Integers, without large prime factors,
in arithmetic progressions, II

Andrew Granville f
University of Georgia, Athens GA 30602, USA

and

The Isaac Newton Institute for the Mathematical Sciences,
20 Clarkson Road, Cambridge CB2 OEH, UK.

Abstract: We show that, for any fixed € > 0, there are asymptot-
ically the same number of integers up to x, that are composed only
of primes < y, in each arithmetic progression (mod ¢), provided
that y > ¢'™¢ and log x/log ¢ — oo as y — oo: this improves on
previous estimates.

T An Alfred P. Sloan Research Fellow. Supported, in part, by the National Science

Foundation
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in arithmetic progressions, II

Andrew Granville

1. Introduction.

The study of the distribution of integers with only small prime factors arises naturally
in many areas of number theory; for example, in the study of large gaps between prime
numbers, of values of character sums, of Fermat’s Last Theorem, of the multiplicative
group of integers modulo m, of S—unit equations, of Waring’s problem, and of primality
testing and factoring algorithms. For over sixty years this subject has received quite a lot
of attention from analytic number theorists and we have recently begun to attain a very

precise understanding of their distribution.

Let U(x,y) be the number of integers < x that are free of prime factors > y, ¥, (z, y)
be the number of such integers that are also coprime to ¢, and ¥(z, y; a, ¢) be the number of
such integers in the congruence class a (modgq). Our goal is to prove that the asymptotic

formula

\IJq(x, y)
o(q)

holds whenever a is coprime to ¢, in as wide a range as possible. Currently the widest such

(1.1) U(z,y;a,q) ~

range is given in (Granville, 1993), where the estimate

(1.2) V(z,y5a,q) = %{MLOGZEZ)}

is shown to hold uniformly in the range
(1.3) (a,q) =1, x>y >2, q < min {z,y"},

for any fixed N > 0; this implies (1.1) only if log y/log ¢ — 0o as y — oo.

In this paper we will consider what happens when ¢ is a small power of y, and = is
at least a large power of y. Fouvry and Tenenbaum (1991) gave a ‘Bombieri—Vinogradov

type result’ for such a range but, currently, the best estimates for individual progressions
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are given in (Granville, 1993), building on work of Friedlander (1981), and of Balog and
Pomerance (1992): For any fixed N in the range 0 < N < 4/3 and ¢ > 0, we have the

estimate
\I’q (55, y)

U(z,y;a,q) < Q)

uniformly in the range

3/24¢ 3/4—{—5}.

(a,q) =1, y>2, ¢ <y, o >max {y**° yq

Our main result gives a stronger estimate for any ¢ < y'~¢:

Theorem. For any given € > 0, there exists a constant ¢ > 0 such that the estimate

(1.4) ‘I’(way;a,q)zw{uo(l logg , 1 )}

¢(q) ulogy ' logy

holds uniformly in the range

(1.5) (a,q) =1, x>y>qg'te,  g>2.

From this we deduce that (1.1) holds uniformly as y — oo for y > ¢'*¢ provided
log z/log ¢ — 0.

It looks hopeless to prove (1.1) uniformly when y is a small fixed power of ¢; for this
would imply improvements on what is known for the famous open problem of proving that
there exists a prime <. ¢° which is not a quadratic residue  (mod ¢). There may be

similar difficulties in proving (1.1) when x and ¢ are both any given fixed powers of y.

The proof of the Theorem is built up of a number of increasingly complicated ideas.
In order to make these more accessible we have chosen to first present a stronger result
with an easier proof in section 4, but which only works for those ¢ for which the primes
are ‘well-distributed’” modulo ¢. Then, in section 5, we modify our proof so that it works
for those ¢ for which the ‘P2s’ (integers with no more than two prime factors) are ‘well—
distributed’ modulo ¢. Finally, in section 6, we modify this further, and complete the proof

of the Theorem.

As preparation, we discuss, in section 2, estimates for ¥, (z,y) which we will need in
sections 4, 5 and 6 (we save the proofs of these estimates, which are straightforward given

the ideas of (Hildebrand and Tenenbaum, 1986), until Appendix One), and in section 3 we
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present a number of functional equations that will be useful. Finally, in Appendix Two,
we present modifications of work of Mikawa (1989), to prove a result that we will need on

‘P2s’ in arithmetic progressions.

