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Abstract

We consider the distribution of spacings between consecutive elements in subsets of Z/qZ, where q is
highly composite and the subsets are defined via the Chinese Remainder Theorem. We give a sufficient
criterion for the spacing distribution to be Poissonian as the number of prime factors of q tends to infinity,
and as an application we show that the value set of a generic polynomial modulo q has Poisson spacings.
We also study the spacings of subsets of Z/q1q2Z that are created via the Chinese Remainder Theorem
from subsets of Z/q1Z and Z/q2Z (for q1, q2 coprime), and give criteria for when the spacings modulo
q1q2 are Poisson. Moreover, we also give some examples when the spacings modulo q1q2 are not Poisson,
even though the spacings modulo q1 and modulo q2 are both Poisson.
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1. Introduction

Let 1 = x1 < x2 < · · · < xm < q be the set of squares3 modulo a large integer q . If q = p is
an odd prime then m = (p − 1)/2; that is, roughly half of the integers mod p are squares, so an
integer chosen at random is square with probability close to 1/2. So do the squares appear as if
they are “randomly distributed” (if one can appropriately formulate this question)? For instance,
if one chooses a random square xi mod p, what is the probability that xi+1 − xi = 1, or 2, or
3, . . .? Is it the same as for a random subset of the integers? In 1931 Davenport [5] showed that
the answer is “yes” by proving that the probability that xi+1 − xi = d is 1/2d + op(1). (Note that
if one takes a random subset S of [1, n] of size n/2 then the proportion of x ∈ S such that the
next smallest element of S is x + d is ∼ 1/2d with probability 1.)

If q is odd with k distinct prime factors, then m = φ(q)/2k . The average gap, sq , between
these squares is now a little larger than 2k , which is large if k is large; so we might expect
that the probability that xi+1 − xi = 1 becomes vanishingly small as k gets larger. Hence, to
test whether the squares appear to be “randomly distributed,” it is more appropriate to consider
(xi+1 − xi)/sq . If we have m integers randomly chosen from 1,2, . . . , q − 1, then we expect
that the probability that (xi+1 − xi)/sq > t is ∼ e−t as q, sq → ∞. In 1999/2000 Kurlberg and
Rudnick [10,12] proved that this is true for the squares mod q .

To a number theorist this is reminiscent of Hooley’s 1965 result [8,9] in which he proved that
the set of integers coprime to q appear to be “randomly distributed” in the same sense, as the
average gap sq = q/φ(q) gets large.4

In both of these examples the sets of integers Ωq ⊂ Z/qZ are obtained from sets of inte-
gers Ωpe ⊂ Z/peZ (for each prime power pe ‖ q) by the Chinese Remainder Theorem (that is
a ∈ Ωq if and only if a ∈ Ωpe for all pe ‖ q). We thus ask whether, in general, sets Ωq ⊂ Z/qZ
created from sets Ωpe ⊂ Z/peZ (for each prime power pe ‖ q) by the Chinese Remainder The-
orem appear (in the above sense) to be “randomly distributed,” at least under some reasonable
hypotheses? This question is inspired by the Central Limit Theorem, which tells us that, incred-
ibly, if we add enough reasonable probability distributions together, then we obtain a generic
“random” distribution, such as the Poisson or Normal distribution.

Let us be more precise. For simplicity we restrict our attention to squarefree q . Suppose
that for each prime p we are given a subset Ωp ⊂ Z/pZ. For q a squarefree integer, we define
Ωq ⊂ Z/qZ using the Chinese Remainder Theorem; in other words, x ∈ Ωq if and only if x ∈ Ωp

for all primes p dividing q . Let sq = q/|Ωq | be the average spacing between elements of Ωq ,
and rq = 1/sq = |Ωq |/q be the probability that a randomly chosen integer belongs to Ωq . Let
1 = x1 < x2 < · · · < xm < q be the elements of Ωq , and define Δj = (xj+1 − xj )/sq for all
1 � j � m − 1. For any given real numbers t1, t2, . . . , tk � 0 define Probq(t1, . . . , tk) to be the
proportion of these integers j for which Δj+i > ti for each i = 1,2, . . . , k.5

3 An integer x is a square mod q if there exists y for which y2 ≡ x (mod q).
4 Under a similar assumption, namely that sp = (p − 1)/φ(p − 1) tends to infinity, Cobeli and Zaharescu [4] have

shown that the spacings between primitive roots modulo p becomes Poissonian as p tends to infinity along primes.
5 By letting xj = xj mod m and Δj = Δj mod m for any j ∈ Z, we obtain the distribution of spacings “with

wraparound,” but in the limit |Ωq | → ∞, Probq (t1, . . . , tk) is independent of whether spacings are considered with
or without wraparound.
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001
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Suppose that Q is an infinite set of squarefree, positive integers that can be ordered in such a
way that sq → ∞. We say that the spacings between elements in the sets Ωq for q ∈ Q become
Poisson distributed if, for any t1, t2, . . . , tm � 0,

Probq(t1, t2, . . . , tm) → e−(t1+t2+···+tm) as sq → ∞, q ∈ Q.

For a given vector of integers h = (h1, h2, . . . , hk−1), let h0 = 0 and define the counting
function6 for k-tuples mod q by

Nk(h,Ωq) = #{t mod q: t + hi ∈ Ωq for 0 � i � k − 1}.

Note that the average of Nk(h,Ωq) (over all possible h) is rk
q q .

Our main result shows that if for each fixed k, the k-tuples of elements of Ωp are well-
distributed for all sufficiently large primes p, then indeed the sets Ωq become Poisson distributed.

Theorem 1. Suppose that we are given subsets Ωp ⊂ Z/pZ for each prime p. For each integer k,
assume that

Nk(h,Ωp) = rk
p · p(

1 + Ok

(
(1 − rp)p−ε

))
, (1)

provided that 0, h1, h2, . . . , hk−1 are distinct mod p. If sp = po(1) for all primes p, then the
spacings between elements in the sets Ωq become Poisson distributed as sq → ∞.

Remark 1. Theorem 13 in Section 4 actually gives something a little more explicit and stronger.

Remark 2. When q is not squarefree we suspect that analogous results will follow in most cases.
In particular, in the following two cases:

1. The case of q being a product of prime powers pep (where for each prime p the exponent
ep is fixed) and the assumptions of Theorem 1 hold when p,Ωp, sp, rp , and Nk(h,Ωp) are
replaced by pep ,Ωpep , spep = pep/|Ωpep |, rpep = 1/spep , and Nk(h,Ωpep ), respectively.

2. The case when for each prime power pep , the set Ωpep ⊂ Z/pep Z is essentially defined
modulo p in the following sense: with x ∈ Z/pZ denoting the reduction modulo p of an
element x ∈ Z/pep Z, there exists Ωp ⊂ Z/pZ such that x ∈ Ωpep if and only x ∈ Ωp ,
except for O(1) values of x. In particular, Nk(h,Ωpep ) = pep−1(Nk(h,Ωp) + O(1)) for
all h. E.g., by Hensel’s Lemma, this is the case when Ωpep is the image of a polynomial
modulo pep .

From the theorem, we easily recover the result of Hooley, since for Ωp = {1,2, . . . , p − 1}
we have rp = 1 − 1/p and thus

Nk(h,Ωp) = p − k = rk
p · p

(
1 + Ok

(
1 − rp

p

))
.

6 The counting function is defined for h modulo q , so implicitly we consider gaps with wraparound.
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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Further, we easily obtain a generalization of Kurlberg–Rudnick’s result by using Weil’s bounds
for the number of points on curves.

Corollary 2. Fix an integer d and let Ωq be the set of d th powers modulo q . Then the spacings
between elements in the sets Ωq become Poisson distributed as sq → ∞.

Another situation where we may apply Weil’s bounds is to the sets {x mod q: there exists
y mod q such that y2 ≡ x3 + ax + b (mod q)}, for any given integers a, b; and indeed to co-
ordinates of any given non-singular hyperelliptic curve. Thus we may deduce the analogy to
Corollary 2 in these cases.

In Section 4 we also show that the spacings between residues mod q in the image of a poly-
nomial having n − 1 distinct critical values7 (a generic condition) become Poisson distributed as
sq → ∞.

Theorem 3. Let f be a polynomial of degree n with integer coefficients. Regarding f

as a map from Z/qZ into itself, define Ωq to be the image of f modulo q , i.e., Ωq :=
{x mod q: there exists y mod q such that f (y) ≡ x (mod q)}. If f has n − 1 distinct criti-
cal values, then the spacings between elements in the sets Ωq become Poisson distributed as
sq → ∞.

Remark 3. Theorem 3 is true for all non-constant polynomials, but the proof of this is consid-
erably more complicated and will appear in a separate paper [11]. In fact, there are polynomials
for which (1) does not hold,8 see Remark 6 and Section 4.2 for more details. We also note that if
f has n − 1 distinct critical values, Birch and Swinnerton-Dyer [2] have proved that

|Ωp| = ∣∣{x ∈ Fp: x = f (y) for some y ∈ Fp

}∣∣ = cnp + On

(
p1/2),

where

cn = 1 − 1

2
+ 1

3! − · · · − (−1)n
1

n!
is the truncated Taylor series for 1−e−1. (Note that n! · (1−cn) is the “nth derangement number”
from combinatorics, so cn can be interpreted as the probability that a random permutation σ ∈ Sn

has at least one fixed point. In fact, this is no coincidence—for these polynomials the Galois
group of f (x)− t , over Fp(t), equals Sn, and the proportion of elements in the image of f , up to
an error O(p−1/2), equals the proportion of elements in the Galois group fixing at least one root.)
Since the expected cardinality of the image of a random map from Fp to Fp is p · (1 − e−1), the
above result can be interpreted as saying that the cardinality of the image of a generic polynomial
(of large degree) behaves as that of a random map. Their result also implies that sq → ∞ as the
number of prime factors of q tends to infinity.

