MOTIVATING THE
MULTIPLICATIVE SPECTRUM
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Dedicated to the memory of S. D. Chowla

ABSTRACT. In this article, we describe and motivate some of
the results and notions from our ongoing project [2]. The results
stated here are substantially new (unless otherwise attributed)
and detailed proofs will appear in [2].

1. DEFINITIONS AND PROPERTIES OF THE SPECTRUM

Let S be a subset of the unit disc U. By F(S) we denote the
class of completely multiplicative functions f such that f(p) € S
for all primes p. Our main concern is: What numbers arise as
mean-values of functions in F(5)7

Precisely, we define

I'n(S) = {% Z fn): fe ]:(S)} and I'(S) = lim I'n(S).

N—oo
n<N

Here and henceforth, if we have a sequence of subsets Jy of the
unit disc U := {|z| < 1}, then by writing limy_,» Jy = J we
mean that z € J if and only if there is a sequence of points zy €
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Jn with zy — z as N — co. We call I'(S) the spectrum of the set
S and our main object is to understand the spectrum. Although
we can determine the spectrum explicitly only in a few cases (see
Theorem 1 below for the most interesting of these cases), we are
able to qualitatively describe it, and obtain a lot of its geometric
structure. For example, we can always determine the boundary
points of the spectrum (that is the elements of I'(S)NT where T is
the unit circle). Another property is that the spectrum is always
connected. Qualitatively, the spectrum may be described in terms
of Euler products and solutions to certain integral equations.

We begin with a few immediate consequences of our definition:

e I'(9) is a closed subset of the unit disc U.

e I'(S) =TI(S) (where S denotes the closure of S). Henceforth,
we shall assume that S is always closed.

e If S| C S5 then F(Sl) C F(SQ)

o I'({1})={1}.

One of the main results of [2], which formed the initial motiva-
tion to study the questions discussed herein, is a precise descrip-
tion of the spectrum of [—1,1].

Theorem 1. The spectrum of the interval [—1, 1] is the interval
I([-1,1]) = [61, 1] where 61 = 209 — 1 = —0.656999..., and

2
1
) —1———1 1 e)l
=0.17150049... .

Theorem 1 tells us that for any real-valued completely multi-
plicative function f with |f(n)| <1,

(1) > f(n) = (614 o(1))z.

n<x

In 1994, Roger Heath-Brown conjectured that there is some con-
stant ¢ > —1 such that > _ f(n) > (c+o(1))z. Richard Hall [5]
proved this conjecture, and, in turn, conjectured (as did Hugh L.
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Montgomery independently) the stronger estimate (1). Both Hall
and Montgomery noticed that the estimate (1) is best possible by
taking

{ 1 for primes g < 2t/(+Ve)
—1 for primes 2¥/(1+Ve) < ¢ < .

(2) fla) =

In this example, the reader can verify (or see [5]) that equality
holds in (1). Our proof shows that this is essentially the only
case when equality holds in (1). The proof of Theorem 1 is too
complicated to be given here; however, in §3, we shall sketch its
salient features and prove a weaker estimate with —(2 —2/\/e) =
—0.78693 . .. replacing d; in (1).

By applying our Theorem to the completely multiplicative func-
tion f(n) = (%), for some prime p, we deduce that > (ég + o(1))z
integers below x are quadratic residues (mod p). In fact, the
constant dy here is best possible. To see this, we choose p such
that (%) is given as in the Hall-Montgomery example (2); that in-
finitely many such primes exist follows from quadratic reciprocity
and Dirichlet’s theorem on primes in arithmetic progressions.

For a given f € F(S), the mean-value of f (that is,
limg oo 271, - f(n)), if it exists, is obviously an element of
the spectrum F(S). We begin by trying to understand the subset
of the spectrum consisting of such mean-values.

Suppose that 1 € S and consider f € F(S) satisfying f(p) =1
for all large primes p. Writing f(n) = > din g(d) for some multi-

plicative function g(d), an easy argument shows that

i 2 1 = Oo o
:1;[<1+%+fgf)+...>(1—%)

(3) =: O(f, 00).

Thus the element ©(f,00) € I'(S), and if we define I'g (S) to be
the closure of the set of values O(f, 00) we have I'g(S) C I'(S).
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Here, we assumed that 1 € S and if 1 ¢ S we define I'g(S) = {0}.
We call I'g (S) the Euler product spectrum of S.