Notation: Throughout ¢ and ¢ are taken to be absolute positive constants; however,
they may change value from one proof to another. Writing ¥(z,y;a/d, q) is notationally

consistent with the definition in the second paragraph.

Acknowledgements: I'd like to especially thank Henryk Iwaniec with whom I had a
number of very helpful conversations, Hiroshi Mikawa for his correspondance and also
Antal Balog, Brian Conrey, John Friedlander, Amit Ghosh and Dan Goldston for their

comments.

2. Estimates involving ¥ ,(z,y).

In 1930, Dickman showed that for any fixed u > 0,
V(z,y) ~ap(u)  (z—o0, y=a'/*)

where p(u), the Dickman function, equals 1 for 0 < u < 1, and is the continuous solution
of the differential difference equation up’(u) + p(u — 1) = 0 for v > 1. Hildebrand (1986)
proved this estimate uniformly for all y > exp (c(log log x)5/ 3+€) (for any fixed £ > 0),
using the functional equation

(2.1) U(z,y)logx = / Mdt—{— Z W(%,y)logp.
1

p™M <z
p<y

In 1986 Hildebrand and Tenenbaum obtained precise estimates for ¥(z,y) for all
x > y > 2. Their starting point was an old observation of Rankin that, for any o > 0,

vy < Y (2) =aCom),

n
n>1
pln=p<y

where ((s,y) = [],<,(1 - p ®)~!. The right-hand side of this equation is minimized for

o =a = a(z,y), the (unique) real solution of the equation

log p
(2.2) Z o log z,
Py
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so that ¥U(z,y) < 2*((a,y). Using the saddle point method, Hildebrand and Tenenbaum
gave an asymptotic formula for ¥U(z,y) in terms of a (which showed that Rankin’s upper
bound is too large (asymptotically) by only a small factor). From this they were able to

deduce a very accurate ‘local’ result, which gives the estimate
(2.3) U(ex,y) = @V (z, ) {1+ O(1/u)}
uniformly in the range x > y > logz with 1 < ¢ < y.
In Appendix One we will sketch a proof of a similar result for ¥,; that the estimate
(2.4) Vg (ex,y) = @D (2, y) {1+ O(1/u)}
holds uniformly in the range
(2.5) >y >y, y>logir with 1<e<y and ¢ <y

for any fixed N > 0. (Note that o > 3/5 in this range (by (2.4) of (Hildebrand and
Tenenbaum, 1986)).)

Furthermore, we will deduce the following two easy consequences of (2.4):

First that the bound

T W(t,y; v
(26) / ( ’y’a’q)dt + \If< r T a ,q)logp < (I('T,y)
1 t 2 pm’ 7 pm ¢(q)
p<y, plg, m>2

holds uniformly in the range
(2.7) (a,9)=1, z>y>¢”, ¢>2,  and y>log’z,
with z > y*, for any fixed B > 0.

Secondly, for ¢ in the range 0 < § < 1 and for integer N and positive reals y and z
such that (14 1/2)Y =4°, define w; = y' ~°(1+ 1/2)?, so that wy = y. For any A > 0 we

have
(2.8) ngi {\Ifq(wil,y> —(1- A)\Ifq(wii,y>} > (A—1/z)z ¥, (z,y)log z,

uniformly in the range (2.7).

We shall prove all of our results on ¥(zx, y; a, q) in the range (2.7). In order to extend
our estimates to all of (1.5), we need the following result, which is a straightforward

consequence of Proposition 1 of (Granville, 1993) (using (1.2) and (2.4) above):
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Proposition 0. Given y > ¢, define z* = x*(y) so that y = log *z*. Suppose that there
exists A such that

U(z,y;0,q) — Lq(x’y)‘ < a2ulny)

o(q) olq)

for all (a,q) =1 and x in the range x*/y* < x < z*. Then

woiad = BED {1 o (s 1))

uniformly for all (a,q) =1 and = > x*.

