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Bayes, Reproducibility,
and the Quest for Truth

D A S Fraser, M Bédard, A Wong, Wei Lin, A M Fraser

Abstract. We consider the use of default priors in the Bayes method-
ology for seeking information concerning the true value of a parame-
ter. By default prior, we mean the mathematical prior as initiated by
Bayes (1763) and pursued by Laplace (1812), Jeffreys (1961), Bernardo
(1979), and many more, and then recently viewed as “potentially dan-
gerous” (Efron, 2013) and “potentially useful” (Fraser, 2013). We do
not mean, however, the genuine prior (Efron, 2013) that has an empir-
ical reference and would invoke standard frequency modelling. And we
do not mean the subjective or opinion prior that an individual might
have and would be viewed as specific to that individual. A mathemat-
ical prior has no referenced frequency information, but on occasion is
known otherwise to have repetition properties called confidence. We in-
vestigate the presence of such supportive property, and ask can Bayes
give reliability for other than the particular parameter weightings cho-
sen for the conditional calculation. Thus does the methodology have
reproducibility? Or is it a leap of faith.

For sample-space analysis, recent higher-order likelihood methods
with regular models show that third-order accuracy is widely available
using profile contours (Fraser, 2014b).

But for parameter-space analysis, accuracy is widely limited to first
order. An exception arises with a scalar full parameter and the use
of the scalar Jeffreys (Welch and Peers, 1963). But for vector full pa-
rameter even with a scalar interest parameter, difficulties have long
been known (Dawid et al., 1973), and with parameter curvature, ac-
curacy beyond first order can be unavailable (Fraser, 2011). We show
however that calculations on the parameter space can give full second-
order information for a chosen scalar interest parameter; these calcu-
lations however require a Jeffreys prior that is used fully restricted to
the one-dimensional profile for that interest parameter. Such a prior
is effectively data-dependent and parameter-dependent and is focally
restricted to the one-dimension contour; these priors fall outside the
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usual Bayes approach and yet with substantial calculations can still
give less than frequency analysis.

We provide simple examples using discrete extensions of Jeffreys
prior. These serve as counter-examples to general claims that Bayes
can offer accuracy for statistical inference. To obtain this accuracy with
Bayes, more effort is required compared to recent likelihood methods
while giving less accuracy. And with vector full parameters, accuracy
beyond first order is routinely not available, as a change in parameter
curvature causes Bayes and frequentist values to change in opposite
direction, yet frequentist has full reproducibility.

An alternative is to view default Bayes as an exploratory technique
and then ask does it do as it overtly claims? Is it reproducible as under-
stood in contemporary science? The posterior gives a distribution for
an interest parameter and thereby a quantile for the interest parameter;
an oracle could record whether it was left or right of the true value. If
the average split in evaluative repetitions is in accord with the nominal
level, then the approach is providing accuracy. And if not, then what’s
up, other than performance specific to the parameter frequencies in the
prior. No one has answers although speculative claims abound.

Key words and phrases: Confidence, curved parameter, exponential
model, gamma mean, genuine prior, Jeffreys, L’Aquila, linear param-
eter, opinion prior, regular model, reproducibility, risks, rotating pa-
rameter, two theories, Vioxx, Welch-Peers.

1. INTRODUCTION
1.1 Preview

Reproducibility has recently become prominent in science. What form of re-
producibility might be available for Bayes methodology? And what is it? Or is
Bayes above such verification of its approach? There are of course genuine priors
as clarified by Efron (2013) which admit full frequency modelling; and there are
subjective priors that represent an investigator’s opinion. But otherwise there
are default priors that claim to be objective and are called objective by those
who promote them. As such we can reasonably ask what supports the claim of
objectivity? Does the use of such methodology have some form of reproducibility
as expected in science?

Being aware of conditional probability, Bayes realized that by combining the
model for the data variable together with a hypothesized prior distribution for the
parameter, he could obtain a joint model for both parameter and variable. This
then provides a marginal posterior distribution for the parameter of interest. With
this in mind, he then supposed the presence of a random source for his parameter,
which led to the widely promoted Bayes approach. Making up a missing input to
a theorem can lead to a legitimate concern about the validity of the conclusion
from that theorem. Nonetheless, these worries aside, we can still wonder whether
the Bayes procedure somehow works, or whether there exists a prior that cancels
the effect of the subjectiveness?

Suppose we instigate a default Bayesian calculation with a prior 7(6) on the
full parameter and obtain a distribution for the full parameter. Then for a scalar
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interest parameter 1)(6) we can determine the marginal distribution and then in-
vert to obtain say a [§-level quantile for the interest parameter. We can certainly
ask how that quantile relates to the true value of the parameter. The deriva-
tion asserts that if possible parameter values are in accord with the weighting
in the prior then accuracy is at the specified g level; but if a different weighting
represents the possible 6 then the nominal § may be entirely erroneous. As this
process is well defined and repeatable we can certainly simulate and see whether
and in what manner there is reproducibility. In the eventuality that the partic-
ular weighting in the prior does not work, then the procedure can be subject
to potentially serious consequences. This provides meaning to the “potentially
dangerous” and “potentially useful” attributes mentioned earlier. In other words,
does the procedure do as it says? And it gives background to a standard process
for publication retraction.

In some cases, however, we may uncover repetition properties, the reproducibil-
ity proposed later by Fisher (1930) and Neyman (1937), yet also implicitly present
in Laplace (1812) and next described.

