidence accuracy, particularly

when marginalized to component parameters. In fact, priors featuring second-order

accuracy are widely unavailable for vector parameters of interest, unless the parameter

has a special linearity. Finally, in §5, we examine a spectrum of examples in details, and

find that the new prior gives remarkable accuracy for posterior quantile bounds and

intervals.
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D.A.S. Fraser and M. Bédard 3

2 Some results on regular models and likelihood
asymptotics

Consider a statistical model f(y; θ) with observed data y0, where y has dimension n
and θ has dimension p. In recent years, many of the most productive developments
for statistical analysis have come from the saddlepoint approximation as promoted by
Daniels (1954). This method offers a highly accurate O(n−3/2) reexpression of an ex-
ponential family model, hereafter referred to as third-order accurate. Let s be a canon-
ical variable and ϕ be a canonical parameter for such a model in exponential form:
f(y; θ) = exp[ϕ(θ)>s(y)− κ{ϕ(θ)}]h(y), where ϕ(θ) ∈ Rp is one-to-one-equivalent to θ
and s(y) ∈ Rp. The approximate model can then be presented entirely in terms of very
familiar statistical quantities as

g(s;ϕ)ds = exp{ϕ>s− κ(ϕ)}g(s)ds

=
ek/n

(2π)p/2
exp{`(ϕ; s)− `(ϕ̂; s)}|̂ϕϕ|−1/2{1 +O(n−3/2)}ds , (1)

where `(ϕ; s) − `(ϕ̂; s) = −r2/2 is the negative log-likelihood ratio, ϕ̂ = ϕ̂(s) is the
maximum likelihood estimator, and ̂ϕϕ = ϕϕ(ϕ̂) is the observed information matrix in
the canonical parameterization. Each of these involves dependence on the variable s but
only the first has dependence also on ϕ. The term k/n is a generic normalizing constant.
The high accuracy of the approximate model is important, but pales in contrast to the
ability to extract definitive departure measures of data from parameter, essentially
replacing any use of sufficiency, ancillarity and other reduction methods, yet retaining
continuity in wide generality. Hereafter, we refer to the approximation in (1) (minus the
error term) as g(s;ϕ); this sort of gives the final null distribution g(s;ϕ0) for assessing
ϕ = ϕ0 in a single, unequivocal step. We note that for more general regular models
(not in exponential form), there exists an effective construct for such a ϕ so the present
methodology becomes widely available; see Appendix A.

Now to begin suppose we have a scalar-variable, scalar-parameter model in expo-
nential form. An intriguing result from Welch and Peers (1963) shows that the approx-
imation g(s;ϕ) can be rewritten as a location model, say ḡ(t − µ) with t = t(s) and
µ = µ(ϕ), to second-order accuracy O(n−1). This is achieved by making use of Taylor
expansions, information functions, and transformations on the variable and parame-
ter. Using this convenient approximate location property, the authors then show that
the observed p-value function is equal, to second-order accuracy, to the Bayes survivor
function under Jeffreys (1946) prior. In particular,∫ s0 ek/n

(2π)1/2
e−r

2
ψ0
/2−1/2

ϕϕ (ϕ̂)ds =

∫
ϕ0

ek/n

(2π)1/2
e−r

2
ψ/21/2ϕϕ (ϕ)dϕ , (2)

where the left term is the observed p-value function p(ϕ0) =
∫ s0

g(s;ϕ0)ds and the
expression on the right is the Bayes survivor function s(ϕ0) =

∫
ϕ0
π(ϕ|s0)dϕ as based

on Jeffreys’ prior π(ϕ) ∝ 1/2ϕϕ (ϕ). Both sides of (2) are expressed in terms of r2
ψ/2, the
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4 Differential geometry for Bayesian marginalization

constrained signed log-likelihood ratio `(ϕ̂; s) − `(ϕ̂ψ; s), where ϕ̂ψ is the constrained
maximum likelihood estimator given the interest parameterization ψ(ϕ) = ψ. On the
left, the interest ψ0 is fixed and r2

ψ0
/2 = `(ϕ̂; s) − `(ϕ̂ψ0 ; s), whereas on the right, the

data is at its observed value and r2
ψ/2 = `(ϕ̂; s0) − `(ϕ̂ψ; s0). The p-value essentially

records the statistical position of the data relative to a parameter value ϕ0 such that
ψ(ϕ0) = ψ0; alternatively, it could be interpreted as the smallest significance level to
which one would reject the null in testing H0 : ψ(ϕ) = ψ0 against H1 : ψ(ϕ) < ψ0. In
the current context, we can say that the root information prior gives Bayes-frequency
equivalence.

More generally, suppose we have a p-dimensional exponential model and are inter-
ested in a scalar parameter ψ = ψ(ϕ); let λ = λ(ϕ) be a (p − 1)-dimensional comple-
menting nuisance parameter for ψ. It is convenient to assume that the nuisance λ is
chosen orthogonal to the scalar interest ψ in the sense of Cox and Reid (1987). This
constraint will however be swallowed up in the theoretical developments of §3 and will
not be required in the examples or, more generally, in practice. As it turns out, the
unique null distribution for assessing a particular ψ value is directly available from
asymptotic theory; we now provide the broad lines of the argument, see Fraser and
Reid (1995) or Fraser (2016) for more details. With ψ(ϕ) fixed at ψ0, there exists an
approximate ancillary statistic U for the nuisance parameter, i.e. a function of s whose
distribution is second-order free of λ. This statistic U(s) takes values on a continuous
contour in the sample space; U(s) and the contour on which it is defined may not be
unique, but the ancillary distribution is unique to the third order. For convenience, let
the continuous contour be the observed profile line L0

ψ0
= {s ∈ Rp : λ̂ψ0

= λ̂0}, on
which the constrained maximum likelihood estimator of λ is fixed at its observed value.

