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Abstract
We investigate integer solutions of the superelliptic equation
(1) 2" =F(z,y),

where F' is a homogeneous polynomial with integer coefficients, and of the
generalized Fermat equation

(2) AzP 4+ By? = C=",

where A, B and C are non-zero integers. Call an integer solution (z,¥, 2)
to such an equation proper if ged(x,y, z) = 1. Using Faltings’ Theorem,
we shall give criteria for these equations to have only finitely many proper
solutions.

We examine (1) using a descent technique of Kummer, which allows
us to obtain, from any infinite set of proper solutions to (1), infinitely
many rational points on a curve of (usually) high genus, thus contradicting
Faltings’ Theorem (for example, this works if F'(¢,1) = 0 has three simple
roots and m > 4).

We study (2) via a descent method which uses unramified coverings
of P; — {0, 1,00} of signature (p, q,7), and show that (2) has only finitely
many proper solutions if 1/p+1/g+1/r < 1. In cases where these coverings
arise from modular curves, our descent leads naturally to the approach of
Hellegouarch and Frey to Fermat’s Last Theorem. We explain how their
idea may be exploited for other examples of (2).

We then collect together a variety of results for (2) when 1/p +1/q +
1/r > 1. In particular we consider ‘local-global’ principles for proper
solutions, and consider solutions in function fields.

Introduction.

Faltings’ extraordinary 1983 Theorem ([15], née Mordell’s Conjecture [41]) states
that there are only finitely many rational points on any irreducible algebraic
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curve of genus > 1 in any number field. Two important immediate consequences
are:

Theorem There are only finitely many pairs of rational numbers x,y for which
f(z,y) =0, if the curve so represented is smooth and has genus > 1.

Theorem If p > 4 and A, B and C are non-zero integers, then there are only
finitely many triples of coprime integers x, vy, z for which AxP + ByP = CzP.

Here we shall see that, following various arithmetic descents, one can also
apply his result to integral points on certain interesting surfaces.

(Vojta [42] and Bombieri [2] have now given quantitative versions of Faltings’
Theorem. In principle, we can thus give an explicit upper bound to the number
of solutions in each equation below, instead of just writing ‘finitely many’.)

The superelliptic equation

In 1929, Siegel [34] showed that a polynomial equation f(z,y) = 0 can have
infinitely many integral solutions in some algebraic number field K, only if a
component of the curve represented has genus 0. In 1964, LeVeque [24] applied
Siegel’s ideas to prove that the equation

y" = f(x) (1)*

has infinitely many integral solutions in some number field K, if and only if
F(X) either takes the form ¢(X — a)®g(X)™ or the form f(X) = ¢(X? —aX +
b)m/ 2g(X)™. In all other cases one can obtain explicit upper bounds on solutions
of (1)*, using Baker’s method (see [37]).

By using a descent technique of Kummer, we can apply Faltings’ Theorem
to the superelliptic equation (1), much as LeVeque applied Siegel’s Theorem to

(1)*:

Theorem 1 Let F(X,Y) be a homogeneous polynomial with algebraic coeffi-
cients and suppose that there exists a number field K in which

2™ = F(z,y) (1)

has infinitely many K —integral solutions with the ideal (x,y) = 1, and the ratios
x/y distinct. Then F(X,Y) =cf(X,Y)™ times one of the following forms:

(i) (X—aV)(x - BY)P;

(ii) g(X,Y)™2, where g(X,Y) has at most 4 distinct roots;

(iii) g(X,Y)™3 where g(X,Y) has at most 3 distinct roots;

(iv) (X —aY)™/2g(X,Y)"™/*, where g(X,Y) has at most 2 distinct roots;
(v) (X —aY)eg(X,Y)™/2, where g(X,Y) has at most 2 distinct roots;

(vi) (X —aY)"/?(X — BY)*™/3(X — Y™/ where r < 6;



where a,b and r are non-negative integers, c is a constant, f(X,Y) and g(X,Y)
are homogeneous polynomials, and exponents "™/ are always integers. More-
over, for each such F and m, there are number fields K in which (1) has in-
finitely many distinct, coprime K -integral solutions.

This result answers the last of the five questions posed by Mordell® in his
famous paper [28] (the others having been resolved by Siegel [34] and Faltings
[15]).

We deduce from Theorem 1 that there are only finitely many distinct, co-
prime K-integral solutions to (1) whenever F/(X,Y’) has k(> 3) distinct simple
roots (over Q) and m > max{2,7 — k}.

The generalized Fermat equation

One last result of Fermat has finally been re-proven [46]: that is, that there are
no non-zero integer solutions to

2P +yP = 2P

when p > 3. (This corresponds to the case p=g=r>3and A=B=C=1
of the generalized Fermat equation

AxP + By? = C2", (2)

where A, B and C are non-zero integers.) Fortunately, Fermat never wrote
down his proof, and many beautiful branches of number theory have grown out
of attempts to re-discover it. In the last few years, there have been a number
of spectacular advances in the theory of Fermat’s equation, culminating in the
work of Faltings [15], Ribet [31] and, ultimately, of Wiles [46].

As we discussed above, Faltings’ Theorem immediately implies that there
are only finitely many triples of coprime integers z, ¥y, z for which z? + y? = 2P.
One might hope to also apply Faltings’ Theorem directly to (2), since this is
a curve in an appropriate weighted projective space. However this curve often
has genus 0 (for instance, if p,q and r are pairwise coprime), so that finiteness
statements for proper solutions must be reached through a less direct approach.

It has often been conjectured that (2) has only finitely many proper solutions
if 1/p+1/q+1/r < 1, perhaps first by Brun [6] in 1914. This is easily proved to
be true in function fields, and it follows for integers from the ‘abc’-conjecture.
We will use Faltings’ theorem to show:

Theorem 2 For any given integers p,q,r satisfying 1/p+ 1/q+ 1/r < 1, the
generalized Fermat equation

Az? + By? = C=z", (2)

has only finitely many proper integer solutions.

1 Actually Mordell conjectured finitely many rational solutions in his last three questions,
where he surely meant integral.



(Our proofs of Theorems 1 and 2 are easily extended to proper solutions in any
fixed number field, and even those that are S-units.)

Catalan conjectured in 1844 that 32 — 23 = 1 are the only powers of positive
integers that differ by 1. Tijdeman proved this for sufficiently large powers
(> expexpexpexp(730): Langevin, 1976). One can unify and generalize the
Fermat and Catalan Conjectures in

The Fermat-Catalan Conjecture. There are only finitely many triples of
coprime integer powers zP,y4, z", for which

a? +y?= 2" with %+%+%<1. (2)

This conjecture may be deduced from the abc-conjecture (see section 5b). There
are five ‘small’ solutions (z,, ) to the above equation: 2

14+22=3% 254 72=3% 734+132=2% 274173 =712, 35+ 11%=1222
Beukers and Zagier have found five surprisingly large solutions:
177476271% = 210639282, 14143 +2213459% = 657, 9262°+153122832 = 1137,

43% 4+ 962223 = 300429072, 33% + 15490342 = 15613°.

In section 4c, we will use these solutions to write down examples of non-isogenous
elliptic curves with isomorphic Galois representations on points of order 7 and 8.
We wonder whether there are any more solutions to (2): in particular whether
there are any with p, g,r > 3.

Given Theorem 2, it is natural to ask what happens in (2) when 1/p+1/q¢+
1/r>1:
In the cases where 1/p + 1/q¢ 4+ 1/r = 1, the proper solutions correspond to
rational points on certain curves of genus one. It is easily demonstrated that,
for each such p, q,r, there exist values of A, B,C such that the equation has
infinitely many proper solutions; and some such examples are given in section
6. There also exist values of A, B,C such that the equation has no proper
solutions (which can be proved by showing that there are no proper solutions
modulo some prime); though, for any A, B,C, there are number fields which
contain infinitely many proper solutions (see section 5d).
In the cases where 1/p+1/qg+1/r > 1, the proper solutions give rise to rational
points on certain curves of genus zero. However, even when the curve has
infinitely many rational points, they may not correspond to proper solutions
of the equation. Is there an easy way to determine whether equation (2) has
infinitely many proper solutions?

In the case of conics (p = ¢ = r = 2), Legendre proved the local-global
principle in 1798; and using this we can easily determine whether (2) has any

2Blair Kelly III, Reese Scott and Benne De Weger all found these examples independently.



proper solutions. However, in section 8 we shall see that there are no proper
solutions for
2+ 29y2 = 323,

despite the fact that there are proper solutions everywhere locally, as well as
a rational parametrization of solutions. We prove this using what we call a
‘class group obstruction’, which may be the only obstruction to a local-global
principle in (2) when 1/p+1/¢g+1/r > 1. We also study this obstruction for a
family of equations of the form z2 + By? = Cz".

It has long been known that there is no general local-global principle for (2)
when 1/p+1/q+ 1/r =1: Indeed, Lind and Selmer gave the examples

ut —17v* = 2w?, and 32° + 4y® = 528,

respectively, of equations which are everywhere locally solvable but nonetheless
have no non-trivial integer solutions. This obstruction is described by the ap-
propriate Tate—Safarevic group; which may be determined by an algorithm that
is only known to work if the Birch-Swinnerton Dyer Conjectures are true.
There are no local obstructions or class group obstructions to any equation

Az® + By® = C2°, (3)

if A, B and C are pairwise coprime. So are there are always infinitely many
proper solutions? If so, is there a parametric solution to (3) with z,y and z
coprime polynomials in A, B and C?

Application of modular curves

The driving principle behind the proof of theorem 2 is a descent method based
on coverings of signature (p,q,r) (see section 3 for the definition). Sometimes,
these coverings can be realized as coverings of modular curves. A lot more
is known about the Diophantine properties of modular curves than about the
properties of Fermat curves, thanks largely to the fundamental work of Mazur
on the Eisenstein ideal [26]. Hence one can hope that descent using modular
coverings yields new insights into such equations. The basic example for this is
the covering X (2p) — X (2) which is of signature (p,p,p), ramified over the
three cusps of X (2), and forms the basis for the Hellegouarch-Frey attack on
Fermat’s Last theorem. Thanks to the deep work of Ribet, Taylor and Wiles,
this approach has finally led to the proof of Fermat’s Last theorem; and there is a
strong incentive for seeing whether other modular coverings of signature (p, ¢, )
will yield similar insights into the corresponding generalized Fermat equation
(as also noted by Wiles in his Cambridge lectures). In section 4¢ we will give a
classification of the coverings of signature (p, ¢, ) obtained from modular curves,
and state some Diophantine applications.
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1 Remarks and observations.