Remark 4. In [3], Cobeli, Vâjâitu, and Zaharescu considered a similar problem, namely the
spacing distribution of elements in the set {x mod q: x ∈ Iq, x−1 ∈ Jq} where Iq, Jq ⊂ [1, q]

7 The critical values of f is the set {f (ξ): ξ ∈ C, f ′(ξ) = 0}.
8 In particular, the distribution of spacings between elements in Ωp is not consistent with the spacings of a random

subset (having size |Ωp |) of Z/pZ!
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001
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are large intervals. They showed that spacings are Poisson distributed provided that q is taken
along a subsequence of integers such that q/φ(q) → ∞, and |Iq | > q1−(2/9(log logq)1/2), |Jq | >

q1−1/(log logq)2
. As for spacings of polynomial images of incomplete sets of residues modulo q ,

it is also worth mentioning that Rudnick, Sarnak and Zaharescu [14] have shown that the k-level

correlation of elements in the set {bn2 mod q}Nq

n=1 (where (b, q) = 1) is consistent with Poisson

spacings provided Nq ∈ [q1− 1
2k

+δ, q/ logq] for some δ > 0 and q tending to infinity along the
primes.

In Theorem 1 we proved that if all k-tuples in Ωp are “well-distributed” (in the sense of (1))
for all primes p then the sets Ωq become Poisson distributed as sq → ∞. Perhaps, though, one
needs to make less assumption on the sets Ωp? For example, perhaps it suffices to simply assume
an averaged form of (1), like

1

pk−1

∑
h

∣∣∣∣Nk(h,Ωp)

rk
p p

− 1

∣∣∣∣ �k (1 − rp)p−ε,

where the sum is over all h for which 0, h1, h2, . . . , hk−1 are distinct mod p. We have been
unable to prove this as yet.

In the Central Limit Theorem, where one adds together lots of distributions to obtain a normal
distribution, the hypotheses for the distributions which are summed are very weak. So perhaps
in our problem we do not need to make an assumption that is as strong as (1)? In Section 5 we
suppose that we are given sets Ωq1 and Ωq2 of residues modulo q1 and q2 (with (q1, q2) = 1), and
try to determine whether the spacings in Ωq (where q = q1q2) is close to a Poisson distribution.
We show that under certain natural hypotheses the answer is “yes.” These take the form: If Ωq1 is
suitably “strongly Poisson,” then Ωq is Poisson if and only if Ωq2 is Poisson with an appropriate
parameter.

On the other hand, if we allow the sets to be correlated, then the answer can be “no.” In
Section 6 we give three examples in which the distribution of points in Ωq is not consistent with
that of a Poisson distribution. The constructions can be roughly described as follows:

• Ωq1 is random and small, and Ωq2 = {a: 1 � a � q2/2}.
• Ωq2 = Ωq1 is a random subset of {1,2, . . . , q1} where q2 = q1 + 1.
• Each Ωqi

is a random subset of {a: 1 � a � qi, m | a} for i = 1,2, with integer m � 2.

2. Poisson statistics primer

Given a positive integer q and a subset Ωq ⊂ Z/qZ, let sq = q/|Ωq | be the average gap
between consecutive elements in Ωq . One can view rq = 1/sq as the probability that a randomly
selected element in Z/qZ belongs to Ωq .

If 0 < x1 < x2 < · · · are the positive integers belonging to Ωq , then define Δj = (xj+1 −
xj )/sq for all j � 1. We are interested in the statistical behavior of these gaps as q → ∞, along
some subsequence of square free integers. We define the (normalized) limiting spacing distribu-
tion, if it exists, as a probability measure μ such that

lim
q→∞

#{j : 1 � j � |Ωq |, Δj ∈ I }
|Ωq | =

∫
dμ(x)
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001
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for all compact intervals I ⊂ R+. If dμ(x) = e−x dx and the gaps are independent (i.e., that k

consecutive gaps are independent for any k), the limiting spacing distribution is said to be Poisso-
nian. This can be characterized (under fairly general conditions) as follows: For any fixed λ > 0
and integer k � 0, the probability that there are exactly k (renormalized) points in a randomly

chosen interval of length λ is given by λke−λ

k! (see [1, Section 23]).
We shall use a characterization of the Poisson distribution that is relatively easy to work with:

The k-level correlation for a compact set X ⊂ {x ∈ Rk−1: 0 < x1 < x2 < · · · < xk−1} is defined
as

Rk(X,Ωq) = 1

|Ωq |
∑

h∈sqX∩Zk−1

Nk(h,Ωq). (2)

Note that we require that 0 < h1 < · · · < hk−1, else Nk(h,Ωq) = N
(h′,Ωq), where 0 < h′
1 <

· · · < h′

−1 are the distinct integers amongst 0, h1, . . . , hk−1.

Now, for any positive real numbers b1, b2, . . . , bk−1 define

B(b1, b2, . . . , bk−1) := {
x ∈ Rk−1: 0 < xi − xi−1 � bi for i = 1,2, . . . , k − 1

}
,

where we let x0 = 0. Let Bk be the set of such (not necessarily rectangular) boxes. We then have
the following criteria for Poisson spacings in terms of the correlations (cf. Appendix A of [12]):

Lemma 4. Suppose we are given a sequence of integers Q = {q1, q2, . . .} with sqi
→ ∞ as

i → ∞. Then the spacings of the elements in Ωqn become Poisson as n → ∞ if and only if for
each integer k � 2 and box X ∈ Bk ,

Rk(X,Ωqn) → vol(X) as n → ∞.

It will be useful to include a further definition along similar lines. Suppose θn is a positive
real number for each n. We say that the spacings of the elements in Ωqn become Poisson with
parameter θn as n → ∞ if and only if for each integer k � 2 and box X ∈ Bk ,

Rk(θnX,Ωqn) → vol(θnX) as n → ∞.

Notice that “Poisson with parameter 1” is the same thing as “Poisson.” (In fact, Poisson with any
bounded parameter is the same as Poisson.)

2.1. Correlations for randomly selected sets

Let x1, x2, . . . , xq be independent Bernoulli random variables with parameter 1/σ ∈ (0,1).
In other words, xi = 1 with probability 1/σ , and xi = 0 with probability 1 − 1/σ . Given an
outcome of x1, x2, . . . , xq , we define Ωq ⊂ Z/qZ by letting i ∈ Ωq if and only if xi = 1. Note
that the expected average gap is then given by σ . Below we write Rk(X,q) for Rk(X,Ωq).

Lemma 5. As we vary over all subsets of Z/qZ with the probability space as above, we have

E
(
Rk(X,q)

) = vol(X) + Ok,X(1/σ + σ/q)
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001
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and

E
((

Rk(X,q) − vol(X)
)2) �k,X 1/σ + σ/q.

Proof. Using conditional expectations, we write

E
(
Rk(X,q)

) =
q∑

r=k

Prob
(|Ωq | = r

)
E

(
Rk(X,q) : |Ωq | = r

)

=
∑

h∈σX∩Zk−1

q∑
r=k

Prob(|Ωq | = r)

r

q∑
i=1

E
(
xixi+h1 . . . xi+hk−1 : |Ωq | = r

)
.

Now, the number of ways to have |Ωq | = r is
(
q
r

)
, and the number of ways to have |Ωq | = r with

i, i + h1, . . . , i + hk−1 ∈ Ωq is
(
q−k
r−k

)
. Therefore,

E(xixi+h1 . . . xi+hk
: |Ωq | = r) =

(
q − k

r − k

)/(
q

r

)
.

Note that Rk(X,q) = 0 if |Ωq | � k − 1, and

Prob
(|Ωq | = r

) =
(

q

r

)
σ−r (1 − 1/σ)q−r .

Taking q � 4k with q/σ large, we obtain:

E
(
Rk(X,q)

) = ∣∣σX ∩ Zk−1
∣∣ q∑
r=k

1

r
σ−r (1 − 1/σ)q−rq ·

(
q − k

r − k

)

= qσ−k
(
σk−1 vol(X) + O

(
σk−2)) ·

q∑
r=k

σ k−r

r
(1 − 1/σ)(q−k)−(r−k)

(
q − k

r − k

)

= (q/σ )
(
vol(X) + O(1/σ)

) ·
Q∑

R=0

1

R + k
(1/σ)R(1 − 1/σ)Q−R

(
Q

R

)
,

where Q = q − k and R = r − k. Now

1

R + k
= 1

R + 1
+ O

(
k

(R + 1)(R + 2)

)
,

so the last sum is

σ (
1 − (1 − 1/σ)Q+1) + O

(
kσ 2

2

)
= σ

(
1 + Ok

(
σ

))
,

Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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since (Q/σ)A(1 − 1/σ)Q �A 1, and thus

E
(
Rk(X,q)

) = vol(X) + O(1/σ + σ/q).

For the variance, note that

E
(
Rk(X,q)2) =

q∑
r=k

Prob
(|Ωq | = r

)
E

(
Rk(X,q)2 : |Ωq | = r

)

=
q∑

r=k

∑
h,H∈σX∩Zk−1

q∑
i,j=1

(
q

r

)
σ−r (1 − 1/σ)q−r

r2

× E
(
xixi+h1xi+h2 . . . xi+hk−1xjxj+H1 . . . xj+Hk−1 : |Ωq | = r

)
.