In this setting, we can reparameterize the exponential model such that (u(s), v(s))
acts as the full canonical variable. If the interest ψ is a linear function of ϕ, then
an appropriate change of variable easily leads to an exponential model with canoncial
parameter (ψ(ϕ), λ(ϕ)) and canonical variable (u(s), v(s)); from there, a saddlepoint
approximation g̃(u, v;ψ, λ) as in (1) is then accessible. If the interest is not linear in
ϕ, then we define a new parameter χ = χ(ϕ) linear in ϕ and tangent to ψ(ϕ) at ϕ̂ψ0

,
the constrained full maximum likelihood value given ψ(ϕ) = ψ0. Through a change of
variable, we then obtain an exponential model with canonical variable (u(s), v(s)) and
canonical parameter χ(ϕ) instead of ψ(ϕ) (in addition to the complementing nuisance
parameter). We note that on L0

ψ0
, the original exponential model coincides with this

tangent exponential model, for which a saddlepoint approximation is also available; the
analysis would then be pursued with the latter, but for simplicity we hold on to our
usual notation ψ for the interest parameter.

In particular, let (u, v) be the full canonical variable and consider an approximating
exponential model as in (1); keeping ψ(ϕ) fixed at ψ0, we can reexpress the full model
as

g̃(u, v;ψ0, λ) = q(v|u;ψ0, λ)h(u;ψ0) ,

with a nuisance density q(v|u;λ, ψ0) and an interest density h(u;ψ0) that contains full
third-order information on ψ0. To obtain an expression for h(u;ψ0) on L0

ψ0
, we need to

isolate it in the previous equation. The statistic U being ancillary, the observed profile
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D.A.S. Fraser and M. Bédard 5

line L0
ψ0

corresponds to the line on which the (p− 1)-dimensional variable v is fixed at

its observed value v0. On L0
ψ0

, we thus have access to an approximating exponential

model g̃(u, v0;ψ0, λ̂
0) for the full density; in ϕ parameterization, this gives

g̃(u, v0; ϕ̂ψ0
)du =

ek/n

(2π)p/2
exp{`(ϕ̂ψ0

;u, v0)− `(ϕ̂;u, v0)}|ϕϕ{ϕ̂(u, v0)}|−1/2du

=
ek/n

(2π)p/2
e−r

2
ψ0
/2|ϕϕ{ϕ̂}|−1/2du .

The conditional density of v given the ancillary U = u and its contour Lψ0
is q(v|u;ψ0, λ),

which inherits exponential form and thus also admits the saddlepoint approximation;
evaluated at v0 and expressed in terms of ϕ, it satisfies

q(v0|u; ϕ̂ψ0
) =

ek/n

(2π)(p−1)/2
exp{0}|(λλ)(ϕ̂ψ0

)|−1/2 .

The parentheses around λλ indicate that the second derivative must be rescaled to
that of the given exponential parameterization ϕ, thus making the expression free of
the nuisance λ. The nuisance information determinant in the parameterization (λ) can
be obtained from the determinant in the parameterization λ by applying the Jacobian
ϕλ = ∂ϕ/∂λ for fixed ψ,

|(λλ)(ϕ̂ψ)| = |λλ(ϕ̂ψ)||ϕ>λ (ϕ̂ψ)ϕλ(ϕ̂ψ)|−1 .

Dividing the full density by the conditional one leads to the marginal null distribution
on L0

ψ0
, with parameter ψ0 and scalar differential du

h(u;ψ0)du =
ek/n

(2π)1/2
e−r

2
ψ0
/2|ϕϕ(ϕ̂)|−1/2|(λλ)(ϕ̂ψ0

)|1/2du . (3)

The above is similar to (1), except that it also involves the observed nuisance information
determinant |(λλ)(ϕ̂ψ0

)|. The expression (3) also happens to be valid for vector ψ. We
remind the reader that in all previous expressions, k is a generic normalizing constant.
For more about the development of h(u;ψ), and in particular about the implications of
using the tangent exponential model, see Fraser (2011).

From the orthogonality between ψ and λ, the preceding null distribution can be
rearranged using a factorization of the determinant |ϕϕ| = |(λλ)||(ψψ)|−1, where a full
matrix with upper indices is the inverse of the same with lower indices. The marginal
null distribution in (3) becomes

h(u;ψ0)du =
ek/n

(2π)1/2
e−r

2
ψ0
/2 ·
{ |(λλ)(ϕ̂ψ0)|
|(λλ)(ϕ̂)|

}1/2

· |(ψψ)(ϕ̂)|1/2du . (4)

Suppose we temporarily ignore the factor in {}; the contribution |(ψψ)(ϕ̂)|1/2du then
appears as the (Welch and Peers, 1963) differential on the sample space line L0

ψ0
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6 Differential geometry for Bayesian marginalization

with respect to an underlying scalar exponential model. This presents the contribution

ek/n(2π)−1/2 exp{−r2
ψ0
/2}|(ψψ)(ϕ̂)|1/2du as a location model to second-order accuracy,

as in (2). Now the factor {|(λλ)(ϕ̂ψ0
)|/|(λλ)(ϕ̂)|}1/2, already second-order accurate, can

be expanded as a function exp{a(t−µ)/n1/2}, with t, µ as previously mentioned (Fraser

et al., 2016b). The combination then is a function of (t − µ), providing a full location

form for (4) to second order. The result of Welch and Peers (1963) can thus be applied

on this distribution, but some technicalities need attention beforehand.