There are many remarks to be made about what has been written above. For
instance, why the restrictions on pairs z,y in the statement of Theorem 17
What if A, B, C are not pairwise coprime in Theorem 2?7 We include remarks
on these questions here, rather than weigh down the main body of the paper.

1.1 Proper and Improper solutions

The study of integer solutions to homogeneous polynomials in three variables
‘projectivizes’ naturally to the study of rational points on curves, by simply
de-homogenizing the equation. However the study of integer solutions to non-
homogeneous polynomials in three variables does not so naturally ‘projectivize’,
because there are often parametric families of solutions with common factors
that are of little interest from a number theoretic viewpoint. As an example,
look at the integer solutions to z3 +y3 = z*. It is easy to find a solution for any
fixed ratio z/y: if we want x/y = a/b then simply take z = a® + b, = az and
y = bz. This is not too interesting. However if we do not allow z,y and z to
have a large common factor, then we can rule out the above parametric family
of solutions (and others), and show that there are only finitely many solutions.

In general we will define a proper solution to an equation (1) or (2) in some
given number field K, to be a set of integer solutions (z,y, z) with the value
of x/y fixed, and (z,y) dividing some given, fixed ideal of K (and we thus
incorporate here the notion that the solutions may be S-units for a given finite
set of primes 5).

Notice that in this definition we consider a proper solution to be a set of
integer solutions (z,y, z) with the value of z/y fixed. This is because one can
obtain infinitely many solutions of (1) of the form xz&™,y&™, 2% (where d =
deg(F)), and of (2) of the form z&7", y&™, 2£P7, as £ runs over the units of K,
given some initial solution x, y, z. Thus a proper solution is really an equivalence
class of solutions under a straightforward action of the unit group of the field.
(Actually, if F(z,y) = £ is itself a unit of K then ¢™ = F(z£(m-1/d y¢lm=1)/d)
is a proper solution to (1); and so, by Theorem 1, if F'(X,Y") has three distinct
factors then there are only finitely many such units. This well-known result also
follows from Siegel’s theorem).

Even when we work with a homogeneous equation like the Fermat equation
it is not always possible to ‘divide out’ a common factor (z,y) as we might
when dealing with rational integer solutions: for instance, if the ideal (z,y) is
irreducible and non-principal®. However, in this case let I and J be the ideals
of smallest norm from the ideal class, and inverse ideal class of G = (z,y),
respectively. Multiply each of z,y, z through by the generator of the principal
ideal 1.J, so that now (z,y) = GIJ. Since G.J is principal we may divide through

3Even Kummer made this mistake, which Weil calls an ‘unaccountable lapse’ in Kummer’s
“Collected Works”.



by the generator of that ideal, but then (z,y) = I, one of a finite set of ideals.
Thus it makes sense to restrict solutions in (1) and (2) by insisting that (z,y)
can only divide some fixed ideal of the field.

Let X be the affine surface defined by equation (2). From a geometric
perspective, a proper solution (x,y,z) of (2) is the image of an integral point
on the blowup of X at the origin, where, here, “integral” is taken with respect
to the special divisor (that is, the proper transform of (0,0, 0) in the blowup).
In recent years a beautiful theory of rational and integral points on surfaces has
begun to emerge through the work of Vojta and Faltings. We make no use of it
here, since our descent reduces the problem to results about curves. However,
our approach is probably only applicable for a small class of surfaces; maybe just
those that are equipped with a non-trivial action of the multiplicative group.

If the degree of F' is coprime with m then we can always construct a para-
metric improper solution of (1): since there exist positive integers r and s with
mr—deg(F)s = 1, we may take x = aF(a,b)*, y = bF(a,b)*, z= F(a,b)". More
generally if g =gcd(deg(F'), m)= mr—deg(F)s, then we can obtain a solution of
(2) from a solution of F'(a,b) = ¢? by taking = ac®, y = bc® and z = ¢".

Equation (2) may be similarly approached, and indeed its generalization
to arbitrary diagonal equations (see [4]): The solutions to a diagonal equation
a1 X7t + ...+ a, Xt = 0 may be obtained from the solutions of a1 Y{* + ... +
a,Y, 9" =0, where each g; = ged(ej, Lj) and L;j = lem[e;, 1 <@ <n, i # j]. (If
g;j = ;8 — Ljr; then we may take X; =Y, [, l/jTij/ej.)

7

1.2 What happens when A, B and C are not pairwise co-
prime?

Evidently any common factor of all three of A, B and C' in (2) may be divided
out, so we may assume that (4, B,C) = 1. But what if A, B and C are not
pairwise coprime?

If prime ¢ divides A and B, but not C' then, in any solution of (2), ¢ divides
Cz" and so z. Thus Cz" = C¢"2'" and so we can rewrite C¢" as C, and 2’ as
z. But then £ divides each of A, B and C' and so we remove the common power
of ¢ dividing them. If ¢ now divides only one of A, B and C then there are no
further such trivial manipulations, but if £ divides two of A, B and C then we
are forced to repeat this process. Sometimes this will go on ad infinitum, such
as for the equation 22 4+ 2y® = 423. In general it is easily decided whether this
difficulty can be resolved:

Proposition. Suppose that «, 3 and -y are the exact powers of £ that divide
A, B and C, respectively. If there is an integer solution to (2) then either (p, q)
divides o« — 3, or (q,r) divides 3 —~, or (r,p) divides v — «.

Proof:  Let a,b,c and d be the exact powers of ¢ dividing z,y,z and
(AzP, By, Cz"), respectively. Evidently d must be equal to at least two of



a—+ap, B+ bq, v+ cr. From the Euclidean algorithm we know that there exist
integers a and b such that ap — bg =  — « if and only if (p,q) divides a — §;
the result follows from examining all three pairs in this way.

2 Proper solutions of the superelliptic equation

To prove Theorem 1 we first ‘factor’ the left-hand side of (1) into ideals in the
field K (which may be enlarged to contain the splitting field extension for F'), so
that these ideals are mth powers of ideals, times ideals from some fixed, finite
set. We then multiply these ideals through by ideals from some other fixed,
finite set to get principal ideals. Equating the generators of the ideals, modulo
the unit group, we get a set of linear equations in X and Y. Taking linear
combinations to eliminate X and Y, we have now ‘descended’ to a new variety
to which we may be able to apply Faltings’ Theorem. If not, we descend again
and again, until we can.

The details of this proof are somewhat technical, and so we choose to illus-
trate them in the next subsection with a simple example.

2.1 A generalization of Kummer’s descent

In 1975 Erdés and Selfridge [14] proved the beautiful result that the product of
two or more consecutive integers can never be a perfect power. We conjecture
that the product of three or more consecutive integers of an arithmetic progres-
sion a (mod ¢) with (a,q) = 1 can never be a perfect power except in the two
cases parametrized below. This is well beyond the reach of our methods here,
though we now prove:

Corollary 1 Fiz integers m > 2 and k > 3 with m + k > 6. There are only
finitely many k-term arithmetic progressions of coprime integers, whose product
is the mth power of an integer.

If the product of a three term arithmetic progression is a square (the case
k =3, m = 2), then we are led to the systems of equations, a = A\z%,a + d =
y?,a +2d = \z2 with A\ = 1 or 2, so that 2% + 22 = (2/\)y?. This leads
to the parametric solutions (t2 — 2tu — u?)?, (2 +u?)?, (t? + 2tu — u?)? and
2(t2 —u?)?, (t2 +u?)?, 8t%u? where, in each case, (t,u) = 1 and t +u odd (for
A =1 and 2, respectively).

FEuler proved, in 1780, that there are only trivial four term arithmetic pro-
gressions whose product is a square, ruling out the case k = 4,m = 2. In 1782
he showed that there are only trivial integer solutions to 23 + y> = 223, which
implies that there are no three term arithmetic progressions whose product is a
cube, ruling out the case m = k = 3.

Now fix integers k > 3 and m > 2, with m + k > 7, so that 2/k+ 1/m < 1.
We will assume that there exist infinitely many k-term arithmetic progressions



of coprime integers, whose products are all mth powers of integers. In other
words, that there are infinitely many pairs of positive integers a and d for which

(a+d)(a+2d)...(a+kd) =2z" with (a,d) = 1. (1)
For any 7 # j we have that
(a+id, a+jd) divides ((a+id)—(a+jd), j(a+id)—i(a+jd)) = (i—j)(d,a) = (i—j)).
Therefore, for each i, we have

a+id=N\z", for i=1,2,...k

m—1
for some integers z;, where each \; is a factor of (Hp< b1 p) . From ele-

mentary linear algebra we know that we can eliminate a and d from any three
such equations; explicitly taking ¢ = 1,2 and j above we get

Azt = gAezyt — (5 — D)2y, for j=3,4,...k. (2)

If m > 4 then any single such equation has only finitely many proper solu-
tions, by Faltings’ Theorem; and as there are only finitely many choices for the
i, this gives finitely many proper solutions to (2.1).

More generally, the collection of equations (2.2) defines a non-singular curve
C, as the complete intersection of hypersurfaces in P¥~1. By considering the
natural projection from C onto the Fermat curve in P? defined by the single
equation (2.2) with j = 3, we may use the Riemann-Hurwitz formula to deduce
that C has genus g given by

R

3 2 1

k—3

2g —2

since the degree of the covering map is m~ 2, and the only ramification points
are where z; = 0 for some j > 4 (and it is easy to show that z; = z; = 0
is impossible). Thus C' has genus > 1, and so has only finitely many rational
points, by Faltings’ Theorem. Therefore (2.1) has only finitely many proper
integer solutions.