1.2 Reproducibility.

Reproducibility is widely acknowledged and affirmed in the sciences; see for
example, the editorial by Marcia McNutt (2014), the former Editor-in-Chief of
the prestigious journal Science and now president of the U S National Academy
of Sciences. She praises the role of reproducibility in science and more broadly
the role of statistics in science, and in her role of Editor-in-Chief has recently
administered the retraction of articles in Science (McNutt, 2015). And now, for
a default Bayesian who asserts probabilities for an unknown parameter, we can
reasonably require that reproducibility be verified: That the actual probability
should be the asserted probabilities, not just those calculated from some spec-
ulative mathematical weighting of possible parameter values. If subjective then
state as subjective.

1.3 Bayes, Statistics, and Science.

Also in the journal Science, Efron (2013) discusses the role of Bayes theorem
in the present century and offers a classification of prior densities: the “genuine
prior, for those representing an empirical or theoretically based distribution that
describes the sourcing of the true value of the parameter in the application; the
“Laplace prior”, for those providing some form of noninformative weight function,
such as those of Laplace; and then, by omission, the “opinion or subjective prior”
as sometimes promoted for applications. He describes the first as “genuine”, the
Laplace prior as “troublesome” or “potentially dangerous”, and the opinion prior,
by omission, as perhaps not deserving comment. In response Fraser (2013) offers
the view that the Laplace prior can on occasions provide “a route to approximate
confidence”. And then, separately, the above mentioned editorial in Science (2014
January 17) praises the role of reproducibility in science and more broadly the
role of statistics in science.

1.4 It’s tough to make Bayes reproducible!

In this paper we use large-sample likelihood theory to determine where and in
what form the likelihood function provides information concerning a parameter
of interest. We then determine how and to what degree that information can be
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extracted by Bayes type arguments. As part of this we find that the Jeffreys-
Laplace prior is an essential input but needs to be differentially applied in order
to give reproducible information on a parameter of interest. These modified Jef-
freys type priors are usually data dependent and interest parameter dependent,
thus falling outside the usual Bayes framework. Although this modified prior is
informed by large-sample likelihood methods, the frequency-based higher-order
likelihood methods themselves produce parameter information with higher ac-
curacy and lower computational overhead. So what does Bayes contribute other
than an exploration option that separately needs its reproducibility verified?

2. BACKGROUND
2.1 The scalar location-model with flat prior gives reproduciblility.

For a location or measurement model f(y—6) with observed data y°, consider a
comparison of the frequency approach and the Bayes approach using the flat prior
favoured by Laplace. The frequency approach is essentially descriptive: it records
in essence the statistical position of the data relative to a possible parameter
value 0,

0

2.1 pO) = [ sty - o)y

this is just F(y°;0) = F°(0) or the observed distribution function. Meanwhile the
Laplace assessment based on transformation invariance or noninformative scaling
uses the flat prior 7(0) = ¢ and gives the nominal posterior survivor value

(2.2) s0) = [~ 1" - 0o

for the parameter value 6. These are numerically equal, p(f) = s(0), as is obvious
by elementary calculus, or by seeing one as a reflection of the other, or by looking
left from the data or right from the parameter value and seeing the same func-
tional shape. The technical equality says that the Bayes survivor value has merit
in producing the lower confidence bound. Clearly we have here that frequency
and Bayes have formal equivalence or that Laplace was just anticipating Fisher
but didn’t quite formulate his proposal in terms of the confidence generalization.

The preceding can be reexpressed in terms of corresponding quantile functions.
Let 05 be the solution of 3 = s(6) for this special location case; then §5 = s~(8) is
the S-level lower quantile of the posterior distribution with the frequency property
that

pr{ls < 0;0} = 3,

thus just pure reproducibility. Indeed for say the Normal(u; og/n'/?) in obvious
notation we have s(u1) = ®{(7° — p)/(00/n*?)}, fig = §° — 2500/n/? where 25
is the usual -level quantile of the Normal (0, 1) with distribution function ®(z),
and ¢ is the usual sample average. It follows routinely that fig is the Bayes, the
frequency, the confidence, the fiducial lower S-level quantile and has full repro-
ducibility, call it confidence or call it probability or other appropriate term. We
now consider Laplace-based Bayes more generally, in relation to reproducibility.
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2.2 The scalar Jeffreys, where Bayes gives approximate reproducibility

The location property can also arise as an approximation: Jeffreys (1946)
recommended the use of an invariant prior, being the square root of the ex-
pected information or expected information determinant. For this in some wide
generality indicated in §3.3, we can begin with a general exponential model
f(y;0) = exp{¢'(O)u(y) + k(0)}H(y) with p-dimensional v and p-dimensional
¢. This can be reexpressed in terms of the essential u(y) and () as

(23) flu;p) = exp{¢’u — rk(p)}h(u) = exp{(w;u)}h(u)

where the log-likelihood ¢(p;u) = a+log f(u; ¢) has the usual additive constant;
the additive constant can then be replaced by a representative giving the log-
likelihood log f(u; ¢) — log f(u; ¢) which conveniently has maximum value 0. Let
Jop = —Lpp(p;u) = Key(p) be the observed information function with subscripts
denoting differentiation; it is also the expected information. The standard Jeffreys
prior is

(2.4) () = 12pp(P)|'/?

which is free of u; it also provides a measure element 7;(0)df that is parameter-
ization invariant.