The distribution (3) is on the line L0
ψ for a fixed ψ and goes through the observed

data; it is also perpendicular to the interest parameter contour at the constrained maxi-

mum likelihood value ϕ̂ψ on the parameter space. The parameter ψ(ϕ) often has certain

rotation properties; accordingly, the line L0
ψ could change direction with ψ-change. As

a result, the observed information on the line L0
ψ could vary and, correspondingly, so

could the form of the underlying apparent exponential distribution. We can notation-

ally avoid this complication in the use of Welch and Peers (1963) by recalibrating the

exponential coordinates to have an observed information matrix equal to the identity,

̂ϕϕ = I. This is not a change in substance, just notational so that what we have writ-

ten as an exponential model is, under rotation, the same exponential model to second

order. The recalibration is achieved by using a right square root T of ̂ϕϕ = T>T and

then using the modified canonical parameter ϕ̄ = Tϕ that has now acquired an identity

observed information. This means that the reference exponential distributions through

the data point are now, notationally, a single exponential distribution.

3 A Jeffreys-based prior featuring second-order
reproducibility

We now combine the previous distributional results with Welch and Peers (1963)’s re-

lationship to derive a prior that achieves confidence. Hereafter, we use the modified

exponential parameterization ϕ̄ as just described at the end of §2; for notational sim-

plicity, we however write ϕ and assume that the adjustment has been made. The density

(4) can be integrated up to the observed u = u0, leading to the distribution function

H(u0;ψ0) called the p-value function p(ψ0):

p(ψ0) =

∫ u0

ek/n

(2π)1/2
e−r

2
ψ0
/2 ·
{ |(λλ)(ϕ̂ψ0

)|
|(λλ)(ϕ̂)|

}1/2

· |(ψψ)(ϕ̂)|1/2du ,

where r2
ψ0

and the information functions of course depend on the scalar u. Recall the

uniqueness of this distribution subject to retaining model continuity and containing full

information for the parameter ψ0.

Then applying Welch and Peers (1963)’s location model result at (2) to the location

model obtained in (4), we can rewrite the p-value function (an integral on the observed

profile line L0
ψ0

with fixed parameter ψ0) as a survivor posterior function (an integral
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D.A.S. Fraser and M. Bédard 7

Figure 1: Exponential coordinates having symmetry (̂0ϕϕ = I) at the point ϕ̂0; dψ is an
increment in the parameter ψ; dϕ̂ψ is the corresponding vector increment for the point
ϕ̂ψ on the profile curve Pψ; and d(ψ) is the corresponding increment in the symmetrized
exponential coordinates.

on the profile curve Pψ = {ψ ∈ R : ϕ = ϕ̂ψ}, with ϕ̂ψ = ϕ̂0
ψ based on observed data s0):

p(ψ0) =

∫
ψ0

ek/n

(2π)1/2
e−r

2
ψ/2 ·

{ |(λλ)(ϕ̂ψ)|
|(λλ)(ϕ̂)|

}1/2

· |(ψψ)(ϕ̂ψ)|−1/2 d(ψ) .

We remind the reader that the term {|(λλ)(ϕ̂ψ)|/|(λλ)(ϕ̂)|}1/2 has location form to
second-order accuracy, which is required for the application of that result. We can then
combine the information functions that depend on ϕ̂ψ into a single factor, and absorb
the information that depends only on the data into the constant k:

p(ψ0) =

∫
ψ0

ek/n

(2π)1/2
e−r

2
ψ/2 · |ϕϕ(ϕ̂ψ)|1/2 d(ψ) . (5)

As before, the parentheses around ψ indicate that the parameterization is in its expo-
nential version on the profile curve; more details about the differential d(ψ) are provided
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8 Differential geometry for Bayesian marginalization

below. Furthermore, to avoid notational difficulties with parameter rotation, we have
required the exponential parameter ϕ to be locally rotationally symmetric as described
in the last paragraph of §2.

The O(n−1) version of the p-value function p(ψ0) in (5) has now been written as an
integral of observed likelihood on the parameter space. But, this integral of likelihood
is totally restricted to the profile curve Pψ; as such, the integral is a contour integral,
and not the usual full parameter space integral! The integrand in (5) can thus be seen
as a posterior density for ψ obtained from Jeffreys’ prior used ‘off-label’, on just the
profile Pψ for the interest parameter. Furthermore, this modification with focus on the
interest parameter has full second-order repetition accuracy.

We now study the support differential d(ψ) based on the special exponential param-
eterization (ψ) for the interest ψ. Consider how a change dψ affects the constrained full
maximum likelihood value ϕ̂ψ along the profile; this is given by the derivative dϕ̂ψ/dψ,
which has magnitude |dϕ̂ψ/dψ|. Then, let α be the angle between the profile contour Pψ
and the gradient vector dψ/dϕ of the ψ surface; see Figure 1. The change perpendicular
to a ψ contour is then obtained by multiplying the preceding magnitude by the cosine
of that angle

d(ψ) = |dϕ̂ψ
dψ
| cos{α} dψ

= |dϕ̂ψ
dψ
| w1w2 dψ

= w1
dϕ̂ψ
dψ

dψ , (6)

where w1 = {dψ(ϕ)/dϕ}/|dψ(ϕ)/dϕ| is the unit gradient vector to the surface ψ(ϕ) =
ψ at ϕ̂ψ and w2 = {dϕ̂ψ/dψ}/|dϕ̂ψ/dψ| is the unit vector associated to the above-
mentioned change in ϕ̂ψ along the profile.