Suppose that, in equation (1),

n
F(X,Y)=aoY"™ [J(X —a;Y)",
i=1

where the «;’s are distinct complex numbers, and the r; are non-negative inte-
gers; we enlarge K, if necessary, to contain the «;. Let S denote the multiset

10



of integers s > 1, each counted as often as there are values of ¢ for which
m/(m,r;) = s. Theorem 1 is implied by

Theorem 1’. Suppose that there are infinitely many proper K-integral so-
lutions to (1), in some number field K. Then either (i) |S| < 2; or (ii)
S C {2,2,2,2}; or (iii) S = {3,3,3} ; or (iv) S = {2,4,4} ; or (v)
S = {2,2,n} for some integer n; or (vi) S = {2,3,n} for some integer
n, 3<n<6.

Re-writing (1) as the ideal equation

(aor = Biy)"* = (ap)*" "0 ()™

(y)"™

n
1=
with 3; = agay, we proceed in the familiar, analogous way to above: All ideals
of the form (y, agz— G;y) and (aoz—Fiy, aoz—F;y) (with i # j), divide the ideals
J and (3; — 3;)J, respectively (where J is that fixed ideal which is divisible by
(apz,y) for any proper solution of (1)). Therefore, by the unique factorization
theorem for ideals, we have

(apx — Biy)" = o0, foreachi, 1<i<n,
(y)TO = 00081:

for some ideals 6; of K and some set of ideal divisors o; of (J')™1, where

J=J II B-8)

1<i<j<n

We may factor both sides of each of the above equations in terms of their
prime ideal divisors. If the exact power to which the prime ideal p divides
(apz — Biy) or (y) is e, and p does not divide o;, then er; must be divisible by
m, and thus e is a multiple of m/(m,r;) = s;. Therefore, since all prime divisors
p of o; divide J’, we can re-write the above equations as

(aox — Biy) = mb;*, foreachi, 1 <i<n,
(y) = mbg°, (3)

where each 7; divides (J)* 1.

Let @; and 7; be those ideals with smallest norm, in the inverse ideal classes of
0; and 7; in K, respectively. Both 6;0; = (z;) and 7;7; = (w;) are principal ideals,
by definition. Moreover 7;0;* is principal by (2.3), and thus so is 70,7 = (M),
say. Let A be a fixed integer of the field divisible by all of the \;. Multiplying
(2.3) through by A\ we get

(a0(Az) — Bi(Ay)) (A Aiwizi®),  for each i, 1 <i<mn,
A\y) = (M Ao)woz")-

11



In each of these ideal equations, the ideals involved are all principal, and
so the integers generating the two sides must differ by a unit. Dirichlet’s unit
theorem tells us that the unit group U of K is finitely generated, and so U/U*
is finite; that is, for each ¢, the ratio of the generators of the two sides of the ¢th
equation above, a unit, may be written as u;v;%*, where u; is a unit from a fixed,
finite set of representatives of U/U®, and v; is some other unit. Replacing v;z;
in the equations above by z;, as well as Az by z and Ay by y, we get

(aor — Biy) = ui(A/Ai)w;z*, foreach i, 1 <i<n,

y = ug(A/Ao)wozy’-

Let p; = Augw;/); for each i, and let L be the field K extended by (p;)Y/%, i =
0,1,...,n, a finite extension.

Since .J/ has only finitely many prime ideal divisors, there are finitely many
choices for the 7;, and thus for the w;. Since the class group of K is finite, there
can only be finitely many choices for the 6;, and thus for the )\;, and so for A:
let 1 be an integer divisible by all of the possible A. Therefore there are only
finitely many possible choices for the p; and so for the fields L: let M be the
compositum of all possible such fields L. We now replace (pi)l/ Siz; by z; in the
equations above, to deduce:

There exists a number field M in which there are infinitely many proper

M -integral solutions x,y, zo, 21, - - -, 2n to the system of equations
agx — By = z;', foreachi, 1 <i<n,
vo= A (4)

Taking the appropriate linear combination of any three given equations in
(2.4), we can eliminate x and y. Explicitly, if 1 <i < j < k < n then

(B; = Be)z" + (Bx — Bi)z,” + (Bi — Bj)zs =

and, if ro > 1 then 2 — 27 + (8; — 8;)z° =

0
4 0

(5)

Note that we obtain a proper solution here, since the (zfl,zj]) all divide the

fixed ideal (A)J; and the zfl/zjj are all distinct for if zfl/zjj = (2)%/(#})%
then a‘f)‘;’f:gzz, = aao‘ﬁ:gjz,, and so (8; — 3;)(z/y —2'/y’) = 0, contradicting the
hypothesis.

Notice that if F' has n simple roots then all of the corresponding s; = m.
Therefore, descending as we did above for (2.1), we see that (2.5) describes a

curve of genus > 1 if 2/n+ 1/m < 1, and so we have proved:

Proposition 2a. If F(z,y) has n simple roots, where 2/n + 1/m < 1, then
there are only finitely many proper solutions to (1) in any given number field.
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2.2 TIterating the descent, leading to the proof of Theorem
1

The descent just described is entirely explicit; that is, we can compute precisely
what variety we will descend to. On the other hand, the descent described in
section 3 invokes the Riemann Existence Theorem at a crucial stage, and thus
is not, a priori, so explicit. For this reason we will proceed as far as we can
in the proof of Theorem 1’ using only the concrete methods of the previous
subsection, which turn out to be sufficient unless the elements of the set S are
pairwise coprime.

Indeed, if the elements of S are pairwise coprime, and are not case (i) or the
third example in case (vi) of Theorem 1’, then there must be three elements
p,q,7 € S with 1/p+ 1/q+ 1/r < 1. Therefore we can apply Theorem 2 to
(2.5), and deduce that there are only finitely many proper solutions to (1).

Now suppose that there are infinitely many proper solutions to (1) in some
number field. We need only consider those sets S in which some pair of elements
have a common factor: say pa,pb € S where p > 2 and @ > b > 1 are coprime.
To avoid case (i)* we may assume that S contains a third element ¢ > 2.

The equations (2.5) imply that there are infinitely many proper solutions of
some equation of the form AxzP 4+ ByP? = Cz? in an appropriate number field.
So, applying proposition 2a to this new equation, we deduce that 2/p+1/q > 1.
Thus p = 2,3 or 4 since q¢ > 2.

Now suppose S contains a fourth element, call it r, with ¢ > r > 2. Applying
the descent procedure of section 2a, we obtain infinitely many proper solutions
to simultaneous equations of the form

c12? 4+ coy? =329  and P + chy? = Gw'.

Applying the descent procedure of section 2a to the first equation here, we see
from (2.4) that 2% and y° can both be written as certain linear combinations of
u? and v?, where u and v are integers of some fixed number field. Substituting
these linear combinations into the second equation above, we see that Cw” can
be written as the value of a binary homogeneous form in v and v of degree pq.
It is straightforward to check that this binary form can only have simple roots,
and so, by proposition 2a, we have 2/pg+ 1/r > 1. This implies that pq < 4,
since r > 2. On the other hand, pg > 4 since p,q > 2, and so we deduce that
p=g=2andr =2.

We have thus proved that if {pa, pb, ¢, 7} is a subset of S then p = ¢ =r = 2.
But then {2,2,2a,2b} is a subset of S and, applying the same analysis to this
new ordering of the set, we get that 2a = 2b = 2. Therefore if S has four or
more elements, then all of these elements must be equal to 2. If so then we
multiply together the linear equations (2.4) that arise from each s; = 2, giving

4For the rest of this section, ‘case’ refers to the case number of Theorem 1°.
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a form with |S| simple roots whose value is a square. Proposition 2a implies
that we must be in case (ii).

Henceforth we may assume that S = {pa,pb, ¢}, where 2/p+1/q¢ > 1 and
p=23o0r4, withq>2 a>b>1and (a,b) =1. If a =1 then b =1, and
we must be in one of the cases (iii), (iv), (v), or the first example in (vi). So
assuine that a > 2.

From (2.5) we obtain a single equation of the form Az + By*? = Cz9. We
could apply Theorem 2 to this equation, but instead prefer to continue with the
explicit descents of section 2a: From (2.4) this equation now leads to p equations
of the form

i + By’ =21, i=1,2,...,p. (2.6)

Eliminating the y® term from the first two such equations, we obtain an equation
of the form z% = 7127 + v22%; we deduce that 2/q+ 1/a > 1 by proposition 2a,
and so ¢ < 4.

If (p,q) > 1 then we may re-order S so that ap is the third element, and
thus, by the same reasoning as above, ap < 4. However, since a,p > 2, this
implies that a =p =2, b =1 and ¢ = 2 or 4, and so we have case (iv) or (v).
So we may assume now that (p,q) = 1 which, with all the above, leaves only
the possibilities p = 2,¢ = 3, and p = 3,q¢ = 2.

If ¢ = 3,p = 2 then a = 2 or 3. This leads to the second and last examples
in (vi), and S = {6,4,3} which was already ruled out, taking 4 as the third
element.

If p = 3, ¢ = 2 then we can eliminate 2% and y® from the three equations in
(2.6) to get a conic in variables z1, 22, 2z3. As is well known, the integral points
on this may be parametrized by a homogeneous quadratic form in new variables
u and v, say. Solving for z% in (2.6), we now get that 2% is equal to the value of
a homogeneous form in u and v, of degree 4. It is easy to check that the roots
of this form must be simple, and so, by proposition 2a, a < 2, leading to the
last example in (vi).

3 Proper solutions of the generalized Fermat
equation

It has often been conjectured that
Az?P + By?! =C=2" (2)

has only finitely many proper solutions if 1/p + 1/¢ + 1/r < 1. One reason
for this is that the whole Fermat-Catalan conjecture follows from the ‘abc’-
conjecture (see [40] and section 5b). Another reason is that the analogous result
in function fields is easily proved (see section 5a). A simple heuristic argument
is that there are presumably N1/P+1/a+1/r+o(1) integer triples (z,, z) for which
—N < AzP + By? — Cz" < N; and so if the values of AzP + By? — Cz" are
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reasonably well-distributed on (—N,N), then we should expect that 0 is so
represented only finitely often if 1/p+1/q+1/r < 1.