3. Functional Equations.

We start by giving functional equations for ¥(z,y;a,q) and ¥,(x,y), analogous to
Hildebrand’s equation (2.1): The idea is to evaluate > log n in two different

n<xz, n=a ( mod gq)
pln=p<y.pl

ways. First by partial summation, and second by writing each logn as )" log p, and then
p™|n
swapping the order of summation. This leads to the identity

Tt y;
(3.1)  ¥(x,y;a,q)logr = / de > W(%,y;pim,@logp-
1

pMm<z
p<y.,pla
Summing (3.1) over all integers (a,q) = 1 we get
T, (t
(3.2) U, (z,y)logzr = / Mdt + Z \Ifq<im,y>logp )
1 P p
p<y.pl4

Notice that (3.2) is just (3.1) with each term of the form W(t,y; b, q) replaced by ¥,(t,y).

(2.6) allows us to modify these functional equations to

T a 1\ (a:,y))
3.3 U(x,y;a,q)l = U(—,y;—,qll + O L=
(3.3) (z,y; 0, q)log x ; (pypq)ogp ( o0
p<y.pld
and
x
(3.4) Uy(z,yloge = ) \I’q(]—),y)logp + O(Yy(2,9)) ,

p<y.pl4
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uniformly in the range (2.7) with = > y*.

Suppose that > y5. If we replace each term W(t,y;b, q) on the right side of (3.3)
with the expression given by (3.3) for W(t,y;b, ¢), then the error term is

1 1 x U, (x,9)
<L — | Yy(2,y) + —— U, (—, lo <« 127
S | Vo0 e 2 Vel Jlosp < 0
p<y.pl4
by (3.4). Therefore we have
(3.5)
log p11 Wy (,
U(z,y;a,q)logr = > ?ng(lx(;g]? ‘I’< Ty — ,q> + 0< fb(gc)y)>,
pr.pa<y, prpald g\r/P1 P1ip2 P1ip2 q
and similarly
log p1log po z
3.6 U, (x,y)logx = U ( ,y) + OY,(z,y)) ,
(36) () Y R (L (¥,(z. 1)

p1,p2<Y, p1,p2l4

uniformly in the range (2.7) with o > y°.

4. Proof when the primes are well-distributed modulo g.

In this section we will prove a strong form of the theorem for the case when we
know that the primes are well distributed among all the arithmetic progressions modulo

q; specifically, when we know that

(4.1) Z logp >

T
YR
=it 29(0)

p=a ( mod gq)

for all (a,q) = 1, and some given z > 1, provided z > ¢*.
(By suitably modifying the proof of Linnik’s theorem given in (Bombieri, 1987, pgs.54-55),
one can prove such a result provided = > (¢z)? for some fixed B > 0, and L(s, x) # 0 for

allo > 1— @, t| < T, with T = gzlog %z, for all primitive characters y of modulus q.)

Under the assumption of (4.1) for y'=% < 2 < y, with z a fixed power of y, we shall
prove that for any given € > 0, there exists ¢ > 0 such that the estimate

(42) qj(x’y;a’q)zw{1+0< L logg ﬁ)}

o(q) ect log y
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holds uniformly in the range (2.7), for B = A(1 +¢). This may then be extended to all of
x >y > ¢P by using Proposition 0.
Remark 1: The error term here is better than that in the Theorem by an exponentiation.

Remark 2: With a little more care the O(1/y'/®) in the error term may be replaced by
O(log *y/y).
Proof of (4.2): The result holds for 1 < u < wg by (1.2), for fixed ug, so assume

henceforth that u > uyg.

Choose § > 0 such that (1 +¢)(1 —6) > 1, and z = y'/> + O(1), so that there exists
an integer N such that (14 1/2)N = y°. Define w; = y' (1 +1/2)" for each integer i > 0.

Choose z* so that y = log *2*, and define
Uq(2', y)
I — v .T/, ;a, 4 / E , 3
{ &9:0,9) ¢(q)

\Ifq(x/ay) T - x M
o > U(2'ysa,q) = (1-A(z)) ¢(q)

for zy? > 2’ > z. Using the functional equation (3.1) we obtain, for any (a,q) = 1,

A(z):= max  max
zy?>z' >z (a,q)=1

so that
(1+A(z))

TGty
U(z, y; a, q)log x 2/ Y00 g > ‘If<i,y;i,q>logp
e pm o p™

/y2 t Pm§y2
p<y.,pll

(1—Az/y?)

