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Abstract
Let f be a primitive positive integral binary quadratic form of discriminant −D, and
let rf (n) be the number of representations of n by f up to automorphisms of f . In this
article, we give estimates and asymptotics for the quantity

∑
n≤x rf (n)β for all β ≥ 0

and uniformly in D = o(x). As a consequence, we get more-precise estimates for the
number of integers which can be written as the sum of two powerful numbers.
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1. Introduction and statement of results

1.1. Overview of the main questions and results
Let −D < 0 be a fundamental discriminant. Bernays [2, pages 91 – 92], generalizing
Landau’s famous result for −D = −4, showed that there are ∼ κDx/

√
log x distinct

integers ≤ x which are represented by any given binary quadratic form f (y, z) :=
ay2 + byz + cz2 of discriminant −D, as x → ∞; here κD depends only on D and not
on f and is neither very big nor very small. (In fact, κD = Do(1).)

On the other hand, it is easy to show that there are � x/
√

D pairs of integers
m, n for which |f (m, n)| ≤ x; and since x/

√
D = o(Do(1)x/

√
log x) whenever

D > (log x)1+ε , we see that Bernays’s asymptotic cannot hold until x is surprisingly
large; that is, x > exp(D1−ε). This is quite different from linear forms, in which case
the formula #{n : 0 ≤ a + nD ≤ x} ∼ x/D holds once x/D → ∞. It is also quite
different from the number of primes represented by f ; this count should settle down
to its asymptotic formula once x is larger than some fixed power of D (assuming a
suitable Riemann hypothesis).

Our main concern is to give good estimates for the number of distinct integers at
most x which are represented by f in all ranges of x with a particular focus on the
transitional ranges, where x goes from exp(Dε) to exp(DN ), where ε > 0 is small and
N is large, determining how this count changes behaviour. Let h be the class number of
Q(

√−D), and let g be the number of genera. We let � = �−D := L(1, χ−D)(φ(D)/D),
and we create a parameter

κ := log(h/g)

(log 2)(log(�−D log x))

which is suitable for measuring this transition since h/g = D1/2+o(1). We believe that
estimates for

Nf (x) = #
{
n ≤ x : n = f (m1, m2) for some integers m1, m2

}
should be split into three ranges:

Nf (x) � L(1, χD)

τ (D)

x√
�−D log x

for 0 ≤ κ ≤ 1/2, (1.1)

an extension of the range of Bernays’s result;

Nf (x) � L(1, χ−D)

τ (D)

(�−D log x)−1+κ(1−log(2κ))

(1 + (κ − 1/2)(1 − κ)
√

log log x)
x for 1/2 < κ < 1, (1.2)
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the difficult intermediate range; and

Nf (x) � x√
D

for 1 ≤ κ � log D

log log D
, (1.3)

where estimates can be obtained by elementary counting arguments. We prove these
estimates (in Theorem 6), except when κ ∈ [1/2 − ε, 1/(log 2) + ε], and then it is
only the lower bound that yet needs to be established.

The first author studied these questions in [3] in order to deduce that there are
�x/(log x)(1−2−1/3)+o(1) integers at most x which can be written as the sum of two
powerful numbers (n is a powerful number if p2 | n whenever a prime p | n). We now
can conjecture that there are

� x(log log x)22/3−1

(log x)(1−2−1/3)

such integers and prove the upper bound in this article, failing to obtain the lower
conjectured bound by a power of log log x.

As can be seen from (1.1) – (1.3), we have been able to count accurately the
number of distinct integers represented by f except in the difficult intermediate range.
It is also of interest to understand how many times each of the distinct integers are
actually represented by f . Thus we also focus on establishing sharp bounds and
asymptotics for the quantity∑

n≤x

rf (n)β for fixed β > 0,

where rf (n) is the number of inequivalent representations of integer n by f , uniformly
in D = o(x).∗ To our surprise, we have been able to obtain precise results in all
interesting ranges when β is a positive integer.

COROLLARY 1
Let β ≥ 1 be an integer, and set K = 2β−1. For a given binary quadratic form f , let
u be the smallest positive integer that can be represented by some form in the coset
f G. We have

∑
n≤x

rf (n)β =
(

aK (log x)K−1 + π√
D

(
1+ 2β−1 − 1

u

))
x
(
1+Oβ,ρ((log x)−ρ)

)
(1.4)

∗The proof of Lemma 3.1 shows that there is no smooth estimate for the above quantity if x � c; since the
coefficient c of f can be � D but no larger, the range D = o(x) is the natural one.
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uniformly in x ≥ D(log D)2ρ/a for any 0 < ρ < 1/3 if β = 2, for 0 < ρ < 1/2 if
β = 3, and for 0 < ρ < 1 for all other β, where aK = 0 if β = 1, and otherwise,

aK = CD,β

�(K)

gβ−1

hβ
L(1, χ−D)2β−1

∏
p|D

(
1 − 1

p

)2β−1−1
(1.5)

with

CD,β =
∏

χ−D(p)=1

( ∞∑
k=0

(k + 1)β

pk

)(
1 − 1

p

)2β ∏
χ−D(p)=−1

(
1 − 1

p2

)2β−1−1
. (1.6)

The range here is easily extended to x/D → ∞ at the cost of a weaker error term
(see Theorem 2). Note that CD,β �β 1. The second main term on the right-hand side
of (1.4) dominates when

(log x)(2β−2)/(β−1)+o(1) ≤ D = o(x)

and the first main term dominates in the complementary range. Below we give better
estimates in all ranges (Theorems 1 and 2), and we prove slightly weaker estimates for
arbitrary real β ≥ 0 (Theorems 3, 4, and 5). Here we define rf (n)0 = 0 if rf (n) = 0
and rf (n)0 = 1 otherwise; that is, the case where β = 0 corresponds to estimating
Nf (x).

1.2. Statement of the main theorems
It is well known (see, e.g., [6]) that there is a one-to-one correspondence between the
equivalence classes of integral ideals in Q(

√−D) and (proper) equivalence classes of
primitive positive binary quadratic forms of discriminant −D. We denote either set
by C, let h := # C be the class number, and let Ĉ be the set of class group characters
χ : C → C∗. Let G be the subgroup of ambiguous classes of forms (i.e., having order
at most 2) so that G ∼= C / C2; that is, G is isomorphic to the group of genera. It is
well known that

D1/2−ε � h � D1/2 log D and g = 2ω(D)−1 � Dε. (1.7)

Two representations x1, x2 are equivalent if x1 = Ax2 for an automorphism A ∈
SL2(Z) of f ; and the number of automorphisms of f equals the number w ∈ {2, 4, 6}
of units in the ring of integers o of Q(

√−D). Therefore we define rf (n) = #{x ∈ Z2 |
f (x) = n}/w.
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THEOREM 1
Let β ≥ 1 be an integer, and let K = 2β−1. There exist constants ak depending on β

and f such that

∑
n≤x

rf (n)β = x

log x

K∑
k=1

ak(log x)k + Oβ,ε(D2β−3/(2β−2+1)x1−1/(2β−1+2)+ε) (1.8)

uniformly in D ≤ x1/2β−2−ε for any ε > 0. Precisely, aK is given by (1.5) and (1.6),
and

a1 = π√
D

(
1 + 2β−1 − 1

u

)(
1 + Oβ,ε(D−1/4+ε)

)
(1.9)

for β > 1 and any ε > 0, where u is the smallest positive integer that can be
represented by some form in the coset f G; and if 2j−1 < k ≤ 2j , then

ak �ε D−(j+1)/2+ε. (1.10)

The Dirichlet series
∑

rf (n)βn−s can be analytically continued to the region {s ∈
C \ {1} | Res > 1/2} and has a pole of order K at s = 1.

We also have more-precise estimates for small x, proved via elementary methods,
which work for all β ≥ 0.

THEOREM 2
For a given binary quadratic form f , let a be the smallest positive integer that is
represented by f , and let u be the smallest positive integer that can be represented by
some form in the coset f G. For any β ≥ 0, we have∑

n≤x

rf (n)β = π
(

1 + 2β−1 − 1

u

) x√
D

+ Eβ(x, D), (1.11)

where

Eβ(x,D) �
{√

x
a

+ τ (D)
(

x log x

D
+ x

D3/4

)
, 0 ≤ β ≤ 2,√

x
a

+ τ (D) x(log x)(2/q)(2(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1, where τ (D) denotes the number of divisors of D. The implied
constants depend at most on β and q.

The proof yields that rf (n) = 1 for π(1 − 1/u)x/
√

D + O(E2(x, D)) integers n ≤ x;
that rf (n) = 2 for πx/(2u

√
D) + O(E2(x, D)) integers, n ≤ x; and that rf (n) ≥ 3

for O(E2(x, D)) integers, n ≤ x.
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If f is in an ambiguous class G ∈ G, then u = 1. Thus the constant in front of
the main term of (1.11) shows that ambiguous forms represent fewer small integers
(and with higher multiplicity) than nonambiguous forms.

By (1.7) and the fact that any integer n is represented by no more than τ (n) distinct
quadratic forms of discriminant −D, we deduce that for most f , the value of u here
is � D1/2−ε (and must be � D1/2).

The bounds on Eβ(x, D) when β > 2 can be improved with more effort. Our
result yields an asymptotic for

(log x)N ≤ D = o(x) (1.12)

with N = 2 + ε if β ≤ 2; and N = 4 + 2(β − 2)(2 + 8β−1e) log 2 + ε if β > 2
(by taking, e.g., q = 3 + 1/((β − 2) log 2)). Since

∑
n≤x rf (n)β is increasing in β,

we obtain ∑
n≤x

rf (n)β � x√
D

, (log x)((2β−2−2)/(β−1))+ε ≤ D = o(x) (1.13)

from Corollary 1 for any real β ≥ 1.
For arbitrary β ≥ 0, we obtain less-precise results than Theorem 1 in the

following.

THEOREM 3
Fix D. For all real β ≥ 0, we have∑

n≤x

rf (n)β � x(log x)2β−1−1,

the implied constants being dependent on β and D.

This result only works as x → ∞. However, we can show that different forms of the
same discriminant behave similarly for arbitrary x with D = o(x).

THEOREM 4
For any primitive binary quadratic forms f and g of discriminant −D and for any
real constant β ≥ 0, we have ∑

n≤x

rf (n)β �β

∑
n≤x

rg(n)β

whenever D = o(x). In fact, the ratio of the two sides of this equation is between
2−|1−β|+o(1) and 2|1−β|+o(1), where the o(1) term approaches 0 as x/D → ∞.
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The constant term 1 + (2β−1 − 1)/u in Theorem 2 ranges between 1 and 2β−1. In this
sense, Theorem 4 cannot be improved, though in view of Theorem 1, we see that the
ratio tends to 1 for all choices of f and g as x gets sufficiently large.