If there are l distinct elements in {i, i + h1, . . . , i + hk−1, j, j + H1, . . . , j + Hk−1}, then the
expectation is (

q − l

r − l

)/(
q

r

)
.

Given α,β,h and H, there is a solution to i + hα = j + Hβ for O(k2q) values of i and j .
Thus our main term is

(
q2 + Ok(q)

)(q − 2k

r − 2k

)/(
q

r

)
.

We treat the other terms as follows. Fix d and consider i and j with j ≡ i + d (mod q). Select
u1, . . . , um, v1, . . . , vm with hut ≡ Hvt + d (mod q). The number of choices for i and j is q . H

can be chosen freely and so can k − m − 1 of the coordinates of h. The total number of choices
is thus


X,k qσ k−1σk−m−1.

Moreover, the number of choices for d is 
X σ . Therefore, since l = 2k − m, we have9

E
(
Rk(X,q)2)
=

q∑
r=k

σ−r (1 − 1/σ)q−r

r2

×
(∣∣σX ∩ Zk−1

∣∣2
(

q − 2k

r − 2k

)(
q2 + O(q)

) + O

(
k∑

m=1

(
q − 2k + m

r − 2k + m

)
qσ 2k−1−m

))

= (
q2 + O(q)

)(
σk−1 vol(X) + OX

(
σk−2))2

q∑
r=2k

(
q − 2k

r − 2k

)
1

r2
σ−r (1 − 1/σ)q−r

9 We use the convention that
(n) = 0 if k < 0.
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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+ O

(
k∑

m=1

qσ 2k−1−m

q∑
r=2k−m

(
q − 2k + m

r − 2k + m

)
σ−r (1 − 1/σ)q−r

r2

)
.

Now, for k � 
 � 2k take Q = q − 
 and R = r − 
, and note that

1

(R + 
)2
= 1

(R + 1)(R + 2)
+ Ok

(
1

(R + 1)(R + 2)(R + 3)

)
,

to obtain

q∑
r=


(
q − 


r − 


)
1

r2
σ−r (1 − 1/σ)q−r = σ−


Q∑
R=0

(
Q

R

)
1

(R + 
)2
(1/σ)R(1 − 1/σ)Q−R

×
(

σ 2

(Q + 1)(Q + 2)
+ Ok

(
σ 3

q3

))

= σ 2+2k−


σ 2kq2

(
1 + Ok

(
σ

q

))
.

Substituting this in the above formula for E(Rk(X,q)2) gives that

E
(
Rk(X,q)2) = vol(X)2 + OX,k(1/σ + σ/q),

and hence

E
((

Rk(X,q) − vol(X)
)2) = E

((
Rk(X,q)

)2) − vol(X)2 = OX,k(1/σ + σ/q). �
One can interpret this result as saying that almost all sets have Poisson spacings.

3. Correlations via the Chinese Remainder Theorem

3.1. Counting solutions to congruences

Suppose that Γ = {γi,j : 0 � i �= j � k − 1 with γi,j = γj,i} is a given set of positive square-
free integers for which

gcd(γi,j , γj,l) divides γi,l for any distinct i, j, l. (3)

Define

γj := LCM
0�i�j−1

γi,j

and let

γ (Γ ) := γ1 . . . γk−1.

We now show that γ (Γ ) is invariant under reordering of the indices.
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001
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Lemma 6. If σ is a permutation of {1, . . . , k − 1} and σ(0) = 0, define γ
(σ)
i,j := γσ(i),σ (j) and

γ (σ)(Γ ) := γσ(1) . . . γσ(k−1). Then γ (σ)(Γ ) = γ (Γ ).

Proof. Given a prime p, it is enough to show that γ (Γ ) and γ σ (Γ ) are divisible by the same
power of p. Thus, given p, partition {0,1, . . . , k−1} by letting i, j belong to the same partition if
and only if p divides γi,j . (This is well defined since (3) can be viewed as a transitivity property.)
Let {Cl}l denote the partitions, where each Cl ⊂ {0,1, . . . , k−1}, and let e = ∑

l (|Cl |−1) where
|Cl | denotes the cardinality of Cl . Noting that p | γi if and only if the partition containing j also
contains an element smaller than j , we find that pe ‖ γ (Γ ). Since e does not depend on the
labeling, the lemma follows. �

Define c(Γ ) to be the squarefree product of the primes dividing γ (Γ ), so that c(Γ ) divides
γ (Γ ), which divides c(Γ )k−1.

Given a squarefree positive integer c, and a set of distinct non-negative integers h0 =
0, h1, h2, . . . , hk−1, let h = (h1, . . . , hk−1) and define

γi,j (h) := gcd(c,hj − hi) for 0 � i �= j � k − 1,

and then Γ (h) accordingly.
For a given set Γ and integer c = c(Γ ), define

MΓ (H) := #
{
(h0 = 0, h1, . . . , hk−1) ∈ Zk: hi �= hj for i �= j , 0 � hi � H

for all 0 � i � k − 1 and Γ (h) = Γ
}
. (4)

Finally, for given integers γ and c, with c|γ |ck−1, define

Mγ (H) :=
∑

Γ : γ (Γ )=γ

MΓ (H). (5)

We wish to give good upper bounds of Mγ (H). First note that if γi,j > H , then MΓ (H) = 0,

else γi,j |hi − hj and so H < γi,j � |hi − hj | � H . Thus if γ > H(k
2), then Mγ (H) = 0, else

maxγi,j � γ 1/(k
2) > H .

The Stirling number of the second kind, S(k, 
), is defined to be the number of ways of
partitioning a k element set into 
 non-empty subsets, and may be evaluated as

S(k, 
) = 1

(
 − 1)!

∑

j=1

(−1)
−j

(

 − 1

j − 1

)
jk−1.

One can show that S(k, k − e) �
(
k
2

)e
.

Lemma 7. #{Γ : γ (Γ ) = γ } �
∏

pe‖γ S(k, k − e) �
(
k
2

)#{pe: pe|γ }
.

Proof. For each prime p dividing γ , we partition {0, . . . , k − 1} into subsets where i and j are
in the same subset if p | γi,j (by (3) this is consistent). The bound follows. �

Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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Now we wish to bound MΓ (H).

Proposition 8. We have

MΓ (H) �
k−1∏
i=1

(
H

γ
(σ)
i

+ 1

)
for any σ ∈ Sk−1.

Proof. Certainly we may rearrange the order, using σ , without changing the question; so rela-
bel σ(i) as i. Now by induction on k � 1, we have, for each given (h1, . . . , hk−2) ∈ MΓ ′(H),
where Γ ′ is Γ less all elements of the form γi,k−1 or γk−1,i for 0 � i � k − 1, that if
(h1, . . . , hk−1) ∈ MΓ (H), then hk−1 ≡ hi (mod γi,k−1) for each i, 0 � i � k − 2 and so hk−1 is
determined modulo γk−1. Thus the number of possibilities for hk−1 is � H/γk−1 + 1, and the
result follows. �
Corollary 9. We have

MΓ (H) � 2k−1Hk−1/

k∏
i=1

min(γi,H).

In particular,

MΓ (H) �
{

2k−1Hk−1/γ (Γ ) if each γi � H ;
2k−1Hk−2 if some γj � H .

(6)

Remark. When k = 2 the first bound in (6) is up to the constant best possible. For k = 3 things
are immediately more complicated. For suppose γ0,1, γ0,2, γ1,2 are all coprime and each lies in
the interval (T ,2T ) with T >

√
H . Then γ1 ≈ T , γ2 > H and so MΓ (H) � 4H/T is what the

corollary yields, rather than what we might predict, ≈ H 2/T 3. Thus this “prediction” cannot be
true if T > H 2/3+ε .

Next we look for a “good” re-ordering σ ; select σ(1) so as to maximize γσ(1),0. Now swap
σ(1) and 1 and then swap σ(2) and 2 so as to maximize LCM(γσ(2),1, γσ(2),0). Proceeding like
this, we obtain

γr = LCM[γr,0, γr,1, . . . , γr,r−1] � LCM[γj,0, γj,1, . . . , γj,r−1] for all j � r.

Note that

γr+1 � LCM[γr,0, . . . , γr,r−1]γr+1,r = γrγr+1,r � Hγr. (7)

Now, in our general construction, let I = {i ∈ [1, . . . , k − 1]: γi � H } and write D(Γ ) =∏k−1
i=1 min(γi,H) so that MΓ (H) � (2H)k−1/D(Γ ), and D(Γ ) = Hk−|I |−1DI (Γ ), where

DI (Γ ) = ∏
i∈I γi . Also, by (7) we have γr+1 � Hγr , and thus

γ = γ1 . . . γk−1 �
∏

γi ·
k−|I |−1∏

H 1+j = DI (Γ )H
1
2 (k−|I |−1)(k−|I |+2).
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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Let us suppose |I | = ρ, where 1 � ρ � k − 1 (note that we always have γ1 � H ). Then 1 �
DI (Γ ) � Hρ . Write DI (Γ ) = Hρθ for some 0 � θ � 1. Thus

D(Γ ) = Hk−1−ρ+ρθ (8)

and

γ � Hρθ+ 1
2 (k−ρ−1)(k−ρ+2) � H

1
2 (k−ρ−1)(k−ρ+2)+ρ. (9)

We note that 1
2 (k −ρ −1)(k −ρ +2)+ρ is decreasing in the range 1 � ρ � k −1. Therefore,

if we choose τ in the range 1 � τ � k − 1 so that

H
1
2 (τ−2)(τ+1)+k+1−τ < γ � H

1
2 (τ−1)(τ+2)+k−τ , (10)

then ρ � k − τ .
We wish to bound D(Γ ) from below. By (8), we immediately get

D(Γ ) � Hk−1−ρ.