For the scalar parameter case the role of the prior is easily seen from a second-
order log-density expansion about the observed (u?, ¢°) where coordinates have
been re-centered at the observed data values and then rescaled with respect to
root observed information (Cakmak et al., 1998):

(2:5) g(si0) = (2m) " exp{—(s — )*/2 — a(¢” — s*) f6n' P} {1 + O(n™")}.

This has observed information j(p;s) = 1 + a@/n'/? and as written has been
normalized to the second order. If we integrate the root information adjusted
parameter increment, (1 + ap/n'/?)/2dp = df, we obtain

©
B = / (1+ ap/2n'?)dp = ¢ + ap® [4n'?,
0

with inverse transformation ¢ = 8 — a3?/ 4n'/2. Calculating ¢ and B and substi-
tuting in (2.5) then gives

(2.6) (21) "2 exp{~(B — 8)*/2 — a(B — B)*/120"/}dB,

which now describes a location model to second order accuracy. And if we then
switch from d to df as from §2.1 to §2.2, we find that the density for 3 is just
the likelihood with the Jeffreys prior. It follows then that quantiles and inter-
vals calculated using the scalar Jeffreys prior have second-order reproducibility;
see §2.1. This was established by Welch and Peers (1963) using transforms and
analysis in the complex plane. For vector parameters, however, Jeffreys (1961)
indicated that there were problems with his prior in the regression model context
and suggested an alternative; we now examine this problem.
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2.3 Vector Laplace and vector Jeffreys do not give reproducibility

Consider a Normal location model on the plane, say ¢(y1 — 01,y2 — 62) where
¢(21, 22) is the bivariate standard Normal; let (37, 0) be the data and ¢ = 61 be
the interest parameter; the Laplace or Jeffreys prior is the flat prior 7(6) = c.

First consider the linear parameter ¥ = 6. By the previous subsections, the
Bayes posterior survivor value is s(1)) = ®(y) — ¢). This is in full accord with
the usual confidence p-value and thus has reproducibility.

But now suppose we add curvature to the interest parameter, so )¢ = 64 +7«9§ /2
and have - positive so that the contours of ¥¢ are cupped to the left. Then with
increasing 7 the p-value decreases from that s(¢) = ®(y{ — 1) under linear-
ity, and the Bayes survivor s-value increases from that under linearity (Fraser,
2011). They change in opposite directions from the neutral linearity! Of course
the frequency p-value retains full reproducibility from its construction. It follows
then that Bayes or Jeffreys does not have reproducibility. This is a shocking
result! And the Bayes approach should not hide the failure. Earlier versions of
this phenomenon (Dawid et al., 1973) were attributed to marginalization, but
the present example is more specific and attributes it to marginalization in the
presence of a curved interest parameter.

In this paper we determine where the information concerning an interest pa-
rameter is to be found in the likelihood function and in what form. This leads
us to determine what sort of prior would extract this information concerning an
interest parameter. We then use a simple and familiar model, the gamma model,
as counter example to Bayes, to illustrate the needed calculations and to see that
they can only achieve second order accuracy, in general. More complex exam-
ples are not needed to demonstrate the failure. And in addition to this mitigated
accuracy, the method requires intensive analysis and greater computational over-
head than the routine frequency procedures. Of course the Bayesian calculations
lead to nominal probabilities for a parameter and such does have appeal. But the
subjective derivation seems in conflict with reproducibility.

2.4 Statistics and highest professional standards.

Statistics, at the centre of science and community, deserves the highest pro-
fessional standards for accuracy, precision, and reliability, as appropriate to the
context. Of course there have been huge professional developments in methods
for exploration and for discovery, and this is of immense value. But also there has
been false discovery, and a need for verifications, along with the potential risks.
Can these be serious? And is it more than just having liability insurance? Can
things go wrong with statistics centrally involved?

The risks can be serious and the consequences immense. An earthquake at
L’Aquila, Italy on January 5, 2009 caused an estimated 300 deaths. But it had
been preceded by many small seismic shocks that alarmed people. A government
authority appointed a committee of seismologists with statistical expertise that
reported that there was no strong reason for a major quake. The people were
reassured and returned to their usual activities but the major quake arrived and
a legal court charged the committee members with manslaughter.

The pain killer Vioxx was approved by the US Food and Drug Administration
(FDA) in 1999 and then withdrawn by the pharmaceutical company Merck in
2004 after an acknowledged excess of cardiovascular thrombotic (CVT) events
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with Vioxx, in a placebo controlled study. However the available evidence for life-
threatening risks had long been overwhelming and some 40,000 died as indicated
by an FDA estimate; and Merck paid over five billion dollars in penalties and in
settlements to benefit the injured and their survivors.

Statistics itself has two theories (Fraser, 2014b) that can give contradictory
results and each is strongly promoted: this could provide powerful fuel for any
legal action concerning disputed results. Should the basics of statistical inference
then be decided in a court of law? Or should Science with reproducibility, and
Mathematics with logic directly address the lack of coherence in the discipline
of statistics? We start by examining this in the context of a regular model with
observed data.