Let Sp 4, denote the surface in affine 3-space A® defined by (2). When
p = q = r the proper solutions are in an obvious two-to-one correspondence
with the rational points on a smooth projective curve in P2. The genus of this
Fermat curve is (p gl), which is > 1 when p > 3; and Faltings’ Theorem then
implies that such a projective curve has only finitely many rational points.

Define the characteristic of the generalized Fermat equation (2) to be

x(p.q,7) = S 1 -1
p q T

Fix an embedding of Q C C. Given a curve X, defined over Q, we will
consider absolutely irreducible algebraic covering maps 7 : X — Py, defined
over Q. Such a covering map m is Galois if the group of fiber-preserving auto-
morphisms of X has order exactly d = deg .

Moreover, if 7 is unramified over P1 \ {0, 1, 00}, and the ramification indices
of the points over 0,1 and oo are p,q and r, respectively, then we say that ‘w
has signature (p,q,r)’. One can show that such a map exists for all positive
integers p,q,r > 1, by using the Riemann Existence Theorem: The (topolog-
ical) fundamental group II; of Py \ {0,1,00} is a group on three generators
00,01, 0co, satisfying the one relation ogo10, = 1. (Here o; is represented by
the appropriate loop winding once around the deleted point i.) Let I, ., be
the group with three generators g, 71, and 7, satisfying the relations:

Yo =71 =V = N0V1Yee = L.

The map sending o; to ; defines a surjective homomorphism from Iy to I'p 4 .
A standard result of group theory says that I', ;4 is infinite when 1/p+1/q +
1/r < 1, and has non-trivial finite quotients. Pick such a quotient, G. The
homomorphism II; — I'y 4, — G defines, in the usual way, a topological
covering of Py \ {0, 1, 00} which is of signature (p, ¢,r) and has Galois group G.
The Riemann Existence Theorem tells us that such a covering can be realized as
an algebraic covering of algebraic curves over C, and a standard specialization
argument allows us to conclude that this covering map can be defined over some
finite extension K of Q2.

From the Riemann-Hurwitz formula we can compute the genus of X using
the covering map obtained from the Riemann Existence Theorem:

2-29=d(2-2-0)— <d%) - (d%) — (dg) = dx(p,q. 7).

Thus g < 1,9 = 1,9 > 1 according to whether x(p,q,7) > 0,x(p,q,7) =
0, x(p,q,r) < 0. Since g and d are non-negative integers we have:

5For more details, see Theorem 6.3.1 on page 58, as well as the discussion in sections 6.3
and 6.4, in [32]
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Proposition 3a. For any positive integers p,q,r > 1, there exists a Galois
covering m : X — Py of signature (p,q,r). Let d be its degree, and let g be
the genus of X.

If x(p,q;r) >0, then g = 0 and d = 2/x(p, ¢, 7)-

If x(p,q,7) = 0, then g = 1.

If x(p,q,7) <0, then g > 1.

Let 7 : X — P be such a covering map of signature (p,q,r). Since it is
defined over Q, it can be defined in some finite extension K of Q. By enlarging
K if necessary, we can ensure that the automorphisms of Gal(X/P;) are also
defined over K.

Given a point t € P1(K) — {0,1, 00}, define 771(¢) to be the set of points
P € X(Q) for which 7(P) = t; by definition this is a set of cardinality d. Define
L; to be the field extension of K generated by the elements of 7~ 1(¢). Evidently
L; is a Galois extension of K with degree at most d.

Define V' to be the finite set of places in K for which the covering 7 : X —
P, has bad reduction.

For a given place v of K, let e, be a fixed uniformizing element for v. Then,

for any t € Py(K) — {0,1,00} = K* — 1, we have t = egrd"(t)u, where u is a

v-unit and ord, (t) is a fixed integer, independent of the choice of e,. Define the
arithmetic intersection numbers

(t-0), := max(ordy(t),0),
(t-1), := max(ord,(t—1),0),
(t-00)y = max(ord,(1/t),0).

The following result of Beckmann [1] describes the ramification in L.

Proposition 3b. (Beckmann). Suppose that we are given a point t € P1(K) —
{0,1, 0}, and a place v of K, which is not in the set V (defined above). If

(t-0), =0 (mod p), (t-1), =0 (mod q), and (t-00), =0 (mod r), (3.1)

then L; is unramified at v.

Since this result is so fundamental to the proof of Theorem 2 we provide a
Sketch of the proof of Proposition 3b: Tt is shown in [1] that L; is unramified
when

(t-0)y=(t-1), =(t-00), =0,

and v is not in V. Let K(1') C K(X) denote the inclusion of function fields
corresponding to the covering X — P;. Let @ be a place of K above v. Com-
pleting at a place P above (v, X), one obtains an inclusion of Puiseux series
fields:

K,((X)) € Lo((X/7)),

16



where L3/ K, is unramified. If (¢ - 0), is not zero, then Puiseux series evaluated
at X =t converge, and we have

(Le)o = Lo((t"/7)).

The condition (¢-0), =0 (mod p) implies that L; is unramified above v. A
similar argument holds if (¢ - 1), # 0 or (¢ - 00), # 0 (by localizing at (7" — 1)
and (1/T) respectively).

Proof of Theorem 2: Let (x,y, z) be a proper solution to the generalized Fermat
equation
Az? + By? = Cz", (2)

and take t = AxzP/Cz". The congruences in (3.1) are satisfied if v does not
divide A, B or C and so, by Proposition 3b, L; is unramified at any v ¢ Vapc
(the union of V' and the places dividing ABC).

Minkowski’s Theorem asserts that there are only finitely many fields with
bounded degree and ramification; and we have seen that each L; has degree
< d, and all of its ramification is inside Vipc. Thus there are only finitely
many distinct fields L; with ¢ = AaP/Cz" arising from proper solutions z,y, z
of (2); and therefore the compositum L of all such fields L is a finite extension
of Q.

Since the genus of X is > 1 and L is a number field, Faltings’ Theorem implies
that X (L) is finite. Therefore there are only finitely many proper solutions x, y, z
to (2), as X(L) contains all d points of 7~ !(AzP/By?) for each such solution.

This argument (with suitable modifications) also allows us to bound the
number of proper solutions in arbitrary algebraic number fields.

Our proof here is similar to that of the weak Mordell-Weil theorem: the role
of the isogeny of an elliptic curve is played here by coverings of P; — {0, 1, 00}
of signature (p,q,r), and Minkowski’s theorem is used in much the same way
(see [44]).

Theorem 2 may be deduced directly from the abc-conjecture. In fact, un-
ramified coverings of P; — {0,1,00} also play a key role in Elkies’ result [12]
that the abc-conjecture implies Mordell’s conjecture.

It is sometimes possible to be more explicit about the curve X and the
covering map 7, as we shall see in the next few sections.

4 Explicit coverings when 1/p+ 1/¢+1/r <1

The curve X (of the proof in section 3) can be realized as the quotient of the
upper half plane by the action of a Fuchsian group I'; that is, a discrete subgroup
of PSLy(R) with finite covolume. Actually X is quite special among all curves
of its genus, since it has many automorphisms. One can sometimes show that
these automorphisms uniquely determine X over C, and hence the curve X may
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be defined over Q using the descent criterion of Weil. Examples, in which even
the Galois action of I' is defined over Q, can be constructed using the rigidity
method (see [32]).

Those finite groups G which occur as Galois groups of such coverings are
said to be ‘of signature (p, ¢, r)’. Evidently such groups have generators «, 3,y
for which

()fp:ﬂq:')/r:(){ﬂ"/:l.

Because of the connection to the Fermat equation, it is natural to start with
coverings of signature (p,p,p), where p is an odd prime. Although we are far
from a satisfying classification of coverings of signature (p, p,p), we discuss the
construction of a few examples in the next two subsections, which lead to the
approaches of Kummer and Hellegouarch-Frey [He,Fr] for tackling Fermat’s Last
Theorem. In the third subsection, we extend the Hellegouarch-Frey method to
some other cases of the generalized Fermat equation, by exploiting coverings
coming from modular curves.

4.1 Solvable coverings of signature (p, p,p)

Let m: X — P be a covering of signature (p, p, p) with solvable Galois group
G. Let G' = [G,G] be the derived group of G, and let G := G/G’ be the
maximal abelian quotient of GG. In fact, 7 is an unramified covering of a quotient
of the pth Fermat curve:

Proposition. The group G is isomorphic either to Z/pZ or Z/pZ x Z/pZ.
The quotient curve F = X/G is isomorphic (over Q) to a quotient of the pth
Fermat curve. The map X — F' is unramified.

We may construct an example as follows: Let

TP _ C;

/p
m) fOI'].S’LSp—].

L=Q Tl/l’,<

be an extension of Q(T'), where ¢, is a primitive pth root of unity. The inclusion
Q(T) C L corresponds to a covering map 7 : X — Py of signature (p,p, p)
with Galois group

G = (Z/pZ)"~ xZ/pZ,

where the action of Z/pZ on (Z/pZ)P~' in the semi-direct product is by the
regular representation “minus the trivial representation” (i.e., the space of func-
tions on Z/pZ with values in Z/pZ whose integral over the group is zero). Note
that the action of G is defined over Q((,). The group G* is isomorphic to
Z/pZ x Z/pZ, and X is isomorphic to an unramified covering of the pth Fermat
curve with Galois group (Z/pZ)P~2. If a? + bP = ¢ is a non-trivial solution
of the Fermat equation, then setting ¢ = a?/b?, one finds that L; is the Galois
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closure of Q((p, (a — Cpc)l/p) over Q. A crude analysis shows that L:/Q({p)
is unramified outside the prime (1 — (;) above p. A clever manipulation (that
may require replacing X by a covering which is isomorphic to it over Q) and
a careful analysis of the ramification in L., leads to a contradiction by showing
that such an extension cannot exist when p does not divide the class number of
Q((p). This gives a (vastly over-simplified) geometric perspective of Kummer’s
approach to Fermat’s Last Theorem.