Moreover, if for a given ρ � k − τ , we have γ � H
1
2 (k−ρ−1)(k−ρ+2)+ρθ , then

Hρθ � γ

H
1
2 (k−ρ−1)(k−ρ+2)

and thus

D(Γ ) = Hk−1−ρ · Hρθ � γHk−1−ρ

H
1
2 (k−ρ−1)(k−ρ+2)

= γ

H
1
2 (k−ρ−1)(k−ρ)

.

Since we are going to relinquish control of γ , other than the size, we obtain the bound from
the worst case. To facilitate the calculation, we write γ = Hλ, D(Γ ) = HΔ and μ = k − 1 − ρ

so that k − 2 � μ � τ − 1. With this notation, (10) is equivalent to

τ 2

2
− 3τ

2
+ k < λ � τ 2

2
− τ

2
+ k − 1.

For a given λ in our range we thus have, from the bounds above,

Δ � min
μ�τ

(
max

{
min
μ:

1
2 μ(μ+3)�λ

μ, min
μ:

1
2 μ(μ+3)�λ

λ − 1

2
μ(μ + 1)

})
� u,

where we define u to be the positive real number for which

1
u(u + 3) = λ,
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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so that (
u + 3

2

)2

= u(u + 3) + 9

4
= 2λ + 9

4
>

(
τ − 3

2

)2

+ 2k � 2k + 1

4
,

if τ is an integer. Note also that HΔ = D(Γ ) � Hk−1−ρ � Hk−1−(k−τ), so that Δ � τ − 1.
Therefore Δ � max(τ − 1,

√
2k + 1/4 − 3/2). Thus we have proved the following result.

Corollary 10. Let τ be an integer 1 � τ � k, and define w(τ) = 1
2 (τ − 1

2 )2 +k− 9
8 . If Hw(τ−1) <

γ (Γ ) � Hw(τ), then

MΓ (H) �k Hk−max{τ,√2k+1/4−1/2}.

Note that w(k − 1) = k(k − 1)/2, and let τ1 = [√2k + 1/4 − 1
2 ]. Combining this with Lemma 7

and Corollary 9 gives that

Mγ (H) �k

∏
pe‖γ

S(k, k − e)

×

⎧⎪⎪⎨
⎪⎪⎩

Hk−1/γ for γ � H ;
Hk−2 for H < γ � Hw(0);
Hk+1/2−√

2k+1/4 for Hw(0) < γ � Hw(τ1);
Hk−τ for Hw(τ−1) < γ � Hw(τ), τ1 + 1 � τ � k − 1.

3.2. Proof of Theorem 1

For h ∈ Zk−1, define the “error term” εk(h, q) by

Nk(h, q) = rk−1
q |Ωq |(1 + εk(h, q)

)
.

We will need to use bounds on the size of |εk(h,p)|, so select Ap,k such that∣∣εk(h,p)
∣∣ � Ap,k

for all h for which 0, h1, . . . , hk−1 are distinct mod p. If 0, h1, . . . , hk−1 are not all distinct
mod p, then let h′ be the set of distinct residues amongst 0, h1, . . . , hk−1 mod p; if h′ contains

 � 1 elements, then Nk(h,p) = N
(h′,p), so that

εk(h,p) = sk−

p − 1 + sk−


p ε
(h′,p). (11)

We will assume that Ap,k is non-decreasing as k increases.10

For d > 1 a square free integer, put ek(h,1) = 1 and

ek(h, d) =
∏
p|d

εk(h,p),

10 This is a benign assumption since we may replace each Ap,k by max
�k Ap,
.
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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so that

Nk(h, q) =
∏
p|q

rk−1
p |Ωp|(1 + ek(h,p)

) = rk−1
q |Ωq |

∑
d|q

ek(h, d).

Remark 5. In what follows, d is always a divisor of q , hence d will always be squarefree.

With this notation

Rk(X,Ωq) = 1

|Ωq |
∑

h∈sqX∩Zk−1

Nk(h, q) = rk−1
q

∑
h∈sqX∩Zk−1

1 + Error,

where

Error = rk−1
q

∑
d|q
d>1

∑
h∈sqX∩Zk−1

ek(h, d). (12)

Since sq = 1/rq , the main term equals

rk−1
q

∑
h∈sqX∩Zk−1

1 = rk−1
q

(
vol(sqX) + O

(
sk−2
q

)) = vol(X) + OX(1/sq).

To prove the theorem we wish to show that Error = o(1). To begin with, we show that the average
of ek(h, d), over a full set of residues modulo d , equals zero for d > 1.

Lemma 11. If d > 1 and d is square free, then

∑
h∈(Z/dZ)k−1

ek(h, d) = 0.

Proof. For any prime p, we have

|Ωp|k =
∑

h∈(Z/pZ)k−1

Nk(h,p) = rk−1
p |Ωp|

∑
h∈(Z/pZ)k−1

(
1 + εk(h,p)

)

= pk−1rk−1
p |Ωp| + prk

p

∑
h∈(Z/pZ)k−1

ek(h,p),

so that
∑

h∈(Z/pZ)k−1 ek(h,p) = 0. The result follows as ek(h, d) is multiplicative. �
Throughout this section we shall take τ1 = [√2k + 1/4 − 1

2 ], v(0) = k − 2, v(τ1) = k + 1
2 −√

2k + 1/4, v(τ) = k − τ for τ1 + 1 � τ � k − 1 and w(τ) = k − 9/8 + (τ − 1/2)2/2.

Proposition 12. Suppose that we are given R ∈ [0,1], as well as α0, α1, β1, α(τ ) > 0, and
β(τ) � 0, for τ1 � τ � k − 1. Assume that |Ωp| � p1−α(τ) for all τ and all primes p (so that
sp � pα(τ)). Then
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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Error � sα0R−1
q

∏
p|q

(
1 + OX,k

(
p1−α0

(
Ap,k + (sp − 1)/p

)))

+ sα1−β1R
q

∏
p|q

(
1 + OX,k

(
pβ1

(
Ap,k + (sp − 1)/p1+α1

)))

+
∑

τ=0 or
τ1�τ�k−1

sv(τ)+α(τ)w(τ)−(k−1)−β(τ)R
q

∏
p|q

(
1 + pβ(τ)OX,k

(
Ap,k + sp − 1

pα(τ)

))
.

Proof. We split the divisor sum in (12) into two parts depending on the size of the divisor d .
Small d : We first consider d � sR

q . A point h ∈ sqX ∩ Zk−1 is contained in a unique cube

Ch,d ⊂ Rk−1 of the form

Ch,d = {
(x1, x2, . . . , xk−1): dti � xi < d(ti + 1), ti ∈ Z, i = 1,2, . . . , k − 1

}
.

We say that h ∈ sqX ∩ Zk−1 is a d-interior point of sqX if Ch,d ⊂ sqX, and if Ch,d intersects the
boundary of sqX, we say that h is a d-boundary point of sqX.

By Lemma 11, the sum over the d-interior points is zero, and hence

rk−1
q

∑
d|q

1<d�sR
q

∑
h∈sqX∩Zk−1

ek(h, d) = rk−1
q

∑
d|q

1<d�sR
q

∑
h∈sqX∩Zk−1

h is d-boundary point

ek(h, d). (13)

Now, the number of cubes Ch,d intersecting the boundary of sqX is �X (sq/d)k−2, and hence
(13) is

�X rk−1
q

∑
d|q

1<d�sR
q

(sq/d)k−2
∑

h∈(Z/dZ)k−1

∣∣ek(h, d)
∣∣

= 1

sq

∑
d|q

1<d�sR
q

1

dk−2

∑
h∈(Z/dZ)k−1

∣∣ek(h, d)
∣∣. (14)

Further,

∑
h∈(Z/dZ)k−1

∣∣ek(h, d)
∣∣ =

∏
p|d

∑
h∈(Z/pZ)k−1

∣∣ek(h,p)
∣∣.

By assumption, |e
(h′,p)| � Ap,
 � Ap,k whenever h′ has 
 � k distinct elements mod p.
Therefore, by (11),

∣∣ek(h,p)
∣∣ � sk−


p − 1 + sk−

p Ap,k, (15)
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for all h with 
 distinct entries modulo p, and so

∑
h∈(Z/pZ)k−1

∣∣ek(h,p)
∣∣ � pk−1Ap,k + Ok

(
k−1∑

=1

pk−
−1(s

p − 1 + s


pAp,k

))
.

Now sp/p � 1/2 for p large, so this error term is �k pk−2(sp −1+ spAp,k), and so the equation
implies that

∑
h∈(Z/dZ)k−1

∣∣ek(h, d)
∣∣ � dk−2

∏
p|d

(
pAp,k + Ok(sp − 1 + spAp,k)

)
.

Now, 1 � (sr
q/d)α0 for any α0 > 0, for all d � sr

q , and therefore (14) is, for any α0 > 0,

� sα0R−1
q

∏
p|q

(
1 + p−α0

(
pAp,k + Ok(sp − 1 + spAp,k)

))
, (16)

and we get the first term in the upper bound.
Large d : We now consider d > sR

q . Define Γ (h) as in 3.1. By (15),

∣∣ek(h, d)
∣∣ �

∑
c|d

∏
p|d/c

Ap,k

∏
pe‖γ

(
se
p − 1 + se

pAp,k

)

(note that #{h0 = 0, h1, . . . , hk−1 mod p} = k − e if p | c but = k if p | (d/c)), and hence

∑
h∈sqX∩Zk−1

∣∣ek(h, d)
∣∣ �

∑
c|d

( ∏
p|d/c

Ap,k

) ∑
γ :

c|γ |ck−1

∏
pe‖γ

(
se
p − 1 + se

pAp,k

) ·
∑

h∈sqX∩Zk−1

γ (h)=γ

1.