Proving an old conjecture of Erdés and Wintner, Wirsing [10]
showed that every real multiplicative function with |f(n)| < 1 has
a mean-value. In fact, he proved that (3) always holds for such
functions. Thus, when S C [—1,1] Wirsing’s Theorem gives that
I'o(S) is precisely the set of mean-values of elements in F(S5).
The critical point in Wirsing’s Theorem is to show that if f is real
valued and >~ (1 — f(p))/p diverges, then r! Yon<e f(n) — 0.

The situation is more delicate for complex valued multiplicative
functions. For example, the function f(n) = n'® (a a non-zero
real) does not have a mean-value; indeed >~ __ f(n) ~ z1 /(14
ic). Again, note that here }_ (1 — Re p'®)/p diverges but
z7ty" . n' does not tend to 0. Haldsz [3] realised that the
problem with this example is that the set {f(p)} is everywhere
dense on T. He proved that if - (1 —Re f(p)p~**)/p diverges
(which obviously does not hold for the troublesome example n'®)
for all real a then 273" _  f(n) — 0; and he quantified how fast
this tends to 0. -

Over the years Haldsz’ Theorem has been considerably refined,
and recently Hall [4] found the following useful formulation: Let
D be a convex subset of U containing 0. If f € F(D) then

W X s <o) 3 LD,

where n(D) is a constant defined in terms of the geometry of D,
and n(D) > 0 when the perimeter length of the closure of D is
< 2m. Using (4), it is easy to check that if 1 ¢ S then I'(S) = {0}
(recall that S is assumed to be closed). Thus we may assume
henceforth that 1 € S.

But all this doesn’t answer when (3) holds. We now give a
criterion for the set S, such that for all f € F(S), (3) is true, thus
generalizing Wirsing’s Theorem. To formulate this fluidly, and for
subsequent results, we introduce the notion of the angle of a set.
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For any V C U, define

(5) Ang(V) = sug |arg(1 — v)].
ve
v#1

Note that each such 1 — v has positive real part, so 0 < Ang(V) <
/2. We adopt the convention that Ang({1}) = Ang(f) = 0.
Sometimes we will speak of the angle of a point z € U (z # 1); by
this we mean Ang(z) = |arg(l — 2)|.

Theorem 2. Suppose S C U and Ang(S) < w/2. Then (8) holds
for every f € F(S); that is, every f € F(S) has a mean-value.
Thus,

{II(,555) 77}

If S C [-1,1] then Ang(S) = 0, and so Theorem 2 generalizes
Wirsing’s result. If a # 0 is real then Ang({p'®}) = 7/2, and
thus Theorem 2 avoids the example f(n) = n*®. What happens
when Ang(S) = 7/27 It will follow from results stated below that
here I'(S) = I'e(S) = U. Thus the spectrum is quite easy to
understand here.

In general, the spectrum contains more elements than simply
the Euler products. For example, the spectrum of Euler products
for S = [—1, 1] is simply the interval [0, 1]. However, as Theorem 1
shows, the spectrum of S is more exotic. We now describe a family
of integral equations whose solutions belong to the spectrum. In
Theorem 3, we shall show that all points of the spectrum may be
obtained by suitably combining an Euler product and a solution
to one of these integral equations.

Recall that we assume S is closed and 1 € S. We define A(S)
to be the set of values o(u) obtained as follows. Let x(t) be any
measurable function with x(¢) = 1 for 0 < ¢ < 1 and with x(t)
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belonging to the convex hull of S, for all t. Next define o(u) =1
for 0 <wu <1 and for © > 1 by the integral equation

(6) uo(u) =0 *x = /Ou o(u—t)x(t)dt.

Here, and throughout, f * g denotes the convolution of the two
functions f and g¢: that is, f * g(x fo g(x —t)dt. As we
prove in [2] (see Theorem 7 below), there is a unlque solution o (u)
to (6). This solution is continuous and satisfies |o(u)| < 1 for all
u.

That the integral equation (6) is relevant to the study of mul-
tiplicative functions was already observed by Wirsing [10]. This
connection may be seen from the following Proposition.