4.2 Modular coverings of signature (p,p,p)

Let X(N) be the modular curve classifying elliptic curves with full level N
structure. The curve X (2) of level 2 is isomorphic to Py, and has three cusps:
let ¢ be a function on X (2) such that t = 0,1, 00 at these cusps. The natural
projection

X (2p) — X(2)

is then a covering of signature (p, p, p) ramified over t = 0, 1, co. Its Galois group
PSL,(F,) is a non-abelian simple group. If a? + b = ¢ is a non-trivial solution
of the Fermat equation, then setting ¢t = a?/b?, one finds that ¢ corresponds (via
the moduli interpretation of X (2)) to the elliptic curve

V2= X(X — aP)(X +bP),

(or its twist over Q(7)). The field L; is then the field generated by the points
of order p of this curve; and so we recover the Hellegouarch-Frey strategy for
tackling Fermat’s Last Theorem (see also pages 193-197 of [22]).

4.3 Modular coverings of signature (p,q,r)

Wiles’ attack on Fermat’s Last theorem [38,46] uses the Hellegouarch-Frey ap-
proach via modular coverings, described above. Serre [33] has noted that this
analysis can be extended to certain other equations of the form z? + y? = czP.
In fact what they do is to study Galois representations in GL2(F,) arising out
of the p-division points of suitable elliptic curves. It is thus natural to prove the
following:

Proposition. Coverings X — Y of signature (p,q,r) can only arise as pull-
backs of the covering X (p) — X(1) (up to Q-isomorphism), via an auxiliary
covering ¢ : Y — X (1) where Y ~ Py, for the following such coverings ¢:
(2,3,p): The identity covering X (1) — X (1);

(3,3,p): The degree two Kummer covering of the j-line, ramified over j = 1728
and j = oo;
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(2,p,p): The covering Xo(2) — X (1), where ¢ is the natural projection;

(3,p,p): The degree two Kummer covering of the j-line, ramified over j = 0 and
j=1728;

(3,p,p): The covering Xo(3) — X (1), where ¢ is the natural projection;

(p,p,p): The covering X (2) — X (1), where ¢ is the natural projection.

Analogously to section 4b, we let ¢ € Y be the rational point arising from
a solution to the appropriate generalized Fermat equation. The curve corre-
sponding to ¢ (that is a curve with j-invariant ¢(t)) gives rise to a mod p Galois
representation with very small conductor, and one can hope to derive a contra-
diction from this.

The equations 2P +yP = 22 and 2P +y? = 2z%: Given a? + b” = 2, with (a, b, c)
proper, we consider the curve:

Y2 =X34+92X%+aPX

arising from the universal family over X((2). The conductor of the associated
mod p representation is a power of 2 (which can be made to divide 32, possibly
after rearranging a and b).

Given a? — b? = ¢3, with (a, b, ¢) proper, the classification result states that
there are two “Frey curves” that can be constructed. They are:

Y2 = X3®43cX?2+40"  and
Y2 = X3-3(9a" — WP)cX + 2(27a%P — 18aPVP — b?P).

The second comes from a universal family on Xg(3). Both curves give rise to
mod p Galois representations whose conductor can be made to divide 54, by
permuting a and b as necessary.

By analysing these representations (using a result of Kamienny on Eisenstein
quotients over imaginary quadratic fields [20]), the first author proved, in [7]:

Proposition. Let p > 13 be prime. If the Shimura-Taniyama conjecture is
true, then

(i) The equation zP + y? = z? has no non-trivial proper solutions when p = 1
(mod 4).

(ii) The equation zP + yP = 2% has no non-trivial proper solutions when p = 1

(mod 3) and p is not a Mersenne prime’.

The equation 23 + y3 = 2P: Inspired by Gauss’s proof that 2% + y® = 23 has
no non-trivial solutions over Q((3), where (3 is a primitive cube root of unity

6 A Mersenne prime is one of the form 29 — 1
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see [30], pages 42-45), we construct a “Frey curve” corresponding to a proper
30 42-45 truct a “F 3 ding t
solution (a, b, ¢) of

a+ 03 =P,

where p > 3 is prime: Since Q((3) = Q(v/—3) has class number one and a finite
unit group whose order is not divisible by p, we may factor the right hand side
of the equation above so that all three factors

a=a+b, B=Ca+¢, B=Ca+Ch

are pth powers in Q(v/—3), at least when 3 does not divide z. Furthermore,
they satisfy -
atB+A=0,

and hence give rise to a solution of Fermat’s equation of exponent p over
Q(v/=3). Unfortunately, the Hellegouarch-Frey approach does not apply di-
rectly to Fermat’s equation over number fields other than Q (in fact, (¢, (2, —1)
is a solution to ™ + y™ = 2" in Q(v/—3) when (6,n)=1).

On the other hand, following Hellegouarch-Frey, we can consider the elliptic
curve

Ep:y* =a(z - B)(z+P)

defined over Q(v/—3). Expanding the right hand side, the equation for Ef
becomes:

y? =2 — vV =3(a — b)x?* + (a® — ab + b*)x.
Although this curve is not defined over Q, a twist of E; over Q((—3)'/4) is:

E:y? =2%43(a—b)x? +3(a® — ab + b?)z.

The j-invariant and discriminant of E are:

313
a°b

j=2%3% —, A =233

c4pP

The conductor of the mod p representation associated to E can be shown to
divide 2432, and 54 if ¢ is even. An analysis very simlar to the one in [7] shows
that this representation cannot exist when c is even, and hence

Proposition. Let p > 13 be prime. If the Shimura-Taniyama conjecture is
true, then an even pth power cannot be expressed as a sum of two relatively
prime cubes.

The equation 22 +y3 = 2P: When a? 4+ b? = ¢P, the corresponding “Frey curve”
is
y? = 2% 4 3bz + 2a,

which has discriminant 1728¢P; and the conductor of its associated Galois rep-
resentation divides 1728. Because of the rather large conductor, the analysis
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along the lines of the previous section seems rather difficult. In fact, the equa-
tion 22 4+ y3 = 27 does have a few proper solutions, including three rather large
ones (mentioned in the introduction in connection with the Fermat-Catalan
conjecture).

The proper solutions (a,b,c) = (3,—2,1), (2213459,1414,65),
(21063928, —76271,17) lead to the following (possibly twisted) “Frey curves”,
each with conductor 864c:

y? = 2°—3z+46, y? = 23 4 16968z + 35415344,
and y? = 2% — 228813z — 42127856, respectively.

These have isomorphic Galois representations on the points of order 7. The
“Frey curve” corresponding to the proper solution (15312283, 9262, 113) is

y? = 2® + 27786z + 30624566.

The associated representation on the points of order 7 is isomorphic to that
of the curve y? = % — 3z, which has complex multiplication by Z[i]. Since 7
is inert in Z[é], this mod 7 representation maps onto the normalizer of a non-
split Cartan subgroup of GLy(F7). These examples address a question posed
by Mazur in the introduction of [27]. (Other examples of isomorphic mod 7
representations are given in [21]. We actually need to use the main theorem
of [21] to prove what is asserted above. We are unable to check whether our
isomorphisms are symplectic — that is that they preserve the Weil pairing.)
Recently, Noam Elkies has proved that there are infinitely many pairs of non-
isogenous elliptic curves over Q giving rise to isomorphic Galois representations
on the points of order 7.

The large solutions of 224 y3 = 2% may similarly be used to construct non-
isogenous elliptic curves with isomorphic Galois representations on the points
of order 8 (which we leave to the reader).

5 The generalized Fermat equation in function
fields, and the abc-conjecture

In most Diophantine questions it is much easier to prove good results in function
fields (here we restrict ourselves to C[t]): In section 5a below we show that (2)
has no proper C|[t]-solutions when 1/p+ 1/¢+ 1/r < 1. On the other hand, in
section 7, we will exhibit proper CJt]-solutions of (2) for each choice of p,q,r
with 1/p+1/qg+ 1/r > 1 (all of this was first proved by Welmin [45] in 1904;
and re-proved by an entirely different method by Silverman [35] in 1982).

The proof of this result stems from an application of the abc-conjecture for
CJt], which is easily proved. Its analogue for number fields is one of the most
extraordinary conjectures of recent years, and implies many interesting things
about the Generalized Fermat equation (which we discuss in sections 5b and 9).
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It is typical, in the theory of curves of genus 0 and 1, that if one finds a
rational point, then it can be used to derive infinitely many other such points
through some geometric process (except for ‘torsion points’). However, it is not
clear that new points derived on the curves corresponding to (2) will necessarily
lead to new proper solutions of (2). In section 5¢ we discuss a method of deriving
new proper solutions by finding points on appropriate curves over C[t].

5.1 Proper solutions in function fields

Liouville (1879) was the first to realize that equations like (2), in C[t], can be
attacked using elementary calculus. Relatively recently Mason ([25], but see
also [36]) recognized that such methods can be applied to prove a very general
type of result, the so-called ‘abc-conjecture’. A sharp version of Mason’s result,
which has appeared by now in many places, is

Proposition 5a. Suppose that a,b,c € Clt] satisfy the equation a +b = ¢,
where a,b and ¢ are not all constants, and do not have any common roots.
Then the degrees of a,b and c are less than the number of distinct roots of
a(t)b(t)c(t) = 0.

Proof: Define w(t) = [],pe(s)_0(t —9)- Since a+b =c, thus a’ +b" = ¢’ (where
each y’ means dy/dt), which implies that

aw(log(a/c)) + bw(log(b/c))’ w(a(loga) + b(logh) — (a + b)(loge))
= wd +b-c)=0.

Therefore a divides bw(log(b/c))’, and so a divides w(log(b/c))’ since a and b
have no common root. Evidently w(log(b/c))’ # 0 else b and ¢ would have
the same roots, which by hypothesis is impossible unless b and ¢ are both con-
stants, but then a,b and ¢ would all be constants, contradicting the hypoth-
esis. Therefore the degree of a is at most the degree of w(log(b/c))’. How-
ever if b/c = [[y.5)—0(t — 6)® then (log(b/c))" = > 4.5 -0 €s/(t — ), so that
w(log(b/c)) is evidently an element of C[t] of lower degree than w. This gives
the result for a, and the result for b and ¢ is proved analogously.