3. HOW MODEL CHARACTERISTICS AFFECT ANALYSIS
3.1 Continuity and sample size effects.

Not all statistical models show continuity in how parameters affect the model,
and not all are amenable to data-size effects. But models with these properties can
reasonably be expected to have analyses that respect these properties; otherwise
they are not incorporating important and relevant information. Recent likelihood
methods show that models, in wide generality, can be analyzed at very high
accuracy as if they were exponential models, see §3.4. And continuity shows that
the assessment of components interest parameters of dimension d often d = 1 is
clearly and uniquely available in an available marginal model; see §3.3. This has
had substantial effects on the directions of recent inference theory, and striking
results for default Bayes analysis.

3.2 Exponential models.

Consider an exponential model (2.3). For any data value wu, the likelihood
function with arbitrary additive constant can of course be replaced by the rep-
resentative £(p;u) — £(p; u) where the usual arbitrary constant for likelihood is
chosen so the representative log-likelihood has maximum value 0. Meanwhile the
curvature j,, at the maximum value gives observed information. These statistical
quantities, {£(p;u) —£(P;u), jpop} at points u make available the highly accurate
reexpression of the model (Daniels, 1954):

B k' /n
(3.1) Flus ) = o Pl 0) = 6@ Hiel ™2
This approximation provides impressive third-order accuracy widely unaffected
by the renormalization indicated by the constant e*'/™. It also has the highly
attractive property that at each point u it offers the same likelihood as the initial
model; and in addition quite strikingly has the underlying density approximation
| jw,|*1/ 2 a simple highly accurate Fourier inverse.

3.3 What continuity says about component parameters.

To find a prior to extract information on a component parameter () we
should want to know where the relevant information is located in an observed like-
lihood function. For this in wide generality consider an interest parameter ¥ ()
of dimension d, initially with a particular interest value 1. When () = 1o we
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have of course the approximation (3.1) for u. And from recent likelihood theory,
say Fraser et al. (2010), there is a uniquely determined marginal distribution
that is second-order free of ¢ given () = 1)g; for this, the needed conditional
distribution with complementing parameter say A and nominal variable ¢ has a
p*-approximation

B k" /n

(3:2)  h:Y) = gy oPLEs) — (w0} ooy () 7

which uses the nuisance information [0\ (@) = 73 (Puo)|la(@yo )|~ Where
the Jacobian @) of ¢ with respect to A for fixed ¥ = 1) in effect gives a reexpressed
nuisance parameter that is locally scaled, designated as (), and is in accord with
the full canonical variable w.

Then dividing the joint distribution (3.1) by the conditional distribution (3.2)
on the profile contour we obtain the marginal model

. eh/n 5 5 S -1/2 5y 1/2
(3.3) g(sitho) = ‘Egsmgexpﬂxwwﬁu)_EQPHO}wa‘ [700) (Puo)|
ek/m ’J(,\,\)(@ﬁ )|1/2
3.4 = ———exp{l(¢uy;u) — L(H;u)}iE —12 AN PR

The interest parameter profile information jﬁw) uses the interest parameter v
but in a rescaled form (1)) that is in accord with the canonical variable u and
implied by the two versions (3.3) and (3.4). The preceding is available in Fraser
(2014a).

The distribution §(s;1)g) is defined on the plane £° that goes through the data
point u° and is perpendicular to () = v at the constrained Duos the variable
s provides d rotated coordinates obtained from u on LY. At a point u on L£°
the exponent is the profile log-likelihood for 1) = 1y and has profile information
obtained from [j,,| = |j(>\)\)(cﬁ)]\jaw)\. The density g(s; 1) gives full third order
information for ¥ = g and has uniqueness given the requirement that the model
be continuous in the parameter and the variable.

The preceding distribution for assessing ¥ = g is a marginal distribution of
an ancillary under 1) = g, and is unique although the expression for the ancillary
variable itself is not unique; the uniqueness derives from respecting the parameter
continuity in the initial model (Fraser et al., 2010).

3.4 What continuity says about regular models with data.

More generally consider a regular model f(y; 6) with continuous parameter and
observed y". The observed log-likelihood is widely available ¢(8) = log f(y°; 6).
Also, the coordinate distribution functions are often available and can be inverted
to give quantile functions, and then combined to give a vector quantile function
say y(z;6). The latter can be used for simulations, of course, but also to examine
how changes in 6 at the observed maximum likelihood value 69 affect data points
near 3

Ay (2 0)
(3.5) V=(v1,...,0p) = 50 |y079A0'
This shows that a change df at 6° produces a change dy = Vdf at the data

yY; or equivalently the change dy corresponds to the related change df at the
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maximum likelihood value. It follows that there is an ancillary contour through
the data of dimension p and the conditional distribution on the contour is the
indicated distribution for assessing the parameter 6 (Fraser et al., 2010), (Brazzale
et al., 2007); then the gradient of likelihood on the ancillary contour ¢(0) =
dl(0;y)/dV],0 gives the canonical parameter for the exponential model which
is fully equivalent to the given model for third order inference. We thus have
that the exponential model {¢(0), p(6)} provides full third-order inference for the
initial model (Fraser and Reid, 1995; Reid and Fraser, 2010); we call this model
the tangent exponential model. It follows that very general regular models can
be examined entirely within the framework of the exponential model yet retain
third-order accuracy.

o
© \
o 7 \ N
\ — Exact
VNN ---- MLE departure
VNN ---= S8LR
. \ \
© \ \ --- Jeffreys
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Fic 1. Comparison of p-value functions, p(«), and survivor posterior functions, s(a), in terms
of a for the scalar parameter distribution I'(a,1). The ezact p-value function is represented by
the solid line, the mle departure by points, and the SLR approximation by the dash-dotted line.
The dashed line represents the survivor posterior function obtained with Jeffreys prior.
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4. A SCALAR WELCH-PEERS EXAMPLE FOR BAYES.