Now

∑
h∈sqX∩Zk−1

γ (h)=γ

1 � Mγ (H)

as defined earlier, where H = OX(sq). Using Corollary 10, we bound this in various ranges. For
γ � H we obtain

�k Hk−1
∑
c|d

( ∏
p|d/c

Ap,k

) ∑
γ�H

c|γ |ck−1

1

γ

∏
pe‖γ

S(k, k − e)
(
se
p − 1 + se

pAp,k

)
. (17)

Now, for any α1 > 0, the last sum here is
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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�
∑
γ�1

c|γ |ck−1

(
H

γ

)α1 1

γ

∏
pe‖γ

(
S(k, k − e)

(
se
p − 1 + se

pAp,k

))

= Hα1
∏
p|c

(
k−1∑
e=1

S(k, k − e)
se
p − 1 + se

pAp,k

pe(1+α1)

)

and substituting this above gives that (17) is

�k Hk−1+α1
∏
p|d

(
Ap,k + Ok

(
sp − 1 + spAp,k

p1+α1

))
(18)

as d is square free. The other ranges for γ take the form γ � Hw(τ) (and γ > Hw(τ ′)) giving
a bound Mγ (H) �k Hv(τ)

∏
pe‖γ S(k, k − e), and the analogous argument then gives that the

sums are, for any α(τ) > 0,

�k Hv(τ)+α(τ)w(τ)
∏
p|d

(
Ap,k + Ok

(
sp − 1 + spAp,k

pα(τ)

))
, (19)

where τ = 0, τ1 or τ1 + 1 � τ � k − 1. We need to bound rk−1
q

∑
d|q,d>sR

q
ρ(d) with ρ(d) as in

(18) or (19). Clearly this is

� rk−1
q

∑
d|q
d�1

ρ(d)
(
d/sR

q

)β

for any β � 0, and recalling that H = OX(sq), we obtain the bounds

�X,k sα1−β1R
q

∏
p|q

(
1 + pβ1

(
Ap,k + Ok

(
sp − 1 + spAp,k

p1+α1

)))
(20)

and

�X,k sv(τ)+α(τ)w(τ)−(k−1)−β(τ)R
q

∏
p|q

(
1 + pβ(τ)

(
Ap,k + Ok

(
sp − 1 + spAp,k

pα(τ)

)))
(21)

for any α(τ) > 0, β(τ) � 0, where τ runs through the relevant ranges, and the result follows. �
Define λk := minτ (k − 1 − v(τ))/w(τ) so that λ2 = (

√
17 − 3)/2 = 0.56155 . . . , λ3 = 1/3,

and λk = 1
k−1 for all k � 4.

We will deduce the following theorem from Proposition 12, which implies Theorem 1 after
the discussion in Section 2.

Theorem 13. Fix ε > 0 and an integer K . Suppose that we are given subsets Ωp ⊂ Z/pZ for
each prime p with sp �K pλK−ε . Moreover assume that (1) holds for each k � K provided that
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001
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0, h1, h2, . . . , hk−1 are distinct mod p. Then, for X ⊂ {x ∈ Rk−1: 0 < x1 < x2 < · · · < xk−1}, the
k-level correlation function satisfies

Rk(X,Ωq) = vol(X) + oX,k(1)

as sq = q/|Ωq | tends to infinity.

This follows immediately from Proposition 12 and the following lemma.

Lemma 14. Fix ε > 0 and assume that

Ap,k �k (1 − rp)p−ε with sp �k pλk−2ε .

Then there exists δ = δε > 0 such that11 Error � s−δ
q .

Proof. Taking α0 = 1, α1 � Rβ1 − 2δ, where 0 < β1 < ε/2, β(τ) = 0 and α(τ) = λk − ε (so
that sp �k pα(τ)−ε) in Proposition 12, we find that the pth factor in each Euler product is � 1 +
O((1 − rp)/pε/2). Now if 1 � sp � 2, then this is � 1 + O((sp − 1)/pε/2) = s

O(1/pε/2)
p = s

o(1)
p ,

and if sp > 2 this is 1 + O(1/pε/2) = s
O(1/pε/2)
p = s

o(1)
p . Thus each of the Euler products is s

o(1)
q

and the result follows. �
4. Poisson spacings for values taken by generic polynomials

Let f be a polynomial of degree n with integer coefficients, and assume that f has n − 1
distinct critical values, i.e., that

{
f (ξ): f ′(ξ) = 0, ξ ∈ Q

}
has n − 1 elements. Then, for all but finitely many p, the set

{
f (ξ): f ′(ξ) = 0, ξ ∈ Fp

}
also has n − 1 elements.

We will deduce Theorem 3 from Theorem 1 together with the following result.

Theorem 15. Let f ∈ Fp[x] be a polynomial of degree n < p, let Ωp denote the image of f

modulo p, i.e.,

Ωp := {
x ∈ Fp: there exists y ∈ Fp such that f (y) = x

}
,

and let

R := {
f (ξ): ξ ∈ Fp, f ′(ξ) = 0

}
.

11 Recall that Error is defined in (12).
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Assume that |R| = n − 1. If 0, h1, h2, . . . , hk−1 are distinct modulo p, then

Nk

(
(h1, h2, . . . , hk−1),Ωp

) = rk
p · p + Ok,n(

√
p ).

Remark 6. Theorem 15 is not true for all polynomials. For example, if we take f (x) = x4 −2x2,
then the critical values of f are 0,−1 (for if f ′(ξ) = 0 then ξ = −1,0 or 1, so that f (ξ) = −1
or 0), and for certain primes p, N2(1,Ωp) = 3/32 ·p +O(

√
p ), rather than the expected answer

(3/8)2 · p + O(
√

p ). See Section 4.2 for more details.

4.1. Proof of Theorem 15

Assume that n and k are given and that p is a sufficiently large prime (in terms of n and k).
We wish to count the number of t for which there exists x0, x1, . . . , xk−1 ∈ Fp such that

f (xi) = t + hi for 0 � i � k − 1.

In order to study this, let Xk,h be the affine curve

Xk,h := {
f (x0) = t, f (x1) = t + h1, . . . , f (xk−1) = t + hk−1

}
and let Fp[Xk,h] be the coordinate ring of Xk,h. We then have

Nk

(
(h1, h2, . . . , hk−1),Ωp

)
= ∣∣{m ∈ Fp[t]: M | m for some degree one prime M ∈ Fp[Xk,h]}∣∣. (22)

In order to estimate the size of this set, we will use the Chebotarev density theorem, made ef-
fective via the Riemann hypothesis for curves, for the Galois closure of Fp[Xk,h]. Thus, define a
curve Yk,h by letting Fp(Yk,h) correspond to the Galois closure of the extension Fp(Xk,h)/Fp(t).
In order to study this extension, we introduce some notation. Given h ∈ Fp , define a polynomial
Fh ∈ Fp[x, t] by

Fh(x, t) := f (x) − (t + h).

Since the t-degree of Fh is one, it is irreducible, and thus

Kh := Fp[x, t]/Fh(x, t)

is a field. Let Lh be the Galois closure of Kh, and let

Gh := Gal
(
Lh/Fp(t)

)
.

(Note that all field extensions considered are separable since p > n.)
Hilbert [7] has shown (e.g., see Serre [15, Chapter 4.4]) that Gh

∼= Sn for all h. Our first goal
is to show that the field extensions Lh0, . . . ,Lhk−1 are linearly disjoint, or equivalently, if we let

E := Lh Lh . . .Lh
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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be the compositum of the fields Lh0, . . . ,Lhk−1 , that Gal(E/Fp(t)) ∼= Sk
n .

We begin with the following consequence of Goursat’s Lemma.

Lemma 16. Given a subset I = {i1, i2, . . . , il} of {1,2, . . . , k}, define a projection PI : Sk
n → Sl

n

by

PI

(
(σ1, σ2, . . . , σk)

) = (σi1, σi2, . . . , σil ).

Let K be a subgroup of Sk
n , and assume that the restriction of PI to K is surjective for all

I � {1,2, . . . , k}. If k > 2 then either K = Sk
n or

K = {
σ ∈ Sk

n: sgn(σ ) = 1
}
.

If k = 2, there is the additional possibility that

K = {
(σ1, σ2) ∈ Sn × Sn: σ1 = σ2

}
,

and if k = 2 and n = 4, we also have the possibility that

K = {
(σ1, σ2) ∈ S4 × S4: σ1H = σ2H

}
,

where H = {1, (12)(34), (13)(24), (14)(23)} is the unique nontrivial normal subgroup of A4. In
particular, we note that if K contains an odd permutation, then K = Sk

n .

Proof. Let P1 = P{1} be the projection on the first coordinate, put P2 = P{2,3,...,k}, and let Ni be
the kernel of Pi restricted to K for i = 1,2. We may then regard N1 as a normal subgroup of
Sk−1

n , and N2 as a normal subgroup of Sn. By Goursat’s Lemma (e.g. see Exercise 5 of Chapter 1
in [13]), K may be described as follows (were we have identified Sk

n with Sk−1
n × Sn):

K = {
(x, y) ∈ Sk−1

n × Sn: f1(x) = f2(y)
}
,

where f1 : Sk−1
n → Sk−1

n /N1 and f2 : Sn → Sn/N2 are the canonical projections, and Sk−1
n /N1

and Sn/N2 are identified via an isomorphism.
We first consider the case k > 2. Now, if (σ1, σ2, . . . , σk−1) ∈ N1 � Sk−1

n and σj is a transpo-
sition we find that N1 contains the subgroup

{
(σ1, σ2, . . . , σk−1): σj ∈ An and σi = 1 for i �= j

}
.