We can obtain the correct order of magnitude in all ranges for all β ≥ 0; the
following theorem gives for fixed L > 0 a uniform result in the range D ≤ (log x)L.
(And Theorem 2 covers the range D ≥ (log x)L.) Define the numbers κ1 = κ1(β) and
κ2 = κ2(β) by

κ1 = κ2 = 2β−1 − 1

(β − 1) log 2
if β ≥ 1

and

κ1 = 2β−1, κ2 = 1 if 0 ≤ β ≤ 1.

For κ, β ≥ 0, let

E(κ, β) :=


−1 + 2β−1 − βκ log 2, 0 ≤ κ ≤ κ1,

−1 + κ
(
1 − log(2κ)

)
, κ1 < κ < κ2,

−κ log 2, κ ≥ κ2.

THEOREM 5
Fix L > 0. If x is chosen so large that when we define κ by h/g = (log x)κ log 2 we
have κ ≤ L (and E(κ, β) ≥ −1 − L log 2), then∑

n≤x

rf (n)β = x(log x)E(κ,β)+o(1). (1.14)

If we assume that there are no Siegel zeros, that is, that

L(σ, χδ) �= 0, and for all σ ≥ 1 − c0

log D
(1.15)

for all fundamental discriminants δ | D, and for a certain constant c0 > 0, then

∑
n≤x

rf (n)β = x(log x)E(κ,β)

g
(log log x)O(1) (1.16)

in the same range. Here all implicit and explicit constants depend only on L and β.

We failed to obtain an asymptotic in Theorem 5, but we did obtain an estimate that
gives the correct value up to a little noise, (log x)o(1). In the case where β = 0,
which is not covered by Theorem 1, we can do a little better than (1.14), as see in
Theorem 6.
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Bernays’s result (see [2]) can be given more precisely as

Nf (x) = κD

x√
log x

+ OD

( x

(log x)1/2+δ

)
for any δ < min(1/h, 1/4), where κD = a1/2 in (1.5). Thus all but a vanishingly small
proportion of integers which can be represented by some form in a given genus can be
represented by all forms in the genus.∗ Bernays’s proof only gives a nontrivial estimate
once D � (log log x)1/2−ε. Here we extend the range in which we have nontrivial
estimates.

THEOREM 6
Keep the notation and assumptions of Theorem 5 but with κ now defined by h/g =
(�−D log x)κ log 2, where �−D = L(1, χ−D)(φ(D)/D). Then we obtain the upper bounds
in (1.1) – (1.3) in the ranges stated there. We also get the lower bound in (1.1) for
0 ≤ κ ≤ 1/2 − ε, if D is sufficiently large in terms of ε.

Note that by Theorem 2, the lower bound in (1.3) holds for κ ≥ (1/(log 2)) + ε.

Let V (x) be the number of integers at most x which are the sum of two powerful
numbers. We deduce the following.

COROLLARY 2
We have

x(log log x)A

(log x)1−2−1/3 � V (x) � x(log log x)22/3−1

(log x)1−2−1/3

for some A ∈ R.

We conjecture that V (x) � x(log x)−1+2−1/3
(log log x)22/3−1. At any rate, it is interest-

ing to have a natural example of a sequence which has considerably different additive
behaviour as the squares but does not behave like a typical pseudosquare sequence.

With some extra work, Theorems 1 – 6 can be extended to nonfundamental dis-
criminants. Some of our results also hold for real quadratic fields: Theorem 1 with-
out (1.9) and with D replaced by h2 in (1.10); Theorem 3; Theorems 4 and 5 if
D = (log x)O(1).

To our knowledge, the only (nontrivial) results on estimates/asymptotics of∑
n≤x rf (n)β for generic discriminants D (in particular, with more than one form

per genus) known so far are Bernays’s result (see [2]), (1.14) for β = 0 in [3], and
parts of (1.5) for fixed discriminant and β = 2 in [11]. We have seen that the question of

∗Bernays proved this for arbitrary discriminants D; for nonfundamental discriminants D, the constant κD is more
complicated.
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obtaining asymptotics for Nf (x) remains open in the intermediate range (see (1.2)),
whereas we have now obtained asymptotics for positive integer moments of rf (n) in
all ranges (see Corollary 1). Although these results are new, the methods are well
known in principle; the novelty here is that we have succeeded in implementing
these in sufficiently sharp form to obtain asymptotics. More specifically, the proofs of
Theorems 1 – 4 are elementary and do not use any particularly new ideas, though
we have not seen anything like Theorem 4 elsewhere, and it seems that no one has
previously observed the straightforward Theorem 2. Theorems 5 and 6 are refinements
of [3, Corollaries 1, 1.1] using a somewhat different analysis and the more refined
combinatorics of Lemmata 3.2 and 3.3, which allow us, in the most troublesome
ranges, to avoid certain difficult technicalities.

In many of the classical problems of analytic number theory (e.g., counting
primes) the difficult range is typically when x is close to a certain power of D.
Perhaps so little has been done on this very natural question because the difficult
range occurs here when x is between exp(D1/2−o(1)) and exp(D1/ log 2+o(1)), that is, in
a range that is exponential in certain powers of D. This difference, and the fact that
there are links to questions about the existence of Siegel zeros (see, e.g., [1]), perhaps
deterred previous researchers.

One expects that applications of these results may be found by researchers in-
volved in counting questions to do with binary quadratic forms, which of course appear
in many ways in number theory.

Notation. All implicit and explicit constants depend at most on ε and β, on D in the
proof of Theorem 3, on L in the proofs of Theorems 5 and 6, and on q in the proof
of Theorem 2. The dependence on ε in (1.9), (1.10), and the lower bound in (1.1) as
proved in Theorem 6, on ρ in (1.4), and the constants implied in the o(1)-symbol in
Theorems 4 and 5 are not effective, as they depend on Siegel’s theorem. All other
implicit and explicit constants can in principle be made effective. The letter ε denotes
an arbitrarily small real number whose value may change during a calculation. As
usual, let χ−D = (−D/.) be the Jacobi-Kronecker symbol.

1.3. A heuristic explanation of the transition
Let r(n) be the total number of representations of an integer n by forms of discriminant
−D. We base our heuristic on a study of integers n which are squarefree and all of
whose prime factors p satisfy (−D/p) = 1. A more accurate analysis would consider
integers n which are allowed a small square factor (for which similar remarks would
apply). If r(n) �= 0 with n squarefree, then (−D/p) = 0 or 1 for every prime p|n, and
so a more accurate analysis would consider n divisible by prime factors of D. (And,
again, similar remarks would apply.)
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Now almost all integers n ≤ x which are squarefree and all of whose prime
factors p satisfy (−D/p) = 1 have ∼ (1/2) log log x prime factors, and usually, those
prime factors come from a wide variety of classes of the class group.

Thus we assume that n = p1p2 · · · pk with p1 < p2 < · · · < pk and each
(−D/pi) = 1, where k ∼ (1/2) log log x. In this case r(n) = 2k , and n can only be
represented by those forms in a particular genus (which contains h/g forms).

When 2k is significantly smaller than h/g, we might expect the 2k representations
to be mostly by distinct forms and that n is represented twice by very few forms.
Thus we might expect Nf (x) to be more or less the same as the total number of pairs
r, s ∈ Z for which |f (r, s)| ≤ x, up to the obvious automorphisms. To be more precise
about the range, we want 2(1/2) log log x < (h/g)1/2, which corresponds to κ > 1 as in
(1.3).

When 2k is significantly larger than h/g, then we might expect that n is represented
by almost all of the forms in its genus, and so Nf (x) should be roughly the same as
Ng(x) for any other form g in the same genus as f . The requirement on 2k corresponds
to κ ≤ 1/2 as in (1.1). To take this a little further, if the number of representations
of such n are roughly equal for the forms in the genus, and if the number of integers
represented by each genus is about equal, then we would expect that∑

n≤x

rf (n)β ∼ 1

g

(g

h

)β ∑
n≤x

r(n)β,

which leads us to predict the main term of (1.4).
Much of what we discuss here is justified by Lemma 3.3.

2. Preliminaries
We recall the following consequence (see [6, Theorem 7.7]) of the isomorphism
between classes of quadratic forms and ideal classes. Let Cf ∈ C be the class of f

in the class group, and let f (C) denote the class of quadratic forms corresponding to
C ∈ C.

LEMMA 2.1
There is a one-to-one correspondence between inequivalent solutions to f (x) = n

and integral ideals a in the class Cf corresponding to f with Na = n.

Thus a positive integer n is represented by a form f if and only if there is an ideal a

with Na = n in the class Cf . In this case, we write n ∈ R(Cf ). In particular, a prime p

with χ−D(p) = 1 has exactly two inequivalent representations in classes C, C−1 ∈ C.
(Of course, C and C−1 may coincide.) A prime p | D has exactly one representation,
namely, in an ambiguous class. A prime p with χ−D(p) = −1 cannot be represented
by a primitive form of discriminant −D.
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We introduce the following notation. For an integer n = ∏k
j=1 pj with not

necessarily distinct primes pj , and for C = (C1, . . . , Ck) ∈ Ck , we write n ↔
C if and only if there is a permutation π ∈ Sk with pπ (j ) ∈ R(Cj ). Choose a
fixed set of representatives of the quotient C/G, and for each C ∈ C, let C̃ be this
representative. For C = (C1, . . . , Ck) ∈ Ck , let 1 ≤ ρ(C) ≤ k! be the number of
different rearrangements of the k-tuple C̃ = (C̃1, . . . , C̃k), and let 0 ≤ δ(C) ≤ k

be the number of nonambiguous entries of C. Finally, for C = (C1, . . . , Ck) ∈ Ck ,
C ∈ C, let

NC(C) := #
{

(σ1, . . . , σk) ∈ {±1}k
∣∣∣ C =

k∏
j=1

C
σj

j

}
. (2.1)

With this notation, the above discussion yields the following lemma.

LEMMA 2.2
Let

n =
∏

p
αj

j

∏
q

βj

j

∏
r

γj

j ,

where χ−D(pj ) = 1, χ−D(qj ) = 0, and χ−D(rj ) = −1.
(a) The integer n can be represented in some class if and only if all γj are even. If

(n1, n2) = 1 and C ∈ C, then

rf (C)(n1n2) =
∑

C1C2=C

rf (C1)(n1)rf (C2)(n2).

(b) Assume that n consists only of split primes, and assume that n ↔ C for some
C ∈ Ck . Then there are exactly 2δ(C)ρ(C) different k-tuples D ∈ Ck with n ↔ D.
All of these satisfy ρ(C) = ρ(D) and δ(C) = δ(D).

If n is squarefree, then NC(C) = rf (C)(n) for all C ∈ C.