Proposition 1. Let f be a multiplicative function with |f(n)| <1
for all n and f(n) = 1 forn < y. Let ¥(z) = Zp<m logp and
define B

x(u) = xy(u p) logp.

p<y

Then x(t) is a measurable function taking values in the unit disc
and with x(t) = 1 fort < 1. Let o(u) be the corresponding unique
solution to (6). Then

y" Z fn O(lozy)'

nly%

The converse to Proposition 1 is also true:

Proposition 1 (Converse). Let S C U and suppose x takes on
values in the convex hull of S with x(t) = 1 fort < 1. Given
€ > 0 and u > 1 there exist arbitrarily large y and f € F(S) with
f(n)=1 forn <y and

logp‘ <€ for almost all 0 <t < u.
p<y
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Consequently, if o(u) is the solution to (6) for this x then

1
o(t) = 7 n; f(n) + O(elog(u+2)) + O(@) for all t < u.

If J and K are two subsets of the unit disc, we define J x K
to be the set of elements z = jk where j € J and k € K.

Theorem 3. For any S C U, I'(S) =Te(S) x A(S).

Researchers in the field have long “known” that results like
Proposition 1 and Theorem 3 can used when needed (see [10] and
[6], for instance). But this appears to be the first attempt to
provide a complete proof of such a result in this generality. The
idea of the proof of Theorem 3 is to decompose f € F(S) into
two parts: fs(p) = f(p) for p < y and fs(p) = 1 for p > y, and

fi(p) =1 for p <y and fi(p) = f(p) for p > y. For appropriately
chosen y, the average of f until z is approximated by the product

of the averages of f; and f;. If y is small enough compared with
x, then the average of f, is approximated by O(fs,00) € I'g(S).
Proposition 1 shows that if ¢ is not too small, the average of f; is
approximated by the solution to an integral equation. Combining
these, one gets that I'(S) C I'e(S) x A(S). The proof that I'g (S) x
A(S) C T'(S) is similar, invoking the converse of Proposition 1.

As the case S = [—1,1] illustrates, I'g(S) represents the easy
part of the spectrum while A(S) is more mysterious. Here The-
orems 1 and 3 tell us that A(S) C [d1,1]. That is, given any
measurable function y with x(¢) = 1for¢t < 1,and —1 < x(¢t) <1
always, then o(u) > §; for all u (where o is the corresponding so-
lution to (6)). An important example is the function y(t) =1 for
t <1 and x(t) = —1 for ¢t > 1. Denote by p;(u) the correspond-
ing solution to (6). Then p;(u) satisfies a differential-difference
equation very similar to that satisfied by the Dickman-de Bruijn
function. Namely, p;(u) =1 for u < 1 and for u > 1,

upy (u) = =2p1(u —1).
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It is not hard to verify that p;(u) decreases for u in [1,1 + /€]
and increases for u > 1+ y/e. The absolute minimum p; (1 + /€)
is guaranteed by Theorem 1 to be > §; and in fact py(1 4 /e) =
d1. By continuity, p;(u) takes on all values in the interval |6y, 1]
showing that A(S) = [d1, 1].

We now describe a lot of properties of I'g(S) which are also
inherited by I'(S); in many cases, we get an explicit description
of To(S). To state our results we introduce the set £(.S) defined
as follows. Let £(S) = {0} if 1 ¢ S and if S C U is closed with
1 € 5, we define

E(S)={e*1=) . k>0, a isin the convex hull of S}.
Thus £(S) consists of various ‘spirals’ connecting 1 to 0.
Theorem 4. For all subsets S of U,

E(S) x[0,1] DTe(S) =Te(S) x £(S) D E(S).

If the convex hull of S contains a real point other than 1, (in other
words, if —1 € S orif a, f € S with Im () >0 > Im (f3)) then

Lo (5) = £(5) = £(5) x [0, 1],

and T'e(S) is starlike (that is, if z € T'g(S) then T'o(S) contains
the line joining 0 and z).

If Ang(S) = /2, then it is easy to see that £(S) = U. Hence
in this case I'(S) = T'e(S) = U, as we claimed earlier. Theorems 3
and 4 enable us to deduce some basic properties of the spectrum.