Hence, since PI is surjective for all I � {1,2, . . . , k}, we have Ak−1
n ⊂ N1. Thus f1 factors

through Sk−1
n /Ak−1

n
∼= Fk−1

2 and hence Sk−1
n /N1 ∼= Fk′

2 for some k′ < k. But if Fk′
2

∼= Sn/N2,
then either N2 = Sn and k′ = 0, or N2 = An and k′ = 1. In the first case, we find that f1 and f2
both are constant, and thus K = Sk

n . As for the second case, we note that f2(σ ) = sgn(σ ) and
that f1 must be of the form

f1
(
(σ1, σ2, . . . , σk−1)

) =
k−1∏

sgn(σi)
εi
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for some choice of εi ∈ {0,1} for 1 � i � k − 1 (any homomorphism Fk−1
2 → F2 is of the form

(x1, x2, . . . , xk−1) → ∑k−1
i=1 εixi ). Thus, if we put εk = 1, we have

K =
{

(σ1, σ2, . . . , σk) ∈ Sk
n:

k∏
i=1

sgn(σi)
εi = 1

}
.

On the other hand, since PI is surjective for all I � {1,2, . . . , k}, we must have εi = 1 for 1 �
i � k.

As for the case k = 2, we recall that the only nontrivial normal subgroup of Sn is An, except
when n = 4, in which case H is also a normal subgroup. Since N1 and N2 are both normal in Sn,
and Sn/N1 ∼= Sn/N2, we must have N1 = N2, and the result follows. �

In order to show that Gal(E/Fp(t)) contains an element with odd sign, we will need the
following lemma.

Lemma 17. Let H,S ⊂ Fp . If p > 4|S|+|H | + 1, then there exists t ∈ Fp such that the number of
h ∈ H with t ∈ S − h is odd.

Proof. Since ∣∣{h ∈ H : t ∈ S − h}∣∣ = ∣∣{h ∈ αH : αt ∈ αS − h}∣∣
for α ∈ F×

p , we may replace S and H by αS and αH where α ∈ F×
p is chosen freely; similarly

we may also replace S and H by S + β and H + β ′ for any β,β ′ ∈ Fp . Now, given �v ∈ F
|S|+|H |
p ,

we may partition F
|S|+|H |
p into 4|S|+|H | boxes with sides at most p/4. If 4|S|+|H | < p − 1, the

Dirichlet box principle gives that there exists α′, α′′ such that all components of α′ �v and α′′ �v dif-
fer by at most p/4. Thus, with α = α′ −α′′, we may choose β such that α�v +β(1,1,1, . . . ,1) ≡
(x1, x2, . . . , x|S|+|H |) (mod p), where 0 � xi < p/2 for 1 � i � |S| + |H |. We may thus assume
that integer representatives for all elements of S can be chosen in [0,p/2) and, by replacing H

by H +β ′ for an appropriate β ′, we may also assume that integer representatives for all elements
in H may be chosen in the interval (p/2,p].

Thus, if we define h(T ), s(T ) ∈ F2[T ]/(T p − 1) by h(T ) = ∑
h∈H T p−h and s(T ) =∑

s∈S T s , we find that the degrees of h(T ) and s(T ) are less than p/2. Now, if the number
of h ∈ H with t ∈ S − h is even for all t , then

h(T )s(T ) ≡ 0
(
mod T p − 1

)
.

However, this cannot happen since the degree of h(T )s(T ) is less than p. �
Remark 7. The conclusion of the lemma does not hold for p = 7, S = {0,1,2,4} and H =
{0,4,6}, so it is necessary to make some assumption on the size of p.

We can now show that the Galois group is maximal.

Proposition 18. If p �k,|R| 1 and h0 = 0, h1, h2, . . . , hk−1 are distinct modulo p, then

Gal
(
E/Fp(t)

) ∼= Sk
n.
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Proof. Since

Gal
(
EFp/Fp(t)

) � Gal
(
E/Fp(t)

)
< Sk

n,

it is enough to show that Gal(EFp/Fp(t)) = Sk
n , i.e., we may assume that the field of constants

is algebraically closed. We also note that this implies that the constant field of E is Fp , i.e.,

E ∩ Fp = Fp. (23)

We may regard Gal(EFp/Fp(t)) as a subgroup of Sk−1
n × Sn. By induction we may assume

that the assumptions in Lemma 16 are satisfied. Hence Gal(EFp/Fp(t)) is either isomorphic to
Sk

n , or to {σ ∈ Sk
n: sgn(σ ) = 1}. To show that the second case cannot occur, it is enough to prove

that the Galois group contains an element with odd sign.
We will now show that there exists a prime ideal m ⊂ Fp[t] such that the number of hi for

which m ramifies in Khi
is odd. We begin by noting that ramification of the ideal (t − α) in

Khj
is equivalent to α + hj ∈ R. Choose an arbitrary r0 ∈ R. We can then find z ∈ Fp such that

m = (t − (r0 + z)) ramifies in Khj
for an odd number of j (for 0 � j � k − 1) in the following

way. With

R′ := R ∩ (r0 + Fp),

we find that (t − (r0 + z)) ramifies in Khj
if and only if r0 + z + hj ∈ R′. Putting R′′ = R′ − r0,

we see that the number of j for which r0 + z + hj ∈ R′ equals the number of j for which
z+hj ∈ R′′, which in turn equals the number of j such that z ∈ R′′ −hj . By Lemma 17, applied
with S = R′′ and H = {0, h1, . . . , hk−1}, it is possible to choose z so that this happens for an odd
number of j .

If M is a prime in E lying above m, then the decomposition group Gal(EFp/Fp(t))M ∼=
Gal(EM/Fp(t)m). After a linear change of variables we may assume the following: m = (t), the
roots of Fhi

(xi, t) are distinct modulo (t) for those hi for which m does not ramify in Kki
, and

for those hi for which m does ramify in Kki
, we have

Fhi
(xi, t) = f (xi) − hi − t = x2

i gi(xi) − t,

where the roots of gi are distinct modulo (t) and gi(0) �= 0. Using Hensel’s Lemma, it read-
ily follows that EM = Fp((

√
t)), i.e., a totally ramified quadratic extension of Fp(t). Thus

Gal(EM/Fp(t)m) is group of order two, and is generated by an element σ that maps
√

t to
−√

t . Now, for all hi , σ acts trivially on the unramified roots of Fhi
(xi, t), and by transposing

pairs of roots that are congruent modulo (t). Thus, when regarded as an element of Sk
n , σ is a

product of an odd number of transposition, and hence Gal(E/Fp(t)) must equal Sk
n . �

Since E ∩ Fp = Fp , we note that∣∣{m ∈ Fp[t]: M | m for some degree one prime M ∈ Fp[Xk,h]}∣∣
equals (taking into account Ok,n(1) ramified primes)

∣∣{m ∈ Fp[t]: deg(m) = 1, M | m ∈ Fp[Yk,h] and Frob(M | m) ∈ Fixk,h
}∣∣ + Ok,n(1),
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
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where Fixk,h ⊂ Gal(E/Fp(t)) is the conjugacy class

Fixk,h := {
σ ∈ Gal

(
E/Fp(t)

)
such that σ fixes at least one root of Fhi

for i = 0,1, . . . , k − 1
}
.

Thus (recall Eq. (22))

Nk

(
(h1, h2, . . . , hk−1),Ωp

)
= ∣∣{m ∈ Fp[t]: deg(m) = 1, M | m ∈ Fp[Yk,h] and Frob(M | m) ∈ Fixk,h

}∣∣ + Ok,n(1). (24)

The Chebotarev density theorem (see [6], Proposition 5.16) gives

Nk

(
(h1, h2, . . . , hk−1),Ωp

) = |Fixk,h |
|Gal(E/Fp(t))| · p + Ok,n(

√
p ).

We conclude by determining |Fixk,h |
|Gal(E/Fp(t))| .

Lemma 19. If Gal(E/Fp(t)) ∼= Sk
n , then

|Fixk,h |
|Gal(E/Fp(t))| = rk

p + On,k

(
p−1/2).

Proof. Since Gal(E/Fp(t)) ∼= Sk
n , we have |Gal(E/Fp(t))| = |Sn|k and Fixk,h, regarded as a

subgroup of Sk
n , equals

{
(σ1, σ2, . . . , σk) ∈ Sk

n: σi has at least one fixed point for 1 � i � k
}
.

Thus

|Fixk,h | = ∣∣{σ ∈ Sn: σ has at least one fixed point}∣∣k
and hence

|Fixk,h |
|Gal(E/Fp(t))| =

( |{σ ∈ Sn: σ has at least one fixed point}|
|Sn|

)k

.

