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The Edwards-Anderson Model

Let Gy = (Vn, En) be a graph on N vertices.
We define the Ising spin glass Hamiltonian on Yy = {1, +1}":

Hy,s(o Z JoyOz0y .

(z,y)€EEN

where J = (Jay; (z,y) € En) 1.i.d. of law v Gaussian (say)
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where J = (Jay; (z,y) € En) 1.i.d. of law v Gaussian (say)

» Covariance [v(dJ) Hn,s(0)Hn,i(0") =32, y)emy Ty 020y

» Edge overlap Rn(o,0") = ﬁ Y eyery Te0y o0y

» Sherrington-Kirkpatrick model: Gy is the complete graph.

» Edwards-Anderson model: G is a box of Z%.

"Describe” the minima of Hy, s for NV large.



The Gibbs Measure of the SK model

exp —fBHn, (o)
Zn,1(B)

Gpn,(0) = as N = o0 ?

The order parameter is

zp(q) = lim [ v(dJ]) G5 ;{Rn(0,0") < g}

N —oco

More and more things are proved:
» Parisi formula: free energy is a variational formula over c.d.f. x.
» Phase transition: for 8 > 8. = 1, x3(¢) has more than one jump.

» Parisi Ultrametricity Conjecture:
Infinite number of pure states with ultrametric overlaps

Gj) NJ{RN(J, a) > HliIl{RN(O'I,O'N);RN(O'”,O'/)}} — 1 in v-prob.



The Gibbs Measure of the EA model on Z¢

—BH
Gana(o) = % as N — 0o ?

General results applies

» DLR equations:

Ga(B,J) = set of Gibbs measures on {—1,+1}Zd at 8 and J

» Pure states: elements of ext G4(8, J).
> Na(B) = |ext Ga(B, J)| is a constant v-a.s.!
» High Temp./Low 3: Ny(B) = 1.



The Gibbs Measure of the EA model on Z¢

exp 7ﬂHN,J(O')
Zn,7(B)

GB,N,J(O'): as N —o0?
Low temperature: (almost)-everything is unknown

» d < d.: No phase transition NVy(8) =17

» d > d., 8 large: Phase transition NVy(8) > 17

RSB Scenario:

Phase transition of SK-type
> Nd(ﬁ) = 00

» Ultrametric overlaps

Droplet Scenario:
Phase transition of Ising-type

> Na(B) =2



Ground States of EA model for finite N

Instead of studying the pure states, we study the the ground states:
B — oo then N — oo .

Let
on(J) = arg min, .y, Hn,s(0)

» The minimizer (ground state) is unique because v is continuous.

Hn (o) =— Z JoyOz0y .
(z,y)€EEN
» Typically, ox(J) do not satisfy all constraints
(satisfied <> 050y = sgn Joy)

Odd number of negative J’s in a cycle C
<
Vo, Odd number of unsatisfied edges on C.



Ground States of the EA model on Z¢

Definition .
o€ {=1,4+1}*" is a ground state for J iif for any finite set B of vertices:

Z Jzyozoy >0 flip energy .
(z,y)€0B

In words, a ground state locally minimizes the Hamiltonian.
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Ground States of the EA model on Z%

Definition .
o€ {=1,4+1}*" is a ground state for J iif for any finite set B of vertices:

Z Jzyozoy >0 flip energy .
(z,y)€0B

G(J) c {1, +1}Zd: the set of ground states on Z? for couplings J
» 0 € G(J) < —o € G(J) Ground State Pairs

> |G(J)| is a constant v-a.s., say Ny



Ground States of the EA model on Z%

Conjecture

For d = 2, there is only one ground state pair (Ng = 2).
(Is there a d. where Ng > 2 for d > d.?)



Ground States of the EA model

Study probability measures on G(J) to get information on the set.
Weak limit of finite-volume ground states

» Look at the sequence of oy (J) as N grows.

» Record the values it takes in a fixed box.



Ground States of the EA model

Study probability measures on G(J) to get information on the set.

Weak limit of finite-volume ground states

1. Sequence (Gn) — {—1,+1}%" (G with b.c.)
2. The ground state o (J) is unique (up to flip).
3.
4

. A subsequence converges weakly to k.

Take kn = v(dJ)do% (1)-

x samples J and a ground state o.

K, the conditional measure given J is supported on ground states.



Ground States of the EA model

Study probability measures on G(J) to get information on the set.

Uniform measure on G(J)
1. Well defined if Ny < oo.
2. For A C {~1,+1}*

i) = BN



Some Rigorous Results

There are rigorous results on the half-plane Z x N (free b.c. at the bottom).

Theorem (A-Damron-Newman-Stein ’10)

If (Gn) are finite bozes (free b.c. vertical, periodic b.c. horizontal),

}
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> the measure kn converges weakly to k;

> kg is supported on two flip-related ground states o™ v-a.s.