Applying this to a solution of (2) proves a strong version of our ‘Fermat-
Catalan’ conjecture for CJt]: Take a = AzP,b = By,c = Cz", to get pdeg(x),
qdeg(y), rdeg(z) < deg(zyz) and so 1/p+1/q+1/r > 1.

The proposition above (and even the proof) may be generalized to n-term
sums (see [25], [5] and [43]): From Theorem B of [5] we know that if y1,y2,...yn
are non-constant polynomials, without (pairwise) common roots, whose sum
vanishes, then ﬁ deg(y;) is less than the number of distinct roots of y1y2 . . . yn,
for each j. Proceeding as above we then deduce:

Proposition 5b. If p1,po,...,p, are positive integers with

Ipr+1/p2+...+1/pn <1/(n—2),
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then there do not exist non-constant polynomials x1, 2, ...y, without (pair-
wise) common roots, such that x{* + 25* + ... +aP» = 0.

5.2 The abc-conjecture for integers, and some consequences

Proposition ba, and particularly its formulation, have influenced the statement
of an analogous ‘abc—conjecture’ for the rational integers (due to Oesterlé and
Masser):

The abc-conjecture. For any fixed € > 0 there exists a constant k. > 0 such
that if a + b = ¢ in coprime positive integers then

¢ < ke Gla,b,e)'™™,  where G(a,b,c) = Hp divides abc P

Fix e = 1/83, and suppose that we are given a proper solution to (2) in
which all terms are positive. Then

G(aP,y?,2") < zyz < ‘mp|1/p|yq‘1/q|zr‘1/r < |ZT‘1/p+1/q+1/r < \z’"|41/42,

since 1/p+ 1/q+ 1/r < 41/42. Therefore, by the abc-conjecture we have 2" <
/1513:/"83, and thus the solutions of (2)" are all bounded. This implies the ‘Fermat-
Catalan’ conjecture; and indeed this argument may be extended to include all
equations (2) where the prime divisors of ABC come from some fixed finite set
(see [40]).

In [12] Elkies succeeded in applying the abc—conjecture (suitably formulated
over arbitrary number fields) to any curve of genus > 1, and deduced that the
abc—conjecture implies Faltings’ Theorem. His proof inspired some of our work
here, particularly Theorem 2.

The following generalization of the abc—conjecture has been proposed for
equations with n summands; implying a result analogous to Proposition 5b:

The generalized abc-conjecture. For every integer n > 3 there is a constant
T'(n) such that for every T" > T'(n), there exists a constant k7 > 0, such that
ifzy +22+ ... 4+ 2z, = 0 in coprime integers zi,zs,...,Z,, and no subsum
vanishes, then

T
max; |z;| < Kr (Hp\mlzg...zn p)

5.3 Generating new proper integer solutions when 1/p +
1/g+1/r>1

Given integers p, ¢, we wish to find f(t), g(¢), h(t) € Z[t] \ Z, without common
roots, for which

tf(t)? + (1 =t)g(t)? = h(t)", (5.1)
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and the degrees of f(t)P, g(t)? and h(t)" are equal (to d, say). Applying Propo-
sition ba to any such solution, we determine that d+1 < d/p+d/q+ d/r + 2,
andso 1/p+1/q+1/r>1.

Now if we find a solution to (5.1), let

F(u,v) = o¥P f(u/v), Gu,v) = v¥%g(u/v), and H(u,v) = v h(u/v).
Then, given any solution z,¥, z to (2), we derive another one:
X =zF(u,v), Y =yG(u,v), Z = zH(u,v), (5.2)

where u = AaP and v = Cz".

If x,y,2 had been a proper solution to (2), so that (u,v) = 1, then k =
(AXP?, BY?) = (uF(u,v)?,vG(u,v)?) which divides K = (u, G(0,1)?)(F(1,0)?,v)
Resultant(f, g). Thus k is easily determined from the congruence classes of u
and v (mod K). We may thus divide out an appropriate integer from each of
X,Y and Z to get a proper solution, provided k is a [p, ¢, r]th power.

We measure the ‘size’ of a solution of (2) by the magnitude |2Py?z"|. Thus
our new proper solution is larger than our old proper solution unless
| XP/k||Y/k||Z" k| < |2Pyiz"|, that is |FP/k||G?/k||H" /k| < 1. Since each
term here is an integer, this implies that either one of them is zero, or else
they are all equal in absolute value. Thus either f(u/v)g(u/v)h(u/v) = 0, or
flu/v)P = g(u/v)? = h(u/v)" using (5.1) (here we do not allow u = v or u = 0
since they would both imply zyz = 0).

5.4 Number fields in which there are infinitely many so-
lutions

In section 7 we will give values of a, b, ¢ for which az? + by? = ¢z" has a para-
metric solution, for each choice of p,q,r > 1 with 1/p+1/¢+1/r > 1. Now
azP is a pth power in Q(a'/?,b'/4,¢'/") (similarly by? and cz”), so we have
a parametric solution, in this field, to 2P + y? = 2z". Then, given any choice
of coprime A, B, C, we can certainly choose the parameters in an appropriate
number field so that A divides zP, B divides y? and C divides z". This thus
leads to a number field in which there are infinitely many solutions of (2).

In the last subsection we described a technique that allowed us, given one
proper solution to (2), to generate infinitely many (except in a few easily found
cases), provided one has an appropriate solution to (5.1). In section 6 an ap-
propriate solution will be found whenever 1/p + 1/¢ 4+ 1/r = 1. Thus given
algebraic numbers x, y, chosen so that C divides AxP 4+ By4, we can find z from
(2), and then get infinitely many solutions to (2) by the method of (5.1). If our
original choice of x,y lies in the torsion of the method of section 5c, then we
may replace x by any number = z (mod C) (and similarly y by any number
=y (mod C)) and it is easily shown to work for some such choice.
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For any F(X,Y) and m satistying the cases (i)—(vi) of Theorem 1, we claim
that there are number fields K in which (1) has infinitely many proper K-
integral solutions. To see this start by taking K to be a field which contains
c'/™ as well as the roots of F(t,1) = 0. Then we shall try to select X and Y so
that each of the factors in cases (i)—(vi) is itself an mth power.

In (i) we can determine X and Y directly from the two linear equations
X —aY =u™, X — Y = o™, where u and v are selected to be coprime with
each other and 3 — «, but with v — u divisible by § — a.

In each of the cases (iii)—(vi) we get three linear equations in X and Y, which
we can assume are each equal to a constant times an appropriate power of a new
variable. Eliminating X and Y by taking the appropriate linear combination of
the three linear equations, we get to an equation of the form (2), with 1/p +
1/¢+1/r > 1. Just above we saw how to find number fields in which there are
infinitely many proper solutions to such equations.

The only case not yet answered arises from case (ii) of Theorem 1, defining
an equation (2) with m = 2 and F quartic. Select z and y to be large coprime
integers and z = \/F(z,y); by the appropriate modification of the Lutz-Nagell
Theorem, we see that these can certainly be chosen to get a non-torsion point
on the corresponding curve. Taking multiples of this point we get an infinite
sequence of solutions to 22 = F(z,y) in the same field. As in section la we may
replace x and y by appropriate multiples, to force (z,y) to belong to a certain
finite set of ideals; and thus find proper solutions (we leave it to the reader to
show that these must be distinct).

6 The generalized Fermat equation when 1/p +
l/g+1/r=1

In each of these cases the proper solutions to (2) correspond to rational points
on certain curves of genus one. The coverings X are well-known, and are to
be found in the classical treatment of curves with complex multiplication: in
fact, it has long been known that the equations P + y9 = 2" with zyz # 0 and
1/p+1/q+ 1/r = 1 have only one proper solution, namely 3% + 1 = 23. Our
discussion here is little more than a reformulation of the descent arguments of
Euler and Fermat, from their studies of the Fermat equation for exponents 3
and 4.

In looking for appropriate solutions to (5.1), we note that we may look for
suitable Q[t]-points on the genus one curve E; : tf(t)P + (1 — t)g(¢t)? = 1
(taking r = 3,6 and 4 below, respectively), which we will be able to find by
taking multiples of the point (1,1). Thus, except in a few special cases, any one
proper solution to (2) gives rise to infinitely many.
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6.1 Ax®+ By? = Cz*: The Fermat cubic

The elliptic curve £ : v3 = «® — 1 has j-invariant 0 and complex multiplication
by Q(v/=3). It has no non-trivial rational points, as was proved by Euler in
1753 (though an incomplete proof was proposed by Alkhodjandi as early as
972). In fact the proper solutions to the equation

A + By +C2* =0

correspond to rational points on a certain curve of genus 1, which is a principal
homogeneous space for E.

In 1886, Desboves [9] gave explicit expressions for deriving new proper solu-
tions from old ones (essentially doubling the point on the associated curve). In
fact these identities correspond to doubling the point (1,1) on E; getting

tt—2)° + (1 —t)(1+1)% = (1 —2t)%

Thus if we begin with a solution (x,y,z) of Az3 + By? = Cz3 then we have
another solution to AX3 + BY3 = CZ2 given by

X=z(u—-2), Y=ylut+v), Z=zv-—2u)

where u = Az® and v = C2z3 (and k = (3,u + v)3). All cases where this
fails to give a larger proper solution correspond to the point (£1,+1,41) on
23+ % =223,

6.2 Az’ + By = 02°: Another Fermat cubic

The elliptic curve E : v2 = 43 — 1 also has j-invariant 0. The map 7 : E — P;
defined by 7(u,v) = u® = t has degree 6 and signature (3,2,6). The points
t = y3/25 in P1(Q) derived from proper solutions of 22 = 3% — 25 are in a
natural 1 — 1 correspondence with the points (u,v) = (y/z2,2/2%) in E(Q).
Euler showed that F(Q) has rank 0, and hence 22 = y* — 2% has no non-trivial
proper solutions. One can similarly look at rational points on twists of the curve
E, when considering Az? = —By® + C2°.

In fact Bachet showed that, other than 32 — 23 = 1 there are no non-trivial
proper solutions to 22 — y3 = 26.