Corollary 1. For all subsets S of U, I'(S) =T'(S) x £(S). Con-
sequently, the spectrum of S is connected. If the convex hull of S
contains a real point other than 1, then the spectrum is starlike.
If1, &' and e'® are distinct elements of S, then the spectrum con-

tains the disc centered at the origin with radius exp(—2w /(| cot(a/2)—
cot(5/2)])). In fact, £(S) contains this disc.

The sets I'e(S) and I'(S) have the property that multiplying
by £(S5) leaves them unchanged. It turns out that A(S) also has
this property: A(S) = A(S) x £(S). This gives us the following
variant of Theorem 3 which reveals that A(S) contains all the
information about the spectrum.
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Theorem 3'. For all subsets S of U,
A(S) CT(S) C A(S) x [0,1].

If the convex hull of S contains a real point different from 1 then

I'(S) = A(S).
Next we give a bound on the spectrum and determine I'(S)NT.

Theorem 5. Suppose S is a subset of U with 1 € S. The spec-
trum of S is U if and only if Ang(S) = /2. If Ang(S) =0 < 7/2,
then there exists a positive constant A(6), depending only on 6,
such that T'(S) is contained in a disc centered at A(6) with radius
1— A(9). In fact, A(§) = (28/411) cos? 8 is permissible. Thus

{1} if Ang(S) < /2

LENT = { T  if Ang(S) = 7/2.

Applied to the set S = [—1,1], Theorem 5 shows that there
exists ¢ > —1 such that I'(S) C [¢, 1]. Thus Theorem 5 generalises
Hall’s result on Heath-Brown’s conjecture.

By a simple calculation, we can show that £(S), T'e(S) and
S all have the same angle: Ang(I'g(S)) =Ang(€(S)) =Ang(S5).
From Theorems 3 and 3’ we see that Ang(T'(S)) = Ang(A(S)) >
Ang(S).

Conjecture 1. The angle of the set equals the angle of the spec-
trum. Thus

Ang(Te(95)) = Ang(£(S)) = Ang(A(S)) = Ang(I'(5)) = Ang(5).

We support this conjecture by showing that Ang(S) and
Ang(I'(S)) are comparable in the situations Ang(S) — 0 and
Ang(S) — 7/2.

Theorem 6. Suppose S C U and Ang(S) =0 =7/2—45. Then
Ang(S) < Ang(I'(S)) and

g — 0 = Ang(S) < Ang(T'(S)) <
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The first part of the Theorem says that Ang(S) and Ang(T'(5))
are comparable when Ang(S) is small. The second part of the
Theorem is mainly interesting in the complementary case when
Ang(S) is close to m/2. In fact, when § is small we see that we
are away from the truth only by a factor of 2 (as sind ~ 9).

Example. Let £ > 3 and S; denote the set of k-th roots
of unity. If f € F(Sk) then f(n) € Sy for all n. Hence I'(Sk)
is contained in the convex hull of Si: that is, in the regular k-
gon with vertices the k-th roots of unity. Notice that this im-
plies Ang(T'(Sk)) < Ang(Sk), so that Ang(S;) = Ang(I'(Sk)) sup-
porting Conjecture 1. Applying Corollary 1 with the two points
et?mi/k e conclude that I'(Sy) is starlike and contains the disc
centered at 0 with radius exp(—n tan(w/k)).

We define the projection of (a complex number) z in the di-
rection €' to be Re (e7*z). Theorem 1 may be re-interpreted
as stating that if z € T'({£1}) then the projection of z along —1
is < —07. Evidently if 1 € S then 1 € T'(S) so there is always
a z € T'(S) whose projection in the direction 1, is 1, and thus
uninteresting to us. This motivates us to define the maximal pro-
jection of the spectrum of a set S C T as

max max Re ((7'2).

1£CES 2€T'(S)
Conjecture 2. If S C T with 1 € S and Ang (S) = 0 then the
maximal projection of T'(S) is

Re ((T'2) =1—(1+ 61)cos’ 0.
(28 g Re (A = 1= (L cos
One half of this conjecture is easy to establish: namely, the

maximal projection is > 1 — (1 + ;) cos? . To see this, let z =
Tty <ol (n) where f is the completely multiplicative function
defined by f(p) = 1 for all p < z'/0+Ve) and f(p) = ¢ for
21/ +Ve) < p <z, where ¢ € T and Ang(¢) = 6. Then, a simple
calculation (analogous to the calculation in the Hall-Montgomery

example (2)) gives that the projection of z along ¢ is 1 — (1 +
81) cos? 0 + o(1).
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Theorem 7. Conjecture 2 is true for the sets S = {1, —1} and
S={1,-1,i,—i}. If SC T with 1 € S and Ang (S) = 0 then the
mazximal projection of T'(S) is <1 — (56/411) cos? 6.