As a simple example with an extremely small sample size consider the scalar
parameter gamma model with density f(y;a) = I'!(a)y* !exp{—y} on (0, 00)
plus an observation y° = 0.5. Exact frequency inference gives the p-value func-
tion, p(a) = F°(A), as described after (2.1). A quick and dirty approximation
can be obtained from first order Normal approximations using say the maximum
likelihood departure or the signed likelihood root (SLR) departure. And Bayes
survivor probability functions s(«) can be obtained from say the Jeffreys (1946)
prior discussed in §2.2, and from the reference prior (Bernardo, 1979). Both in-
volve targeting the parameter of interest, but achieve the goal differently: the
Jeffreys uses the parameterization invariant prior m(¢) = | — £y, (¢;u)[Y/2, while
the reference prior aims at maximizing the Kullback-Leibler divergence between
prior and posterior. In this simple scalar parameter example, these two priors
are the same and given by m(a) = {d?logT'()/da?}'/?, leading to a common
posterior distribution, 7(aly) o< T~ (a)y*{d?log () /da?} /2.

Figure 1 compares the exact p-value function p(«) (solid line) to popular fre-
quentist evaluations (the maximum-likelihood departure represented by points,
and the signed log-likelihood root r depicted by a dash-dotted line). It also fea-
tures a posterior survivor function obtained with Jeffreys prior (dashed line).
The p-value function has been obtained exactly in R, while the posterior survivor
values were obtained by running 100,000 iterations of a random walk Metropolis
algorithm with a Gaussian proposal distribution having standard deviation of
o =1.5.

As expected from the Welch and Peers (1963) result, the Bayes approach with
Jeffreys prior features second-order reproducibility.

5. VECTOR PARAMETER: REPRODUCIBILITY WITH BAYES.

Now consider a regular model f(u;1,\) as recorded at (3.1); we seek a prior
to extract the information concerning a scalar interest parameter ¢ free of A, and
from §3 have that this information is fully available on the profile contour for .
For this we have from §3 that the model can be expressed as

(5.1) f(u;0) = h(t]s; A, 1bo) g(s;¢0),

with a nuisance density h(t|s; A, 1g) at (3.2) and an interest density g(s;¢) at (3.4)
that contains full third-order information on . We determine the prior density
that does the extraction from the profile. To eliminate the first factor in (5.1)
the prior must have a contribution \](M)(@w)\lﬂ to cancel ]j(M)(<,5¢)|*1/2 and no
contribution concerning the exponential factor which this is just 1 on the profile
CSJ = {g&?p}. To enable the second factor in (5.1) as displayed at (3.4), we need

the Welch-Peers contribution {jgpw)(@w)}l/ 2 to address the profile information

factor {jf y w)(gﬁd,)}*l/ 2 to give the needed location form; of course this works
with the profile information, and Appendix §8.1 shows that the marginalization
factor |j()\)\)((ﬁ¢)‘l/2/‘][)\)\]<¢¢)’1/2/ has the needed location form without further
help.

Combining these components gives the new prior (5.2), which is the Jeffreys
prior | j¢¢(ap)|1/ 2 but now just on the profile contour for 1. This comes also with
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an adjustment factor soon seen to involve a measure of interest parameter cur-
vature, and of course with a Jacobian k(1) that arises with parameter rotation,
as described in §6.3 and Appendix §8.2:

(5.2) AN () doair = |90 (@) {dlp (G0} k() dib
. 1700 (Py)] V2
_ 1/2

Here |7 (Py)| = |00 (Pp)l/ ]](wa)(@w) is the nuisance information determinant
given the linear parameter x tangent to v at the profile point ¢y; this can be
obtained by expressing negative log-likelihood in terms of the standardized pa-
rameters (, 5\) and differentiating twice with respect to A for fixed y; see §6.3.

This prior is targeted on v and is defined on the one-dimensional profile con-
tour C’g using directed increments in the standardized version of ¢; see §6.3. In
nonlinear cases it needs a Jacobian k(1)) to accommodate the parameter change
of variable from the directed ¢ to the interest parameter 1 itself. The curvature
adjustment {|j()\,\)(¢¢)|/\j[»\](¢¢)|}1/2 is evaluated for the observed data and
depends on 9 along the profile contour for .

This is a remarkable simplification, essentially back to Jeffreys but used with
an indicator function to restrict to the relevant profile contour; in other words,
use the historic prior but precisely where the full relevant information is known
to be located, on the appropriate profile contour. Of course there are minor tech-
nical details concerning change of variable and rotation of parameter that need
attention, but change of variable is reasonably to be expected in any marginal-
ization, see §8.2. These details do not arise for the linear interest parameter case,
first to be examined.

6. EXAMPLES: NEW JEFFREYS WITH REPRODUCIBILITY
6.1 Linear parameter.

Now suppose that ¥ (¢) = a’¢ = 3a;p; is linear in the canonical parameteri-
zation . All the sample space contours for assessing 1 are then parallel to the
vector a and thus the line £° is given as u® + £(a) which is fixed in direction,
that is, does not rotate under 1y change.

