On the Number of Ground States of the Edwards-Anderson Spin Glass Model

Louis-Pierre Arguin (Université de Montréal) joint with M. Damron (Princeton) and C. Newman, D. Stein (NYU) 1. Comm. Math. Phys. 300 (2010) 2. arXiv:1110.6913 (2011)

IPAM workshop on Graphical Models, 27 January 2012

The Edwards-Anderson Model

Let $G_N = (V_N, E_N)$ be a graph on N vertices.

We define the Ising spin glass Hamiltonian on $\Sigma_N = \{-1, +1\}^N$:

$$H_{N,J}(\sigma) = -\sum_{(x,y)\in E_N} J_{xy}\sigma_x\sigma_y \;.$$

where $J = (J_{xy}; (x, y) \in E_N)$ i.i.d. of law ν Gaussian (say)

The Edwards-Anderson Model

Let $G_N = (V_N, E_N)$ be a graph on N vertices.

We define the Ising spin glass Hamiltonian on $\Sigma_N = \{-1, +1\}^N$:

$$H_{N,J}(\sigma) = -\sum_{(x,y)\in E_N} J_{xy}\sigma_x\sigma_y \;.$$

where $J = (J_{xy}; (x, y) \in E_N)$ i.i.d. of law ν Gaussian (say)

- Covariance $\int \nu(dJ) H_{N,J}(\sigma) H_{N,J}(\sigma') = \sum_{(x,y) \in E_N} \sigma_x \sigma_y \sigma'_x \sigma'_y$
- Edge overlap $R_N(\sigma, \sigma') = \frac{1}{|E_N|} \sum_{(x,y) \in E_N} \sigma_x \sigma_y \ \sigma'_x \sigma'_y$
- Sherrington-Kirkpatrick model: G_N is the complete graph.
- Edwards-Anderson model: G_N is a box of \mathbb{Z}^d .

"Describe" the minima of $H_{N,J}$ for N large.

The Gibbs Measure of the SK model

$$G_{\beta,N,J}(\sigma) = \frac{\exp{-\beta H_{N,J}(\sigma)}}{Z_{N,J}(\beta)} \text{ as } N \to \infty ?$$

The order parameter is

$$x_{\beta}(q) = \lim_{N \to \infty} \int \nu(dJ) \ G_{\beta,N,J}^{\times 2} \{ R_N(\sigma, \sigma') \le q \}$$

More and more things are proved:

- \triangleright Parisi formula: free energy is a variational formula over c.d.f. x.
- Phase transition: for $\beta > \beta_c = 1$, $x_\beta(q)$ has more than one jump.
- Parisi Ultrametricity Conjecture: Infinite number of pure states with ultrametric overlaps

$$G_{\beta,N,J}^{\times 3} \Big\{ R_N(\sigma,\sigma') \ge \min\{ R_N(\sigma',\sigma''); R_N(\sigma'',\sigma') \} \Big\} \to 1 \text{ in } \nu\text{-prob.}$$

ション ふゆ マ キャット マックシン

The Gibbs Measure of the EA model on \mathbb{Z}^d

$$G_{\beta,N,J}(\sigma) = \frac{\exp{-\beta H_{N,J}(\sigma)}}{Z_{N,J}(\beta)} \text{ as } N \to \infty ?$$

General results applies

► DLR equations:

 $\mathcal{G}_d(\beta,J)=\text{set}$ of Gibbs measures on $\{-1,+1\}^{\mathbb{Z}^d}$ at β and J

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Pure states: elements of ext $\mathcal{G}_d(\beta, J)$.
- $\mathcal{N}_d(\beta) = |\text{ext } \mathcal{G}_d(\beta, J)|$ is a constant ν -a.s.!
- High Temp./Low β : $\mathcal{N}_d(\beta) = 1$.

The Gibbs Measure of the EA model on \mathbb{Z}^d

$$G_{\beta,N,J}(\sigma) = \frac{\exp{-\beta H_{N,J}(\sigma)}}{Z_{N,J}(\beta)}$$
 as $N \to \infty$?

Low temperature: (almost)-everything is unknown

- $d < d_c$: No phase transition $\mathcal{N}_d(\beta) = 1$?
- $d \ge d_c$, β large: Phase transition $\mathcal{N}_d(\beta) > 1$?