For χ ∈ Ĉ, let

LK (s, χ) =
∑

{0}�=a integral

χ(a)

(Na)s
=

∞∑
n=1

σ (χ, n)

ns
,

say, be the class group L-function of the field K = Q(
√−D). The coefficients σ (χ, n)

are multiplicative and satisfy

σ (χ, pν) =
∑

a integral
Na=pν

χ(a) =


1
2

(
(−1)ν + 1

)
,

(−D
p

) = −1,

χν(p), p | D,∑ν
µ=0 χν−2µ(p),

(−D
p

) = 1,

(2.2)
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By Lemma 2.1 and orthogonality of characters, we have

rf (n) = 1

h

∑
χ∈Ĉ

χ̄(Cf )σ (χ, n). (2.3)

We need bounds and zerofree regions for LK (s, χ). By the convexity principle, we
have

LK (s, χ) � (
D1/2(1 + |t |)),1−σ+ε (2.4)

1/2 ≤ σ ≤ 1 + ε/2, provided that |s − 1| ≥ 1/8 if χ is principal. By [3, (2.8)], we
have

log LK (σ + it, χ) � log D + log log(3 + |t |) (2.5)

uniformly in

1 − c1 min
( 1

log(D(1 + |t |)) , D
−ε

)
≤ σ ≤ 1 + c2

log(D(1 + |t |)) (2.6)

for some absolute constants c1, c2 > 0, provided that χ �= χ0 if |t | ≤ 1/8. This
follows essentially from a result of Fogels [8, Lemma 4] and from Carathéodory’s
inequality. In [3, Lemmata 4.1 – 4.3], Blomar provides a Siegel-Walfisz theorem for
quadratic fields:

ε(C)
∑

p≤ξ,p∈P
p∈R(C)

1 = 1

2h

∫ ξ

2

dt

log t
+ OA

(
ξ exp(−c3

√
log ξ )

)
(2.7)

uniformly in

D ≤ (log ξ )A (2.8)

for any fixed A > 0. Here and henceforth for C ∈ C, let ε(C) = 1 if C is ambiguous,
and let ε(C) = 1/2 otherwise. If there are no Siegel zeros for real characters χ ∈ Ĉ,
that is, if we assume (1.15) (cf. [3, Lemma 2.1]), then (2.7) holds uniformly in

D ≤ exp(c4

√
log ξ ). (2.9)

3. Lemmata
We make precise here a well-known result, counting the number of values of a binary
quadratic form which are at most x. Gauss showed that every binary quadratic form of
negative discriminant is equivalent to a form ax2

1 + bx1x2 + cx2
2 , where |b| ≤ a ≤ c.

It is easily deduced that a � √
D and that c � D/a. Moreover, a is the smallest
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positive integer represented by the quadratic form, and c is the smallest that is not of
the form au2. Therefore if x < c and am2 + bmn + cn2 ≤ x, then n = 0, and so the
number of such representations is 2

√
x/a + O(1). In general, we have the following

result.

LEMMA 3.1
If f (x) = ax2

1 + bx1x2 + cx2
2 is a reduced quadratic form of discriminant −D, then

#
{
(m, n) ∈ Z2

∣∣ f (m, n) ≤ x
} = 2πx√

D
+ O

(√
x

a

)
. (3.1)

The implied constant is absolute. Note that
√

x/a = o(x/
√

D) as x/c → ∞.

Proof
We need to count the number of integer solutions to (2am + bn)2 + Dn2 ≤ 4ax. This
implies that |n| ≤ √

4ax/D and that

−√
4ax − Dn2 − bn

2a
≤ m ≤

√
4ax − Dn2 − bn

2a
. (3.2)

There are
√

4ax − Dn2/a+O(1) integers m in this range. Summing over the possible
values of n, we see that the O(1)’s add up to O(

√
ax/D) = O(

√
x/a) since a � √

D.
The sum of

√
4ax − Dn2/a over integers n can be approximated by the corresponding

integral; since the integrand is decreasing from zero to either endpoint, the error in
this approximation is no more than twice the value of the integrand at zero, that is,
O(

√
x/a). To evaluate the integral, we make the change of variable n = t

√
4ax/D,

and the main term becomes (4x/
√

D)
∫ 1
−1

√
1 − t2 dt , which yields our result. �

LEMMA 3.2
Let g denote the number of genera of discriminant −D. For fixed β ≥ 0 and C ∈ C,
we have

∑
C∈Ck

NC(C)β �
{

2khk−1, 2k ≤ h
g

,

2βkhk−βgβ−1, 2k > h
g

,

with NC(C) as in (2.1).

Proof
First note that

hmin(0,β−1)
h∑

j=1

a
β

j ≤
( h∑

j=1

aj

)β

≤ hmax(0,β−1)
h∑

j=1

a
β

j (3.3)
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for any sequence (aj ) of nonnegative real numbers and any real β ≥ 0. Therefore, by
(3.3), ∑

C∈Ck

NC(C)β

=
∑

C∈Ck−1

∑
Ck∈C

(
#
{

(σ1, . . . , σk−1) ∈ {±1}k−1
∣∣∣C = Ck

k−1∏
j=1

C
σj

j

}

+ #
{

(σ1, . . . , σk−1) ∈ {±1}k−1
∣∣∣ C = C−1

k

k−1∏
j=1

C
σj

j

})β

�
∑

C∈Ck−1

∑
C∈C

NC(C)β.

For β = 0, the lemma is [3, Proposition 5.3]. Now assume that β is a positive integer.
Expanding the βth power, we see that the right-hand side of the preceding display
equals

∑
σij ∈{±1}β×(k−1)

#
{

C ∈ C
k−1

∣∣∣ k−1∏
j=1

C
σ1j

j = · · · =
k−1∏
j=1

C
σβj

j

}

= 2k−1
∑

τij ∈{0,2}(β−1)×(k−1)

#
{

C ∈ C
k−1

∣∣∣ k−1∏
j=1

C
τ1j

j = 1, 1 ≤ i ≤ β − 1
}

= (2g)k−1
∑

τij ∈{0,1}(β−1)×(k−1)

#
{

C ∈ (C2)k−1
∣∣∣ k−1∏

j=1

C
τij

j = 1, 1 ≤ i ≤ β − 1
}
.

We bound this term from below and above. Choosing τij = 0 for all i, j , we get∑
C∈Ck

NC(C)β ≥ (2g)k−1
(h

g

)k−1
= (2h)k−1 (3.4)

since there are h/g elements C ∈ C2. On the other hand, assuming without loss of
generality that k ≥ β, the matrices (τij ) = (Iβ−1 ∗ ) (where In is the (n × n)-identity
matrix) give

∑
C∈Ck

NC(C)β ≥ (2g)k−1(2k−β)β−1
(h

g

)k−β

� (2h)k−1
(2kg

h

)β−1
(3.5)

since there are (2k−β)β−1 choices of “∗.”
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For the upper bound, we proceed as follows. For a prime p, let rp(T ) denote the
Fp-rank of the matrix T = (τij ). We claim that for 0 ≤ µ ≤ min(k − 1, β − 1), there
are at most ( µ∏

i=1

(β − i)
)

2µ(β−1−µ)2(k−1)µ �β 2(k−1)µ

matrices T ∈ {0, 1}(β−1)×(k−1) with rp(T ) = µ. Indeed, we pick µ linearly independent
rows and place them in (β −1)(β −2) · · · (β −µ) ways in the matrix T . The remaining
β − 1 − µ row vectors then lie in the subspace S generated by the first µ row vectors.
We can pick µ-coordinates i1, . . . , iµ such that the map φ : S ⊂ Fk−1

p → F
µ
p ,

(x1, . . . , xk−1) �→ (xi1, . . . , xiµ) is an isomorphism. Since φ(S ∩ {0, 1}k−1) ⊆ {0, 1}µ,
we see that each of the remaining row vectors can only be chosen out of at most
2µ possibilities. This proves the claim. Now let r0(T ) := minp rp(T ). Any finite
abelian group, and in particular, the set of square classes C2, may be written as

∏
q Cq ,

where each q is the power pα of a prime p and Cq = Z/pαZ. If
∏k−1

j=1 C
τij

j = 1 for
C ∈ (C2)k−1, then each component must satisfy the same equation, and the number of
solutions within that component is at most (#Cq)k−1−rp(T ) by elementary linear algebra
for a given matrix T . And thus, there are at most∏

q

(#Cq)k−1−rp(T ) ≤
(h

g

)k−1−r0(T )

ways to choose C ∈ Ck−1 such that
∏k−1

j=1 C
τij

j = 1 for 1 ≤ i ≤ β − 1, and there are at
most � 2(k−1)µ matrices T with r0(T ) = µ. Since µ ≤ β − 1, we obtain, altogether,

∑
C∈Ck

NC(C)β � (2h)k−1

(
1 +

(2kg

h

)β−1
)

. (3.6)

Equations (3.4) – (3.6) prove the lemma for integral β. The general case is clear for
2k ≤ h/g and follows for 2k > h/g from Hölder’s inequality; let β be an arbitrary real
number that is not an integer, and assume that 2k > h/g. Let p := (β − [β])−1 > 1,
q := (1 − 1/p)−1. Then∑

C∈Ck

NC(C)β ≤
( ∑

C∈Ck

NC(C)(β−[β]/q)p
)1/p( ∑

C∈Ck

NC(C)[β]
)1/q

� (2h)k−1
(2kg

h

)β−1
.
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Note that (β − [β]/q)p = 1 + [β] ∈ N. On the other hand, let p := 2 − {β} > 1,
q := (1 − 1/p)−1. Then∑

C∈Ck

NC(C)β ≥
( ∑

C∈Ck

NC(C)
β

p
+(1+�β�)/q

)p( ∑
C∈Ck

NC(C)1+�β�
)−p/q

� (2h)k−1
(2kg

h

)β−1

since β/p + (1 + �β�)/q = �β� ∈ N. This completes the proof. �

LEMMA 3.3
Let λ := (log(h/g))/(log 2), k ∈ N, and ε > 0. Then∑

C∈C

NC(C)0 ≤ min
(

2k,
h

g

)
for all C ∈ Ck , and ∑

C∈C

NC(C)0 � min
(

2k,
h

g

)
for all but �ε hkD−ε tuples of classes C ∈ Ck if k ≤ (1 − 4ε)λ or k ≥ (1 + 18ε)λ.

Remark. It would be nice to prove such a result for all k.

Proof
For subsets A1, . . . , Ak ⊆ C, let

k∏
j=1

Aj := {a1 · · · ak | a1 ∈ A1, . . . , ak ∈ Ak}.

For C = (C1, . . . , Ck) ∈ Ck , we have

∑
C∈C

NC(C)0 = #
k∏

j=1

{Cj , C
−1
j } = #

k∏
j=1

{1, C2
j }.

Thus the upper bound is immediate. Now let r(C) := #
∏{1, Cj }. It is not hard to see

(see 3, (5.3)) that

1

h

∑
C∈C

r(C, C) = 2r(C) − r2(C)

h
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for all (C, C) ∈ Ck+1. (Here, of course, by slight abuse of notation, (C, C) is formed
by appending C to C.) Hence, given any η > 1, we have at least h(1 − 1/η) classes
C ∈ C satisfying

r(C, C) ≥ 2r(C) − ηr(C)2

h
≥ 2r(C)

(
1 − η2k

2h

)
.

Inductively, we see that for k ∈ N, η > 1, η2k < 2h, at least hk(1 − 1/η)k tuples of
classes C ∈ Ck satisfy

#
k∏

j=1

{1, Cj } ≥ 2k
(

1 − η2k

2h

)k

.