Quintupling the point (1,1) on E; we get
(1244680111 —936090t10+10983600t"—151723125t5 508608720t "+354569562015 —
12131026560t5+27834222375t* 37307158200t +27119434230t2— 10331213040t
+1937102445)2+ (1 — ) (t8 — 20887 +64908t° + 21384¢5 + 1917270t* — 5616216t3
+7007148t% — 4251528t + 531441)3 = (5t* 4 360t> — 1350t + 729)°.

A straightforward computation gives that & is always the sixth power of an
integer dividing 283%. All cases where this fails to give a larger proper solution
correspond to the points (£1,1,41) on 4y® — 322 = 26, and (£3,2,41) on

22 —y3 =26,
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6.3 Ax*+ By* = Cz?: The curve with invariant j = 1728

Fermat’s only published account of his method of descent was his proof, in
around 1636, that there are no non-trivial proper solutions to z* + y* = 22,
thus establishing his Last Theorem for exponent 4. In 1678 Leibniz showed that
z* — y* = 22 has no non-trivial proper solutions.

The elliptic curve E : v?2 = u® — u has j-invariant 1728 and complex multi-
plication by Q(v/—1). The map 7 : E + P; defined by 7(u,v) = u? = t has
degree 4 and signature (4,2,4). The points t = z*/y* in P1(Q) derived from
proper solutions of z% — y* = 22 are in a natural 1 — 1 correspondence with the
points (u,v) = (22 /y?, 22/y®) in E(Q); and one can easily show that F(Q) has
rank 0.

Tripling the point (1,1) on E; we get

t(t? +6t —3) + (1 —t)(t* — 28t3 + 612 — 28t + 1)* = (3t — 6t — 1)*.

A straightforward computation gives that k is always the fourth power of an
integer dividing 8. All cases where this fails to give a larger proper solution
correspond to the point (1,1,1) on o 4 y* = 222.

7 The generalized Fermat equation when 1/p +
1/g+1/r>1

In each of these cases the proper solutions to (2) correspond to rational points on
certain curves of genus zero. Sometimes we can write down equations for Galois
coverings of signature (p, ¢, r), which may allow us to exhibit infinitely many
proper solutions to (2): To each such (p, ¢, ) we will associate a certain (explicit)
finite subgroup I' of PGL3, corresponding to the symmetries of a regular solid.
The covering 7 is then given by the quotient map = : Py — P1/I'; and we may
write down equations for w over Q, even though the action of I' may not be
defined over Q. Rational points on these coverings will then lead to infinitely
many proper solutions to (2).

It is easy to show that there are infinitely many proper solutions of every
equation aP 4+ y? = 2" with 1/p+1/q+ 1/r > 1. If two of the exponents are
2 then the solutions are easy to parametrize; small examples in the other cases
include:

113 + 373 = 2282, 1433 +433% =42*, 3% +46% =13% and 10% +3° =75,

7.1 Az? + By? = Cz": Dihedral coverings

The dihedral group I' = Dy, = (0,7 : o = 72 = (07)? = 1) of order 2r, acts

ont € X = P by the actions o(t) = (,t and 7(t) = 1/t, where (, is a primitive
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rth root of unity. The function (" + ¢ ")/4 generates the field of invariants of
I', and so

ma2,: X — Py defined by w2, (t) = (t" +t77)%/4

is a covering map of signature (2,2,7) with Galois group I'. One can recover
the parametric solution (" +1)? — (" — 1)? = 4¢" from 7.

Parametric solutions to 2432 = 2" may be obtained by defining polynomials
x and y from the formula z(u,v) + iy(u,v) = (u + iv)", with z = u? + v2.
Parametric solutions to 2% +y? = 2" may be obtained by taking (u” +2"~2v")? —
(u" — 2"72v")? = (2uv)". In each case we get proper solutions whenever v is
even and (u,v) = 1.

To obtain a solution to (5.1), define polynomials f and h by h — Vtf =
(1— V1)1 — VE(1 —1))?" so that tf2+ (1 —t)(1 — t(1 —£)2)2" = h2. With some
work we find that, in all cases, k = 1 and our new proper solution is larger than
our old one.

7.2 Ax® + By? = Cz%: Tetrahedral coverings

The group of rotations, I', which preserve a regular tetrahedron, is isomorphic
to the alternating group on four letters. The covering map of degree 4,

m:X — Py defined by m(t)=—(t—1)3(t—9)/64¢

has signature (3,2,3), since 1 — my(t) = (¢t — 6t — 3)2/64t. Let X be the
Galois closure of X' over Py. Since the covering map mp : X — X " must be
cyclic of degree 3, and ramified at both 0 and 9 € X ", we may define it by
m2(u) = 9/(1 — u3). The composition covering map 7233 =m om : X — P
is then given by

(u® + 8)3u?

B Cl )i _ (200 8)?
64(ud — 1)3

772,373(11,) so that 1— 71'27373(’[1,) = 64w —1)7

The general solution to 22 + y® = 22 splits into two parametrizations:
r =a(a® —8b3)/t%, y = 4b(a® + b3)/t%, z = (a® + 20a3b® — 8b5) /13,
where (a,b) =1, a is odd and ¢ = (3,a + b) (due to Euler, 1756); and
r = (a* +6a%b? — 3b*) /12, y = (3b* + 6ab> — a*)/t?, z = 6ab(a* + 3b*)/t3,
where (a,b) = 1, 3 doesn’t divide a, and t = (2,a + 1,0+ 1) (due to Hoppe,
1859).

One obtains infinitely many proper solutions of 2% + y® = Cz? by taking
ab = Ct? even, with (a,b) = 1 and 3 not dividing a, in Euler’s identity
(6ab + a® — 3b%)3 + (6ab — a® + 3b?)3 = ab{6(a® + 3b%)}>.
Moreover Gerardin (1911) gave a formula to obtain a new solution from a given
one:

(a® + 4b%)3 — (3a?b)® = (a® + b%)(a® — 8b%)2.
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A solution to (5.1) is given by
t(=7 — 42t +t2)3 + (1 — t)(1 4 109t — 1092 — 13)% = (1 — 42t — 7t2)5.

The prime divisors of k£ can only be 2 and 3; but k is not necessarily a sixth
power; so proper solutions do not necessarily lead to new proper solutions of
the same equation.

7.3 Az?+ By? = Cz*: Octahedral coverings

The group of rotations, I, which preserve a regular octahedron (or cube), is
isomorphic to the permutation group on four letters. A map w234 : P17 — Py
of signature (2, 3,4) can be obtained by considering the projection Py — P4 /T,
so that m 3 4 has degree |T| = 24. However we may obtain an equation for m2,3,4
without explicitly finding the I'-invariants or even writing down the action of I,
by observing that one can take m2 3.4 = ¢ - 72 3,3, where ¢ : Py — Py is a map
of degree 2 for which

o(1) =00, ¢(0)=¢(c0) =0, and ¢ is ramified over 1.
The only function ¢ with these properties is ¢(t) = —4t/(t — 1), so that

2l — ) 4 8)°
(u8 — 20u? — 8)*

6 6 3_8))2
and 1—mo34(u) =l (t?tﬁ)gotgi)“ =

m2,3,4(u) =

We have a parametric solution to 22 + 3% = 2% by taking A = a*, B = b*
and C =4A — 3B in
C2(16A% + 408AB + 9B2)% + (144AB — C?)° = AB(24A + 18B)*.
This leads to a proper solution if b is odd, 3 does not divide a, and (a, b)
We have a parametric solution to z2 4+ y* = 23 by taking P = p?, Q =¢% i
16PQ(P — 3Q)?(P? + 6PQ + 81Q%)2(3P? + 2PQ + 3Q%)? + (3Q + P)*(P? -
18PQ +9Q%)* = (P2 — 2PQ + 9Q%)3(P?% + 30PQ + 9Q?)3.

1.

heR=

This leads to a proper solution if p 4+ ¢ is odd, 3 does not divide p, and
(p,q) = 1. There is an easy parametric solution to 108z* + ¢ = 22 gotten by
taking U = u*, V =0*in
108UV (U + V)* + (U? — 14UV + V?2)3 = (U3 4+ 33U%V — 33UV? — V3)2,

This leads to a proper solution if uwv is even and (u,v) = 1.

7.4 Az?+ By = C2°: Klein’s Icosahedron

We follow [19] (p. 657) in describing Klein’s beautiful analysis of 2% 4+ y® = 2
The group of rotations, I', which preserve a regular icosahedron, is isomorphic
to the alternating group on five letters. A map mp 35 : P1 — Py of signature
(2,3,5) can be obtained by considering the projection Py — P, /I, with T’

5.
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thought of as a subgroup of PGL>. The ramification points of order 2,3 and
5 occur, respectively, as the edge midpoints, face centers, and vertex points, of
the icosahedron.

The zeroes of z(u,v) = uv(u'? + 11uv° — v!%) in P1(C) lie at u/v =0, <
7112[\/5 e2imj/5

and , corresponding to the twelve vertices of the icosahedron

under stereographic projection onto the Riemann sphere. The homogeneous
polynomials

1
y(u,v) = 1 det(Hessian(z(u,v))) and z(u,v) =

are invariant under the action of the icosahedral group. They satisfy the icosa-
hedral relation z(u, v)? + y(u,v)® = 17282 (u, v)® leading to Klein’s identity,

(a® + 522a°b — 10005a*b* — 10005a%b* — 522ab° + b°)?
—(a* — 22843 + 494a%b* 4 228ab> + b*)® = 1728ab  (a® + 11ab — b?)°.

This gives proper solutions to x2 + y* = Cz°, if we take ab = 144Ct®, with
ged(a,b) =1 and a Z 2b  (mod 5).

The factor 1728 = 123 which appears above is familiar to amateurs of modu-
lar forms (it appears in connection with the modular function j). Klein observed
that this is no accident, since our icosahedral covering can be realized as the cov-
ering of modular curves X (5) — X (1), where X (1) is the j-line (and, indeed,
our tetrahedral and octahedral coverings above can be realized as the coverings
X(3) — X (1) and X (4) — X (1), respectively).