We thus obtain, to second order, the Bayes posterior survivor value function for a
general scalar interest parameter ψ0:

p(ψ0) = c

∫
ψ0

e−r
2
ψ/2|ϕϕ(ϕ̂ψ)|1/2 · |dϕ̂ψ

dψ
| cos{α} dψ ,

where |dϕ̂ψ/dψ| cos{α} represents the Jacobian for Jeffreys’ prior on the profile curve,
|ϕϕ(ϕ̂ψ)|1/2. The implicit prior density is thus expressed as

πD(ψ) dψ ∝ |ϕϕ(ϕ̂ψ)|1/2 · w1
dϕ̂ψ
dψ
· dψ , (7)

for ψ on Pψ and may be used with the profile log-likelihood `(ϕ̂ψ; s0) for further Bayesian
developments. Note that the nuisance parameter nowhere appears in the prior nor the
posterior; in practice, it is thus not required to identify a nuisance λ that is orthogo-
nal to ψ. The posterior survivor function in this section has second-order uniqueness
and accuracy by its derivation from the p-value function, which in turn has second-
order uniqueness and accuracy by calculation respecting continuity. For some related
discussion, see Fraser (2014).
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D.A.S. Fraser and M. Bédard 9

4 A prior for sets?

In §2 and §3 we considered vector parameters, from which we then identified a scalar

parameter of interest. By focussing on this interest parameter we found that a prior with

second-order reproducibility is available, on just the profile contour for that parameter.

A reasonable concern is whether such second-order posterior accuracy might be available

more generally, for say a compact set. For this, we work with a simple core case where

we can reasonably hope that things would be easy: let S = (S1, S2) on the plane be

standard Normal with distribution located at ϕ = (ϕ1, ϕ2); this is a simple exponential

model with canonical variable s and canonical parameter ϕ. Despite the simple location

form of this model, we will see that Welch and Peers (1963)’s result does not hold for

sets and therefore Bayes survivor functions do not generally have reproducibility.

First let ρ2 = ϕ2
1 + ϕ2

2 be the parameter of interest; the set {s ∈ R2 : s2
1 + s2

2 < r2},
where say r2 = (s0

1)2 + (s0
2)2 is the observed statistics, is then standard for calculating

the p-value function. The p-value p(ρ2
0) = P(S2

1 + S2
2 < r2; ρ2

0) associated to a specific

ρ2
0 is then given by the Non-central Chi-squared distribution function H2(r2; ρ2

0). The

usual Bayes survivor function, obtained with Jeffreys’ flat prior for location parameters,

is then given by 1 − H2(ρ2
0; r2). Hence, sample space probability within the disk with

radius r (using the distribution with parameter ρ2
0) can be compared with the Bayes

parameter space probability outside the circle with radius ρ0 (using the distribution

with parameter r2). It follows that the Bayes posterior survivor function is larger than

the p-value function, a familiar result in the presence of parameter curvature. And then

if we decrease the value of r, the p-value moves towards 0 and the survivor function

moves towards 1. In the extreme, the p-value can be close to 0 and the corresponding

survivor value can be close to 1. As the p-value has repetition validity it follows that

the Bayes survivor probability in general does not, here to the extreme.

Figure 2 illustrates the behaviour of the p-value and posterior survivor value func-

tions of the parameter ρ2 for various values of the radius (r2 = 4, 2, 1, 0.5). In particular,

the discrepancy between both approaches becomes larger as r2 decreases, in which case

the p-value function becomes closer to 0. The above should not be surprising given the

behaviour of the pivotal r/ρ in calculating confidence.

5 Examples

We now present a range of examples based on simple exponential models in which the

parameter of interest ψ increases in complexity. We begin with a parameter ψ that is

linear in the canonical parameterization ϕ, then study a rotational ψ, followed by a

curved one, and we finally address the Behrens-Fisher problem. We detail how the new

reproducibility prior may be obtained in each of these cases, and graphically assess its

performance by comparison to the frequentist benchmark that is the third-order p-value.
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10 Differential geometry for Bayesian marginalization
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Figure 2: P -value and posterior survivor value functions for the parameter ρ2; each
graph has its own r2 value: 4, 2, 1, and 0.5.

5.1 Linear Parameter

Consider an interest parameter ψ linear in the canonical parameterization ϕ, i.e. ψ(ϕ) =

v>ϕ =
∑
viϕi. This is the simplest case as the line L0

ψ then remains parallel to the vec-

tor v under ψ changes. Since L0
ψ does not rotate, there is no need for invoking rotational

symmetry in the observed information matrix ̂ϕϕ, thus waiving the recalibration dis-

cussed at the end of §2. Users looking for an automated implementation of the method

could however include a default use of this recalibration without altering the results.

Specifically, consider a beta density with canonical parameter ϕ = (α, β):

f(y;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1 , y ∈ (0, 1) ,
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D.A.S. Fraser and M. Bédard 11

with n = 5 observed values y0 = (0.36, 0.68, 0.44, 0.43, 0.34). The parameter α is of
interest (ψ = α), while β is a free nuisance (λ = β). The interest ψ is linear in the
canonical parameterization, as ψ(ϕ) = v>ϕ = α with v> = (1, 0).

We aim at comparing p-value functions p(α) to posterior survivor value functions
s(α) arising from available uninformative priors. To this end, the signed log-likelihood
root approach is used as a simple approximation to p(α), while the third-order approach
acts as a highly accurate approximation (Fraser, 2017). These are then compared to pos-
terior survivor value functions s(α) obtained using Jeffreys’ prior and the new directional
Jeffreys-style prior.

The beta model does not admit a closed-form expression for its maximum likelihood
estimates (MLEs). Using the function beta.mle in the R package Rfast leads to ϕ̂0 =
(7.47, 9.03); these are used in approximating the p-value function p(α). The constrained

MLE of β given α, β̂α, is the solution of

D′(β̂α)−D′(α+ β̂α) =
1

n

n∑
i=1

log(1− yi) ,

where D′(x) = d log Γ(x)/dx is the digamma function. This equation is solved using

the function uniroot in R; constrained MLEs β̂α are obtained for various values of
the interest α, and then used in approximating p(α) and computing posterior survivor
values s(α) based on the new directional Jeffreys-style prior.