Applying this result to the group of square classes and observing that each square has
g square roots, we find that at least hk(1 − 1/η)k tuples of classes C ∈ Ck satisfy

#
k∏

j=1

{1, C2
j } ≥ 2k

(
1 − η2k

2h/g

)k

(as long as η2k < 2h/g). Choosing η = D3ε/2, we see that all but � hkD−ε tuples of
classes C ∈ Ck satisfy

#
k∏

j=1

{1, C2
j } � 2k (3.7)

if k ≤ (1 − 4ε)λ. Now choosing η = 2, we find that for any given C ∈ Ck , at least h/2
tuples of classes (C, C) ∈ Ck+1 satisfy

r(C2, C2) ≥ min
(3

2
r(C2),

h

g

)
.

(Here C2 means (C2
1 , . . . , C

2
k ).) Hence, for any C ∈ Ck and any two positive integers

a < b, at least

1

2b

b∑
j=a

(
b

j

)
hb

tuples of classes D ∈ Cb satisfy

r(C2, D2) ≥ min

((3

2

)a

r(C2),
h

g

)
.
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Applying this result with a = 7ελ and b = 22ελ to the tuples of classes C found in
(3.7) for k = [(1 − 4ε)λ], we get (1/2b)

∑b
j=a

(
b
j

) = 1 − O(D−ε̃) for any ε̃ > 0, and
so all but � hkD−ε tuples of classes C ∈ Ck satisfy

#
k∏

j=1

{1, C2
j } � h

g

if k ≥ (1 + 18ε)λ. �

4. Proof of Theorem 3
Theorem 3 follows directly from the method in [4]. In view of Bernays’s result (see
[2]), we may assume that β > 0. For β > 0 and m ∈ N, we define

γ (m,β) := 1

2m

m∑
j=1

∣∣∣2 cos
(2πj

m

)∣∣∣β.

Note that

γ (1, β) = γ (2, β) = 2β−1 > γ (m,β) (4.1)

for all m ≥ 3. From [4, pages 143 – 144], we conclude that∑
n≤x

|σ (χ, n)|β ∼ c(χ, β)x(log x)γ (ordχ,β)−1 (4.2)

for some constant c(χ, β) > 0. Furthermore, it is shown in [4] that there is a subset
N ⊆ N such that Re(χ(Cf ))σ (χ, n) is nonnegative for all n ∈ N and all χ ∈ Ĉ, and∑

n≤x
n∈N

|σ (χ, n)|β ∼ c′(χ, β)x(log x)γ (ordχ,β)−1

for some constant c′(χ, β) > 0. By (3.3), (2.3), and the above remarks,

1

hmax(1,β)

∑
χ∈Ĉ

∑
n≤x
n∈N

(
Re(χ̄ (Cf ))σ (χ, n)

)β ≤
∑
n≤x

rf (n)β ≤ 1

hmin(1,β)

∑
χ∈Ĉ

∑
n≤x

|σ (χ, n)|β.

By (4.1) and (4.2), we get ∑
n≤x

rf (n)β �D,β x(log x)2β−1−1.

This completes the proof of Theorem 3. �
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5. Proof of Theorem 2
To prove Theorem 2, we recall the notion of a primitive ideal. An ideal a ⊆ o is called
primitive if it is not divisible by any rational integer other than 1. As before, let G ⊆ C

be the set of ambiguous classes, let A be the set of primitive ideals coprime to D, and
let

XG := {c ∈ G | c �= c̄}

for G ∈ G. Note that v ∈ A implies that v2 ∈ A, and for two ideals v1, v2 ∈ A in
the same class, the principal ideal v̄1v2 is generated by a rational integer if and only if
v1 = v2.

We start with the following observation. By Lemma 2.1, a pair (x1, x2) ∈ Z2 × Z2

of inequivalent solutions to f (x1) = f (x2) = n corresponds to a pair (a1, a2) of
different ideals in the class Cf having norm n. These are exactly the pairs of ideals
(bc, bc̄) with Nbc = n, where c ∈ XG for some G ∈ G, and b ∈ A is in the class Cf G.
Let u be the ideal in some class Cf G0 of the coset Cf G having smallest possible
norm Nu = u. Then u ∈ A since we may divide out from u any rational integer and
any ideal dividing D and still have an ideal in a class Cf G with even smaller norm,
contradicting the definition of u. For n ∈ N, G ∈ G, x ∈ R, let

ρ1(n, G) := #{c ∈ XG : Nc = n}, R1(x, G) :=
∑
n≤x

ρ1(n),

ρ2(n, G) := #{b ∈ Cf G ∩ A : Nb = n, b �= u}, R2(x, G) :=
∑
n≤x

ρ2(n).

We have the following estimates.

LEMMA 5.1
For all G ∈ G, we have

R1(x, G) ≤ 16x√
D

, R2(x, G)


� xD−1/2 + √

x for all x,

≤ 1 for x ≤
√

D
4 ,

= 0 for x ≤
(

D
4

)1/4
,

with absolute implied constants.

Proof
First, we note that if the vector x ∈ Z2 corresponds to the ideal a as in Lemma 2.1, then
for r ∈ Z the vector rx corresponds to (r)a. Each ambiguous class G ∈ G contains a
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form of the shape

fG(x) = ax2
1 + cx2

2 , 4ac = D,

fG(x) = ax2
1 + ax1x2 + cx2

2 = a
(
x1 + 1

2
x2

)2
+

(
c − 1

4
a
)
x2

2 ,

a(4c − a) = D,

or

fG(x) = ax2
1 + bx1x2 + ax2

2 =
(a

2
+ b

4

)
(x1 + x2)2 +

(a

2
− b

4

)
(x1 − x2)2,

4a2 − b2 = D,

with positive integers b < a ≤ c (see [6, Lemma 3.10]). In the first case, the vectors
(0, ∗), (∗, 0) correspond to ideals d(∗) with Nd | D which are equal to their conjugate,
and so, they are not in XG. Therefore

R1(x, G) ≤ #
{

x ∈ Z2 : x1x2 �= 0, |x1| ≤
√

x

a
, |x2| ≤

√
x

c

}
≤ 8x√

D
.

In the second case, the vectors x with x2 = 0 or x2 = −2x1 correspond to ideals that
are equal to their conjugate. Therefore

R1(x,G) ≤ #
{

y ∈ 1

2
Z × Z

∣∣∣ y1y2 �= 0, |y1| ≤
√

x

a
, |y2| ≤ √

x
(
c − 1

4
a
)−1/2}

≤ 8x√
D

.

In the third case, the vectors x with x1 = ±x2 correspond to ideals that are equal to
their conjugate. Thus

R1(x, G) ≤ #
{

y ∈ Z2
∣∣∣ y1y2 �= 0, |y1| ≤ √

x
(a

2
+ b

4

)−1/2

|y2| ≤ √
x
(a

2
− b

4

)−1/2}
≤ 16x√

D
.

This proves the first part of the lemma.

For the second part, we first note that R2(x, G) � xD−1/2 + √
x by Lemma 3.1.

For the rest, first observe that if w is a principal ideal with Nw ≤ D/4, then w is
generated by a rational integer. Therefore an ideal v ∈ Cf G ∩ A different from u with
Nv ≤ (D/4)1/4 would produce a principal ideal w = ū2v2 with Nw ≤ D/4, and so,
it is generated by a rational integer. However, if v is different from u, then w is, by the
remarks on A, not generated by a rational integer. This is a contradiction. Similarly,



xxx dmj5134 June 27, 2006 18:0

REPRESENTATION NUMBERS OF QUADRATIC FORMS 21

two different ideals v1, v2 ∈ Cf G ∩ A with Nv1, Nv2 ≤ (D/4)1/2 would produce a
principal ideal w = v̄1v2 with Nw ≤ D/4, and so, it is generated by a rational integer,
which is impossible by the same reason. This completes the proof of the lemma. �

We can now prove Theorem 2. We deduce from Lemma 5.1 that for large D up to a
small set of exceptions, the set {a ∈ Cf | Na = n} consists either of one element or
of two elements {uc, uc̄} with c ∈ XG0 . To be precise, define A1 = A1(n) := #{a ∈
Cf | Na = n, a �∈ uXG0} and A2 = A2(n) := #{a ∈ Cf | Na = n, a ∈ uXG0} so that
A2 = 0 or A2 ≥ 2; and then,

r∗
f (n, β) := A1(n) + 2β−1A2(n).

We define B3 = {c ∈ G0 : c = c̄, Nc ≤ x/u}; note that if c0 is the ideal in G0

which divides D, then the elements of B3 are simply c0 times an integer, and so
|B3| � √

x/(uNc0). Since uc0 ∈ Cf , thus uc0 ≥ a by the definition of a (see
Corollary 1); this is ≤ √

x/a. By Lemma 3.1,∑
n≤x

r∗
f (n, β) =

∑
n≤x

(
A1(n) + A2(n)

) + (2β−1 − 1)
(
|B3| +

∑
n≤x

A2(n)
)

+ O(|B3|)

= #{a ∈ Cf : Na ≤ x} + (2β−1 − 1)#
{
c ∈ G0 : Nc ≤ x

u

}
+ O

(√
x

a

)
=

(
1 + 2β−1 − 1

u

) πx√
D

+ O
(√

x

a

)
. (5.1)

Now, let us first assume that β ≤ 2. A short calculation using the first derivative yields
that ξ (β) := rf (n)β − r∗

f (n, β) = (A1 +A2)β − (A1 + 2β−1A2) satisfies |ξ (β)| ≤ ξ (2)
for 0 ≤ β ≤ 2 and A1 ∈ N0, A2 ∈ N0 \ {1}, as can easily be checked. Therefore∑

n≤x

|rf (n)β − r∗
f (n, β)|

≤
∑
n≤x

rf (n)2 − r∗
f (n, 2)

=
∑
G∈G

#
{
(bc, bc̄) : c ∈ XG, b ∈ Cf G ∩ A \ {u}, Nbc ≤ x

}
=

∑
G∈G

∑
k≤x

ρ1(k, G)
∑

l≤x/k

ρ2(l,G)

�
∑
G∈G

( ∑
k�xD−1/4

ρ1(k, G) +
∑

k≤xD−1/2

ρ1(k, G)
( x

k
√

D
+

√
x

k

))

� τ (D)
(x log x

D
+ x

D3/4

)
,
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by Lemma 5.1 and partial summation. Together with (5.1), we arrive at the theorem
in the case where β ≤ 2.

If β > 2, we claim that 0 ≤ rf (n)β − r∗
f (n, β) ≤ 3rf (n)β−2(rf (n)2 − r∗

f (n, 2));
that is, (A1 + A2)β − (A1 + 2β−1A2) ≤ 3(A1 + A2)β−2((A1 + A2)2 − (A1 + 2A2)).
Now if A1 + A2 ≥ 3, then (A1 + A2)2 ≥ 3(A1 + A2) ≥ (3/2)(A1 + 2A2), and the
result follows. If A1 + A2 ≤ 2 with A2 �= 1, then both sides of the inequality equal
zero. Therefore∑

n≤x

|rf (n)β − r∗
f (n, β)| ≤ 3

∑
n≤x

τ (n)β−2
(
rf (n)2 − r∗

f (n, 2)
)

≤ 3
∑
G∈G

∑
k≤x

τ (k)β−2ρ1(k, G)
∑

l≤x/k

τ (l)β−2ρ2(l, G).

