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In 1823, Sophie Germain (Mem. Acad. Sci. Inst. France 6 (1823), 1-60) showed
that if p, 2p+ 1 are both odd primes then the so-called “First Case” of Fermat’s
Last Theorem holds for p. This was extended by Legendre, Wendt, Vandiver,
Denes, and others to prime pairs p, mp + 1, where 6 | m and p is sufficiently large
(depending on m). The cases where 6 divides m are fraught with an inescapable
technical difficulty, and, as we shall see in this paper, it requires quite sophisticated
techniques to even find a partial resolution for prime pairs p, 6p+1. © 1987

Academic Press, Inc.

INTRODUCTION

The first case of Fermat’s Last Theorem is said to be false for prime p, if
there exist integers X, Y, Z such that

XP+YP+Z°=0 and plXYZ---. (1),

Throughout this paper we use the following notation: Let p and g=
6p + 1 be odd primes (p # 3 or 7). Thus we may assume that ¢ =3 (mod 4),
g=4or7 (mod9), and g # 1 (mod 7).

Let w=(—1+4+./-3)/2, aroot of W’ +w+1=0in C.

We choose e to be any integer of order 6 (mod g). Note that if 1€ Q with
v,(t)=0 (v, is the g-adic valuation) then there exists an integer i, 0 <i< 5,
such that t” =¢’ (mod q).

Let C be the least positive residue of (¢ — 1)/3 (mod 3) and 4 and B be
integers for which 4g =47+ 27B? and 4A=1 (mod 3). Then A4 is uniquely
defined and B is uniquely defined up to sign (see [6, Prop. 8.3.2]).

Let n; = (4 + 3B)/2 4+ 3Bw, which is prime in Q(w). Note that g=rn, - 7,.
Let 7, = —1 — 3w = (—)?*(3 + 2w), which is prime in Q(w) also. Note that
7=m,-m,. Let « be the integer, 0 <a <gq, such that a=1+20w=./-3
(mod ;).
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Now suppose y and p e Q(w) with p prime and Np |} Ny, Np#2 or 3.
Define

Ll =(=1)", where y*=Y2=(-1)" (mod p),

'
|
N

and

=™ where yNe =13 = ™ (mod p).

If ye Q, let (y/Np)=[7/p],. This definition coincides with that of the
Legendre symbol.
We shall prove the following theorem:

THEOREM 1. Let p, q, A, B, and C be as above; determine the sign of B
by taking B=1 (mod 4), if A is odd and B=q+ 3 (mod 8), if A is even.

If the first case of Fermat’s Last Theorem is false for p then either 7| A+
B+Cand3|B—1or7|A+B+2Cand3|B-2.

We will have need of the following two theorems, each of which rely on
sophisticated techniques. In each we assume that there exist solutions X, Y,
Z to (1),.

FURTWANGLER’S THEOREM [4]. If r| XYZ then r"~'=1 (mod p?).
McDoONNELL’S THEOREM [8]. If r| X*—YZ-Y?>—XZ -Z*>— XY then
r’~1=1 (mod p?).

(McDonnell’s Theorem is usually stated with the added criteria that
pl XY+ YZ+ ZX—however, this was always shown to be true by
Pollaczek [9].)

For a complete introduction to these:theorems, and those mentioned in
the abstract, the reader is referred to Ribenboim [10].

LEMMA 1. If a, b, and c are integers for which
a? +b?+c?=0 (mod q)

then either q divides abc or there exists an integer u, of order 3 (mod q), such
that

b?/a” = c¢?/b? =u (mod q).

Proof. Suppose that g does not divide abc. As (b*/a?)®=(cP/a?)® =
1 (mod g) there exists integers i and j, 0<i, j<5, such that b’/a”=
e’ (mod q) and c?/a” = e’ (mod q).
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Hence 1 +e'+e’/=(a” + b” + c”)/a” =0 (mod g).
Now, if (i, j) #(2, 4) or (4, 2) then

5 5
—3*.77.4= T[] [l 1+€+e/=0 (modgq).
e 2D or42)
Thus g=6p+1=3 or 4 or 7 which is clearly impossible. So (i, j)= (2, 4)
or (4,2). Let u=e'. Then u has order 3 (mod q) and b?/a” =c?/b’=u
(mod g).

ProposITION 1. If (1), has solutions then there exist integers a and b,
with a*= —3 (modq) and b°=1 (mod q) such that X=5b/2 (mod q),
Y=ab/2 (mod q), and Z= —b(a+ 2)/2 (mod q).

Proof. We first note that ¢ does not divide XYZ else, by Furtwéngler’s
Theorem, 1 +6p=qg=q”=1+6p>=1 (mod p?), so that p|6, which is
impossible.