6.2 Linear parameter example.

Let us consider a gamma model with shape « and rate 3, both canonical and
both unknown, and take o as the parameter of interest and 3 as a free nuisance
parameter. The density model is

(67

fy; o, B) = Fﬂ(a)y‘“ exp{—py} ,

with observed values say y® = (1,4); thus n = 2, the minimum number for
identifying two parameters. The Fisher information function is

nD"(a) —n/B
—n/B  na/B )7
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where

2 (o) T
(6.1) D" (z) = dld%;() :

is the trigamma function, the second derivative of log I'(x).

For the p-value function p(«) we use the signed log-likelihood root approach for
a simple approximation and the third-order as a very accurate approximation.
These are then compared to posterior survivor functions, s(«), obtained using
three prior distributions: the regular Jeffreys, the reference, and the new Jeffreys-
style prior.

The regular Jeffreys prior treats both parameters as of equal interest; it is
obtained as the root Fisher information determinant w;(c, ) x {aD"(a) —
1}1/ 2 /3. The reference prior targets the interest parameter o and is expressed as
mr(, B) o< {D"(a) — 1/a}/?/B; see Yang and Berger (1996), for instance.
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Fic 2. Comparison of p-value functions, p(a), and survivor posterior functions, s(a), for the
interest a using a I'(a, B) model. The third-order p-value function is represented by the solid
line and the SLR approximation by the dash-dotted line. Survivor posterior values obtained with
Jeffreys, reference and mew prior are represented, in order, by dashes, dots, and discs. The
mazximum likelihood value for a is also depicted.
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The new Jeffreys prior targets the interest parameter « by using the usual
Jeffreys prior but fully restricted to the profile contour for the interest «. For a
given a, the constrained maximum likelihood estimate for 8 is B = no/ > yi
this leads to the prior

(@) = 1y fa) o {aD" (@) = 1312/,

but on the profile only; the Jacobian k() is of course constant. The posterior dis-
tribution is obtained by combining the latter prior with the profile log-likelihood
function

n

Flaly) = a Zlog(yi) —na —nlogN'(a) + nalog a — naclog(n/ Z Yi)
i=1 i=1

and is given as
v (aly) oc exp{€" (aly)}mn(a) |

but calculated strictly on the profile curve for the parameter of interest.

Figure 2 examines the third-order p-value function p(«) (solid line) taken as the
exact and the Normal approximation for the signed log-likelihood root r (dash-
dotted line). The graph also features a comparison with posterior survivor values
obtained with Jeffreys prior (dashed line), the reference prior (dotted line), and
the new Jeffreys (discs). Approximations of the p-value function have been ob-
tained in R, while the posterior survivor values were obtained by running 100,000
iterations of a random walk Metropolis algorithm with a Gaussian proposal dis-
tribution (also in R). In the current example, the new Jeffreys offers second-order
reproducibility, which is not available from the regular Jeffreys. Results from
the new Jeffreys prior are as convincing as those based on the present Bayesian
benchmark which is the reference prior.

6.3 Rotating parameter

The line £° in some examples can change direction with different 1)y values
under test. As just noted this does not happen in the special case with ¥ ()
linear in ¢, where the sample space contours for various fixed 1 (¢) values are all
parallel and thus the corresponding lines £° all have the same direction. More
generally however £° can rotate through an angle of order O(n_l/ 2) and thus
the model scaling on the line can also change O(nil/ 2); this arises when Jop 18
not an identity matrix or a constant times such. We refer to such parameters as
rotating, and this even happens with u in a Normal(y; 02) analysis. We examine
this in this section, and then examine curved parameters in the next section §6.5.

Towards determing effects from a lack of rotational symmetry, let B be a
p X p right square root of the observed information jﬂw = B’'B and define a new
canonical parameter as @ = By. Then in the new parameterization the observed
information j%@ = [ is the identity, and the related information scaling of the
distribution under different 1y remains constant. We then also have that the
cubic term of order O(n~'/2) is constant when examined just to the second order.
Thus the model to that order is fully unaffected by the rotation coming from the
direction change of £°; and thus we have a single underlying reference model for
the data, to the given order O(n~!). It follows that any Bayes procedure with
second order accuracy must be free of the rotational characteristics of parameters.
For some similar considerations see Fraser (2003).
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6.4 Rotating parameter example.

As a third example, we still consider the gamma model with shape « and rate
B, but this time with interest in the mean p = a/. The density in terms of the
parameter of interest p and nuisance « is thus

(07

s =1740) () 5 expl-au/u}

We consider a sample of n = 5 observations, y = (0.20,0.45,0.78,1.28, 2.28)
as used in Brazzale et al. (2007) at page 13. As in Example 2, the third-order
and signed log-likelihood root versions of the p-value functions are compared
to the Bayesian posterior survivor functions obtained with three different prior
distributions.

Jeffreys prior, which is invariant under bivariate parameter transformations,
can be obtained from 7 ;(a, 8)dadf in Example 2 by change of variable:

1
my(a, p) o ;{OéDH(Oé) - 132,

where D"(«) is as in (6.1).

Finally, the new prior is the full regular Jeffreys prior calculated in the ro-
tationally symmetric ordinates ¢ but examined exclusively on the profile curve
C’g = {¢,} and with a Jacobian k(u) that gives the change-of-variable from ¢ to
i as recorded in §8.2:

() = i{auD"@) S k()

As explained in Section 5, the new posterior distribution is then obtained by com-
bining this prior with the profile likelihood function, L¥ (1) and integrating on the
one dimensional profile contour for the parameter p of interest. For comparison
the reference prior targeting p is given (Ghosh, 2011) as

TR ) o ;{D'%a) —1/a}i? .

