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The Edwards-Anderson Model

Let GN = (VN , EN ) be a graph on N vertices.

We define the Ising spin glass Hamiltonian on ΣN = {−1,+1}N :

HN,J(σ) = −
∑

(x,y)∈EN

Jxyσxσy .

where J = (Jxy; (x, y) ∈ EN ) i.i.d. of law ν Gaussian (say)

I Covariance
∫
ν(dJ) HN,J(σ)HN,J(σ′) =

∑
(x,y)∈EN

σxσy σ
′
xσ
′
y

I Edge overlap RN (σ, σ′) = 1
|EN |

∑
(x,y)∈EN

σxσy σ
′
xσ
′
y

I Sherrington-Kirkpatrick model: GN is the complete graph.

I Edwards-Anderson model: GN is a box of Zd.

”Describe” the minima of HN,J for N large.
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The Gibbs Measure of the SK model

Gβ,N,J(σ) =
exp−βHN,J(σ)

ZN,J(β)
as N →∞ ?

The order parameter is

xβ(q) = lim
N→∞

∫
ν(dJ) G×2

β,N,J{RN (σ, σ′) ≤ q}

More and more things are proved:

I Parisi formula: free energy is a variational formula over c.d.f. x.

I Phase transition: for β > βc = 1, xβ(q) has more than one jump.

I Parisi Ultrametricity Conjecture:
Infinite number of pure states with ultrametric overlaps

G×3
β,N,J

{
RN (σ, σ′) ≥ min{RN (σ′, σ′′);RN (σ′′, σ′)}

}
→ 1 in ν-prob.



The Gibbs Measure of the EA model on Zd

Gβ,N,J(σ) =
exp−βHN,J(σ)

ZN,J(β)
as N →∞ ?

General results applies

I DLR equations:

Gd(β, J) = set of Gibbs measures on {−1,+1}Z
d

at β and J

I Pure states: elements of ext Gd(β, J).

I Nd(β) = |ext Gd(β, J)| is a constant ν-a.s.!

I High Temp./Low β: Nd(β) = 1.



The Gibbs Measure of the EA model on Zd

Gβ,N,J(σ) =
exp−βHN,J(σ)

ZN,J(β)
as N →∞ ?

Low temperature: (almost)-everything is unknown

I d < dc: No phase transition Nd(β) = 1 ?

I d ≥ dc, β large: Phase transition Nd(β) > 1 ?

Droplet Scenario:
Phase transition of Ising-type

I Nd(β) = 2

RSB Scenario:
Phase transition of SK-type

I Nd(β) =∞
I Ultrametric overlaps



Ground States of EA model for finite N

Instead of studying the pure states, we study the the ground states:

β →∞ then N →∞ .

Let
σ∗N (J) = arg minσ∈ΣN

HN,J(σ)

I The minimizer (ground state) is unique because ν is continuous.

HN,J(σ) = −
∑

(x,y)∈EN

Jxyσxσy .

I Typically, σ∗N (J) do not satisfy all constraints
(satisfied ↔ σxσy = sgn Jxy)

Odd number of negative J ’s in a cycle C
⇐⇒

∀σ, Odd number of unsatisfied edges on C.



Ground States of the EA model on Zd

Definition
σ ∈ {−1,+1}Z

d

is a ground state for J iif for any finite set B of vertices:∑
(x,y)∈∂B

Jxyσxσy ≥ 0 flip energy .

In words, a ground state locally minimizes the Hamiltonian.

B



Ground States of the EA model on Zd

Definition
σ ∈ {−1,+1}Z

d

is a ground state for J iif for any finite set B of vertices:∑
(x,y)∈∂B

Jxyσxσy ≥ 0 flip energy .

G(J) ⊂ {−1,+1}Z
d

: the set of ground states on Zd for couplings J

I σ ∈ G(J)⇔ −σ ∈ G(J) Ground State Pairs

I |G(J)| is a constant ν-a.s., say Nd



Ground States of the EA model on Zd

Conjecture

For d = 2, there is only one ground state pair (Nd = 2).
(Is there a dc where Nd > 2 for d > dc?)



Ground States of the EA model

Study probability measures on G(J) to get information on the set.

Weak limit of finite-volume ground states

I Look at the sequence of σ∗N (J) as N grows.

I Record the values it takes in a fixed box.



Ground States of the EA model

Study probability measures on G(J) to get information on the set.

Weak limit of finite-volume ground states

1. Sequence (GN )→ {−1,+1}Z
d

(GN with b.c.)

2. The ground state σ∗N (J) is unique (up to flip).

3. Take κN = ν(dJ)δσ∗
N

(J).

4. A subsequence converges weakly to κ.

κ samples J and a ground state σ.

5. κJ , the conditional measure given J is supported on ground states.



Ground States of the EA model

Study probability measures on G(J) to get information on the set.

Uniform measure on G(J)

1. Well defined if Nd <∞.

2. For A ⊂ {−1,+1}Z
d

µJ(A) =
|G(J) ∩A|
Nd



Some Rigorous Results

There are rigorous results on the half-plane Z×N (free b.c. at the bottom).

Theorem (A-Damron-Newman-Stein ’10)

If (GN ) are finite boxes (free b.c. vertical, periodic b.c. horizontal),

GN → Z× N
I the measure κN converges weakly to κ;

I κJ is supported on two flip-related ground states σ∗ ν-a.s.