Similarly ¢ does not divide X*—YZ.-Y*—XZ-Z>— XY by use of
McDonnell’s Theorem.

Barlow [1] established that there exist integers r, s, ¢ such that

X+Y=1¢", X+Z=s", and Y+Z=r"

As g | rst (else g | XYZ), there exist integers i and j, 0< i, j< 5, such that
(s/r)P=¢€' (mod q) and (#/r)? =€’ (mod q).

Therefore
2X/r’=e¢'+e’—1 (modgq), 2Y/r’=1+e’—e' (modgq),
and
2Z/r’=e'+ 1 —¢e’ (mod gq).

Now i#0, j#0, and i# jelse X=Y (mod g), X=Z (mod ¢g), or Y=2Z
{mod ¢) and, by Lemma 1, there would exist an integer u, of order 3
(mod g), such that u=1 (mod ¢), which would imply that ¢ divides 3.

Also i/ and j are not equal to 1 and 2, or 1 and 5, or 4 and 5, else
gl XYZ.

We are left with one case, namely i=1, j=4, noting that we do not
affect the methods used by interchanging X, Y, and Z or mapping e — e°.

Let b= (—r)” (mod q) so that b°=1 (mod q), and a=2e — 1 (mod g) so
that

a*=4e’—4de+1= -3+4(1+e2+e*)= -3 (mod g).

Then X =b/2 (mod g), Y=ab/2 (mod q), and Z= —(a + 2)b/2 (mod g).
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CoROLLARY 1. If (1), has solutions then there exists an integer a such
that q divides a*+ 3 and q divides 1 + a” — (a + 2)".

Corollary 1 follows immediately from Proposition 1. We now prove a
preparatory, technical lemma.

Lemma 2. (i) (o/q)=(AB/q).

(ii) If B is odd then B= (a/q) (mod 4). If B is even then B=2(2u/q)
(mod 8).

)
) ((2+9)/q) = (2/q)((4 + B)/7).
(iv) [3/m1;=w?
) [C+a)/m, s [3/m 1= L4+ B)2)/n,];.

Proof. (i) [3Ba/n,],=[(3B+6Bw)/n,],=[—A/n,],. As 4, B, and
o are integers, and (—3/g)=(g/3)=1, we have (o/q) = (3B/q)(3Ba/q) =
(3B/q)(—A4/q) = (AB/q).
(i) Let A=(—1)“.2%.4; and B=(—1)".2".B,, where A,
B3>0 and 2} 45 B;. Now, if the prime r divides 45, then

(et ()i
q r r
o Z)cr (-G

Therefore (A4,/q) = (43/3) = (4/3) - (—1)a+% = (—1)“+2 a5 4 = |
(mod 3).

Thus (4/q) = (—1)(2/g)".

Now, if prime r divides B,, then

" _ —1)r-ne ﬁ)z —1 (r--1)/2<_’_4_2)= — 1)1
(5)= = ()= ey ()= oy

Suppose that B; =TT, 5, r*. Then
(E)z 11 (f)"’z(_l)z,w}a, (=12 o (1)1,

q rl B3 q
Thus (B/g) = (=1)"(2/g)" - (= 1)~ Y2 = (—1)*(2/q)" By (mod 4).

Therefore, by (i)
2\"*/B
B2 =(—1)"-B E(—) <~—>
/ )*t- By ) \3

= <g)<z>a2+b2 (—1)* (mod 4).
q/\4q
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Now, if 2} B, a=b,=0, so that B=(a/q) (mod4). If 2| B then, as
qg=3 (mod4), b,=1 so that

BE(_l)az(Z)”.z.@E‘) (mod 8).
q q

Now, if g=3 (mod 8), then B=2-(2a/q) (mod 8).
Note that (4/2)*=¢—3(B/2)*=0 (mod 8), so that 4 | 4/2. Therefore

(A+3B)/2=0+3. (20/q) = (¢/g) (mod 4).... (2i)

If g=7 (mod 8), then (4/2)’=7—3-1>=4 (mod 8). Thus 4/2=2 (mod 4),
so that a, =2 and B=2(2a/q) (mod 8). Note that

(A+3B)2=2— (¢/q) = («/q) (mod 4).... (2ii)

(i) Dorrie [3, pp. 68-71] gave the following law for quadratic
reciprocity in Q(w): If p, and p, are primes in Q(w), but not in 0,
with Np,=p, and t; an integer, 0<#,<5 such that (—w)p,=w+1 or
w—1 (mod 4) for each i=1, 2 then