Droplet Scenario:

Phase transition of Ising-type

• $\mathcal{N}_d(\beta) = 2$

RSB Scenario:

Phase transition of SK-type

- $\mathcal{N}_d(\beta) = \infty$
- Ultrametric overlaps

Ground States of EA model for finite N

Instead of studying the pure states, we study the the ground states:

 $\beta \rightarrow \infty$ then $N \rightarrow \infty$.

Let

$$\sigma_N^*(J) = \arg \min_{\sigma \in \Sigma_N} H_{N,J}(\sigma)$$

• The minimizer (ground state) is unique because ν is continuous.

$$H_{N,J}(\sigma) = -\sum_{(x,y)\in E_N} J_{xy}\sigma_x\sigma_y$$

► Typically, $\sigma_N^*(J)$ do not satisfy all constraints (satisfied $\leftrightarrow \sigma_x \sigma_y = \text{sgn } J_{xy}$)

> Odd number of negative J's in a cycle \mathcal{C} \longleftrightarrow $\forall \sigma$, Odd number of unsatisfied edges on \mathcal{C} .

> > ション ふゆ マ キャット マックシン

Ground States of the EA model on \mathbb{Z}^d

Definition $\sigma \in \{-1,+1\}^{\mathbb{Z}^d}$ is a ground state for J iff for any finite set B of vertices: $\sum_{a,b} J_{aa}\sigma_{aa} \geq 0 \quad \text{flip energy}$

$$\sum_{(x,y)\in\partial B} J_{xy}\sigma_x\sigma_y \ge 0$$
 flip energy.

In words, a ground state locally minimizes the Hamiltonian.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Ground States of the EA model on \mathbb{Z}^d

Definition $\sigma \in \{-1, +1\}^{\mathbb{Z}^d}$ is a ground state for J iff for any finite set B of vertices:

$$\sum_{(x,y)\in\partial B} J_{xy}\sigma_x\sigma_y \ge 0 \quad flip \ energy \ .$$

 $\mathcal{G}(J) \subset \{-1,+1\}^{\mathbb{Z}^d}$: the set of ground states on \mathbb{Z}^d for couplings J

- $\sigma \in \mathcal{G}(J) \Leftrightarrow -\sigma \in \mathcal{G}(J)$ Ground State Pairs
- $|\mathcal{G}(J)|$ is a constant ν -a.s., say \mathcal{N}_d

Ground States of the EA model on \mathbb{Z}^d

Conjecture

For d = 2, there is only one ground state pair ($\mathcal{N}_d = 2$). (Is there a d_c where $\mathcal{N}_d > 2$ for $d > d_c$?)

ション ふゆ く は く は く む く む く し く

Ground States of the EA model

Study probability measures on $\mathcal{G}(J)$ to get information on the set.

Weak limit of finite-volume ground states

- Look at the sequence of $\sigma_N^*(J)$ as N grows.
- Record the values it takes in a fixed box.

Ground States of the EA model

Study probability measures on $\mathcal{G}(J)$ to get information on the set.

Weak limit of finite-volume ground states

- 1. Sequence $(G_N) \to \{-1, +1\}^{\mathbb{Z}^d}$ (G_N with b.c.)
- 2. The ground state $\sigma_N^*(J)$ is unique (up to flip).
- 3. Take $\kappa_N = \nu(dJ)\delta_{\sigma_N^*(J)}$.
- 4. A subsequence converges weakly to κ .

 κ samples J and a ground state σ .

5. κ_J , the conditional measure given J is supported on ground states.

Study probability measures on $\mathcal{G}(J)$ to get information on the set.

ション ふゆ マ キャット マックシン

Uniform measure on $\mathcal{G}(J)$

- 1. Well defined if $\mathcal{N}_d < \infty$.
- 2. For $A \subset \{-1, +1\}^{\mathbb{Z}^d}$ $\mu_J(A) = \frac{|\mathcal{G}(J) \cap A|}{\mathcal{N}_d}$

Some Rigorous Results

There are rigorous results on the half-plane $\mathbb{Z} \times \mathbb{N}$ (free b.c. at the bottom). Theorem (A-Damron-Newman-Stein '10) If (G_N) are finite boxes (free b.c. vertical, periodic b.c. horizontal),

 $G_N \to \mathbb{Z} \times \mathbb{N}$

- the measure κ_N converges weakly to κ ;
- κ_J is supported on two flip-related ground states $\sigma^* \nu$ -a.s.