Are there other ground states on the half-plane ? Other b.c. ?



Some Rigorous Results

There are rigorous results on the half-plane Z×N (free b.c. at the bottom).

Theorem (A-Damron ’11)

For the half-plane Z× N, either N = 2 or N =∞ ν-a.s.

For the disordered ferromagnet (Jxy > 0 ν-a.s.)

I Wehr ’97: N = 2 or ∞ on Zd for any d.

I Wehr ’& Woo ’98: N = 2 for the half-plane Z× N.



Techniques of Proof

Can be used on Zd and the half-plane.

I κJ constructed from finite graphs with periodic b.c. and the uniform
measure µJ are translation-covariant

κTJ(A) = κJ(T−1A)

µTJ(A) = µJ(T−1A) .

(!) Hard to construct translation-covariant measures on ground states!

I M = ν(dJ) µJ × µJ is translation-invariant (same for κJ).



Techniques of Proof

I Consider the interface

σ∆σ′ = {(x, y) ∈ E : σxσy 6= σ′xσ
′
y} .

I

σ∆σ′ = ∅ ⇐⇒ σ = σ′ or σ = −σ′ .

I M = ν(dJ) µJ × µJ .

Study σ∆σ′ as a random interface under the measure M .



Interface between Ground States

Figure: An example of interface between ground states on the half-plane. The
edges in σ∆σ′ are the thick ones.



Interface of Ground States: Elementary

Let σ and σ′ be distinct ground states.

On a general graph:

I σ∆σ′ cannot have dangling ends (or 3-branching points).

I σ∆σ′ cannot contain loops.

On Z2 (when sampled from translation-invariant M)

I σ∆σ′ has positive density;

I No 4-branching points (TI+Burton-Keane argument);

I ⇒ the interface is the union of doubly-infinite self-avoiding paths
partitioning the plane into topological strips.



The Newman-Stein Theorem on Z2

For Z2:

Theorem (Newman-Stein ’01)

Let M = ν(dJ)(κJ × κ′J) be a TI measure where κJ and κ′J are constructed
from finite-volume ground states with periodic b.c.

M
{
σ∆σ′ 6= ∅ and σ∆σ′ is not connected

}
= 0 .

⇒ σ∆σ′ is a doubly-infinite self-avoiding path of positive density.

I OPEN: Rule out the existence of this path to show uniqueness on Z2.



The Newman-Stein Theorem: Idea of Proof

Suppose M {σ∆σ′ 6= ∅ and σ∆σ′ is not connected} > 0.

I The interface partition the plane into topological strips.

I Consider rungs R between connected components of the interface.

R

h
O

E(R) =
∑

(x,y)∈R Jxyσxσy .

I = infR:D1→D2 E(R).

I Show that I ≤ 0 and I > 0 both have zero probability.



Ground States on the Half-Plane
Back on the half-plane and consider

I M = ν(dJ) κJ × κ′J
κJ and κ′J are weak limits of ground states on GN → Z× N with
horizontal periodic b.c. and vertical free b.c.

I M = ν(dJ) µJ × µJ
where µJ is the uniform measure on ground states ( ok for N <∞).

Horizontal TI but not vertical TI

We show by contradiction that

M{σ∆σ′ 6= ∅) = 0 .

This implies

1. If N <∞, then N = 2.

2. κJ is supported on a flip-related pair and κ′J = κJ .



Interfaces in the Half-Plane

Proposition

If M {σ∆σ′ 6= ∅} > 0, then for any edge e, M {e ∈ σ∆σ′} > 0.

Interface touches the boundary with positive probability!

I σ∆σ′ cannot touch the boundary twice.

I Horizontal TI: One tethered path ⇒ infinitely many.
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Density of Tethered Paths

Tethered paths are distinct.
How many “tethered paths” do we see at height k ?

Nn,k: Number of tethered paths intersecting [−n, n]× {k}

I Horizontal TI

lim
n→∞

1

n
M [Nn,0] = c > 0 .

I Nn,0 −Nn,k ≤ 2k.

I infn≥1
1
n
M [Nn,k] =

1
n

limn→∞M [Nn,k] = c.

-n n

k

At all heights, we see many tethered paths.



First step of the contradiction

Construct a measure on Z2 from the one on the half-plane.

Take T a vertical translation.

MZ2 = lim
k→∞

1

k

k∑
l=1

T−lM (subseq.)

I MZ2 is supported on ground states in Z2.

I It is TI in Z2 by construction.

Because we see many tethered paths...

Proposition

If MZ×N{σ∆σ′ 6= ∅} > 0, then MZ2{σ∆σ′ is not connected} > 0.



Second step of the contradiction

Mimic the Newman-Stein argument for ground states on Z2

R

h
O

Theorem

MZ2{σ∆σ′ 6= ∅ and σ∆σ′ is not connected} = 0 .

We conclude that MZ×N{σ∆σ′ 6= ∅} = 0.

I In the case of the uniform measure, the theorem has to be considerably
adapted but the same idea works.



Open Questions

In increasing difficulty ?

I N = 2 or ∞ on Zd ?

I N = 2 on the half-plane and on Z2 ?

I Describe the unique ground state pair.

I Show there is no phase transition on Z2: N2(β) = 1 for all β.

I Show there exists dc such that Nd(β) > 1 for d ≥ dc, β large.

I If so, does Nd(β) =∞ ?

Thank you!
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