Z (b(q) (\IIQ(m7y)logx - GQ(x:y))
T a ¥y pima@/
(4.3) + > \If<p—m,y; p—m,q) —(1- A(w/yz))iT)) logp ,

yl=d<pm<y
pla

using (3.2), where G4(z,y) is the contribution of those terms ¥,(t,y) in (3.2) with ¢ <

x/y>.

Gy (z,y) < U, (z/y?, y)ylog z/log y provided z > y>.

Using the trivial inequality W (¢,y) < U, (z/y? y) for all ¢t < z/y?, we see that

Cutting the sum of (4.3) into intervals (w;,w;;+1] and into arithmetic progressions

modulo ¢, and choosing v = v;, € (w;, w;11] so as to minimize

w(g,y;%q)—(l—mm/y%)% ,
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> > > W(%,y;z%,Q)—(l—A(x/yQ))M log p

=0 (b,q)=1 wi<P™<w;y; p d)(q)

p™=b (mod q)

(4-4)2]:01 2 \If(viby %,Q) — (11— A(fﬂ‘/@ﬁ))% ) <pmz<w N log p
p™=b (mod gq)
::z¢in ?iguu{ﬂ@(;fi;40-—<1—zs@vy%)wg(5%,y)}
(45> (A/v?)—1/2) i)ﬁ%x

by (4.1) and then (2.8) (for z < x*).

Plugging this and the bound for Gy(z,y) into (4.3) and dividing through by

qjé((f])y) log z, we obtain, as A(z/y?) < 1, and where ¢; > 0 is the absolute constant implied

n (4.5),

_ Y(z,y5a,9) CeOAlx y Ye(z/v*,y)
e - ”A<”)+O( gy T, >)

< (L—e)A(z/y*) +O0(1/y*?),
by (2.4) as a > 3/5 in our range.

When we proceed in a similar fashion to examine an upper bound for ¥(z, y; a, q), we

obtain the inequality

U(z,y;a,q) 2 1/5
s — 1< (L= e)Ae/y?) + O(1/y').
Vy(z,y)/d(q)
(The proof is exactly analogous to that before except that we get (A(z/y?)(1—1/2)—1/z2)
instead of (A(z/y?) — 1/z) in (4.5); however, as A(x/y?) < 1 by (1.2), this only affects
the constant implied by the ‘O’ term above. A similar (unimportant) difference occurs in

the ‘analogous arguments’ in both the next two sections.)
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So, taking = 2’ in the two equations immediately above, for z’ in the range xy? >

2’ > x, we obtain the inequality

Al@) < (1—e) max_ A@/y?) + O(1/y).

Ty2>x' >

Thus, as A(z’/y?) < max {A(z/y?), A(x)} for any 2’ in this range, we see that

(4.6) either (a) A(z) < (1—c1)A(z/y?) + O(1/y*?), or (b) A(z) = O(1/y'/%).

Finally, suppose that wug is fixed to be sufficiently large, x = y* < z* and let r =
[(u—up)/2]. A straightforward induction hypothesis using (4.6) gives

Alzoy™) < (1—c1)"Alzo) + O(1/y'?),
which implies (4.2) as A(zg) < log ¢/logy by (1.2), and as r < u.

Remark: Fouvry and Tenenbaum (1991) proved a much stronger estimate than either

(1.2) or (1.4) for the range ¢ < log ™y, for fixed N > 0; specifically that

(4.7) U(z,y5a,q) = % {1 + O(exp(—cy/log y))}

for x > y > exp(c(log log x)?). It is a simple exercise to prove that (4.1) holds, with z = 3¢,
for any z in the range y'/? < z <y, for such ¢. It is then a straightforward task to modify
the proof above (but taking A(zy) < exp(—cy/logy)), to prove that for any fixed N > 0,

the estimate

(4.8) W(x,y;a,q)zw{““()(r\l/@ - yi)}

holds uniformly in the range z > y > 2, ¢ < log Vy. This is an improvement of (4.7) for
y < exp(c(log )%/3).