Are there other ground states on the half-plane? Other b.c.?

There are rigorous results on the half-plane $\mathbb{Z} \times \mathbb{N}$ (free b.c. at the bottom). Theorem (A-Damron '11) For the half-plane $\mathbb{Z} \times \mathbb{N}$, either $\mathcal{N} = 2$ or $\mathcal{N} = \infty \nu$ -a.s.

ション ふゆ マ キャット マックシン

For the disordered ferromagnet $(J_{xy} > 0 \nu$ -a.s.)

- Wehr '97: $\mathcal{N} = 2$ or ∞ on \mathbb{Z}^d for any d.
- Wehr '& Woo '98: $\mathcal{N} = 2$ for the half-plane $\mathbb{Z} \times \mathbb{N}$.

Techniques of Proof

Can be used on \mathbb{Z}^d and the half-plane.

▶ κ_J constructed from finite graphs with periodic b.c. and the uniform measure μ_J are translation-covariant

$$\kappa_{TJ}(A) = \kappa_J(T^{-1}A)$$
$$\mu_{TJ}(A) = \mu_J(T^{-1}A) .$$

(!) Hard to construct translation-covariant measures on ground states!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $M = \nu(dJ) \ \mu_J \times \mu_J$ is translation-invariant (same for κ_J).

Techniques of Proof

▶ Consider the interface

$$\sigma\Delta\sigma' = \{(x,y) \in E : \sigma_x\sigma_y \neq \sigma'_x\sigma'_y\} .$$

$$\sigma \Delta \sigma' = \emptyset \iff \sigma = \sigma' \text{ or } \sigma = -\sigma'$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$M = \nu(dJ) \ \mu_J \times \mu_J.$$

Study $\sigma \Delta \sigma'$ as a random interface under the measure M.

Interface between Ground States

Figure: An example of interface between ground states on the half-plane. The edges in $\sigma\Delta\sigma'$ are the thick ones.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

Interface of Ground States: Elementary

Let σ and σ' be distinct ground states.

On a general graph:

- $\sigma \Delta \sigma'$ cannot have dangling ends (or 3-branching points).
- $\sigma \Delta \sigma'$ cannot contain loops.

On \mathbb{Z}^2 (when sampled from translation-invariant M)

- $\sigma \Delta \sigma'$ has positive density;
- ▶ No 4-branching points (TI+Burton-Keane argument);
- ▶ \Rightarrow the interface is the union of doubly-infinite self-avoiding paths partitioning the plane into topological strips.

(日) (日) (日) (日) (日) (日) (日) (日)

The Newman-Stein Theorem on \mathbb{Z}^2

For \mathbb{Z}^2 :

Theorem (Newman-Stein '01)

Let $M = \nu(dJ)(\kappa_J \times \kappa'_J)$ be a TI measure where κ_J and κ'_J are constructed from finite-volume ground states with periodic b.c.

 $M\left\{\sigma\Delta\sigma'\neq\emptyset \text{ and } \sigma\Delta\sigma' \text{ is not connected}\right\}=0.$

- $\Rightarrow \sigma \Delta \sigma'$ is a doubly-infinite self-avoiding path of positive density.
 - ▶ OPEN: Rule out the existence of this path to show uniqueness on \mathbb{Z}^2 .

The Newman-Stein Theorem: Idea of Proof

Suppose $M \{ \sigma \Delta \sigma' \neq \emptyset \text{ and } \sigma \Delta \sigma' \text{ is not connected} \} > 0.$

- ▶ The interface partition the plane into topological strips.
- \blacktriangleright Consider rungs R between connected components of the interface.

$$\begin{split} E(R) &= \sum_{(x,y) \in R} J_{xy} \sigma_x \sigma_y \ . \\ I &= \inf_{R: D_1 \to D_2} E(R). \end{split}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

▶ Show that $I \leq 0$ and I > 0 both have zero probability.