&:l [&:l =(_1)(m+l+213)(p3+|+2m/4+u.+1)(/3+1)
Pzl Pid>

Now 7,= —1—3w=w—1 (mod 4) and suppose that (—w)' 7, =w + 1

(mod 4). Then
][] -
T 2l Ty o

But
T, (A+3B)/2+3Bw]| [(A+ B)/2
[‘Q]oz[ —1-30 l‘[—l—sw]z
:<(A_+_B£>=<A_t§) as (E)zl_
7 7 7
Therefore

q TII 2 TEI 2 71'2 2
r+1 A 5
(=1 ( 7 )

Now, if (—w)' 7, =w+¢ (mod 4), where e=1 or —1, then

(~w) "7, =w’+e (mod 4).
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Thus —l=g=n, %, =(0+&)(@w* +&)=2+¢e(w+w?)=2—¢e=¢ (mod 4),
so that ¢= —1.
If2}B,

(—0)2—w)=(—0)2+o)=(—0)(l-o)
=(—w)(—-1+w)=w—1 (mod4).

In each case, (—1)'*'= —3B= B=(a/q) (mod 4) by (ii). If 2| B,
(—0)(—1+20)=(—w)’(1+20)=w—1 (mod 4),

so that

(—1)'*'=(4A+3B)2= (g) (mod4) by (2).

Thus, in each case,

(3o (-G

(iv) and (v). Ireland and Rosen [6, pp. 112-114] give the following laws
of cubic reciprocity in Q(w): If p, and p, are prime in Q(w), with p,,
p2¢Q, and p, =p, =2 (mod 3), then

HSHS

If p,=c+dw then [(1—w)/p,;]3=0> "+ Now, note that 4=A4"=
(4g)*= —2¢°= —q—1 (mod 9), and that 3= —w*(1 —w)*. Thus

2= R

— 24— V3 (2B 2AA+2Y3 _ ()28

Now 7, =A4/2=2 (mod 3) and n,= —1 =2 (mod 3). Therefore

| [m] (A+3B)/2+3Bw
[”—1]3—[”_2]3_[ —1-3w ]3

_ [(A + B)/2:|3 _ [(A + B)/2:|3

—1-3w T,
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and so
[2+oc] =’:3+2wJ =[(—w)42:|
T 43 Ty 3 Ty 13
|23 mer [=222]
- Ty sl 7y 3_ ) 3
Thus

[2+a] [3]2_w3+c[(A+B)/2]
m 3L 3— n; 3-

PROPOSITION 2. The Sollowing three statements are equivalent:
(I) g divides 1 + a” — 2+ a)”.
D G) (g)=1; (i) (2+a)q)= —1; (i) [3/m]35#1; (iv)
[2+a)/m15=[3/n, 1.
(IIT) (i) If B is odd, B= 1 (mod 4); if B is even, B=2(2/g) (mod 8);
(i) ((4 + B)/7)= —1; (iii) 31B; (iv) 22+ -2(4 + B)2 =1 (mod 7).
Proof. (1)« (II): There exist integers i, j with 0<i, <5, such that
a”=e' (mod g) and —(2+a)’=e’ (mod g).

Therefore

G-6I-6) e BIEDRET
E ) e BT

So, as (e/q)= —1,

(9:1 and (2;“)=~1 il i= =0 (mod 2)

Also

AS [e/nl]:; 56 15

[3] =[2+°‘] #1  iff j=2i # 0 (mod3).
3 3

7[1 7!1
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Therefore (I1) holds iff (i, j)=(2, 4) or (4, 2),

iff there exists an integer u (u=e'), of order 3 (mod g), such that
a”=u (mod ¢q) and —(2+ a«)? =u? (mod gq),
iff (I) holds (by Lemma 1).

Proof. (II) « (III): Now (II)(i) holds iff (III)(i) holds, by Lemma 2(ii).
By (i), (#/g)=1. So, by Lemma 2(iii), ((2+ a)/q)=((A4 + B)/7). By Lem-
ma 2(iv), [3/n,]5## 1 iff 3} B. By Lemma 2(v),

[2+a:| =[_3_] ff w”*c[(A+B)/2] 1
T, |3 7T s Ty 3

iff w?*((4+ B)2)*=1 (mod =,).

Now w= —1/3=2 (modn,= —1-3w), so that w?*<((4+ B))2)*=
1 (mod n,) iff 22+*¢~2(4+B)>=1 (modm,) iff 22+ -2(4+ B)’=1
(mod 7).

Proof of Theorem 1. 1f (1), has solutions X, Y, Z then, by Corollary 1,
there exists an integer a such that ¢ divides a*>+ 3 and 1+ a” — (a +2)”.
Choose the sign of B so that (B/q)=(Aa/q). Then, by Lemma 2(i),
a=a (mod g).