By Hölder’s inequality and ρ1(n,G) ≤ τ (n), we get∑
k≤x

τ (k)β−2ρ1(k, G) ≤
( ∑

k≤x

ρ1(k, G)
)1/p( ∑

k≤x

τ (k)((p−1)/p+β−2)q
)1/q

� x

D(1/2)(1−1/q)
(log x)(1/q)(2(β−2)q+1−1),

and similarly,∑
k≤x

τ (k)β−2ρ2(k, G) � x/D(1/4)(1−1/q)(log x)(1/q)(2(β−2)q+1−1),

where we used the crude bound
∑

n≤x ρ2(n, G) � xD−1/4, which follows from
Lemma 5.1. Collecting these estimates, we find by partial summation that

∑
n≤x

rf (n)β − r∗
f (n, β) � τ (D)

x(log x)(2/q)(2(β−2)q+1−1)+1

D(3/4)(1−1/q)

for any q > 1. This completes the proof of Theorem 2. �

6. Proof of Theorem 4
Theorem 4 follows from Theorem 2 for (log x)N ≤ D = o(x) with N sufficiently
large (see (1.12)). We now prove it in the complementary range. By Theorem 5, we
know that ∑

n≤x

rf (n)β � x(log x)−2−N log 2
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in this range. Let us first note that if N is a set of integers up to x containing
�B x/(log x)B elements for any given B, then∑

n≤x
n∈N

rf (n)β ≤
( ∑

n≤x
n∈N

1
∑
n≤x

τ (n)2β
)1/2

= o
(
x(log x)−3−N log 2

)
,

by the Cauchy-Schwarz inequality; thus their contribution is negligible. We let N be
the set of integers not exceeding x which have all of their prime factors less than
z = x1/ log log x or which are divisible by the square of a prime greater than z. The
number of integers up to x, all of whose prime factors are < x1/u, is � x/uu+o(u) for
u ≤ log x/(log log x)2 (see [9]); therefore

#N �B

x

(log x)B
+

∑
p>z

x

p2
�B

x

(log x)B

for any constant B, as desired. It remains to sum over integers n = pm ≤ x,
where p ≥ z and P (m), the largest prime factor of m, is < p. This implies that
m ≤ x/p ≤ M := x/z. For sufficiently large x, we have z > D, so p must be split in
Q(

√−D) and hence is represented by classes Cp,C−1
p , say (which may be the same).

If, as before, Cf denotes the class corresponding to f , and f (C) denotes the form
corresponding to C, we get, by (3.3) with h = 2 and Lemma 2.2(a),∑

n≤x

rf (n)β ∼
∑
n≤x
n �∈N

rf (n)β =
∑
m≤M

mP (m)≤x

∑
z≤p≤x/m
P (m)<p

(
rf (Cf C−1

p )(m) + rf (Cf Cp)(m)
)β

�
∑
m≤M

mP (m)≤x

∑
z≤p≤x/m
P (m)<p

rf (Cf C−1
p )(m)β + rf (Cf Cp)(m)β

= 2
∑
C∈C

∑
m≤M

mP (m)≤x

rf (C)(m)β
∑

z≤p≤x/m
P (m)<p

p∈R(Cf C−1)

1.

Since we assumed that D ≤ (log z)N , the innermost sum above can be evaluated
asymptotically, by (2.7), as

∑
z≤p≤x/m
P (m)<p

p∈R(Cf C−1)

1 = 1

2h

∫ x/m

max(P (m),z)

dt

log t
+ O

( x

m exp(c6
√

log z)

)
.
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Writing

T := 1

h

∑
C∈C

∑
m≤M

mP (m)≤x

rC(m)β
∫ x/m

max(P (m),z)

dt

log t
,

we have that∑
n≤x
n �∈N

rf (n)β � T + O
( x

exp((log x)1/3)

∑
C∈C

∑
m≤M

rf (C)(m)β

m

)
.

Finally, using the bound rf (m) ≤ τ (m) and the fact that h � D < (log x)N , we find
that the error term in the preceding display is negligible. Since T is independent of
the particular form chosen, this implies Theorem 4. �

7. Proofs of Theorem 1 and Corollary 1
Let us assume that β is a positive integer and write K = 2β−1. Expanding the character
sum (2.3) yields

rf (n)β = 1

hβ

∑
χ1,...,χβ∈Ĉ

β∏
j=1

χ̄j (Cf )σ (χj , n). (7.1)

Comparing Euler products, we see that for a fixed β-tuple (χ1, . . . , χβ) of characters,
we have

∞∑
n=1

∏
j σ (χj , n)

ns
= G(s; χ1, . . . , χβ)

∏
τ∈{1}×{±1}β−1

LK

(
s,

∏
j

χ
τj

j

)
. (7.2)

Here G is holomorphic in Res ≥ 1/2 + ε with G(s) = G1(s)H (s), where H is an
Euler product, convergent in Res > 1/2 + ε, and

G1(s) =
∏
p|D

∏
τ

(
1 −

∏
j χ

τj

j (p)

ps

)
with τ running through the elements of ({1} × {±1}β−1) \ {1}β . Thus G(s) �= 0, and
for Res ≥ 2/3, we have∣∣∣ dµ

dsµ
log G(s; χ1, . . . , χβ)

∣∣∣ �µ

∑
p|D

(log p)µ

pσ
+ O(1) = o(log D)
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for any integer µ ≥ 0, which implies that

D−ε �ε,µ

∣∣∣ dµ

dsµ
G(s; χ1, . . . , χβ)

∣∣∣ �ε,µ Dε (7.3)

for any integer µ ≥ 0. Thus we see that
∑

rf (n)βn−s can be continued holomorphi-
cally to the region {s ∈ C \ {1} | Res > 1/2} and has a pole of order at most K at
s = 1. (We see in a moment that the order of the pole is K .)

Now we use the usual truncated version of Perron’s formula (e.g., [5, page 28]):

∑
n≤x

dn = 1

2πi

∫ v+iT

v−iT

( ∞∑
n=1

dn

ns

)xs

s
ds + O

(
xv

∞∑
n=1

|dn|
nv

1

1 + T log (x/n)

)
(7.4)

with dn = rf (n)β , v = 1 + (log x)−1, and

T = x1/(2β−1+2)D−2β−3/(2β−2+1).

By (7.1) and (7.2), the function
∑

rf (n)βn−s is a linear combination of terms of the
right-hand side of (7.2). We shift the contour to the line Res = 1/2 + ε, and we pick
up the pole at s = 1, which gives the main term in (1.8). By (2.4), the remaining
integral and the error term in (7.4) are bounded by

x1/2+ε(D1/2T )2β−2+ε + T −1
∫ v

1/2+ε

xσ
(
(D1/2T )2β−1+ε

)1−σ
dσ + x1+ε

T

� x1/2+ε(D1/2T )2β−2+ε + x1+εT −1,

which gives the error term in (1.8) for the considered range of D.
Now, let us investigate the coefficients of the main term more closely. We start

with the leading coefficient aK . It is easy to see that exactly the gβ−1 distinct β-tuples
(χ1, . . . , χβ) with only real characters χj satisfying

∏
χj = χ0 (χ0 being the principal

character) contribute to the coefficient aK . In fact, to obtain a pole of order K , we
need to have

∏
j χ

τj

j = χ0 for all τ , and so, χ2
j = χ0 for each j ≥ 2 (comparing the

two cases, where τi = 1 for each i �= j ) and χ1 = χ2 · · · χβ , so that χ2
1 = χ0; on the

other hand, if these hold, then
∏

j χ
τj

j = ∏
j χj

∏
j :τj =−1 χ−2

j = χ0 for all τ .
For real characters, (2.2) simplifies to

σ (χ, pν) =


1
2

(
(−1)ν + 1

)
,

(−D
p

) = −1,

χν(p), p | D,

(ν + 1)χν(p),
(−D

p

) = 1.
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Therefore
∏β

j=1 σ (χj , n) = σ (
∏β

j=1 χj , n)β if all χj are real, and hence, we have to
study the residue of

gβ−1

hβ
G(s; χ0, . . . , χ0)LK (s, χ0)2β−1 xs

s

at s = 1, where LK (s, χ0) = ζ (s)L(s, χ−D) and

G(s; χ0, . . . , χ0) =
∏

χ−D(p)=−1

(
1 − 1

p2s

)2β−1−1 ∏
p|D

(
1 − 1

ps

)2β−1−1

×
∏

χ−D(p)=1

( ∞∑
k=0

(k + 1)β

pks

)(
1 − 1

ps

)2β

.

This gives (1.5) and (1.6).
We proceed to prove (1.10). To this end, let 2j−1 < k ≤ 2j , and fix k distinct tuples

τ ∈ {1} × {±1}β−1. We claim that there are at most � hβ−1−j+ε tuples (χ1, . . . , χβ)
such that (7.2) has a pole of order at least k at s = 1. Note that these are the only
terms in (7.2) that contribute to aβ,k . Indeed, writing the group Ĉ additively, we have
to solve

Sx = 0 (7.5)

for some S ∈ {±1}k×β having distinct rows and x ∈ Ĉ
β
. Let rp(S) denote the Fp-rank

of S. From the proof of Lemma 3.2, we know that a subspace of FK
p of dimension

d can have at most 2d distinct vectors with entries only ±1. Therefore the k row
vectors from S generate a subspace of dimension at least j ; that is, rp(S) ≥ j for
all p > 2. By elementary linear algebra and the Chinese remainder theorem, we
conclude, as in the proof of Lemma 3.2, that the number of solutions to (7.4) is
bounded by hβ−1−j (the 2-part of Ĉ). From (1.7) and the theorem on fi-
nite abelian groups, we conclude that the 2-part of Ĉ � hε, which establishes
the claim. Now we obtain (1.10) by using (1.7) and (7.3) and observing that
dµ

dsµ L(s, χ−D)|s=1,
dµ

dsµ LK (s, χ)|s=1 �µ,ε Dε for any ε > 0, so that the holomorphic
part at s = 1 in (7.2) is harmless.