Ground States on the Half-Plane

Back on the half-plane and consider

• $M = \nu(dJ) \kappa_J \times \kappa'_J$

 κ_J and κ'_J are weak limits of ground states on $G_N \to \mathbb{Z} \times \mathbb{N}$ with horizontal periodic b.c. and vertical free b.c.

• $M = \nu(dJ) \ \mu_J \times \mu_J$ where μ_J is the uniform measure on ground states (ok for $\mathcal{N} < \infty$).

Horizontal TI but not vertical TI

We show by contradiction that

 $M\{\sigma\Delta\sigma'\neq\emptyset)=0 \quad .$

This implies

- 1. If $\mathcal{N} < \infty$, then $\mathcal{N} = 2$.
- 2. κ_J is supported on a flip-related pair and $\kappa'_J = \kappa_J$.

Interfaces in the Half-Plane

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Interfaces in the Half-Plane

うして ふゆう ふほう ふほう ふしつ

Proposition

If $M \{ \sigma \Delta \sigma' \neq \emptyset \} > 0$, then for any edge $e, M \{ e \in \sigma \Delta \sigma' \} > 0$. Interface touches the boundary with positive probability!

- $\sigma \Delta \sigma'$ cannot touch the boundary twice.
- Horizontal TI: One tethered path \Rightarrow infinitely many.

Density of Tethered Paths

Tethered paths are distinct.

How many "tethered paths" do we see at height k?

 $N_{n,k}$: Number of tethered paths intersecting $[-n, n] \times \{k\}$

At all heights, we see many tethered paths.

First step of the contradiction

Construct a measure on \mathbb{Z}^2 from the one on the half-plane.

Take ${\cal T}$ a vertical translation.

$$M_{\mathbb{Z}^2} = \lim_{k \to \infty} \frac{1}{k} \sum_{l=1}^{k} T^{-l} M \quad \text{(subseq.)}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- $M_{\mathbb{Z}^2}$ is supported on ground states in \mathbb{Z}^2 .
- It is TI in \mathbb{Z}^2 by construction.

Because we see many tethered paths...

Proposition

If $M_{\mathbb{Z}\times\mathbb{N}}\{\sigma\Delta\sigma'\neq\emptyset\}>0$, then $M_{\mathbb{Z}^2}\{\sigma\Delta\sigma' \text{ is not connected}\}>0$.

Second step of the contradiction

Mimic the Newman-Stein argument for ground states on \mathbb{Z}^2

Theorem

$$M_{\mathbb{Z}^2}\{\sigma\Delta\sigma'\neq\emptyset \text{ and } \sigma\Delta\sigma' \text{ is not connected}\}=0$$
.

We conclude that $M_{\mathbb{Z}\times\mathbb{N}}\{\sigma\Delta\sigma'\neq\emptyset\}=0.$

▶ In the case of the uniform measure, the theorem has to be considerably adapted but the same idea works.

ション ふゆ く は く は く む く む く し く

Open Questions

In increasing difficulty ?

- $\blacktriangleright \mathcal{N} = 2 \text{ or } \infty \text{ on } \mathbb{Z}^d ?$
- $\mathcal{N} = 2$ on the half-plane and on \mathbb{Z}^2 ?
- ▶ Describe the unique ground state pair.
- Show there is no phase transition on \mathbb{Z}^2 : $\mathcal{N}_2(\beta) = 1$ for all β .
- ▶ Show there exists d_c such that $\mathcal{N}_d(\beta) > 1$ for $d \ge d_c$, β large.

うして ふゆう ふほう ふほう ふしつ

• If so, does $\mathcal{N}_d(\beta) = \infty$?

Open Questions

In increasing difficulty ?

- $\mathcal{N} = 2 \text{ or } \infty \text{ on } \mathbb{Z}^d$?
- $\mathcal{N} = 2$ on the half-plane and on \mathbb{Z}^2 ?
- ▶ Describe the unique ground state pair.
- Show there is no phase transition on \mathbb{Z}^2 : $\mathcal{N}_2(\beta) = 1$ for all β .
- ▶ Show there exists d_c such that $\mathcal{N}_d(\beta) > 1$ for $d \ge d_c$, β large.
- If so, does $\mathcal{N}_d(\beta) = \infty$?

Thank you!