Figure 3 compares the third-order p-value function p(u) (solid line) to the
signed log-likelihood root r (dash-dotted line). The graph also features a com-
parison with posterior survivor values obtained with the regular Jeffreys prior
(dashed line), the reference prior (dotted line), and the new Jeffreys (discs). Ap-
proximations of the p-value function have been obtained in R, while the poste-
rior survivor values were obtained by running 100,000 iterations of random walk
Metropolis algorithms with a Gaussian proposal distribution (also in R). Once
again, the new Jeffreys offers results that compete with the reference prior and
that are much more accurate than those obtained with the regular Jeffreys and
of course the SLR.

6.5 Curved parameter example

As a very simple example with curvature, we now consider two independent
variables N'(x, 1) and N(\,1) with observed data say (0,0) and curved interest
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F1c 3. Comparison of p-value functions, p(u), and survivor posterior functions, s(u), in terms of
u for a T'(a, p) with interest in the parameter w. The third-order p-value function is represented
by the solid line and the SLR approzimation by the dash-dotted line. Survivor posterior values
obtained with Jeffreys, reference and new Jeffreys priors are represented, in order, by dashes,
dots, and discs. The mazimum likelihood value for u is also depicted.

parameter ¥ = y + %a)\2 with fixed curvature a. The log-likelihood function from
the pair of observations (y1,y2) is

1 1
x; A) = —§X2 - 5)\2 +Xxy1 + Ay2 ;
the corresponding maximum likelihood estimate is § = (X, 5\) = (y1,92)-

It is possible to reparameterize from (x,A) to () — $aA%, \) and obtain the
log-likelihood function in terms of ¥ and A:

() =~ (6 — W) = DX (1~ aN)n + Mg

1
2
with information matrix

. 1 —al
(62) ](1#,)\) = ( —a\ ay; — a¢ + %CLQ)\Q +1 )
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Fic 4. Comparison of p-value functions, p(v), and posterior survivor functions, s(¢), in terms
of Y for a bivariate Normal model with interest in the parameter 1. The third-order p-value
function is represented by the solid line and the SLR approzimation by the dash-dotted line.
Posterior survivor values obtained with Jeffreys and new priors are respectively represented by
dashes and circles. The mazimum likelihood value for v is also depicted.

The particularity of this model lies in the curvature of the parameter v, and
yet the profile log-likelihood for 1, given the observations y° = (0,0), is just
lp(y) = —59°.

The above can be used to determine the SLR and third-order p-value functions.
In the current case, these functions respectively are ®(—) and ®(—y—a/2). Also
from the information matrix, it is not difficult to verify that the posterior survivor
function under Jeffreys prior is ®(—1 4 a/2), as ¥ = x when the constrained
maximum likelihood for x is 0. The new prior (5.3) simply consists of the usual
Jeffreys on the profile contour together with the nuisance information adjustment
factor but with k(1)) = 1 thus vanishing; also the root information adjustment
factor simplifies to exp{—trAw/2} which is just exp{—a/2} on the profile line;
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see §8.3. The resulting posterior density for 1 is then

"WYY« L)lin@ ) 1
= cop{—5(7 +a)},

which gives a posterior survivor value that is identical to that of the third-order
p-value, ®(—1¢ —a/2).

Figure 4, which is similar to the figures presented in the preceding examples,
features a comparison for a curvature parameter a = 0.5. From the previous
developments, the third-order p-value and posterior survivor function obtained
with the new Jeffreys prior can be seen to exactly match. Whether reference
priors can accommodate parameter curvature would be of interest.

7. REMARKS

The genuine prior. In his classification of prior densities §1.3, Efron (2013)
emphasizes genuine priors, priors that describe the sourcing of the true value of
the parameter in the application and thus have a theoretical or empirical basis.
The term ‘genuine’ is to indicate that the prior is describing a true objective
sourcing, not an exploration or subjective opinion. Some earlier consideration of
these priors may be found in Fisher (1956), page 18, and in references therein.
In this genuine context we have two supported models and we have the option of
combining them; this is the long-standing frequentist issue of statistical mod-
elling,.

Recommendation: Record probabilistic information from the sourcing and in-
vestigate reliability; separately record information for the model with data; and
then as appropriate present results for the combined model. This would be in
agreement with scientific practice, and has no Bayes content.

The Laplace prior. Efron (2013) also discusses the mathematical priors pro-
posed by Bayes, and then promoted by Laplace (1812) as uninformative priors.
For this the prior has no objective frequency background but is viewed as a
device to explore and nominally use the conditional probability lemma. Efron re-
marks that during his editorship of an applied statistics journal almost a quarter
of the processed manuscripts involved Bayes conditioning and almost all of these
then used uninformative Laplace type prior, thus not the genuine prior previously
mentioned. The function of a default prior is to check the consequences of the par-
ticular weightings in the chosen prior, and the consequences from other weightings
are usually not examined. This brings us again directly to reproducibility.

Recommendation: Any use of the Laplace type prior can be viewed as ex-
ploratory and subjective, to be assessed by simulations to determine performance,
thus reproducibility (Fraser, 2013).