To facilitate comparison between Theorem 7 and Conjecture 2,
we observe that 1+ 6; = 0.3430... whereas 56/411 = 0.1362....
Thus Theorem 6 is not too far away from the (conjectured) truth.

2. SOLUTIONS TO INTEGRAL EQUATIONS

In §1, we described the Euler product spectrum and deduced in-
formation about the geometric part of the spectrum. We now
outline some of our results on the integral equation (6). Our tool
in analysing (6) is the Laplace transform, which, for a measurable
function f: [0,00) — C is given by

L(f,s) = /0 T fetoat

where s is some complex number. If f is integrable and grows
sub-exponentially (that is, for every € > 0, |f(t)| <. e almost
everywhere) then the Laplace transform is well defined for all com-
plex numbers s with Re (s) > 0. Laplace transforms occupy a role
in the study of differential equations analogous to Dirichlet series
in multiplicative number theory.

Theorem 8. Suppose that x(t) =1 fort <1 and |x(t)] <1 for
all t. There exists a unique solution o(u) to (6), which satisfies
ou) =1 for 0 <u <1 and |o(u)| <1 for all u. In terms of x
the solution o is given explicitly by

00 Nk
(72) o) =1+ EV iy
k=1

where

(7b)  T(u;x) ::/tl,...,tkzl 1T (LX(”) dty ... dty.

tite e Su i i
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In terms of Laplace transforms we have

c@ngzzémm(—c(ligﬁaﬁ>).

The formula (7ab) has the appearance of an inclusion-exclusion
identity, and indeed if we translate this result back in terms of
multiplicative functions (via Proposition 1) then we find it can be
so interpreted. Therefore if x is real valued one can obtain upper
and lower bounds by truncating the sum in (7a) at odd or even
values of k, as in the combinatorial sieve. This is one of the main
tools in our proof of Theorem 1.

Proposition 2. Suppose x is real valued so that x(t) = 1 for
t <1 and —1 < x(t) < 1 for all t. Then the corresponding
solution o(u) to (6) satisfies, for all m >0,

2m+1 k 2m Nk
© 1+ > e <ow <14y Clnw.

Our other main tools in the proof of Theorem 1 (and many
other results stated in §1) are the non-increasing property of the
average v~ ' [ |o(t)|dt, and a convolution identity connecting
I1(t,x) and I5(t, x), which we now describe.

Lemma 1. Suppose x is a complexr valued measurable function
with x(t) =1 fort <1 and |x(t)] < 1 for all t and let o be the
corresponding solution to (6). Then

A@p:%éﬂdmﬁ

18 a non-increasing function of v. Hence, for all u > v,
1 v
(9 o] < 40 =1 [ o

Proof. From (6), we have |o(u)| < A(u) for all u. Hence (9) follows
once we have shown that A(v) is non-increasing. Differentiating
the definition of A(v), we have A’(v) = |o(v)|/v— A(v)/v <0, so
A(v) is non-increasing and the result follows.
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Lemma 2. Let x be as in Lemma 1. Then
/ IQ(t7X)dt = / Il(taX)Il(u _ta X)dt
0 0

Proof. For brevity, let x1(t) = (1 — x(t))/t. Then I, (t,x) = (1 %
x1)(t) and Io(t, x) = (1 % x1 * x1)(t). The left side of our claimed
identity is

(IxIp)(u) = (1 1xx1*x1)(u) = (1xx1)* (1*x1)) (u)
= (11 I1)(uw),

which is the right side of the claimed identity.

A fundamental question is: when does lim, o, o(u) exist? If
it exists, what does it equal? In view of Proposition 1 and its
converse, this is equivalent to the question of the existence of the
mean-value of a multiplicative function. Thus Theorem 2 has the
following implication for integral equations.