8 The ‘class group’ obstruction to a ‘local-global’
principle

If 3 does not divide ab then z = (a® +29b%)/3, x = az, y = bz is a solution to
2% 4+ 29y = 323, (8.1)

Taking a = b=1gives x =y = z = 10; taking a = 2,0 =1 gives x =22, y =
z = 11. For every prime p at least one of these two solutions has no more than
one of z,y, z divisible by p; that is there exist ‘proper local solutions’ to (8.1)
for every prime p. So are there any proper solutions ‘globally’ ?

Suppose that we are given a proper solution to (8.1). Factor (8.1) as an ideal

equation:
(z +V=29y)(z — V-29) = (3)(2)°.

G = (v ++v—29,x — /—29y) divides (2z,2v/—29y,32%) = (2, ), which equals
1; since if z were even then z and y must both be odd, and so (8.1) would give
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1+29=0 (mod 8), which is false. Thus G = 1 and so (choosing the sign of y
appropriately),

(z+vV-29y) = (3,1 +v=29)¢3 and (v —/=29y) = (3,1 — v/=29)¢,

where (¢ = (z). This implies that the ideal classes which (3,1 £+ +/—29)
belong to, must both be cubes inside the class group C of Q(v/—29). However
this is false since they both are generators of C, which has order 6. Therefore
(8.1) has no proper solutions, indicating that the ‘local-global’ principle fails.

It is not too hard to generalize this argument to get ‘if and only if’ conditions
for the existence of proper solutions to (2); especially for carefully chosen values
of A, B,C and r. We prove

Proposition. Suppose r > 2, and b and c are coprime positive integers with
b=1 (mod 4) and squarefree, and ¢ odd.

i) There are proper integer solutions to z% + by? = cz" if and only if there exist
coprime ideals J, J_ in Q(v/—b) with J,J_ = (c), whose ideal classes are rth
powers inside the class group of Q(v/—b).

ii) There are proper local solutions to 2% +by? = cz" at every prime p if and only
if the Legendre symbol (—b/p) = 1 for every prime p dividing ¢; and, when r is
even we have (¢/p) = 1 for every prime p dividing b, as well asc¢ =1 (mod 4).

Proof: Given proper integer solutions to z2 +by? = cz", the proof of i) is entirely
analogous to the case worked out above. In the other direction, if the ideal class
of Jy is an rth power we may select an integral ideal (} for which J (7} is
principal, = (z + v/—by) say. Then (22 + by?) = (cz") where (z) =Norm((,),
and the result follows.

In (ii) it is evident that all of the conditions are necessary. We must show
how to find a proper local solution at prime p given these conditions: It is well
known that if prime p does not divide 2bc then there is a solution in p-adic units
z,y to 22 + by? = ¢ and so we can take (z,y,1). It is also well known that if
prime p is odd and (—b/p) = 1 then there is a p-adic unit = such that 22 = —b,
and so we take (z,1,0). Similarly if (¢/p) = 1 then there is a p-adic unit = such
that 22 = ¢, and so we take (z,0,1). If  is odd and p does not divide ¢ then
we may take (c("T1/2,0,¢). Finally if r is even and ¢ =5 (mod 8) then there
is a p-adic unit z such that 22 = ¢ — 4b, so we take (z,2,1).

The conditions for proper integer solutions, given above, depend on the
value of (r, h) where h is the class number of Q(y/—b). On the other hand the
conditions for proper local solutions everywhere, given above, depend only on
the parity of r. The local-global principle for conics tells us that these are the
same for r = 2; it is thus evident that the conditions are not going to co-incide
if (r,h) > 3.

The techniques used here may be generalized to study when the value of
an arbitrary binary quadratic form is equal to a given constant times the rth
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power of an integer. The techniques can also be modified to find obstruc-
tions to a local-global principle for equations 22 4+ by* = cz3; and probably
to 22 + by® = cz2. On the other hand there are never any local obstructions
for equations Az? + By?® = Cz® which have A, B, C pairwise coprime: If p does
not divide AB or AC or BC, then we can take (AB%, —AB,0) or (A2C3,0, AC)
or (0, B3C?, B2C), respectively. Could it be that such equations always have
proper integer solutions ?

9 Conjectures on generalized Fermat equations

9.1 How many proper solutions can (2) have if 1/p+1/q+
/r<1?

It is evident that any equation of the form
(yizp —y321) 2¥ + (212h — 22) y? = (2] —2703) 27

has the two solutions (z;,y;, z;). If there are three solutions to an equation (2)
then we may eliminate A, B and C' using linear algebra to deduce that

p,4q.,r p,q9.,r p,q9.r _ ,.P,49.,7 p,4q.r p,4.,r
T1Yp23 + ToYs32y + TaYi2y = T Y329 + TolY123 + T3Ys21-

If 1/p+1/q+1/r is sufficiently small then the generalization of the abe-conjecture
(see section 5b) implies that this has only finitely many solutions. Thus there
are only finitely many triples of coprime integers A, B,C for which (2) has
more than two proper solutions. (Bombieri and Mueller [3] proved such a result
unconditionally in C[t], since [5] and [43] provide the necessary generalization
of the abc-conjecture).

If n = p = q = r, then it is easy to determine A, B, C from the equation
above. In fact Desboves [8] proved that the set of coprime integers A, B,C
together with three given distinct solutions to Az™ + By™ = Cz™, isin 1 — 1
correspondence with the set of coprime integer solutions to

48"+t =u" + 0" +w" with  rst = uvw,

where {r",s",t"} N {u™,v",w"} = (. Applying a suitable generalized abc-
conjecture to this we immediately deduce: There exists a number ng such that
If n > ng then there are at most two proper solutions to Ax™ + By™ = Cz"
for any given non-zero integers A, B,C. Moreover there exist infinitely many
triples A, B, C' for which there do exist two proper solutions.

9.2 Diagonal equations with four or more terms

The generalized abc-conjecture implies that

a1zt +axh? + ...+ apzt =0
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has only finitely many proper K-integral solutions, in every number field K,
if > ;1 /p; is sufficiently small. Here are a few interesting examples of known
solutions to such equations:

i) Ryley proved that every integer can be written as the sum of three rational
cubes”. For example, Mahler noted that 2 = (1 + 6¢%)3 + (1 — 6¢%)3 — (6t2)3.
Ramanujan gave a parametric solution for z® + 33 + 23 = 3

(3a® 4 5ab — 5b%)% + (4a® — 4ab + 6b%)3 + (5a* — 5ab — 3b*) = (6a* — 4ab + 4b%)3.

Examples include 32 4 43 + 5% = 63, and Hardy’s taxi-cab number 12 + 123 =
9% +103.
ii) Taking v = (2, — Yn)/2, v = Y, where

(zn+yn¢?s) _ (5+¢?3)” i
2 - 2 9
Diophantos’s identity

ut + ot + (u+v)* = 2w 4w 4+ 0?)?, (9.1)

gives proper solutions to a* + b* + c* = 2d”; specifically,

Ty + 4 Ty — 4
( nzyn> +< nzyn> +y:11:2><72n. (9.2)

iii) BEuler gave the first parametric solution to z*+y* = a*4b*, in polynomials of
degree seven; an example is 59*+158* = 133%4-134%. By a sophisticated analysis
of Demjanenko’s pencil of genus one curves on the surface t* +u*+v* = 1, Elkies
[11] showed that there are infinitely many triples of coprime fourth powers of
integers whose sum is a fourth power®, the smallest of which is

95800* 4 217519% + 414560* = 422481*.

iv) In 1966 Lander and Parkin’s gave the first counterexample to Euler’s con-

jecture,
275 + 845 4+ 110° + 133° = 144°.

In 1952 Swinnerton-Dyer had shown how to give a parametric solution to a® +
B 4+ ¢c® = 25 + ¢ + 25; a small example is 49° + 75° + 107° = 39° + 92° + 100°.
iv) In 1976 Brudno gave a parametric solution to a® + b5 + ¢® = 2% + 95 4 26
of degree 4; a small example is 35 + 195 4 226 = 105 + 15° + 235, We do know

of various examples of
Axd 4+ By* + C2* = Duw™, (4)

with infinitely many proper solutions and 1/j + 1/k + 1/¢+ 1/m small:

"which appeared in The Ladies’ Diary (1825), 35.
8radically contradicting Euler’s Conjecture that, for any n > 3, the sum of n — 1 distinct
nth powers of positive integers cannot be an nth power.
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a) (9.2) is an example of an equation (4) having infinitely many proper solutions,
with 1/j + 1/k + 1/¢ + 1/m arbitrarily close to 3/4. We can also get this by
taking u = 2P and v = y? in (9.1).

b) In section 6 we saw how to choose A, B, C, for any given 1/p+1/q+1/r =1,
so that there are infinitely many proper solutions to (2). Substituting u = Ax?
and v = By? of (2) into Diophantos’s identity (9.1), we obtain infinitely many
proper solutions of some equation (4) with exponents (4p,4q,4r,2), so that
1/ +1/k +1/6 +1/m = 3/4.

¢) By taking t = 22" in the identity (t+1)%— (t—1)® = 6t +2, we get infinitely
many proper solutions to o3 + y3 = 242%™ 4+ 2w™; here 1/j + 1/k + 1/ +1/m
is arbitrarily close to 2/3.

d) Elkies [13] points out that by taking t> +¢ — 1 = u? and t> —t — 1 = Av?,
whenever this defines an elliptic curve of positive rank (for instance when A = 5),
in the identity (t2 +¢ — 1)3 + (#* —t — 1)2 = 2(t® — 1), we obtain infinitely
many proper solutions to some equation (4) with 1/j + 1/k+ 1/ +1/m =
1/6+1/6+1/6+1/6=2/3.

e) Elkies [13] also points out that Y _._; a((az)? + 2(ax) — 2)5 = 0. Thus, by
taking 22 4+ 2z — 2 = ay? and 22 — 2z — 2 = bz? whenever this defines an elliptic
curve of positive rank over Q(i), we obtain infinitely many proper solutions in
Z][i] to some equation (4) with 1/j+1/k+1/(+1/m =1/104+1/10+1/5+1/5=
3/5.

f) If we allow improper solutions, that is where pairs of the monomials in (4)
have large common factors, then one can get 1/5 + 1/k + 1/¢ + 1/m arbitrarily
close to 1/2 from the identity 22" + 2(zy)" + y*" = (2™ + y™)2.
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