Now note that, as g =3 (mod 4), we have 2(2/¢q) = ¢+ 3 (mod 8). Thus,
by Proposition 2, B=1 (mod 4) (if B is odd), B=¢g+ 3 (mod 8) (if B is
even). Also 3/ B.

By (III)(ii), (4 + B)’= —1 (mod 7), so by (III)(iv) (4+ B)=(4+ B)-
(A+ B)?-28*C-2= _28+C+1 (mod 7). So

if B=1(mod3)and C=1then 4+ B= —1= —C (mod 7);
if B=1 (mod3)and C=2then A+ B= —-2= —C (mod 7);
if B=2 (mod3)and C=1 then 4+ B= —-2= —2C (mod 7);
if B=2 (mod3)and C=2then 4+ B= —4= —2C (mod 7).

Note that it is possible to extend Theorem 1 to all pairs n, g=6n+1
where g is prime and ged(n,2-3-7)=1. Thus we may state

THEOREM 2. Suppose that n is a given integer, gcd(n,2-3-7)=1 with
q=6n+1 prime, and X, Y, Z are integers for which
X'+Y'+2"=0 and ged(n, XYZ)=1. (1),

Let A, B, and C be integers such that C is the least positive residue of
(g—1)/3 (mod 3), 49 = A> + 278>, with A=1 (mod 3) and B=1 (mod 4) if
A is odd, B=¢g+ 3 (mod 8) if 4 is even.
Then either 3| B—1and 7|4+B+Cor3|B—2and 7| A4+ B+2C.
(2),
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Note that if 2 divides n then (1), has no solutions by Terjanian’s
theorem [11]; if 3 or 7 divides n then (1), has no solutions by Sophie
Germain’s theorem for m =2 or 4, respectively.

Now 7= (4 +3B)/2+ 3Bw is a prime of Q(w) and g = n7.

It is not hard to show that g=4 or 7 (mod 9) and A =1 (mod 3) iff =2
or 5 (mod 3(1+ 2w)). Also that B=1 (mod 4) if 4 is odd, and B=g+3
(mod 8) if Aiseveniff t=1—w, 2—w or 1+ 2w (mod 4). Finally that

g=1 (mod 7) iff n=1(2,3,4,50r6)(mod1+3w)
and

n=1(4, 5,2, 3 or 6, respectively) (mod 2 + 3w).

So Theorem 2 may be rewritten as follows:

THEOREM 2'.  Suppose that m is a prime in Q(w) such that

(a) m=2o0r 5 (mod 3(1 +2w))

(b) m=1-—w,2—wor1+2w (mod4)

(¢) if m=1/2/3/4/5/6 (mod 1+3w) then = % 1/4/5/2/3/6 (respec-
tively) (mod 2 + 3w).

If (1), has solutions where n=(Ng, on—1)/6 then one of the
following holds:

(i) n=—1+43w (mod9) and n=3 (mod 1+ 3w)
(i) == —4—3w (mod9) and =6 (mod 1 + 3w)
(i) w= 2+ 3w (mod9) and n=6 (mod 1+ 3w)
(iv) n=—1-3w (mod9) and =5 (mod 1 + 3w).

Now of the 540 equivalence classes, mod 252, permissible by (a), (b),
and (c), only 60 satisfy one of the criteria (i), (ii), (iii), and (iv). By
applying the Tchebotareff density theorem (see [2, Theorem 19.187) we
may state the following:

# {primes ¢ < x: ¢=7 or 31 (mod 36),

- g =1 (mod 7); g does not satisfy (2),} _8
x—w # {primes g < x: ¢=7 or 31 (mod 36), g=1 (mod 7} 9

This is certainly borne out by experimental evidence: Of the 57,356 such
primes ¢ < 6,000,000 only 6,402 satisfy (2),-

Unfortunately the Tchebotareff density theorem cannot be applied to
prime pairs p, g=6p+ 1. However, on computations of all such prime
pairs with p < 1,000,000 we found that of the 14,443 such primes p, 1615
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satisfy the criteria of Theorem 1 (if the Tchebotareff density theorem held
we would expect 1605 such primes to satisfy the criteria of Theorem 1).

It has been brought to my attention that J. M. Gandhi [5] claimed to
have found an unconditional proof of Sophie Germain’s theorem for prime
pairs p, 6p + 1; which would evidently be stronger than the main theorem
of this paper. In the notice he simply stated the theorem, writing that
the main ingredients of his proof were Pollaczek’s, Furtwingler’s, and
MacDonnell’s theorems. This leads me to believe that he, in fact, proved
only Proposition 1, inadvertently leaving out case (iii). Before his untimely
death, Professor Gandhi did, indeed, confide to colleagues that his proof
was incomplete.
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