Theorem 2'. Suppose S C U and Ang(S) < w/2. Let x(t) =1
for t <1 and suppose x(t) lies in the convex hull of S for all t.
Then

lim o(u) = exp (— /100 ﬂdt) — exp(—T1 (00, \)).

U—00 t

Translated in terms of integral equations, Hall’s result (4) can
be re-interpreted as follows: Suppose that D is a closed, convex
subset of the unit disc containing 0 and suppose that x is mea-
surable with x(¢) =1 for t <1 and x(t) € D for t > 1. Then

(10) o(u) < exp(—n(D) /1 ’ #ﬂ(t)dt)

In [2] we give a direct proof of this result using Laplace trans-
forms. The advantages of our treatment is that the details are
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considerably simpler, and so we prove (10) giving explicit values
to all of the implicit constants. Translating back to multiplicative
functions, this allows us to give a completely explicit version of
(4) (we are still refining the constants obtained, so do not state
this result here). To whet the reader’s appetite we now sketch a
proof of the integral equations analogue of Montgomery’s lemma
(see [8] and [9]), which is the key to proving results such as (4)
and (10).

For t > 0 we define H(t) = maxyer |£(0,t + iy)| and

M(t) = min Re E(Mt)

yeR v
Note that
1 1-—
Lo, t+1iy) = —— exp(—ﬁ(%,t%— zy))

1 1-— —wy
- eXp(%(%,t)
t+ 1y v

1— —vy
+£(76 t))
v

The identity
1— e—ivy )
Re £ ————t) =log|L+iy/t

is easily proved by differentiating both sides with respect to y, so
that

HL (0, t + iy)| = exp (—Re L‘<M t))

v

combining the last two estimates. Therefore tH (t) = exp(—M(t)).
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Proposition 3. For any o > 0 and any u > 1, we have

o) 0 [T gL S [T e,

U 12

Note that H(t) < [ |o(v)le™™dv < 1/t and so the integral in
the Prop031t10n converges.

Proof. By Lemma 1 we have

o(w) / 7(v)

= 2v|0 |/ e 2 dtdv
v=0

u

2au e’} 0
(11) ¢ / (/ 2v|a(v)|62t”dv) dt.
U t=« v=0

We shall prove that for all t > 0

| /\

|a(v) le=2vdy

(12) 2/000 vlo(v)|e?"dv < @,

which when inserted in (11) furnishes the Proposition.
By Cauchy-Schwarz

<2/ U|0(U)|€2t”dv) S%/ lvo (v)[2e* du.
0 0

By Plancharel’s formula (since the Fourier transform is an isom-
etry on L?)

o 1 oo
/ lvo(v)|?e ™2 dv = — |L(va(v),t + iy)|*dy.
0 2m —o00

Now vo(v) = (o * x)(v) and, since L(f * g,x) = L(f,z)L(g, ),
this is

2

1 o0
=5 | 1etr i PILGt+ in) Py

1 o0 .
< H(t)5- / L0t + i) Pdy.

— o0
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Applying Plancharel again we get

1 o0 o0
— 1L(x,t + iy)|*dy = / [x(v)[Pe™*"dv
0

2 ) o
00
0 2t

Assembling the above estimates we obtain (12) and hence the
Proposition.

Given x, how does the solution o(u) vary with u? In terms
of multiplicative functions we want to know how the average
x=tY" . f(n) varies with z. By considering the problem ex-

ample f(n) = n'® we see that these averages can fluctuate a lot:

1 : w :
- 2 :nza__ E : nte
T T

n<zx n<z/w

1

S | —ia.
Traa v

However, Elliott [1] observed that the absolute values of these
averages is slowly varying. He showed that for any multiplicative
function f with [f(n)| <1 and all 2 <w < /z

> fn)

n<x

1

T

Translated in terms of integral equations, this means that |o(u)|
satisfies the strong Lipschitz estimate:

u—+v

Estimates like this are of interest because, as Hildebrand [7] ob-
served, they allow one to (slightly) extend the range of validity
of Burgess’ character sum estimate. Our next Theorem improves
the Lipschitz exponent 1/19 considerably.
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Theorem 9. Suppose that x is a measurable function with

x(t) =1 fort <1 and|x(t)| <1 forallt > 1. Let o(u) denote
the corresponding solution to the integral equation (6). Then for
all u, v we have

K
u—"7v

uw+v

where K is any real number less than 2(1 —2/7)/3 = 0.24225. ..
and the implied constant depends only on k.

lo(u)] = le(v)] <

The constant 2(1 — 2/7)/3 can be improved slightly by our
methods. But we have been unable to attain the optimal exponent
1.