Finally, again by the Riemann hypothesis for curves, we note that

rp = |Ωp|/p
= |{t ∈ Fp for which there exits x ∈ Fp such that f (x) = t}|

p

= |{σ ∈ Sn: σ has at least one fixed point}|
|Sn| + On,k

(
p−1/2),

and thus

|Fixk,h |
|Gal(E/Fp(t))| = rk

p + On,k

(
p−1/2). �
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4.2. Theorem 15 does not hold for all polynomials

We return to the example f (x) = x4 − 2x2 mentioned in Remark 6. The critical values of f

are 0,−1, and for p large, the Galois group of the polynomial f (x)− t over Fp(t) is isomorphic
to the dihedral group D4. In fact, regarded as a subgroup of S4, it is generated by the elements
(12)(34) and (23), corresponding to the ramification at t = −1 respectively t = 0. However, the
Galois group H of the compositum of the extensions generated by f (x) − t and f (y) − (t + 1)

is not isomorphic to D4 ×D4; as a subgroup of S4 × S4 it is generated by the elements (12)(34),
(23)(56)(78) and (67). This group has order 32, and Fix2,1, i.e., the elements of H that fix at
least one root of f (x) − t , and at least on root of f (y) − (t + 1), consists of (), (58), (67). Thus,
for primes p for which the Galois group of the polynomials f (x) − t and f (y) − (t + 1) over
Fp(t) equals the geometric Galois group,12 the following happens: The elements of D4 that fixes
at least one root of f (x)− t are 1, (14), (23), hence rp = 3/8+O(p−1/2). We would thus expect
that

N2(1,Ωp) = r2
p · p + O(

√
p ) = 9/64 · p + O(

√
p ).

However, since |G′| = 32 and |Fix2,1 | = 3, we have

N2(1,Ωp) = 3/32 · p + O(
√

p ).

To determine what are the primes p that split in the field of constants (in Q), and to determine
what happens when p does not split, we “lift” the setup to Q. Let L′

0 respectively L′
1 be the

splitting fields, over Q(t), of the polynomials f (x) − t , respectively f (y) − (t + 1). Let E′ be
the compositum of L′

0 and L′
1, and let l′ = E ∩ Q. Then Gal(E′/l′(t)) ∼= H .

As before, Gal(L′
0/(L

′
0 ∩ Q)(t)) ∼= D4 and since it must be a normal subgroup of S4, we

find that L′
0 ∩ Q = Q and that Gal(L′

0/Q(t)) ∼= D4. Similarly Gal(L′
1/Q(t)) ∼= D4, and thus

Gal(E′/Q(t)) embeds into D4 × D4, contains H as a normal subgroup, hence Gal(E′/Q(t))

is either isomorphic to D4 × D4 or H . We note that the first case is equivalent to l′ being a
quadratic extension of Q, whereas the second is equivalent to l′ = Q. On the other hand, y1 =√

1 + √
t + 2 and y2 =

√
1 − √

t + 2 are roots of f (y) − (t + 1), and, since
√

1 + t ∈ L′
0, we

find that i ∈ L′
0L

′
1 since (y1y2/

√
1 + t)2 = (1 − (t + 2))/(1 + t) = −1. Thus l′ = Q(i) and

Gal(E′/Q(t)) ∼= D4 × D4.
Let E be the splitting field of the polynomials f (x)− t and f (y)− (t + 1) over Fp . Since the

geometric Galois group over Q is the same as the geometric Galois group over Fp (for large p),
reduction modulo p gives that Gal(E/Fp(t)) ∼= D4 ×D4 if p ≡ 3 (mod 4), and Gal(E/Fp(t)) ∼=
H if p ≡ 1 (mod 4) (and p is sufficiently large). Thus, as we already have seen, N2(1,Ωp) =
3/32 · p + O(

√
p ) if p ≡ 1 (mod 4).

If p ≡ 3 (mod 4), we have l = E ∩Fp = Fp(i) = Fp2 , and hence the Frobenius automorphism
must act nontrivially on l, i.e., Frobenius takes values in

Gal
(
E/Fp(t)

)∗ = {
σ ∈ Gal

(
E/Fp(t)

)
: σ |l �= 1

}
.

12 More precisely, all sufficiently large primes that split completely in a certain finite extension of Q, namely the field
of constants of the Galois extension generated by adjoining the roots of f (x) − t and f (y) − (t + 1) to Q(t).
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Given a subset X of Gal(E/Fp(t)), let

Fix(X) = {
σ ∈ X: σ fixes at least one root of f (x) = t, and at least one root of f (y) = t + 1

}
.

The Riemann hypothesis for curves then gives that

N2(1,Ωp) = |Fix(Gal(E/Fp(t))∗)|
|Gal(E/Fp(t))∗| · p + O(

√
p ).

Noting that Gal(E/Fp2(t)) ∼= H , we conclude that

∣∣Fix
(
Gal

(
E/Fp(t)

)∗)∣∣ = ∣∣Fix
(
Gal

(
E/Fp(t)

))∣∣ − ∣∣Fix(H)
∣∣

and since Gal(E/Fp(t)) ∼= D4 × D4, we find that |Fix(Gal(E/Fp(t)))| = 9. We already
know that |Fix(H)| = 3, hence |Fix(Gal(E/Fp(t))∗)| = 6. Moreover, since Gal(E/Fp(t))∗ =
Gal(E/Fp(t)) \ H , we have

∣∣Gal
(
E/Fp(t)

)∗∣∣ = |D4 × D4| − |H | = 64 − 32 = 32,

and thus

N2(1,Ωp) = 3/16 · p + O(
√

p ).

In fact, this can be seen without Galois theory. Namely, let Sp be the numbers of the form (x2 −
1)2 mod p. The squares modulo p are b2,0 � b < p/2, and b2 is in Sp iff either (1 + b) or
(1 − b) is a square modulo p. Thus the number of elements of Sp is (where ( a

p
) is the Legendre

symbol)

1

2

∑
b mod p

(
1 − 1

4

(
1 +

(
1 + b

p

))(
1 +

(
1 − b

p

)))
+ O(1) = 3p

8
+ O(1).

Now, if a and a +1 are in Sp , let b2 = a, c2 = a +1 so that (c−b)(c+b) = 1. With c+b = r ,
we have c = (1/2)(r + 1/r) and b = (1/2)(r − 1/r) for some value of r mod p. Now b2 ∈ Sp

iff either (1/2)(2 + r − 1/r) or (1/2)(2 − r + 1/r) is a square modulo p, and c2 ∈ Sp iff either
(1/2)(2 + r + 1/r) = (1/2r)(r + 1)2 or (1/2)(2 − r − 1/r) = (−1/2r)(r − 1)2 is a square
modulo p.

On the other hand, given r such that (1/2)(2 + r − 1/r) or (1/2)(2 − r + 1/r) is a square
modulo p, and 2r or −2r is a square modulo p, then we can construct a. (Note that r,−r,1/r,

and −1/r lead to the same value of a.) Therefore, the number of a such that a and a + 1 are in
Sp is

1

4

∑
r mod p

(
1 − 1

4

(
1 +

(
2r

p

))(
1 +

(−2r

p

)))(
1 − 1

4

(
1 +

(
2r(r2 + 2r − 1)

p

))

×
(

1 +
(−2r(r2 − 2r − 1)

)))
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= 1

64

∑
r mod p

(
9 − 3

(−1

p

)
+

∑
i

ci

(
fi(r)

p

))
, (25)

where the fi(r) are all non-constant polynomials without repeated roots of degree � 5, and the
ci are constants. By the Riemann hypothesis for curves, the right-hand side of (25) equals

1

64

(
9 − 3

(−1

p

))
p + O

(
p1/2).

Thus, if p ≡ 1 (mod 4) we get N2(1,Ωp) = 3/32 · p + O(p1/2), and if p ≡ 3 (mod 4) we get
N2(1,Ωp) = 3/16 · p + O(p1/2).

5. Chinese Remainder Theorem for q1 and q2

By (2) we know that the spacings of elements in Ωq become Poisson with parameter θq (as
sq → ∞) if, for any k � 2 and X ∈ Bk , we have

∑
h∈H∩Zk−1

εk(h,Ωq) = o

( ∑
h∈H∩Zk−1

1

)
,

where H = θqsqX. We shall say that the spacings are strongly Poisson with parameter θq if, for
the same H ,

∑
h∈H∩Zk−1

εk(h,Ωq)2 = ok

( ∑
h∈H∩Zk−1

1

)
.

Note that such spacings are Poisson with parameter θq , as may be seen by an immediate appli-
cation of the Cauchy–Schwarz inequality.

Theorem 20. Suppose that we are given an infinite sequence of sets Ωq1 ⊂ Z/q1Z and Ωq2 ⊂
Z/q2Z for q1 = q1,n and q2 = q2,n for all n � 3 where (q1, q2) = 1. Let q = qn = q1,nq2,n.
Suppose that the spacings of elements in Ωq1 become strongly Poisson with parameter sq2 (as
n → ∞), and that

∑
h∈H∩Zk−1

εk(h,Ωq2)
2 = Ok

( ∑
h∈H∩Zk−1

1

)

uniformly for H ∈ sqBk . Then the spacing of elements in Ωq become Poisson as n → ∞ if and
only if the spacing of elements in Ωq2 become Poisson with parameter sq1 as n → ∞.

Remark 8. The assumption that q is squarefree (and hence implicitly that q1 and q2 are square-
free) is not needed provided that (q1, q2) = 1.

Proof. By the Chinese Remainder Theorem,

εk(h,Ωq) + 1 = Nk(h,Ωq1)

q rk

Nk(h,Ωq2)

q rk
= (

εk(h,Ωq1) + 1
)(

εk(h,Ωq2) + 1
)
,
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so that

εk(h,Ωq) = εk(h,Ωq1)εk(h,Ωq2) + εk(h,Ωq1) + εk(h,Ωq2).