5. Modifying the proof to use P2’s.

The main problem with the method described in the previous section is that one needs

a strong result, such as (4.1), on the distribution of primes in arithmetic progressions in



10 Andrew Granville

order to make it work. To obtain such results in a wide range seems to be beyond the
scope of what is possible in the foreseeable future. However, it is possible to prove results
of similar strength in a much wider range if one only requires an understanding of the
distribution of P2’s, that is integers with at most two (not necessarily distinct) prime

factors. So, define

log %p if n = p is prime,
Aa(n) = log p1log ps if n = p1po where p; and ps are primes,
0 otherwise .

It requires only straightforward modifications of the proof of Theorem 13 in (Iwaniec, 1982)
to prove that, for A = 1.845, we have

rlog x

n=a ( mod gq)

for all (a,q) =1, and any 1 < z < log 2, provided x > ¢*. Using this we shall prove that
for any ¢ > 0, there exists ¢ > 0 such that (1.4) holds uniformly in the range (2.7) with
B = A(1 4+ ¢). This may then be extended to all of z > y > ¢” using Proposition 0.

Proof of (1.4) in the range (2.7): Define 2* and A(x) as in the previous section. We
choose z =logy + O(1) so that N is an integer.

From the functional equation (3.3), we obtain that ¥(z,y; a, ¢)logz =

_ (- A/y?)) > @q(%’yyogp N O(‘Pq(w,y))

#4) p<y,pl4 ®(q)
Lo 1—Az/y?) .
+p;w{m(5,y,§,q) - B (o) froer
> M((l ~ Alz/y?)log z — O(1))

)
e T [ - A (e

y1=90<p<y
pla




Integers in arithmetic progressions 11

using (3.4). Next, from the functional equation (3.5), we obtain that ¥(x,y; a, g)logz =

(1= Az/y?)) x log p1log po Ty(z,y)
B #(q) 2 \I[q(pIPZ’y) log (z/p1) " O< ?(q) )

p1,p2<Y, p1,p2l4

I {g,(i @) - LmAE)y y>}1ogpllogp2

Y —, 3
pip2 " P1p2 #(q) D1D2 log (z/p1)

p1,p2<Y, p1,p2l4

U, (z,y) 2
—oig) (1= Ak/y)loge —0))

1 x a (1 - A(z/y?)) x }
n 7] L N U ) Y log pylo
log = 2. { <P1p2 Y oips q> ?(q) q<p1pz y> & P1iO8 b2

y1=0<py,pa<y
p1.p2

using (3.6).

Now, if we add the two equations above together, and, as in the previous section, cut

the sum into intervals (w;, w;+1), and into arithmetic progressions modulo ¢, we get that,

. lIIq(l"y) o T 2 . 00 T 1 %
Vi) = U (1 - Alef) - 01 flog ) + 5
N-1 z a lI}q %’y
(5.2) x Y w(v,—b,y;g,q)—a—A(x/y?))% > ().
i=0 (b,q)=1 b wi<n<wiig

n=b ( mod gq)

Using (5.1) (instead of (4.1)) and (2.8), and otherwise proceeding in the manner of the

previous section, we find that the sum here is

> (Ale/y?) - 1/2) ulog?y %

and so, for some ¢ > 0,

(2, y) 2 3¢ 2
o) < Alz/y") +O(1/logz) — —(A(z/y") —1/2)

< (1—3c/u)A(az/y2)+O( L )

ulog y

1 - \I,('%ay; a, q)/

An analogous argument gives the same upper bound for ¥(zx,y;a,q) / ‘Ij‘é)((z’)y) — 1. So,

proceeding as in the previous section, we deduce that

2c

(5.3) either (a) A(z) < <1_ E) Az /y?)+0 <u101gy>, or (b) Az) =0 (lo;).
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Suppose that ug is fixed to be sufficiently large, z = y* < z* and let r = [(u — ug)/2].
A straightforward induction hypothesis using (5.3) gives that

" 2¢ 1 up \ ¢ 1
2r < _ —0
Alroy®) < Aao) H(l u0+2@-> T O(logy> < (%) A0+ o

=1

which implies (1.4) as A(zg) < log g/logy by (1.2).