Equation (1.9) can be obtained by selecting x = exp((log D)2), say. For given
ε > 0, we choose q in the error term of (1.11) sufficiently large, so that Eβ(x,D) �
xD−3/4+ε and

∑K
k=2 ak(log x)k � (log x)2D−1+ε, by (1.10). Equating (1.8) and (1.11)

now gives

a1x + O
(x log x

D1−ε

)
+ O(x1−δ) = π

(
1 + 2β−1 − 1

u

) x√
D

+ O
( x

D3/4−ε

)
for some δ > 0, and we obtain (1.9). This completes the proof of Theorem 1. �
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Finally, let us prove the corollary. This follows immediately from Lemma 3.1 for
β = 1. The statement follows from Theorem 2 if x ≤ exp(Dc5 ) for sufficiently small
c5. It follows from Theorem 1 (using (1.8) and (1.10)) if x ≥ exp(Dc6 ) for sufficiently
large c6. So, let us now assume that x = exp(Dc) for some constant c5 ≤ c ≤ c6. We
want to show that the terms with 2 ≤ k ≤ K − 1 in (1.8) save some power of log x

compared to the terms k = 1 and k = K , namely,

D1/2
K−1∑
k=2

ak(log x)k � (
log x + D−(β−1)/2(log x)K

) 1

(log x)ρ

with ρ as in Corollary 1. There is nothing to show for β = 2, so let us assume that
β > 2. Since ρ < 1, we can, by (1.10), ignore the terms K/2 < k ≤ K −1, and using
the bound (1.10), this reduces to showing

β−2∑
j=1

(log x)2j

Dj/2
=

β−2∑
j=1

Dc2j −j/2 �
(
Dc + Dc2β−1−((β−1)/2)

)
D−cρ+O(ε).

Since the left-hand side is bounded by � D2c−1/2 +Dc2β−2−((β−2)/2), the statement can
be checked by a simple calculation. Let us finally note that the error in (1.9) can be
absorbed into the error term in (1.4). Indeed, this is clear for D1/4 ≥ (log x)ρ . If D1/4 ≤
(log x)ρ , then a simple calculation shows that a1 = O(aK (log x)K−1(log x)−ρ+ε). This
completes the proof of Corollary 1.

8. Proof of Theorem 5

8.1. The generating function
The proof of (1.14) uses ideas from the article [3], which considers the case where
β = 0. It ultimately relies on the fact that, roughly speaking, numbers with many
prime factors can be represented by many classes. This idea has been used in many
articles on quadratic forms (see, e.g., [10], which is in a slightly different setting) and
was made more precise, on average, in Lemma 3.2. We now define some Dirichlet
series. Let

Q :=
{

exp
(
(log x)ε

)
unconditionally,

exp
(
c7(log log x)2

)
if we assume (1.15),

(8.1)

and let

P = PQ = {
p

∣∣ χ−D(p) = 1, p > Q
}
.

With L as in Theorem 5, we may, by (1.7), always assume that

D ≤ (log x)2L log 2+1. (8.2)



xxx dmj5134 June 27, 2006 18:0

28 BLOMER and GRANVILLE

Define (for Res > 1) a modified L-function:

L̃K (s, Q, χ) :=
∏
p∈P

∏
p|(p)

exp
(χ(p)

ps

)
.

Then we define

PC,Q(s) := 1

2h

∑
χ∈Ĉ

χ̄ (C) log L̃K (s, Q, χ) = 1

2h

∑
χ∈Ĉ

χ̄ (C)
∑
p∈P

∑
p|(p)

χ(p)

ps

= 1

2

∑
p∈P

1

ps
#
{
p
∣∣ (p) : p ∈ C

} = ε(C)
∑

p∈R(C)
p∈P

1

ps

=:
1

2h
log ζ (s) + T (s, C), (8.3)

where ε(C) was defined at the end of Section 2. For k ∈ N, let

AC,k(s) := 1

k!

∑
C=(C1,...,Ck)∈Ck

NC(C)β
k∏

ν=1

PCν,Q(s) =
∞∑

n=1

aC,k(n)

ns
, (8.4)

say, with NC(C) as in (2.1). If n = ∏
p

ej

j is the canonical prime factorization, then the

series (1/k!)
∏k

ν=1 PCν,Q(s) for some C ∈ Ck counts a number n ↔ C (cf. Section 2
for the notation) with multiplicity 2−δ(C)ρ(C)−1 ∏

(ej !)−1. Thus Lemma 2.2(b) implies
that aC,k(n) = rf (C)(n)β if all pj ∈ P, n is squarefree and �(n) = k, and we always
have

aC,k(n) ≤ 2�(n)β∏
j ej !

≤ (
exp(2β)

)ω(n) ≤ τ (n)2β/ log 2 ≤ τ (n)2β+1

since max{NC(C)β | C ∈ Ck} ≤ 2kβ . Let us define

BC(s) :=
∑

p|m⇒p �∈P

τ (m)max(0,β−1)rf (C)(m)β

ms
. (8.5)

If we write n = lm, where l contains only prime factors from P and m contains only
prime factors not in P, then

rf (C)(n)β ≤ τ (m)max(0,β−1)
∑

C1C2=C

rf (C1)(l)
βrf (C2)(m)β,

by (3.3) and Lemma 2.2(a), since m is represented by at most τ (m) classes. For k = 0,
let us set AC̃,0(s) = 1 if C̃ = 1 is the principal class and set AC̃,0(s) = 0 otherwise,
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and

K∑
k=0

∑
C̃∈C

AC̃,k(s)BC̃−1C(s) =
∞∑

n=1

bC,K (n)

ns

for K ∈ N. Then bC,K (n) ≥ rf (C)(n)β if n is not divisible by the square of a prime
p ∈ P and �(n) ≤ K . Furthermore, 0 ≤ aC,k(n) ≤ bC,K (n) ≤ hτ (n)c8 , where
c8 = 2β+1 + β + max(0, β − 1) + 1 for all n ∈ N. Now let x be sufficiently large,

v := 1 + (log x)−1, T := exp(c9

√
log x), (8.6)

for a sufficiently small constant c8. Perron’s formula (see (7.4)) gives

∑
n≤x

rf (n)β ≥ 1

2πi

∫ v+iT

v−iT

AC,k(s)
xs

s
ds + O

( x√
T

)
+ O

( ∑
p>Q

∑
n≤x,p2|n

τ (n)2β+1
)

(8.7)

for any k > 0, and

∑
n≤x

rf (n)β ≤ 1

2πi

∫ v+iT

v−iT

K∑
k=0

∑
C̃∈C

AC̃,k(s)BC̃−1C(s)
xs

s
ds + O

( x√
T

)
+ O

( ∑
p>Q

∑
n≤x,p2|n

τ (n)β
)

+ O
( ∑

n≤x,�(n)≥K

τ (n)β
)

(8.8)

for any K > 0. The second error term in (8.7) and (8.8) is � x(log x)O(1)Q−1, and
the third term error term in (8.8) can be estimated by∑

n≤x
�(n)≥K

τ (n)β ≤
∑
n≤x

�(n)≥K
τ (n)≤S

τ (n)β +
∑
n≤x

τ (n)≥S

τ (n)β ≤ Sβ
∑
n≤x

�(n)≥K

1 + 1

S

∑
n≤x

τ (n)β+1

� Sβ x(log x)2

2K
+ x(log x)2β+1−1

S

for any S > 0, where we use [7, Corollary 1] in the last step. Choosing

S = (log x)2β+1+L log 2 and K = (
3 + (β2β+1 + 1)L log 2

)
log log x,

we can bound the third error term in (8.8) by O(x(log x)−L log 2−1), which is acceptable
since E(κ, β) ≥ −1 − L log 2, by hypothesis. By the choices of T and Q in (8.6) and
(8.1), all error terms in (8.7) and (8.8) are admissible.
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8.2. Useful estimates
We want to shift the contour in (8.7) and (8.8). Let us write

w := 1 − (log x)−1/2, r := M(log x)−1 (8.9)

for a sufficiently large constant M . Define the path � = �−
1 �−

2 �−
3 �4�

+
3 �+

2 �+
1 by

�−
1 = [v − iT , w − iT ], �−

2 = [w − iT , w], �−
3 = [w,−r],

�4 = {reit | −π ≤ t ≤ π},
�+

3 = [−r, w], �+
2 = [w, w + iT ], �+

1 = [w + iT , v + iT ].

(8.10)

By (2.6) and (8.2), the functions PC,Q(s) extend holomorphically to �.

LEMMA 8.1
For k, K � log log x, the integral over �±

1,2 contributes an error of at most
x exp(−(log x)1/3) to (8.7) and (8.8).

Proof
Let us first observe that L̃K (s, Q, χ) = LK (s, χ)H (s), where H (s) is holomorphic in
Res > 1/2 and satisfies H (s) � (log Q)2 if �s ≥ 1 − (log Q)−1. Thus we obtain, by
(2.5) for s ∈ �,

log L̃K (σ + it, Q, χ) � log log Q + log D + log log(3 + |t |). (8.11)

By (8.1) – (8.3), we conclude that PC,Q(s) � log log x on �±
1,2, so that

AC,k(s) � (c10h log log x)k � exp
(
c11(log log x)2

)
(8.12)

on �±
1,2 for k � log log x. Furthermore, we observe that

∑
C∈C

|BC(s)| ≤
∑

m:p|m⇒p �∈P

τ (m)β(
∑

C rf (C)(m))β+1

mσ

�
∏
p≤Q

(
1 + 2β+1

p

)
� (log Q)c12 (8.13)

on �, by (8.1) and (8.5). The lemma now follows easily from (8.12) and (8.13).
For the remaining parts of the integral, we need the following lemma. �

LEMMA 8.2
On �−

3 �4�
+
3 , we have T (s, C) = T (1, C) + O((log x)−1/3/h) with T (1, C) �

log log Q/h.
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Proof
For any µ ≥ 0, the Dirichlet series for T (µ)(s, C) converges (conditionally) at s = 1,
and

T (µ)(s, C) = ε(C)
∑

p∈R(C)
p∈P

(−log p)µ

ps
− 1

2h

dµ

dsµ
log ζ (s) =

∞∑
m=1

tµ(m)

ms
,

say. Choosing A = (2L log 2 + 1)/ε in (2.8) and observing (8.1) and (8.2), we con-
clude for ξ ≥ Q, from (2.7) – (2.9) by partial summation,

∑
m≤ξ

tµ(m)

m
� 1

2h

∫ Q

2

(log y)µ−1

y
dy + O

( 1

h

)
+ O

(
exp

(
− c3

2

√
log Q

))
.

Since the right-hand side is independent of ξ , we get

T (1, C) � log log Q

h
and T (µ)(1, C) � (log Q)µ

h

for µ ≥ 1. Since |s − 1| ≤ (log x)−1/2 on �−
3 �4�

+
3 , we can apply Taylor’s formula

about s = 1 up to degree µ0 := �2(log 2)L�+1 to estimate T (s, C). We use the trivial
estimation

|T (µ0)(s, C)| ≤ max
χ �=χ0

∣∣∣ dµ0

dsµ0
log L̃K (s, Q, χ)

∣∣∣ + 1

h

∣∣∣ dµ0

dsµ0
log

L̃K (s, Q, χ0)

ζ (s)

∣∣∣
� (log x)ε

on �−
3 �4�

+
3 , which follows easily from (2.6), (8.2), (8.11), and Cauchy’s integral

formula (see, e.g., [3, (2.9)]). This gives

T (s, C) − T (1, C) � (log x)ε

h
√

log x
+ (log x)ε

(log x)µ0/2
� (log x)−1/3

h
.