The Fisher information function appears in every calculation except that of the
signed log-likelihood root; it satisfies

ϕϕ(ϕ) =

(
n (D′′(α)−D′′(α+ β)) −nD′′(α+ β)

−nD′′(α+ β) n (D′′(β)−D′′(α+ β))

)
,

where D′′(x) = d2 log Γ(x)/dx2 is the trigamma function. Jeffreys’ prior does not dis-
tinguish between interest and nuisance parameters; it is defined on the full parameter
space as the root of the Fisher information determinant:

πJ(α, β) ∝ {D′′(α)D′′(β)−D′′(α+ β) [D′′(α) +D′′(β)]}1/2 , α, β > 0 .

We note that the Bayesian benchmark prior, the reference prior of Bernardo (1979), is
not easily available for a beta model in which an interest parameter is targeted. If it
were, it would also lead to a prior on the full parameter space, but in which interest
and nuisance parameters have been treated differently in the derivation of the density.

As a new way of targeting the interest parameter, the directional Jeffreys-style prior
restricts the usual Jeffreys’ prior to the profile contour for the interest α. From (7), the
new prior πD satisfies

πD(α) dα ∝ |ϕϕ(ϕ̂ψ)|1/2 d(α) = πJ(α, β̂α) d(α) .

In the current simple linear case, w1 in (6) is the vector (1, 0), and thus

d(α) = w1
d(α, β̂α)>

dα
dα = dα .
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12 Differential geometry for Bayesian marginalization

The posterior survivor value function sD(α) is then obtained by integrating the one-
dimensional posterior density

πD(α|y0) dα ∝ exp
{
`(α, β̂α;y0)

}
|ϕϕ(α, β̂α)|1/2 dα ,

where `(α, β̂α;y0) = log f(y0;α, β̂α) denotes the profile log-likelihood function of the
interest α.
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Figure 3: P -value and posterior survivor value functions for the parameter α in the
beta model; the MLE of α is identified by a pale vertical line.

Figure 3 examines the third-order function p(α) taken as the exact p-value (solid
line) and the normal approximation for the signed log-likelihood root rα (dash-dotted
line). The graph also features a comparison with posterior survivor values obtained
under Jeffreys’ prior (dotted line) and the new directional Jeffreys (red dashed line).
Approximations of the p-value function have been obtained in R, while the posterior
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survivor values were obtained by running 100,000 iterations of a random walk Metropolis
algorithm with a Gaussian proposal distribution featuring a scaling σ2 = 4 (also in R).
In the current context, the directional Jeffreys offers second-order reproducibility; this
is not available from the regular Jeffreys, which treats both parameters as of equal
importance.

In this example, we studied the simplistic case where ϕ = (α, β) = θ = (ψ, λ). Linear
examples with ϕ 6= θ are easy to find and in such cases, the development of the new
prior is similar to that expounded in the current section. Consider, for instance, the
same beta model and let ψ = α + β, λ = β; this yields an interest parameter that is
still linear in ϕ, expressed as ψ(ϕ) = v>ϕ with v> = (1, 1). This time, the constrained

MLE of β given ψ, β̂ψ, is the solution of

D′(ψ − β̂ψ)−D′(β̂ψ) =
1

n

n∑
i=1

log yi −
1

n

n∑
i=1

log(1− yi) .

The vector w1 in (6) is w1 = (1, 1)/
√

2, leading to

d(ψ) = w1
d(ψ − β̂ψ, β̂ψ)>

dψ
dψ . (8)

In practice, an analytical expression for dϕ̂ψ/dψ is not always available. In such
cases, d(ψ) is simply reexpressed as d(ψ) = w1dϕ̂ψ and posterior survivor values are
then easily obtained from numerical integration, by selecting an appropriately small lag
h and letting dϕ̂ψ ≈ ϕ̂ψ+h − ϕ̂ψ.

From (7) and (8), the new prior satisfies πD(ψ)dψ ∝ |jϕϕ(ψ− β̂ψ, β̂ψ)|1/2w1dϕ̂ψ and
is used along with the profile likelihood to obtain posterior survivor values, as explained
above. Figure 4 provides a comparison similar to that found in Figure 3, outlining
virtually parallel performances amongst implemented methods.

5.2 Rotating Parameter

In several cases, the direction of the line L0
ψ may vary under ψ changes. Although this

does not happen in linear cases, more generally, L0
ψ may rotate through an O(n−1/2)

angle. This even happens in very simple settings and with classical distributions, as the
following example illustrates.

Consider a normal model in which Y ∼ N (µ, σ2) and let θ = (ψ, λ) = (µ, σ2). For a
vector of n observations, the log-likelihood function of this model satisfies

`(µ, σ2;y) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

y2
i +

µ

σ2

n∑
i=1

yi −
nµ2

2σ2
. (9)

From (9), the canonical parameters are ϕ(θ) = (µ/σ2,−1/σ2). The interest parameter
thus satisfies ψ(ϕ) = −ϕ1/ϕ2 = µ, which is obviously not linear in ϕ. The maximum
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Figure 4: P -value and posterior survivor value functions for the parameter ψ = α+ β
in the beta model; the MLE of ψ is identified by a pale vertical line.

likelihood estimates in the canonical parameterization are ϕ̂ = (nȳ/S2,−n/S2), where
ȳ =

∑n
i=1 yi/n and S2 =

∑n
i=1 y

2
i − nȳ2. The constrained MLE for σ2 given µ is

σ̂2
µ = {S2 + n(ȳ − µ)2}/n, leading to ϕ̂ψ = (µ/σ̂2

µ,−1/σ̂2
µ). The Fisher information

function is expressed as

ϕϕ(ϕ) =

(
−n/ϕ2 nϕ1/ϕ

2
2

nϕ1/ϕ
2
2 n/2ϕ2

2 − nϕ2
1/ϕ

3
2

)
. (10)

Using (10), Jeffreys’ prior is πJ(ϕ)dϕ ∝ |ϕϕ(ϕ)|1/2dϕ ∝ (−ϕ2)
−3/2

dϕ on R×R−. The
reference prior satisfies πR(ϕ)dϕ ∝ dϕ/ϕ2

2, see Bernardo (1979).