3. I'([-1,1]) Cc [-(2 — 2/\/6),1] AND A
SKETCH OF THE PROOF OF THEOREM 1

Notice that I'([-1,1]) = A([-1,1]) by Theorem 3’. Let x be
any real valued measurable function with x(¢) = 1 for ¢ < 1 and
—1 < x(t) <1fort > 1andlet o(u) be the corresponding solution
to (6). Then we need to show that o(u) > —(2 — 2/,/e) for all wu.

Let ug be such that I;(ug,x) = 1; if no such uy exists then
Ii(u,x) < 1 for all u, and define ug = oo. If u < wug then,
using the lower bound of (8) with m =0, o(u) > 1 — I (u, x) >
1 — I1(ug, x) = 0 which is stronger than our claimed bound.

Now suppose u > ug so that by (9), and since o(t) > 0 for
t < Ug

lo(w)] < Afug) = — /Ouo et =L [ o).

U Uo Jo

Using the upper bound of (8) with m =1 we get

uo

1 1 “o
A(UO) <1- Il<t7 X)dt + / IQ(ta X)dt
uo Jo 2ug Jo

Using Lemma 2 here, we see with a little manipulation

(13) Al < 5+ g (0= R (1= 1) (uo).
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Notice that for 0 <t < uy,

1—I1i(t,x) = /tuo 1_TX(U)dv < min(1, 2log(up/t))

_{ 1 if t < up/r/e
B 2log(u0/t) if UO/\/E <t < ug.

Substituting this into (13) we deduce that

A 1 1 uo(1—1/+/e) 1
< -4+ — 2
(UO)_2+2u0(/0 0g

dt

uo—t

uo/v/e uo o
+/ dt+/ 2log—dt)
uo(1=1/+/€) uo/v/e t

2
\/E?

which proves our desired bound.

We have shown more than just o(u) > —(2 — 2/1/e) above; in
fact we have shown that either o(t) is non-negative for all t < u
or |o(u)| < (2 —2//e). Analogously, in [2] we prove that either
o(t) is non-negative for all t < wu or |o(u)| < |d1].

We now give the barest outline of our proof that o(u) > 6;. As
above we may assume that u > ug and for simplicity we assume
that u > up(14+1/y/€) (the case up < u < up(141/y/e) succumbs
to similar arguments). Here we know that

—9_

|o(w)] < A(uo(1+1/Ve))

(14) = m</ouoa(t)dt+/u:0(1+l/ﬁ) |a(t)|dt).

We shall bound the above quantities in terms of the parameters

A= Ti(uo(1 —1/Ve), x), and 7= I(ug/Ve, x),

which satisfy 0 < A <7 < 1.
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With these conditions, one can easily show (by techniques sim-
ilar to those used above) that Iy (tug, x) exceeds

max (0, A+ 2log(t(1 —1//e)™")) f0<t<1-1/\/e

max (A, 7 + 2log(y/et)) ifl1-1/e<t<1/\/e
max(7, 1+ 2logt) if1/\/e<t<1.

By inserting these bounds into (13), we deduce that

(15)

L st <2— 2 _ B () 1/ﬁ (t)dt — By (A, 7)
- o _ 2 o) = _ -
uo Jo = \/E 1\ \/E 0 P1 IRCATROVS

where F1 (A, 7) is an explicit (but complicated) non-negative func-
tion of 7 and A.

For ug < t < uo(l + 1/y/e), we use the inclusion exclusion
inequalities (8) (with m = 0 or 1) to obtain inequalities of the
form

lo(t)| < |p1(Vet/ug)| + Eo(A, T,t/ug),

for some non-negative function Fa(\, 7,t/ug). The key is to obtain
very precise estimates for Fa(\, T,t/ug) such that

1 uo(1+1/ve) Ey(\,7)

WAL, POt s S5

In fact, equality above holds only when A = 7 = 0. Combining
this with (14) and (15), we obtain (after a suitable change of

variables)
1 1++/e
< t)|dt.
rwI< 5oz [ I

Miraculously, the right side above equals |p1(1 4+ /€)| = |d1] and
everything is proved!
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4. OPEN PROBLEMS

Our main objective is to explicitly determine the spectra of in-
teresting sets S (as in Theorem 1). For example, what is the
spectrum of Sy, the k-th roots of unity for £ > 37 Failing this,
one can ask for information on various geometric aspects of the
spectrum, as in Conjectures 1 and 2.