Are there other ground states on the half-plane ? Other b.c. 7



Some Rigorous Results

There are rigorous results on the half-plane Z x N (free b.c. at the bottom).
Theorem (A-Damron '11)
For the half-plane Z x N, either N =2 or N' = co v-a.s.

For the disordered ferromagnet (J,y > 0 v-a.s.)
» Wehr ’97: N’ =2 or oo on Z* for any d.
» Wehr '& Woo ’98: N = 2 for the half-plane Z x N.



Techniques of Proof

Can be used on Z? and the half-plane.

» ry constructed from finite graphs with periodic b.c. and the uniform
measure p are translation-covariant

KZTJ(A) = H‘](TilA)
pr(A) = ps(T7HA) .

(!) Hard to construct translation-covariant measures on ground states!

> M =v(dJ) ps x psis translation-invariant (same for k).



Techniques of Proof

» Consider the interface

oAd’' = {(z,y) € E: 0,0, # 0poy} .

/ / !
cAo' =0+ oc=0c oro=—0.

> M =v(dJ) ps X pr.

Study 0 Ao’ as a random interface under the measure M.



Interface between Ground States

Figure: An example of interface between ground states on the half-plane. The
edges in 0 Ao’ are the thick ones.



Interface of Ground States: Elementary

Let o and ¢’ be distinct ground states.
On a general graph:

» 0Ao’ cannot have dangling ends (or 3-branching points).

» o0Ac’ cannot contain loops.

On Z? (when sampled from translation-invariant M)
» oAc’ has positive density;
» No 4-branching points (TI+Burton-Keane argument);

» = the interface is the union of doubly-infinite self-avoiding paths
partitioning the plane into topological strips.



The Newman-Stein Theorem on Z2

For 72:

Theorem (Newman-Stein '01)

Let M = v(dJ) (ks x k';) be a TI measure where k; and K’y are constructed
from finite-volume ground states with periodic b.c.

M {cAc’ #0 and cAc’ is not connected} =0 .

= 0Ao¢’ is a doubly-infinite self-avoiding path of positive density.

» OPEN: Rule out the existence of this path to show uniqueness on Z2.



The Newman-Stein Theorem: Idea of Proof

Suppose M {cdAc’ # () and 0 Ao’ is not connected} > 0.
» The interface partition the plane into topological strips.

» Consider rungs R between connected components of the interface.

E(R) =3 (1.)er Jay020y -
R I =infr.p,»p, E(R).

» Show that I <0 and I > 0 both have zero probability.



Ground States on the Half-Plane
Back on the half-plane and consider
> M =v(dJ) kj X K
kg and k'; are weak limits of ground states on Gy — Z x N with
horizontal periodic b.c. and vertical free b.c.
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> M =v(dJ) py X ps
where @ is the uniform measure on ground states ( ok for N' < 00).
Horizontal TT but not vertical TI

We show by contradiction that
M{cAd" #0)=0 .

This implies
1. If N < oo, then N = 2.
2. ks is supported on a flip-related pair and x’; = K.



Interfaces in the Half-Plane




Interfaces in the Half-Plane

Proposition
If M {cAc’ # 0} > 0, then for any edge e, M {e € cAc’} > 0.
Interface touches the boundary with positive probability!

» o0Ac’ cannot touch the boundary twice.

» Horizontal TI: One tethered path = infinitely many.



Density of Tethered Paths

Tethered paths are distinct.
How many “tethered paths” do we see at height k ?

Ny i: Number of tethered paths intersecting [—n, n] x {k}

» Horizontal TI k °
1 ®
lim —M[Npo]l=c>0.

n—oo 1 @
> Npo— Npi < 2k. ?
> il’lfnzl %M[Nn,k] = L 4

% hmn—>oo M[NnJg] = C. Py
. ®

At all heights, we see many tethered paths.




First step of the contradiction

Construct a measure on Z> from the one on the half-plane.

Take T a vertical translation.

k
| -
My = kl;n;o T lgl T "M (subseq.)

» My2 is supported on ground states in Z2.

» It is TI in Z? by construction.
Because we see many tethered paths...

Proposition
If Mzxn{oAc’ # 0} > 0, then Myz2{cAc’ is not connected} > 0.



Second step of the contradiction

. . 2
Mimic the Newman-Stein argument for ground states on Z

Theorem
My2{ocAd’ # 0 and cAc’ is not connected} =0 .

We conclude that Mzxn{ocAc’ # 0} = 0.

» In the case of the uniform measure, the theorem has to be considerably
adapted but the same idea works.



Open Questions

In increasing difficulty ?

» N =2orooonZ?

» N =2 on the half-plane and on Z? ?

» Describe the unique ground state pair.

» Show there is no phase transition on Z*: N>(8) = 1 for all 3.
Show there exists d. such that Ng(8) > 1 for d > d., 3 large.
If so, does Ng(B) = o0 ?

v

v
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Thank you!