We now proceed to determine the new Jeffreys-style prior, based on an observed
sample y0 = (0.00, 1.10,−0.50, 0.25,−0.95,−0.60, 0.35). Since the angle of L0

ψ rotates
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under ψ changes, we apply a recalibration ϕ̄ = Tϕ with ϕϕ(ϕ̂0) = T>T , as mentioned
in §2. For simplicity and interchangeability in the use of T and its transpose, we find
the eigenvalues and eigenvectors of ϕϕ(ϕ̂0) with the function eigen in R, and then use
these quantities to define a symmetrical matrix T .

In practice, this change from ϕ to ϕ̄ only affects the differential d(ψ) in (7). Indeed,

since ϕ̄ϕ̄ = (T−1)>ϕϕT
−1, then |ϕ̄ϕ̄| = |ϕϕ|/|T |2; when evaluated at θ = (ψ, λ̂ψ)

along the profile curve, these determinants are proportional with respect to ψ and
therefore interchangeable in terms of Bayesian computations. Now, the determinant of
(10) evaluated at ϕ̂ψ that appears in 7 is computed as

|ϕϕ(ϕ̂ψ)|1/2 ∝
(
σ̂2
µ

)3/2 ∝ {S2 + n(ȳ − µ)2}3/2 . (11)

We finally develop the differential term d(ψ) in (6). It is crucial to explicitly take account
of the recalibration T in this Jacobian. The term dψ/dϕ̄ in (6) satisfies

dψ

dϕ̄
=

dψ(ϕ)

dϕ

dϕ

dϕ̄
=

(
− 1

ϕ2
,
ϕ1

ϕ2
2

)
T−1 = σ2(1, µ)T−1 ,

which can then be normalized to the unit vector w1 = {dψ/dϕ̄}/|dψ/dϕ̄| and evaluated
at ϕ̂ψ. The term d(T ϕ̂ψ)/dψ in (6) is obtained as

T
dϕ̂ψ
dψ

= T
d

dµ

(
µ

σ̂2
µ

,− 1

σ̂2
µ

)>
= T

1

(σ̂2
µ)2

(
σ̂2
µ + 2µ(ȳ − µ),−2(ȳ − µ)

)>
.

This finally leads to

d(ψ) =

∣∣∣∣dψdϕ̄

∣∣∣∣−1
dψ

dϕ
T−1 T

dϕ̂ψ
dψ

dψ

=
1

|(1, µ)T−1|(σ̂2
µ)2

(1, µ)
(
σ̂2
µ + 2µ(ȳ − µ),−2(ȳ − µ)

)>
dµ

=
1

|(1, µ)T−1|σ̂2
µ

dµ ,

and the matrix T conveniently appears in the vector norm only. Using the latter along
with (11), we obtain the directional Jeffreys-style prior

πD(µ)dµ ∝ {S2 + n(ȳ − µ)2}3/2 d(µ) ∝ {S2 + n(ȳ − µ)2}1/2

|(1, µ)T−1|
dµ ;

the resulting posterior survivor value is

sD(µ0) =

∫
µ0

exp
{
`(µ, σ̂2

µ;y0)
}
πD(µ) dµ .
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Figure 5: P -value and posterior survivor value functions for the parameter µ in the
normal model; the MLE of µ is identified by a pale vertical line.

Figure 5 examines p-value and posterior survivor value functions obtained with the
observed sample y0. The exact p-value function p(α) is obtained using a Student-t
distribution with n−1 degrees of freedom and is represented on the graph by a solid line.
The normal approximation for the signed likelihood root is also included (dash-dotted
line). The graph features a comparison with posterior survivor values obtained under
Jeffreys’ prior (dotted line), the reference prior (long-dash), and the new directional
Jeffreys (red dashed line). Exact and approximated p-value functions have been obtained
in R, while the posterior survivor values (based on Jeffreys and reference) were obtained
by running 200,000 iterations of a random walk Metropolis algorithm with a Gaussian
proposal distribution featuring a scaling σ2 = 0.40 (also in R). Posterior survivor values
using the new directional Jeffreys were obtained through numerical integration. Results
from the new Jeffreys-style prior are as convincing as those based on the Bayesian
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benchmark, the reference prior.

5.3 Curved Parameter

As an example with curvature, consider a gamma model with canonical parameters
α, β > 0. We are interested in the variance ψ = α/β2, which is curved in terms of
ϕ = (α, β), and we choose to work with the free nuisance parameter λ = β. The density
of the model is

f(y;α, β) =
βα

Γ(α)
yα−1 exp{−βy} , y > 0 ,

with n = 5 observed values y0 = (0.20, 0.45, 0.78, 1.28, 2.28) as used in Brazzale et al.
(2007) on page 13. The maximum likelihood estimates of the canonical parameters,

ϕ̂ = (α̂, β̂), are the solution of the equations

α̂/β̂ = ȳ ,

D′(α̂)− log α̂ =
1

n

n∑
i=1

log yi − log ȳ .

By re-expressing the log-likelihood function in terms of interest and nuisance as
`(ψ, λ;y), we find the constrained MLE λ̂ψ to be the solution of

2ψλ

[
log λ+

1

2
−D′(ψλ2) +

1

n

n∑
i=1

log yi

]
= ȳ .