Hence the lemma is concluded. �

8.3. The upper bound
By (8.3), (8.4), Lemma 3.2, and the two preceding lemmata, we have

AC,k(s) �


1
k!

1
h

(
log|ζ (s)| + c13 log log Q

)k
, k ≤ log h/g

log 2 ,

1
k!

2(β−1)k

hβ

(
log|ζ (s)| + c13 log log Q

)k
, k ≥ log h/g

log 2 ,
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on �−
3 �4�

+
3 , so that by (8.8) and (8.13) up to an admissible error,∑

n≤x

rf (n)β

� (log Q)c12

∫
�−

3 �4�
+
3

xσ
( ∑

k≤(log h/g)/(log 2)

1

k!

1

h
(log|ζ (s)| + c13 log log Q)k

+
∑

(log h/g)/(log 2)≤k≤K

1

k!

2(β−1)kgβ−1

hβ

(
log|ζ (s)| + c13 log log Q

)k
)

|ds|

� (log Q)c12

g

( ∫
�±

3

xσ |dσ | + x

log x

)(g

h

∑
k≤(log h/g)/(log 2)

(log log x + c13 log log Q)k

k!

+ gβ

hβ

∑
(log h/g)/(log 2)≤k≤K

(2β−1(log log x + c13 log log Q))k

k!

)

� x(log Q)c14

g log x

(
(log x)−κ log 2 max

k≤κ log log x

(e log log x

k

)k

+ (log x)−βκ log 2 max
κ log log x≤k≤K

(e2β−1 log log x

k

)k
)

,

where we use Stirling’s formula and the definition of κ in Theorem 5 together with
(1.7) and (8.1). Since

max
k≤κ log log x

(e log log x

k

)k

�
{

log x, κ ≥ 1,

(log x)κ(1−log κ), κ ≤ 1,

and

max
κ log log x≤k≤K

(e2β−1 log log x

k

)k

�
{

(log x)2β−1
, κ ≤ 2β−1,

(log x)κ(1+(β−1) log 2−log κ), κ ≥ 2β−1,

the upper bound of (1.14) and (1.16) follows after a short calculation.

8.4. The lower bound
By (8.7) and Lemma 8.1 we have, for any log log x � k � log log x up to an
admissible error,

∑
n≤x

rf (n)β ≥ x

2π

1

k!

∑
C∈Ck

NC(Cf )β
(∫ π

−π

k∏
ν=1

PCν,Q(1 + reit)
reitxreit

1 + reit
dt

+ O
( ∫ (log x)−1/2

r

x−t

k∏
ν=1

|PCν,Q(1 − t)| dt
))

.

(8.14)
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By (8.3) and Lemma 8.2 there are some real numbers aν = 2hT (1, Cν), independent
of t , such that |aν | ≤ c13 log log Q. Since ζ (1 + s) = 1/s + O(1), we get

(2h)k
k∏

ν=1

PCν,Q(1 + reit ) =
k∏

ν=1

(
log

1

r
− it + O(r) + aν + O

( 1

(log x)1/3

))
,

the O-constants being absolute. Since r � (log x)−1, the right-hand side has absolute
value

k∏
ν=1

(
log

1

r
+ aν + O

(
(log log x)−1

)) =
k∏

ν=1

((
log

1

r
+ aν

)(
1 + O((log log x)−2)

))
and argument

arctan
(
− t

log (1/r) + aν

+O
(
(log x)−1/3))=−

k∑
ν=1

( t

log 1/r+aν

+O
(
(log log x)−2)).

For brevity we write B := ∑k
ν=1 (1/ log (1/r) + aν). Note that B � 1 for log log x �

k � log log x. This gives

k∏
ν=1

PCν,Q(1 + reit ) = (2h)−k

(
1 + O

( 1

log log x

)) k∏
ν=1

(
log

1

r
+ aν

)
exp(−itB).

Clearly, (1 + reit )−1 = 1 + O(r). Thus the first integral in (8.14) equals(
1 + O

( 1

log log x

))
r

(2h)k

k∏
ν=1

(
log

1

r
+ aν

) ∫ π

−π

exp
(
it(1 − B) + r(log x)eit

)
dt.

This last integral can be interpreted as the contour integral

(r log x)B−1

i

∫
ess−B ds �B (r log x)B−1 (8.15)

over the circle {r(log x)eit | −π ≤ t ≤ π}. Recalling that r = M(log x)−1, we see
that the first integral in (8.14) is bounded below by

� MB

(2h)k log x

k∏
ν=1

(
log

1

r
+ aν

)
. (8.16)
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To estimate the error term in (8.14), we note that

k∏
ν=1

|PCν,Q(1 − t)| � (2h)−k

k∏
ν=1

(
log

1

t
+ aν

)
≤ (2h)−k

k∏
ν=1

(
log

1

r
+ aν

)
on �±

3 and that
∫ (log x)−1/2

r
x−t dt � e−M (log x)−1. Selecting M sufficiently large, we

see that the error term is dominated by (8.16), and by Lemma 8.2, we obtain∑
n≤x

rf (n)β � x

(2h)kk! log x

∑
C∈Ck

NC(C)β(log log x − c13 log log Q)k

for log log x � k � log log x. Using Lemma 3.2 and Stirling’s formula, we obtain the
lower bound by exactly the same calculation that led to the upper bound in Section 8.3.Is the statement

of the
conclusion of
the proof of
Th. 5 at the end
of Sec. 8.4
Okay?

This completes the proofs of (1.14), (1.16), and Theorem 5. �

9. Proofs of Theorem 6 and Corollary 2
The proof of Theorem 6 is a variant of the proof of Theorem 5; here we use Lemma 3.3
instead of Lemma 3.2, and we also use slightly different generating Dirichlet series.

9.1. The upper bound
Let M = {m1m2 : m1 powerful, m2 | D}. First, let us observe that we can write
each positive integer n as n = lm with (l, Dm) = 1, µ2(l) = 1 and m ∈ M. From
Lemma 2.2 we conclude, similarly as in the proof of Theorem 5 (cf. (8.4)), that the
coefficients an, say, of the Dirichlet series

∑
C∈C

∑
k≤K

1

k!

∑
C∈Ck

NC(C)0
k∏

ν=1

PCν,1(s)
∑

m∈R(C−1C0)∩M

1

ms

satisfy ∑
n≤x

an ≥
∑
n≤x

rf (C0)(n)0 + O
( ∑

n≤x,�(n)>K

1
)

(9.1)

for any K ∈ N, C0 ∈ C. (Note that we have now chosen Q = 1.) Clearly,∑
C∈C

∑
m∈R(C)∩M

1

ms
�

∏
p|D

(
1 + 1

pσ

) ∏
p�D

(
1 + O(1)

p2σ

)

�
∏
p|D

((
1 + 1

p

)(
1 + O(|1 − σ | log p)

p

))
�

∏
p|D

(
1 + 1

p

)
(9.2)

on �. As in (8.8), we see that the error term in (9.1) is admissible if K >

(L + 3) log log x, say. By Theorem 4, (9.1) also holds—up to a constant—for the
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coefficients of

1

h

∑
C0∈C

( ∑
C∈C

∑
k≤K

1

k!

∑
C∈Ck

NC(C)0
k∏

ν=1

PCν,1(s)
∑

m∈R(C−1C0)∩M

1

ms

)

= 1

h

∑
k≤K

1

k!

∑
C∈C

∑
C∈Ck

NC(C)0
k∏

ν=1

PCν,1(s)
∑
C∈C

∑
m∈R(C)∩M

1

ms
.

Thus by Lemma 3.3, (9.1) holds, a fortiori, for the coefficients of

∑
k≤K

1

k!
min

(2k

h
,

1

g

)( ∑
C∈C

PC,1(s)
)k ∑

C∈C

∑
m∈R(C)∩M

1

ms

=
∑
k≤K

1

k!
min

(2k

h
,

1

g

)(1

2
log L̃K (s, 1, χ0)

)k ∑
C∈C

∑
m∈R(C)∩M

1

ms
. (9.3)

Let us now apply Perron’s formula (see (7.4)) to the series (9.3) with the contour given
by (8.6), (8.9), and (8.10). As in Lemma 8.1, we see that (8.12) holds for (9.3) on
�±

1,2, so this part of the path is negligible. To estimate the contribution of �−
3 �4�

+
3 ,

we proceed exactly as in Section 8.3. Up to an admissible error, we have, with the
definition λ := log(h/g)/(log 2) as in Lemma 3.3,∑

n≤x

rf (n)0 � D

φ(D)

∫
�−

3 �4�
+
3

xσ

( ∑
k≤λ

1

k!

1

h

(
log|L̃K (s, 1, χ0)|)k

+
∑

λ≤k≤K

1

k!

1

g

(1

2
log|L̃K (s, 1, χ0)|

)k
)

|ds|.

Note that

L̃K (s, 1, χ0)

ζ (s)
|s=1� L(1, χ−D)

φ(D)

D
= �

with the notation as in Theorem 6, so that log L̃K (s, 1, χ0) ≤ log log x + log � + O(1)
on �−

3 �4�
+
3 . By Stirling’s formula,

∑
k≤κU

1

k!
Uk �

 eU , κ ≥ 1,

(eU )κ(1−log κ) min
(

1, 1
(1−κ)

√
κU

)
, κ < 1,

and

∑
k≥κU

1

k!
Uk �

{
eU , κ ≤ 1,

(eU )κ(1−log κ) min
(

1, 1
(κ−1)

√
κU

)
, κ > 1,

for any U > 1, κ > 0, which gives the upper bounds in (1.1), (1.2), and (1.3).
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9.2. The lower bound
Fix a small number ε > 0 as in Theorem 6, and assume that κ ≤ 1/2 − ε. Let
us define K = [(1/2 − ε2) log log x, log log x] ∩ N, and Q = exp(Dε∗

) with ε∗ =
min((ε/18)/(6c14 + 1), ε2/4). Note that with this choice, we are still able to apply
Lemma 8.2. Let Q be the set of squarefree integers whose prime factors p satisfy
χ−D(p) �= −1 and p ≤ Q, and for m ∈ Q, let r∗(m) be the number of classes
C ∈ C which can represent m. As in Sections 8.1 and 9.1 (cf. (8.4)), we see that the
coefficients of ∑

k∈K

∑
C̃∈C

AC̃,k(s)
∑

m∈R(CC̃−1)∩M

1/r∗(m)

ms

with β = 0 minorize rf (C)(n)0 for any C ∈ C. Using Theorem 4 as before, we find
that the coefficients an, say, of

1

h

∑
C∈C

∑
k∈K

1

k!

∑
C∈Ck

∑
C̃∈C

NC(C)0
k∏

ν=1

PCν,Q(s)
∑

m∈R(C̃C−1)∩Q

1/r∗(m)

ms

=
∑
k∈K

1

k!