Now, by the Cauchy–Schwarz inequality,

∣∣∣∣ ∑
h∈H∩Zk−1

εk(h,Ωq1)εk(h,Ωq2)

∣∣∣∣
2

�
( ∑

h∈H∩Zk−1

εk(h,Ωq1)
2
)( ∑

h∈H∩Zk−1

εk(h,Ωq2)
2
)

= ok

(( ∑
h∈H∩Zk−1

1

)2)
,

and so

∑
h∈H∩Zk−1

εk(h,Ωq) =
∑

h∈H∩Zk−1

εk(h,Ωq2) + o

( ∑
h∈H∩Zk−1

1

)

by hypothesis, which gives our theorem. �
A simple calculation reveals that if Ωq ranges over random subsets of Z/qZ, where the prob-

ability measure on the subsets of Z/qZ is defined using independent Bernoulli random variables
with parameter 1/σ (see Section 2.1), then the set Ωq is strongly Poisson with parameter θq > 0,
with probability 1, if and only if σ = qo(1); and thus we can apply the above result. In fact, in
this case we can weaken the hypothesis in the theorem above.

Theorem 21. Suppose that we are given an infinite sequence of integers q1 = q1,n and q2 = q2,n,

and positive real numbers σ1 = σq1,n
, s2 = sq2,n

that are both q
o(1)
1 ; and let q = qn = q1,nq2,n. We

shall assume that σ1 → ∞ as n → ∞, but not necessarily s2. Suppose Ωq2 are given subsets of
Z/q2Z with |Ωq2 | = q2/s2. If Ωq1 ranges over random subsets of Z/q1Z, where the probability
measure on the subsets of Z/q1Z is defined using independent Bernoulli random variables with
parameter 1/σ1, then, with probability 1, the spacing of elements in Ωq become Poisson as
n → ∞ if and only if the spacing of elements in Ωq2 become Poisson with parameter σ1 as
n → ∞.

Proof. The only difference from the proof above is in the bounds we find for

( ∑
h∈H∩Zk−1

εk(h,Ωq1)
2
)( ∑

h∈H∩Zk−1

εk(h,Ωq2)
2
)

.

Now, trivially, Nk(h,Ωq2) � N1(0,Ωq2) = |Ωq2 | = q2/s2, and therefore |εk(h,Ωq2)| � sk−1
2 .

If {zt : 1 � t � q1} are each independent Bernoulli random variables with parameter 1/σ1,
then

E
((

Nk(h,Ωq1) − q1/σ
k
1

)2) = E

( ∑ (
k−1∏

zt+hi
− σ−k

1

))2
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= E

( ∑
t,u mod q1

k−1∏
i=0

zt+hi
zu+hi

)
− q2

1σ−2k
1 .

Let η(a) be the number of pairs 0 � i, j < k for which hj − hi ≡ a (mod q1). Then

E(
∑

t mod q1

∏k−1
i=0 zt+hi

zt+a+hi
) = q1σ

η(a)−2k
1 , so that the above equals

q1σ
−2k
1

( ∑
a mod q1

(
σ

η(a)
1 − 1

))
.

Evidently η(a) � k for all a, and there are no more than k2 values of a for which η(k) > 0. Thus
the above is �k q1σ

−2k
1 (σ k

1 − 1); and thus for any h ∈ H we have E(εk(h,Ωq1)
2) �k σ k+1

1 /q1

with probability 1. The result therefore follows since sk−1
2 σk+1

1 /q1 = o(1) by hypothesis. �
6. Counterexamples

Despite the negative aspects of Theorem 20, one might still hope that one can often take the
Chinese Remainder Theorem of two fairly arbitrary sets and obtain something that has Pois-
son spacings. Here we give several examples to indicate when we cannot expect some kind of
“Central Limit Theorem” for the Chinese Remainder Theorem!

6.1. Counterexample 1

In this case we select a vanishing proportion of the residues mod q1 randomly, together with
half the residues mod q2 picked with care. Thus, in Theorem 21 we fix s2 = 2 and take q2 = 2σ1
with Ωq2 = {1,2, . . . , σ1}. Evidently Ωq2 is not Poisson with parameter σ1, so Ωq is not Poisson.

6.2. Counterexample 2

In this case we select a vanishing proportion of the residues mod q1 and mod q2 randomly, but
strongly correlated. In fact, let u1, u2, . . . , uq1 be independent Bernoulli random variables with

probability 1/σ1 = q
−1/2
1 . Let S = {i: ui = 1}, and then take q2 = q1 + 1 with Ωq1 = Ωq2 = S.

It will be convenient to let yi = zi = ui for 1 � i � q1, with z0 = 0, and then have yj+q1 = yj

and zj+q2 = zj for all j . Note that N2(h,Ωq1) = ∑q1
j=1 yjyj+h and N2(h,Ωq2) = ∑q2

j=1 zj zj+h

only differ by O(h) terms. (Note that s2 = s1 + o(1) = σ1 + o(1).)
Let q = q1q2 and define Ωq ⊂ Z/qZ from Ωq1 and Ωq2 using the Chinese Remainder Theo-

rem, so that j ∈ Ωq if and only if xj = 1, where xj = yj zj .

Lemma 22. Let I = (0, t) ⊂ (0,1/3) be an interval, and let Ωq1,Ωq2 be as above. Then
E(R2(I, q)) = 2t − t2/2 + o(1).

Proof. Recall that

E
(
R2(I, q)

) =
∑

h∈s I

q∑
r�2

1

r
E

(
N2(h, q) : |Ωq | = r

) · Prob
(|Ωq | = r

)
.
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Since |Ωq2 | = |Ωq1 |, we have |Ωq | = |Ωq1 |2, and thus

E
(
R2(I, q)

) =
∑

h∈sqI

q1∑
r1=1

1

r2
1

E

(
q∑

i=1

xixi+h : |Ωq1 | = r1

)
· Prob

(|Ωq1 | = r1
)
.

Now, Prob(|Ωq1 | = r1) = (1/σ1)
r1(1 − 1/σ1)

q1−r1
(
q1
r1

)
. Using the Chinese Remainder Theo-

rem and the linearity of expectations, we obtain

E

(
q∑

i=1

xixi+h : |Ωq1 | = r1

)
=

q1∑
i1=1

q2∑
i2=1

E
(
yi1yi1+hzi2zi2+h : |Ωq1 | = r1

)

=
q1∑

i1=1

q2∑
i2=1

(
q1 − L

r1 − L

)/(
q1

r1

)
,

where L = L(i1, i2, h) denotes the number of distinct integers amongst i1, i2, the least positive
residue of i1 + h mod q1, and the least positive residue of i2 + h mod q2. Therefore

E
(
R2(I, q)

) =
∑

h∈sqI

q1∑
i1=1

q2∑
i2=1

q1∑
r1=1

1

r2
1

(
q1 − L

r1 − L

)
(1/σ1)

r1(1 − 1/σ1)
q1−r1 .

Now using, as in the proof of Lemma 5, the fact that

1

r2
1

= 1

(r1 − L + 1)(r1 − L + 2)
+ OL

(
1

(r1 − L + 1)(r1 − L + 2)(r1 − L + 3)

)
,

we obtain

q1∑
r1=1

1

r2
1

(
q1 − L

r1 − L

)
(1/σ1)

r1(1 − 1/σ1)
q1−r1 = 1

q1σ
L
1

(
1 + O

(
1

σ1

))
.

Moreover for each h the number of i1, i2 with L(i1, i2, h) = 4 is q2
1 + O(q1), the number with

L = 3 is O(q1), and the number with L = 2 (which is when i2 = i1) is q1 − h + O(1). Thus

E
(
R2(I, q)

) =
∑

h∈sq I

{
q2

1

q1σ
4
1

+ O(q1)

q1σ
3
1

+ q1 − h

q1σ
2
1

}(
1 + O

(
1

σ1

))

= 2t − t2/2 + O

(
1

σ1

)
. �
Please cite this article in press as: A. Granville, P. Kurlberg, Poisson statistics via the Chinese Remainder Theorem,
Adv. Math. (2008), doi:10.1016/j.aim.2008.04.001



ARTICLE IN PRESS
JID:YAIMA AID:3039 /FLA [m1+; v 1.91; Prn:18/04/2008; 14:09] P.30 (1-30)

30 A. Granville, P. Kurlberg / Advances in Mathematics ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

6.3. Counterexample 3

In this example the sets are independently random but nonetheless, highly correlated. We
assume m divides every element of Ω1, a set of residues modulo q1, and every element of Ω2,
a set of residues modulo q2, where m < σ1, σ2 and σ1, σ2 are o(min(q

1/4
1 , q

1/4
2 )).

Select xj ’s randomly from the qi/m integers divisible by m, in the range 1 � xj � qi , each se-
lected with probability m/σi (= o(1), say). Since N2(h, qi) = O(h/m) if m � h, and N2(h, qi) ∼
|Ωi |m/σi + O(h/m) if m | h, we have 1 + ε2(h, qi) = o(1) if m � h, and 1 + ε2(h, qi) ∼ m if
m | h. Therefore 1 + ε2(h, q) = ∏2

i=1(1 + ε2(h, qi)) = o(1) unless m divides h, in which case it
is ∼ m2. In intervals (for h) of length m this averages to ∼ 1

m
(m2 + o(m)) = m + o(1), and so

R2(X,q) = 1/σq

∑
h∈σqX∩Z

(
1 + ε2(h, q)

) ∼ m

σq

vol(σqX) ∼ mvol X,

which is nontrivial for m � 2.
If mi divides the elements of Ωi , and with the elements chosen as above, then, by an analogous

calculation to that above,

R2(X,q) ∼ m1m2

lcm(m1,m2)
vol(X) = gcd(m1,m2)vol(X).
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