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Abstract. We show that the abc-conjecture implies that few quadratic twists of a given

hyperelliptic curve have any non-trivial rational or integral points; and indicate how these
considerations dovetail with other predictions.

1. Introduction.

For a curve C of genus g > 1, and number field K, Faltings’ theorem implies that there
are only finitely many K-rational points on C; that is C(K) is finite. Moreover, assuming
the Bombieri-Lang conjecture for rational points on surfaces of general type, Caporaso,
Harris and Mazur [4] showed that #C(K) ≪g,K 1, where this bound is independent of C;
further, they deduced that #C(K) ≪g 1 for all but Og,K(1) curves C defined over K.

Elkies [10] re-proved Faltings’ theorem assuming the abc-conjecture, the advantage of
his proof being that it gives a bound on the height of rational points on C. However, to
determine this bound one needs to determine a “Belyi map” from C to P1 and the bounds
thus obtained seem to be large compared to what one might suppose is true.

We believe that there are no non-trivial rational points on most curves of genus g > 1,
an expectation into which the above proofs do not seem to give insight. The main purpose
of these notes is to speculate on how often curves of genus g > 1 have no non-trivial rational
points in a specific case of interest, and to prove results assuming the abc-conjecture.

Hyperelliptic curves of genus g, defined over the rationals, can be put in the form

C : y2 = f(x)

where f(x) is a polynomial with integer coefficients of degree 2g + 2 or 2g + 1, which has
no repeated roots. The dth quadratic twist of C is the hyperelliptic curve

Cd : d y2 = f(x).

We remind the reader of
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The abc-conjecture. (Oesterlé, Masser, Szpiro): If a, b, c are coprime positive integers
satisfying a + b = c then

c ≪ N(abc)1+o(1),

where N(m) is the product of the distinct primes dividing m (that is, N(
∏

p pep) =
∏

p p).

(Here the “o(1)” term approaches 0 as N(abc) → ∞ or, equivalently, c → ∞.)

A Belyi map is a rational function from a given curve to P1 which ramifies over no more
than three points. Belyi showed how to construct such a map from P1 to P1 whose critical
points include any given finite set of points. So, for a hyperelliptic curve C, we can first
map each point on the given curve to its x-coordinate and then compose this projection
with our Belyi function from P1 to P1, where our given finite set of points includes the
roots of f , as well as x = ∞ if the degree of f is odd, to obtain a Belyi map for the
original curve. From this construction we see that we can take the same Belyi map from
Cd to P1 for each d, that is the same rational function of the variable x only. Armed
with this construction we apply the abc-conjecture as in Elkies’ work [10], but now the
abc-conjecture applies uniformly to the family of quadratic twists of the given hyperelliptic
curve C, leading to the following bounds on the size of rational and integral points on the
curves Cd.

Theorem 1. Assume that the abc-conjecture is true. Suppose that f(x) ∈ Z[x] does not
have repeated roots.

(i) If g ≥ 1 then the integral points on Cd with x-coordinate r satisfy

|r| ≪ |d|1/(deg(f)−2)+o(1).

(ii) If g ≥ 2 then the rational points on Cd with x-coordinate r/s where (r, s) = 1 satisfy

|r|, |s| ≪ |d|1/(2g−2)+o(1).

We believe that Theorem 1 is best possible in that there are integral (and rational)
points on various Cd with such large x-coordinates, and we will prove this whenever f has
a factor of degree two (a factor of degree four, respectively) over Q.

Certain rational points predictably occur on each Cd, namely those with y-coordinate 0
as well as the points at ∞ when f has odd degree, and so are uninteresting for us. We call
these the “trivial points”. Our goal is to determine how many Cd possess other rational
points, that is, “non-trivial points”.

Since each value of r/s with f(r/s) 6= 0 gives rise to a unique squarefree d, we can
immediately deduce the following result from Theorem 1.

Corollary 1. Assume that the abc-conjecture is true. Suppose that f(x) ∈ Z[x] does not
have repeated roots.

(i) If f has degree ≥ 3 (that is g ≥ 1) then there are ≪f D1/(deg(f)−2)+o(1) squarefree
integers d with |d| ≤ D for which Cd has a non-trivial integral point.

(ii) If f has degree ≥ 5 (that is g ≥ 2) then there are ≪f D1/(g−1)+o(1) squarefree
integers d with |d| ≤ D for which Cd has a non-trivial rational point.
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Therefore there are ≪f D1/2+o(1) values of |d| ≤ D for which Cd has a non-trivial
rational point if g ≥ 3 (assuming the abc-conjecture). We believe that Corollary 1 is not
far from the best possible:

Conjecture 1. If f(x) ∈ Z[x] does not have repeated roots then there exist constants
κf , κ′

f > 0 for which

(i) There are ∼ κfD1/ deg(f) squarefree integers d with |d| ≤ D for which Cd has a
non-trivial integral point, provided deg(f) ≥ 3.

(ii) There are ∼ κ′
fD1/(g+1) squarefree integers d with |d| ≤ D for which Cd has a

non-trivial rational point, provided g ≥ 2.