The Fisher information function in the canonical parameterization is

ϕϕ(ϕ) =

(
nD′′(α) −n/β

−n/β nα/β2

)
,

and so Jeffreys’ prior |ϕϕ(ϕ)|1/2, which treats both parameters as of equal interest, is
πJ(ϕ)dϕ ∝ {αD′′(α) − 1}1/2/βdϕ. The reference prior for this specific context would
target the interest parameter ψ = α/β2, but is not widely available is this case.

Since the model studied does not satisfy the linearity constraint, a recalibration ϕ̄ =
Tϕ of the canonical parameter is required, where T is such that ϕϕ(ϕ̂0) = T ′T . From
§5.2, this recalibration impacts the value of the differential d(ψ), but only through the

term |dψ/dϕ̄|. Jeffreys’ prior evaluated on the profile, i.e. at ϕ̂ψ = (α̂ψ, β̂ψ) = (ψβ̂2
ψ, β̂ψ),

is

|ϕ̄ϕ̄( ˆ̄ϕψ)|1/2 ∝ |ϕϕ(ϕ̂ψ)|1/2 ∝ {α̂ψD′′(α̂ψ)− 1}1/2/β̂ψ .

The term dψ/dϕ̄ in (6) is

dψ

dϕ̄
=

(
− 1

β2
,−2α

β3

)
T−1 ;

imsart-ba ver. 2014/10/16 file: 280r.tex date: May 13, 2021



18 Differential geometry for Bayesian marginalization

evaluated at ϕ̂ψ, it becomes (−1/β̂2
ψ,−2ψ/β̂ψ) T−1. Since we did not obtain a closed-

form expression for ϕ̂ψ, the differential term dϕ̂ψ/dψ in (6) cannot be computed ex-
plicitly. In that case, we simply use the differential d(ψ) = |dψ/dϕ̄|−1 dψ/dϕ dϕ̂ψ,
and numerically evaluate this expression for an appropriately small lag h, by letting
dϕ̂ψ ≈ ϕ̂ψ+h − ϕ̂ψ. This leads to the directional Jeffreys-style prior satisfying

πD(ψ) dψ ∝ πJ(ϕ̂ψ) d(ψ)

∝ 1

β̂ψ
{α̂ψD′′(α̂ψ)− 1}1/2 · 1

|dψ/dϕ T−1|
dψ

dϕ
dϕ̂ψ

∝ 1

β̂ψ
{α̂ψD′′(α̂ψ)− 1}1/2 · 1

|(1, 2ψβ̂ψ)T−1|
(1, 2ψβ̂ψ) d(α̂ψ, β̂ψ)> ,

and to a posterior survivor function

sD(ψ0) =

∫
ψ0

exp
{
`(α̂ψ, β̂ψ;y)

}
πD(ψ) dψ .

Figure 7 compares approximations of the p-value function (SLR, third-order) and
posterior survivor value functions under different priors (regular Jeffreys and new di-
rectional Jeffreys). The new directional prior is again extremely close to the third-order
p-value function, while Jeffreys’ prior now significantly underestimates the latter.

5.4 Behrens-Fisher problem

Consider two independent variables, Y1 ∼ N (µ1, σ
2
1) and Y2 ∼ N (µ2, σ

2
2), and observe

y = (y0
1,y

0
2), with y0

i of size ni from Yi. The interest parameter is ψ = µ1 − µ2 and
we let the nuisance be λ = (µ2, σ

2
1 , σ

2
2); the full parameter is then θ = (ψ, λ). The

log-likelihood function satisfies

`(θ;y) =− n1

2
log(2πσ2

1)− n2

2
log(2πσ2

2)

− 1

2σ2
1

{n1(ȳ1 − ψ − µ2)2 + S2
1} −

1

2σ2
2

{n2(ȳ2 − µ2)2 + S2
2} ,

with ȳi =
∑ni
j=1 yij/ni and S2

i =
∑ni
j=1 y

2
ij − ni(ȳi)2. This leads to the full MLE θ̂ =

(ȳ1− ȳ2, ȳ2,
S2
1

n1
,
S2
2

n2
). To obtain the constrained MLE of λ given ψ, we solve the following

system of equations:

µ̂2 =
n1σ̂

2
2(ȳ1 − ψ) + n2σ̂

2
1 ȳ2

n1σ̂2
2 + n2σ̂2

1

(12)

σ̂2
i =(ȳi − ψ · 1(i=1) − µ̂2)2 +

S2
i

ni
, i = 1, 2 ,

where 1(·) is the indicator function; plugging σ̂2
1 and σ̂2

2 into µ̂2, we numerically solve
for µ̂2 and then work backwards for the variances.
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Figure 6: P -value and posterior survivor value functions for the parameter ψ = α/β2

in the gamma model; the MLE of ψ is identified by a pale vertical line.

The canonical parameter of this model is ϕ(θ) = (ψ+µ2

σ2
1
, µ2

σ2
2
, 1
σ2
1
, 1
σ2
2
). The MLE is ϕ̂ =

ϕ(θ̂) = (n1ȳ1
S2
1
, n2ȳ2
S2
2
, n1

S2
1
, n2

S2
2
) and the constrained MLE given ψ is ϕ̂ψ = (ψ+µ̂2

σ̂2
1
, µ̂2

σ̂2
2
, 1
σ̂2
1
, 1
σ̂2
2
),

using estimates in (12). The log-likelihood function can be reexpressed as `(ϕ;y), which
leads to the information matrix

ϕϕ(ϕ) =


n1

ϕ3
0 −n1ϕ1

ϕ2
3

0

0 n2

ϕ4
0 −n2ϕ2

ϕ2
4

−n1ϕ1

ϕ2
3

0 n1

2ϕ2
3

+
n1ϕ

2
1

ϕ3
3

0

0 −n2ϕ2

ϕ2
4

0 n2

2ϕ2
4

+
n2ϕ

2
2

ϕ3
4


with determinant |ϕϕ(ϕ)| = n2

1n
2
2/{4ϕ3

3ϕ
3
4}. Jeffreys’ prior for this problem is there-

fore πJ(ϕ)dϕ ∝ |ϕϕ(ϕ)|1/2dϕ ∝ (ϕ3ϕ4)−3/2dϕ, while the reference prior satisfies
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πR(ϕ)dϕ ∝ (ϕ3ϕ4)−2dϕ.