6. Proof of the Theorem.

Recently Mikawa (1989) has shown that, for any fixed ¢ > 0, there exists a P2, in
almost all reduced residue classes modulo ¢, which is < ¢'*¢. We now modify the method
of the previous section so that we can use such an ‘almost all’ result in our proof. In fact
we will only need that (5.1) holds for ‘most’ arithmetic progressions modulo ¢, in order to

prove our Theorem.
In Appendix Two, we will modify Mikawa’s proof for our needs. An immediate con-

sequence of Proposition 1 (of Appendix Two) is

Corollary. Fix ¢ > 0. Then (5.1) holds uniformly for at least 2/3rd’s of the arithmetic

progressions a (mod q), for any 1 < 2 < 2log z, and for any x > ¢'*¢.

Using this we now prove that (1.4) holds uniformly in the range (2.7), with B = 1+¢.
Then, as before, we use Proposition 0 to extend this to the whole of (1.5).
Proof: Note that, for any 7 and b, we have

‘Il<viby pa) — (1 AW@F»% < 2A(:p/y2)w
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We follow the proof of the previous section up to (5.2), which still remains valid. However,

using (6.1), the sum in (5.2) is now

_ Z 2A(m/y2)qjq((b$i’y>}

(b,q)=1 (q)
(5.1) fails
> 1OgyNZ_lw-{\If( i y)—(1—1A<w/y2>)w (Z y)}
1)) izo L\ wig” 3 Nw,;’ ’

by the Hypothesis. From here we proceed exactly as in the previous section (but this time
taking A = $A(z/y?) in (2.8)), to deduce (1.4).

Remark: Using the methods of this section, it is possible to obtain a result like (1.4)
in a wider range, but it would be necessary to use the full strength of Proposition 1,
and to prove a stronger version of (2.8). Specifically if, for a given value of ¢, we take

yo = Cp(¢)log "¢ (with C as in Proposition 1), then for any y > 2y we have

v 1 1 1
\I/(aj’y;a’q):M 1+0 +_C_|__
?(q) exp (Cilogk()g/;o) log 2u> u logy

However it does not seem worth going into details here, as we are as yet unable to reach

our true goal of having such an estimate for some range of values of y < q.

Appendix One. The details of section 2.

Proof of (2.4):

Fouvry and Tenenbaum (1991) gave an estimate for ¥ (z, y) in terms of ¥(z, y) which

implies that

(A.1) W (r,y) = @m(x,y){uo(w)}

log y
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in the range (1.3) with u < logy. By writing

U, (cz,y) _ Yy(ex,y) U(cx,y) @\P(w,y)
@, (2, y) B @\P(caj,y) c@VW(x,y) Yy(z,y)

and then applying (A.1), (2.3) and (A.1), respectively, to the terms on the right side, we

obtain the estimate

1 (loglog2y)?
— a(zy) z S To I
U, (cx,y)=c \Ilq(a:,y){l—l—O(u + oz 4

uniformly in the range (1.3) with © <logy and 1 < ¢ < y. This implies (2.4) in the range
(2.5) provided u < y/log y.

We may henceforth assume that logy < u? < y. Our proof proceeds almost exactly
as in (Hildebrand and Tenenbaum, 1986, Theorem 3); we shall only expound upon the
one non—trivial change needed. Define £ = £(u) as the non—zero solution of the equation
et = 1+u& (s,y) = [p<y, plo(t — p~%)7L and @ = ay(z,y) to be the (unique) real

solution of the equation

g log p = logx
e | :
p<y, pl4 P

The proof of (Hildebrand and Tenenbaum, 1986, Theorem 3) (which implies (2.3)) is easily

modified to give the estimate

(4.2) Uy(ex,y) = @V (2, y){1+ O(1/u)}

in the range (2.5), with u > y/log y, provided we can prove the analogue to (Hildebrand
and Tenenbaum, 1986, (3.5)) in this range: that is, the estimate