The opinion prior. Opinions and subjective views are sometimes assembled
as a subjective prior; see for example , Savage (1953). There are perhaps good
arguments why these are inappropriate in scientific contexts: the user can cer-
tainly try his luck at a casino and even explore, but this has no part otherwise
in the process for developing valid information and knowledge.

Recommendation: Avoid opinion priors, you could be held legally or otherwise
responsible.
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Summary. A mathematical prior is of use only if it works, and it thus needs
checking for repetition validity: in other words confidence and reproducibility.
Otherwise the nominal probabilities are subjective and provide nothing without
the leap of faith.

8. APPENDIX

8.1 Scalar Jeffreys and an adjustment factor

Consider an exponential model g(s; x) = (27) "2 exp{£(x; s) — £(X; s)}j;)%/2 to
second order, and suppose a model of interest has the form f(s; x) = g(s; x)A(s, x)
where the adjustment factor A is constant to first order. For the exponential
model alone, the standard Jeffreys prior combined with likelihood from the expo-
nential model gives a survivor probability that is reproducible second-order for
that exponential model; as part of this it gives a location model say h(t — 7) as
demonstrated at (2.6). Then if that same prior is used with the composite model
f(s;x) it gives of course the posterior h(t — 7) as just described together with
the factor A(s,x); this factor in turn can be expanded as exp{a(t — 7)/n'/?} in
terms of the ¢ and 7. The combination then is a function of (¢ — 7) and thus is
also a location model and Jeffreys works to second-order for the adjusted model

f(s:x) = g(s:x) A(s, x)-
8.2 Jacobian concerning parameter rotation.

Consider an exponential model with canonical parameter ¢ and a scalar inter-
est parameter 1. If v is linear in ¢ as discussed briefly in §6.1 then the sample
space model is defined on a line £°, and this line from the observed data is fixed
in direction under variation in tgy. More generally if 1)(¢) = o is not linear
then the line £° can change direction under variation in 1. If we then substitute
and use a symmetric parameterization @ = By as in §7.1 we find that the new
version of the model in the newly defined variable remains the same to second
order on the various lines £° from the observed data point. Accordingly we now
consider and analyze in terms of the rotationally symmetric coordinates and have
the rewritten model second-order invariant under change in ).

We then need the connection between the symmetrized coordinates ¢ and
the v parameter as part of the iterative numerical calculation of the posterior
distribution. For this let 1y = 1[10 be the observed maximum likelihood value,
and let d be a suitable small increment for the iterative calculations using ;11 =
¥;+d. For each v; let @; be the constrained maximum likelihood value for ¢ given
¥(p) = 1y, and let §; = @11 — @; be the vector increment in the symmetrized
canonical parameter ¢. We also need the unit gradient vector u(p) of ¢ with
respect to @ at each point @;: for this let g; = g(p;) = dip/dp be the gradient
vector; then u; = ¢;/|g;| is the corresponding unit vector and is perpendicular to
¥(p) = 1; in the ¢ coordinates at @;. Let k; = d;u;. Then k; gives the Jacobian
at @; from the ¢ coordinates to the ¢ coordinates for the iterative calculations
on the profile curve Cy,.

8.3 Curvature and Information.

Consider a surface defined in explicit form as y = ¢o — Xa;;xiz;/ 2n1/2 above

a p — 1 dimensional space, and suppose that interest focuses on properties near
x = 0. The matrix A = {a;;} records curvature properties of the surface at x = 0



REPRODUCIBLE BAYES 19

and is called the curvature matrix of the surface at x = 0. The determinant of the
curvature matrix is called the Gaussian curvature; and the trace of the curvature
matrix is called the mean curvature which will be of particular interest to us. The
surface can also be presented in implicit form as ¢(z) = y+Xa;jzi2;/ 2n1/2 = .
We are interested in curvature properties of a surface when it is presented in the
implicit form, properties that are relevant to the adjustment factors in (3.4) and
(5.2).

We use the symmetrized model say f(u;¢) that has fixed form relative to
the symmetrized coordinates, and let £(¢) be the corresponding observed log-
likelihood function with () as the scalar parameter of interest. For a particular
value of the parameter, say 1, we seek an expression for the adjustment factors in
(3.4) and (5.2), and relate them to the curvature matrix of the surface 1 (¢) = ¢
at the constrained maximum likelihood value ¢ = ¢y. At ¢ = go(zﬁo) we let x
be a canonical parameter coordinate that is tangent to 1(¢) = ¢ at the point
¢y and let A be a complementing parameter now taken to be orthogonal to x at
¢?; accordingly we take ¢ = (¢, \) to be the symmetrized canonical parameter,
and for convenience assume that these coordinates have been centred at the
observed data as well as the symmetrized scaling. The interest parameter ¢ can
be expanded in terms of ¢ as

(8.1) 1/1 =x+ Zaij)\i)\j/in/2

with x = ¢ — Eaij)\i)\j/2n1/2, to the second order. The log-likelihood in terms
of ¢ will be —x?/2 — X\?/2 to first order. The above change to ¢ will replace
the preceding by —?/2 — ¥A?/2 plus the term wEaij)\i)\j/in/Z. An element of
the nuisance information matrix given x when changed into an element of the
nuisance information given ¢ will then acquire an extra term ta;;/ n/? and then
the ratio [7xx)(Puo)l/17000) (P)] Will have the form (I — ©»A/n'/?) and then the

1/2 2

root determinant ratio becomes 1 — trAs)/2n'/? to first order where the n'/? is

just a formality to keep track of data-size effects.
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