We now work on finding the new prior. The interest parameter ψ is not a linear
function of ϕ, as ψ(ϕ) = ϕ1/ϕ3 − ϕ2/ϕ4. We therefore need to recalibrate and work
with ϕ̄ = Tϕ, where ϕϕ(ϕ̂) = T>T . This transformation only has an impact on the
differential d(ψ) and does not affect the term πJ(ϕ̂ψ) = |ϕϕ(ϕ̂ψ)|1/2. The differential
dψ/dϕ̄ is

dψ

dϕ̄
=

(
1

ϕ3
,− 1

ϕ4
,−ϕ1

ϕ2
3

,
ϕ2

ϕ2
4

)
T−1 ,

which can then be normalized to the unit vector w1 = {dψ/dϕ̄}/|dψ/dϕ̄| and evaluated
at ϕ̂ψ. Since we did not obtain a closed-form expression for ϕ̂ψ, the differential term
dT ϕ̂ψ/dψ in (6) cannot be computed explicitly. In that case, we simply use the differ-
ential d(ψ) = w1 T dϕ̂ψ, and numerically evaluate this expression for an appropriately
small lag h, by letting dϕ̂ψ ≈ ϕ̂ψ+h − ϕ̂ψ. This leads to the directional Jeffreys-style
prior satisfying

πD(ψ) dψ ∝ πJ(ϕ̂ψ) d(ψ)

= (σ̂2
1 σ̂

2
2)3/2 · 1

|dψ/dϕ T−1|
dψ

dϕ
dϕ̂ψ ,

and to a posterior survivor function

sD(ψ0) =

∫
ψ0

exp {`(ϕ̂ψ;y)} πD(ψ) dψ .

Figure 7 provides a comparison of p-value and posterior survivor value functions
similar to previous examples; it is based on the dataset y0

1 = (1.02, 0.82, -0.37, 0.40,
1.29, 1.39, -0.21), y0

2 = (−0.86, -2.13, -0.76, 0.60, 0.26, -0.74, 0.49). For the Behrens-
Fisher problem, it is well-known that Jeffreys’ prior leads to a p-value function that is
reproducible to second-order. Naturally, as the reference prior differs from the latter, it
now either over- or under-estimates the p-value, depending of the specific ψ tested. As
expected, the new directional Jeffreys-based prior is extremely close to the third-order
p-value, which illustrates its robustness across various contexts.

6 Discussion

Efron (2013) offered a classification of Bayes priors, mentioning ‘genuine priors’ when
there is an objective random source for the actual parameter value, and ‘uninformative
priors’ for formal calculations, sometimes referred to as mathematical priors. For the
non-genuine priors, Berger (2006) and Goldstein (2011) recommend unifying Bayesian
and frequentist procedures, by which they mean reproducibility, repetition under iden-
tical conditions. Repetition reliability has had extensive discussion in the frequency
literature and leads to third-order accuracy for scalar parameters with most regular
models. With this as a benchmark under repetitions, we have developed a second-order
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Figure 7: P -value and posterior survivor value functions for the parameter ψ = µ1−µ2

in the Behrens-Fisher problem; the MLE of ψ is identified by a pale vertical line.

accurate prior for scalar parameters and find it to be essentially Jeffreys’ prior but con-

fined to the profile contour for the scalar parameter of interest; this indicates that the

ordinary use of Jeffreys does what might be viewed as a double overlapping calculation.

According to the theory exposed, Bayesian inference should then use the profile

likelihood with parameter ψ, along with the new Jeffreys-based prior. Although the

resulting one-dimensional posterior appears to rely on plug-in estimators, we note that

it arises from usual Bayesian arguments such as marginalization. Indeed an ancillary

statistic u, whose distribution is free of the nuisance parameter, was first identified; an

expression for the density of this statistic was then obtained by marginalizing the joint

density with respect to λ. Therefore, the issue of the theoretical developments not be

mistaken with a deliberate plug-in approach.
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22 Differential geometry for Bayesian marginalization

Examples have been investigated under increasing complexity: linear, rotating, curved,
and they clearly support the claimed second-order accuracy. Vector interest parameters,
however, do not generally have repetition reliability; this was investigated by Dawid
et al. (1973) as marginalization paradoxes, and by the present discussion under pa-
rameter curvature. Second-order frequency based p-values for vector parameters are
available from Fraser et al. (2016a).

A Appendix: from exponential to general models

The results discussed in this paper were presented for regular exponential models, but
they are available for quite general regular models. For this consider an n-dimensional
variable with a p-dimensional full parameter, plus continuity for parameter effects. In the
simple scalar variable and parameter case, the distribution function F (y; θ) = z (say)
can be inverted to give the quantile function y = y(z; θ). This allows easy simulations
for the variable y using an underlying uniform distribution for z. The same is widely
available for the vector variable case, by determining an n× p matrix

V = (v1, . . . , vp) =
∂y

∂θ
,

where the differentiation is for fixed pivotal z = z(y; θ) = z(y0; θ̂0). Differentiating the
log-model `(θ; y) in the directions V then gives the needed canonical parameter

ϕ =
∂`(θ; y)

∂V

∣∣
y0
,

which is used with an observed canonical variable s = 0. This leads to an exponential
model using (ϕ, s), called the tangent exponential model, which then provides full third-
order inference for the original model data combination.
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