(A.3) (1 —ay(z,y)logy = &(u)+ 0O <% + e\/@) :

We will prove that

(A4 ) = ale)+0 (1)

holds uniformly in this range. This immediately implies (A.3) (as (A.3) is known to hold
for ¢ = 1, see (Hildebrand and Tenenbaum, 1986, (3.5))); and also shows that (2.4) follows

from (A.2) in this range. It thus remains to give a
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Proof of (A.4): It is easily shown that a = a4(z,y) > 1 in this range, and so any
p* —1 > alogp > logp. Also note that ¢ has no more than O(logy) prime factors as
g <y". Thus

logp log p log p
Z pe —1 o Z pe —1 + Z pe —1
p<y <y, pl4 p<y, plq
= logz + O(logy) = {u+ O(1)}logy.

Define v so that a(y,y) = «; therefore v = u + O(1) by comparing the equation above
with (2.2). (Hildebrand and Tenenbaum, 1986, (6.6)) implies that

1

0
A. — t = —
(A.5) a(y',y) oz 7

ot

for y/logy >t > ty. Thus

[0 1 1
aq(z,y) —a(z,y) = / {&a(yt,y)}dt =< —(v—u)
and (A.4) follows.

Proof of (2.6): By summing (2.6) over the arithmetic progressions (mod ¢), we obtain

the estimate

",
(A.6) / q(t Yar v+ % foq(pim,y)logp < Uy(w,y)
1

p<y, pl4, m>2

uniformly for the range (2.7) with # > y*. We shall, in fact, first prove (A.6), and then

deduce (2.6) as a consequence:

Proof of (A.6): Let a = a(z,y). By (A.5), we have that a = a(x/c,y) + O(1/log z) for
1 < ¢ <y, so that, by (2.4),

(A.7) Uy(a/c,y) = @D (2, y) {1+ O(1/u)}

in the range (2.5); thus ¥y(z/d,y) < VU, (z,y)/d* uniformly for 1 < d < 3>,

For any given prime p < y define k = [3log y/log p|; by the above we see that

[2log ]
> Uy(z/p™y) = Uo(z/p™y) + Y, ylx/p™y)
m>2 m=k+1

<

- 109

\IIQ(xay)/pma + IOgZE\I/q(QZ,y)/QSQ < \IJQ(wvy)/pQQ

3
Il
2
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as a > 3/5. Therefore

T log p
> ‘I’q<p—m,y>10gp < Ty(z,y)D e <€ Vy(x,y),

p<y, plf, m>2 p<y

by the Prime Number Theorem. Finally note that

T x/2 i} 9J )
/ @dt < Z/ | Mdt < Z\IJq(a:/QJ,y)logQ < Yy(z,y).
1 j>07w/21 5>0

Completion of the Proof of (2.6): To bound the expression on the left side of (2.6)

we use the bounds ot
< Yot y)/d(q) fort>y

\I’t, ;a, g\%
(v a.a) {S ey, y)/d(q) fort<y;

the first of these bounds comes from (1.2), the second from the trivial inequality
U(t,y;a,q) < V(y,y;a,q) and then (1.2). Thus the left side of (2.6) is bounded by @

times (A.6) (for some absolute ¢ > 0) plus % times
v dt
— 1
Lt + Z ogp <K v,
p<y, pl4, v=p™>z/y

by the Prime Number Theorem. Now y¥,(y,y) < ¥,(y%,y) by (A.1), and so the left side
of (2.6) is

1 Yq(z,y)
< —— (Uy(z,y) + y¥q(y,y) < — ,
as r > y4.
Proof of (2.8): Start by noting that (A.3) implies that
(A8) o= g {140 (1 4
) Y N u logy

for a = a(z,y). Thus, by this and (A.7), we get that

-
x x a a w
’wN\Ijq(an> - wo\pq(w_o’y> = Uy(z,y) (wzlv - wy ® + O( ]:L ))

(A.90) _ qfq(x,y)ug(u){uo(i ;L )}
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and
N-1 . N-1
> wily(miy) = Tylay) Y wl {1+ 0(1/w)
i=0 ’ i=0
= qlq(x,y)(w}v_lc;z_)lwij {1+0(1/u)}
1 1
= o) e {16 (u@ o+ 2))
(A.9b) = 20, (z,y logx{1+0(% logy + %)},
using (A.3).