What is the largest disc centered at the origin that can be
contained in the spectrum? Corollary 1 gives a lower bound on
this. In the other direction, one can ask for the largest positive
A(0) such that, for any S with Ang(S) = 0, I'(S) is contained in
the disc centered at A(f) with radius 1 — A(0). Theorem 5 gives
that A() > (28/411) cos? 6, and using Corollary 1, we can check
that A(f) < (1 —exp(—mcot))/2 < (38/75) cosf. Is it true that
A(f) < cosf as 0 — /27

What is p(S) := min,cp(s) Re (2)?7 When S = [—1,1], Theo-
rem 1 shows that p(S) = d1, and, as we saw in §1, this has the
application that > (1 + 61 + o(1))z/2 integers below z are qua-
dratic residues (mod p). It is especially interesting to determine
1(S3) where S3 denotes the cube roots of unity. It is easy to see
that u(S3) > —1/2 and we have shown that u(Ss5) > —1/2. This
demonstrates that a positive proportion of the integers below x
are cubic residues mod p: suppose p =1 (mod 3) and that x is
a cubic character (mod p),

#{n<z:n=m® (modp)} = % Z(l + x(n) +x(n)?)

n<x
1
> §(1 +24(S3) +o(1))x > x.

We can determine explicit bounds here, but these are quite weak.
In general, we know that p(S) > —1 4 2A(0).

Let v,, denote the largest real number such that if p is a prime
then > (v, + o(1))x integers below x are m-th power residues
(mod p). Theorem 1 gives 72 = Jp and from the above para-
graph we know 3 > 0. In fact, we have shown that ~,, > 0
for all m: that is, a positive proportion of the integers below
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x are m-th power residues (mod p). It is not hard to show that
Ym < p(m) = 1/m™+°(1) where p denotes the Dickman-de Bruijn
function. However, we have not been able to obtain good lower
bounds for 7,,. So determining ~,, for m > 3 is a key open prob-
lem.
We may generalize the notion of spectrum by considering

weighted averages of elements of F(S). Of particular interest is
the logarithmic spectrum

To(S) :Nhinoo{loglzv 2 ffln) C Ef(s)}'

The logarithmic spectrum is contained in the convex hull of the
spectrum, and its geometric properties are a lot easier to char-
acterize. For example, while it is hard to determine the spec-
trum of [—1,1], it is an easy exercise that its logarithmic spec-
trum is [0,1]. Further, the angle of the logarithmic spectrum
equals the angle of the set; that is, the analogue of Conjecture 1
is true. In fact, if Ang(S) = 0 = 7/2 — 9§ and z € I'¢(S) with
|arg(z)| = ¢ where 0 < ¢ < 7 then |2| < (cos§)¥/9. This allows
us to bound T'o(S) quite precisely. As for the spectrum, one can
ask for the largest real number Ay(f) such that, for all S with
Ang(S) =60 =mn/2—6, T'x(S) is contained in the disc with center
Ap(0) and radius 1 — Ap(f). We can show that

1 — (cos6)™/?
2

g5+ow%: < Ao(0)

< 1 — exp(—m cot 0)
- 2
so that we have understood this up to a factor of 2.
Motivated by the logarithmic spectrum, we ask for the loga-

rithmic density of m-th power residues (mod p). That is, what
is the largest real number 4/, such for all primes p

2

n<x
n=a™ (mod p)

:g5+ow%

> (Y +0(1)) logz ?

S|



22 ANDREW GRANVILLE AND K. SOUNDARARAJAN

By partial summation, it is clear that v/, > ~,,. Since
To([—1,1]) = [0,1], it is easy to see that v = 1/2. We do not
know the precise value of v/ for any other value of m. However,
by a combinatorial argument, we have shown that ~/, > 1/2m1;
and by an easy construction v/, < exp(—m/e + o(m)).
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