∑
C∈Ck

1

h

∑
C∈C

NC(C)0
k∏

ν=1

PCν,Q(s)
∑
m∈Q

1

ms

satisfy ∑
n≤x

an ≤ 1

h

∑
C∈C

∑
n≤x

n∈R(C)

1 �
∑
n≤x

rf (C0)(n)0 (9.4)

for any C0 ∈ C. Now let us apply Lemma 3.3 with ε̃ = ε/18. Then all k ∈ K satisfy

(1 + 18ε̃)
(1

2
− ε

)
(log log x + log �) ≤ (1 + ε)

(1

2
− ε

)(
1 + 1

2
ε
)

log log x ≤ k,

so that we can decompose Ck = C1 ∪ C2 such that∑
C∈C

NC(C)0 � min
(

2k,
h

g

)
= h

g

for all C ∈ C1 and #C2 � hkD−ε̃. Therefore the coefficients of the series

1

g

∑
k∈K

1

k!

∑
C∈Ck

k∏
ν=1

PCν,Q(s)
∑
m∈Q

1

ms

− 1

g

∑
k∈K

1

k!

∑
C∈C2

k∏
ν=1

PCν,Q(s)
∑
m∈Q

1

ms
=: A1(s) − A2(s), (9.5)
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say, satisfy, a fortiori, (9.4) for all C0 ∈ C. Clearly,

A1(s) = 1

g

∑
k∈K

1

k!

(1

2
log L̃K (s, Q, χ0)

)k ∑
m∈Q

1

ms
,

by orthogonality. Let us now apply Perron’s formula (see (7.4)) to both terms in (9.5)
with the contour given by (8.6), (8.9), and (8.10). As in Lemma 8.1, we see that (8.12)
holds for (9.5) on �±

1/2, so this part of the path is negligible. As in (9.2), we see that

∑
m∈Q

1

ms
�

∏
p≤Q

(
1 + 1

p

)
� log Q

for the considered s, so exactly the same calculation as in Section 8.3 shows that the
contribution of A2(s) is at most

(log Q)c14+1

gDε̃

x√
log x

� (log Q)c14+1

Dε̃/2

√
DL(1, χ−D)

g
√

φ(D)

x√
log x

� main term

Dε̃/3
.

The integral over A1(s) can be estimated exactly as in Section 8.4 with

aν := log
(
ress=1L̃K (s, Q, χ0)

) + O
(Dε

r

)
= log � −

∑
p≤Q

1 + χ−D(p)

p
+ O(1).

The estimate (8.15) becomes

(r log x)B−1

i

∫
ess−B

∏
p∈Q

(
1 + 1

p1+s/(log x)

)
ds � (r log x)B−1

∏
p∈Q

(
1 + 1

p

)
,

and we arrive as in Section 8.4 at∑
n≤x

rf (n)0

� x

log x

∏
p∈Q

(
1 + 1

p

)∑
k∈K

1

k!g

(
1

2

(
log log x + log � −

∑
p≤Q

1 + χ−D(p)

p
+ O(1)

))k

� 1

τ (D)

∏
p∈Q

(
1 + 1

p

) x

log x

(
�(log x)

∏
p∈Q

(
1 − 1 + χ−D(p)

p

))1/2

,

which gives the lower bound in (1.1). For the last step, note that by our choice of Q,
we have

1

2

(
log log x + log � −

∑
p≤Q

2

p
+ O(1)

)
≥

(1

2
− ε2

2

)
log log x + Oε(1),

which is larger than the lower bound of K for large x.
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9.3. Sums of two powerful numbers
Corollary 2 can be proved as in [3, Section 5] by using our refined estimates (1.16)
and the upper bound in (1.2). The main idea is that a powerful number n can be written
uniquely as n = a3b2 with µ2(a) = 1. Thus

V (x) = #
{
1 ≤ n ≤ x

∣∣ a3
1x

2
1 + a3

2x
2
2 represents n for some (a1, a2) = 1

}
.

All results from Section 2 as well as (1.7) also hold for nonfundamental discriminants
Df 2, except that numbers m | f ∞ behave differently; a prime p | f cannot be
represented, while [12, main theorem] states that pα can be represented by at most
p[α/2] classes. Thus (1.16) carries over to nonfundamental discriminants, as do (1.1) –
(1.3) since (9.2) remains unchanged.

The lower bound in Corollary 2 follows from (1.16), as in [3, Section 5], by
considering the quadratic forms x2

1 +p3x2
2 for primes p ≡ 3 (mod 4) so that L(s, χ−4p)

has no Siegel zero and (log x)(22/3/3) log 2 ≤ p ≤ 2(log x)(22/3/3) log 2.
Let us now turn toward the upper bound and use the notation from Theorem 6.

Using the trivial bound∑
n≤x

rf (n)0 � min
( x

(log x)1/2−ε
,

x√
D

+
√

D
)
,

it is easy to show that the contribution of forms a3
1x

2
1 + a3

2x
2
2 with κ ≤ 1/2 or κ ≥ 1,

that is, (a1a2)3 ≤ (log x)log 2+ε or (a1a2)3 ≥ (log x)2 log 2+ε, is negligible; in fact, it is
� x(log x)log 2/3+ε (cf. [3]). Let us now consider the contribution of the remaining
forms. Since

(� log x)κ log 2 = h

g
� D1/2L(1, χ−D)

τ (D)
,

we have, by the upper bound in (1.2), that∑
n≤x

rf (n)0 � x

� log x
√

log log x

(L(1, χ−D)

τ (D)

)1/3 1

D1/3
(� log x)κ(1−log(21/3κ))

�
( D

φ(D)

)1−2−1/3

L(1, χ−D)2−1/3−2/3 x(log x)−2−1/3+κ(1−log(21/3κ))

(log x)1−2−1/3 (τ (D)D)1/3
√

log log x

≤ (
1 + L(1, χ−D)

) x(log x)−2−1/3+κ(1−log(21/3κ))

(log x)1−2−1/3 (τ (D)φ(D))1/3
√

log log x
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if 1/2 < κ < 1. Here we used 0 < 2−1/3 − 2/3 < 1. Thus the contribution of the
remaining forms is at most

∑
(log x)log 2/3−ε≤d≤(log x)2 log 2/3+ε

(
1 + L(1, χ−d )

)τ (d)2/3

φ(d)

x(log x)−2−1/3+κ(1−log(21/3κ))

(log x)1−2−1/3√log log x
, (9.6)

where κ = κd refers to the discriminant −4d3. One can easily see that

−2−1/3 + κ
(
1 − log(21/3κ)

) ≤ − (κ − 2−1/3)2

2

for all 1/2 ≤ κ ≤ 1; by definition and the class number formula,

κ = 3

2 log 2

(log d + O(log L(1, χ−d ) + log τ (d)))

(log log x + O(log �))
,

so that

(log x)−2−1/3+κ(1−log(21/3κ)) ≤ exp
(
−(

1 + o(1)
) log(d/(log x)θ )2

25/3θ2 log log x

)
, (9.7)

where θ = (22/3/3) log 2, provided that log d � log log x and | log L(1, χ−d )| +
log τ (d)+ log(d/φ(d)) = o(

√
log log x). We always have 1 ≤ d/φ(d) � log log d �

log log log x. The only way that | log L(1, χ−d )| � log log log x is if we have a Siegel
zero, and this happens for just O(1) values of d in such a range. However, such
terms contribute � 1/d1/2 to the sum, so they are negligible. The exceptional d

are those with τ (d) large, which we take to mean greater than (log log x)A. By the
Cauchy-Schwarz inequality and the known bounds for moments of L(1, χ−D),( ∑

τ (d)>(log log x)A

d=(log x)O(1)

(
1 + L(1, χ−d )

)τ (d)2/3

φ(d)

)2

≤
∑

d=(log x)O(1)

(1 + L(1, χ−d ))2

d

∑
d=(log x)O(1)

τ (d)>(log log x)A

dτ (d)4/3

φ(d)2

� log log x

(log log x)A
∑

d=(log x)O(1)

dτ (d)7/3

φ(d)2
� 1

(log log x)A−27/3−1
.

We thus get a negligible contribution to the above sum if A is chosen sufficiently large
since −2−1/3 + κ(1 − log(21/3κ)) ≤ 0.

For the remaining terms d, we split the sum up into dyadic intervals (y, 2y] (with
y a power of 2). By the Polya-Vinogradov and the Cauchy-Schwarz inequalities, we
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have

∑
y<d≤2y

(
1 + L(1, χ−d )

)τ (d)2/3

φ(d)
=

∑
y<d≤2y

(( y1/2+ε∑
n=1

(−d/n)

n

)
+ O(1)

)
τ (d)2/3

φ(d)

�
log y∑
n=1

1

n

∑
y<d≤2y

(−d/n)τ (d)2/3

φ(d)
+

( ∑
y<d≤2y

τ (d)4/3

φ(d)2
·

∑
y<d≤2y

∣∣∣y1/2+ε∑
n=log y

(−d/n)

n

∣∣∣2)1/2

+ (log y)22/3−1. (9.8)

Let us consider the second term of the right-hand side. The first sum inside the
brackets is � y−1(log y)24/3−1. For the second, we expand to get

N∑
m,n=log y

1

mn

∑
y<d≤2y

(
− d

mn

)
.

For the terms where mn is not a square, the final term is � (mn)1/2 log y, by the
Polya-Vinogradov inequality, and thus, their total contribution is

�
( ∑

n≤y1/2+ε

1√
n

)2
log y = y1/2+ε.

When mn is a square, write a = (m, n) and m = ar2, n = as2, so that the total
contribution of these terms is

≤ y
∑

a≤y1/2+ε

√
y1/2+ε/a∑

r,s=√
(log y)/a

1

(ars)2

� y
∑

a≤log y

1

a2

( 1√
(log y/a)

)2
+ y

∑
log y≤a≤y1/2+ε

1

a2

� y log log y

log y
.

Finally, let us consider the first term on the right-hand side of (9.8). The con-
tribution of n that are squares is at most � (log y)22/3−1. If n is a nonsquare, then
(−d/n)τ (d)2/3d/φ(d) is the coefficient of L(s, χ)22/3

An(s), where An(s) is absolutely
convergent in Re(s) > 1/2 and χ is a nonprincipal character. By the Siegel-Walfisz
theorem, the d-sum is at most exp(−c15

√
log y) for some c15 > 0, so that the total

contribution of nonsquare n is negligible. Altogether, we find that (9.8) is bounded



xxx dmj5134 June 27, 2006 18:0

REPRESENTATION NUMBERS OF QUADRATIC FORMS 41

above by

(log y)22/3−1 = (log log x)22/3−1. (9.9)

The contribution of the d ∈ (y, 2y] to the sum (9.6) thus depends by (9.7) only on
the value of log(y/(log x)θ )2/log log x and is thus bounded for � √

log log x values
of y (which are each powers of 2). The contribution of values of y further away from
(log x)θ decays rapidly and, in total, does not contribute as much as the values of y

nearby, and thus, we deduce from (9.6) and (9.9) the upper bound

√
log log x

x(log log x)22/3−1

(log x)1−2−1/3√log log x
,

which is Corollary 2.
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