As w; = wiy1/(1 + 1/2) for all i, we see that the first term in (2.8) is (1 + 1/2)7!

times
N x il x x x
Wa(oy) = D wit(yw) Vy(ow) — (o) )
j;quwjy ;wqwierquwNy 0%\ Y

Therefore the sum in (2.8) equals

N-—1
1 T 1 T T
< Z+1);w At +1+1/Z(wN \ oY woWq( Y

1 ¢ 1 1 1
“wtmosr{ (2 )=+ R0 (¢ g 1))

by (A.9), which implies (2.8), for u > ug. For 2 < u < uy we prove (2.8) exactly as above,
except that we use the estimate (A.1) (together with ¥(z,y) ~ zp(u)) instead of (A.7).

Appendix Two. Almost primes in short intervals of arithmetic
progressions.

Recently, Mikawa (1989) proved that if g(z) is any function that — oo as z — o0
then, for any given ¢, there exists a P2 in almost all reduced residue classes modulo g,

which is < g(¢)qlog °q. We modify his proof to obtain:
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Proposition 1. There exists € > 0 (sufficiently small) and a constant ¢ > 0 such that the

estimate
ylog x
B.1 As(n) > ¢
(B ;< 2(n) 2 ?(q)
n=a (?noa q)
fails for
1 d(q)log°x
< (b(q) — + L
z Y

reduced residue classes modulo q, provided z >y > z!7¢.

(To be consistent with (Mikawa, 1989), and what is described below, it is necessary to

replace € by /4 in the statement of Proposition 1.)

The proof is based on ‘Richert weights’ and the Hooley—Weil estimates for incomplete
Kloosterman sums, as in (Mikawa, 1989, pp. 390-392). The main difference here is that
our sums are all in the short range (z — y, | rather than (z, 2z|, and also that we estimate
the sums S, differently so as to allow a wider range. We only give here the modifications
necessary to prove Proposition 1; for a complete argument we refer the reader to (Mikawa,
1989). Henceforth we use the notation of (Mikawa, 1989):

First, let D = MN = 2%, y = z'/*, z = 2'/" instead of (Mikawa, 1989, p.390). The
most difficult part of the argument is (Mikawa, 1989, Lemma 4). This should be altered

here to give the conclusion

2

S X o[ Z Y < vtogtor Lt
din d

=1 r—y<n<zx
(a,q) n=a (mod gq) (d,q)=1 (d,q)=1

The proof is essentially the same, though with a few modifications:

Given our change of range ((z — y, x| rather than (x,2z]), the terms z/q in (Mikawa,
1989) change to y/q; error terms such as O(zlog *z) change to O(ylog *z); and in (Mikawa,
1989, (4.2), (4.3) and beyond) the term x; = x becomes 1 = x —y, and z3 = 2z — ¢l =
2x — qdk becomes xo = x — gl = x — q0k. However we may use the integral in (5.7), as it

stands, as an upper bound for Ry, as this entails no significant loss.
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In order to allow Mikawa’s proof to work for any value of x (and not just those very
close to ¢), we must improve the estimate for Sy given in (Mikawa, 1989, (3.2) and the line

below). Mikawa informed me of the following elegant argument due to Balog:

Y Silwmga)= Y ) >, 1

(a,q)=1 (a,g)=1 =—y<n<sz p2|n
n=a (mod gq) w26 <p<gl/2—€

< > Yoo« ﬁ%aﬁﬁﬂ‘ﬁ

xr2e <p<$1/275 z—y<n<x
p2n

Using Cauchy’s inequality this, together with Lemma 4, leads to the bound
> [E(wia.0)| < y/o(aulor s + \[o(0) Lat ke 4 Lo /2
(a,q)=1

where

C YV B@qa)l

#{P2: r—y< P2<z, P2=a (mod q), p|P2=p> 2z} >
{ ( ), P } log 2 (d)

(in place of (Mikawa, 1989, (3.5))). Proposition 1 then follows.
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