We will give (conjectural) values for κf and κ′
f below. The results in [12] can be used to

deduce that the lower bounds implicit in Conjecture 1 hold (with the same constants κf and
κ′

f ), assuming the abc-conjecture. Stewart and Top [16, Theorem 2] came close to proving

this, unconditionally, by showing that there are ≫f D1/(g+1)/ log2 D squarefree integers
d ≤ D for which Cd has a non-trivial rational point. In fact, we can prove Conjecture 1
for a family of hyperelliptic curves, assuming the abc-conjecture:

Theorem 2. Assume that the abc-conjecture is true, and suppose that f(x) ∈ Z[x] factors
into distinct linear factors over Q. If f(x) has degree ≥ 7 (so that g ≥ 3) then Conjecture
1(i) is true for f . If f(x) has degree ≥ 25 (so that g ≥ 12) then Conjecture 1(ii) is true
for f .

The work of Caporaso, Harris and Mazur discussed above suggests that the number
of rational points on Cd is uniformly bounded. It is of interest to explicitly determine
that bound, though some clarifications are necessary. Rational and integral points come
in automorphism classes (that is, orbits of the action of the automorphism group). We
always have the automorphism (x, y) 7→ (x,−y). There is sometimes also an automor-
phism (x, y) 7→ (a − x,±y) for some fixed integer a, for integral points; and sometimes
automorphisms of the form

(x, y) 7→
(

αx + β

γx + δ
,

±ηy

(γx + δ)g+1

)

,

for some fixed integers α, β, γ, δ, η, for rational points. We denote by Aut(C) the (finite)
group of such automorphisms of C, and define cd(Z) and cd(Q) to be the number of
automorphism classes of non-trivial integral and rational points on Cd, respectively. We
believe that these are typically small:

Conjecture 2. There exists a constant g0 such that if f(x) ∈ Z[x] does not have repeated
roots and g ≥ g0 then

(i) There are only finitely many squarefree integers d for which cd(Z) > 1.
(ii) There are only finitely many squarefree integers d for which cd(Q) > 2.

Remarks. One can easily find, by interpolation methods, a monic polynomial f of degree
n such that (x, f(x)) passes through n given points. If these are all integral points then
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one usually has c1(Q) ≥ c1(Z) ≥ n. This does not contradict our conjecture since we have
allowed for finitely many exceptional d.

Any curve of genus g > 1 has finitely many rational points. By multiplying the coeffi-
cients of f by appropriate powers of the least common multiple, L, of the denominators
of these rational points, we obtain a model for the curve on which all the rational points
are now integral. This can not be done simultaneously for all twists, as L will go to ∞.
However it does mean that we cannot uniformly bound the “finitely many” in (i).

It is known that #Aut(C) ≤ 84(g − 1); so our conjecture implies specific uniform
bounds for the number of integral and rational points on the quadratic twists of a given
hyperelliptic curve, with finitely many exceptions (that is, exceptional twists).

In Theorem 5(i) (in section 8) we exhibit certain infinite families of curves, C, for
which Conjecture 2(i) is true, assuming the abc-conjecture. Moreover, in Theorem 5(ii),
we exhibit certain infinite families of C for which there are only finitely many squarefree
integers d with cd(Q) > 1 assuming the abc and abcd conjectures, that is, even more than
Conjecture 2(ii) is true.

We can go further than Conjecture 2 assuming the

Bombieri-Lang conjecture. Let X be any variety of general type, defined over a number
field K. There exists a proper closed subvariety S ⊂ X such that for any number field L
containing K, the set of L-rational points of X lying outside of S is finite.

Theorem 3. Assume that the Bombieri-Lang conjecture is true. If f(x) ∈ Z[x] does not
have repeated roots and g > 1 then the set of squarefree integers d for which cd(Q) ≥ 2
may be parameterized by the rational points on a finite number of curves of genus 0 and
1, together with finitely many exceptional d.

Here we use the Bombieri-Lang conjecture only for surfaces of the form z2 = g(x)g(y)
where g(X) ∈ Z[X ] has even degree ≥ 6.

Conjecture 2 and Theorem 3 suggest that quadratic twists with cd(Z) > 1 or cd(Q) > 1
are rare. We now give explicit bounds on this:

Theorem 4. (i) Assume that the abc-conjecture is true. If f(x) ∈ Z[x] factors into
distinct linear factors over Q, with g ≥ 3 then there are

≪ D2/(3(deg(f)−2))+o(1)

squarefree integers d ≤ D for which cd(Z) ≥ 2.
(ii) Assume that the Bombieri-Lang conjecture and Conjecture 1(ii) are true. There

are ≪ D1/(2g) squarefree integers d ≤ D for which cd(Q) ≥ 2.

If we do not assume Conjecture 1(ii) in the hypothesis of Theorem 4(ii), but rather
the abc-conjecture, then we only prove that there are ≪ D1/(2g−2)+o(1) squarefree integers
d ≤ D for which cd(Q) ≥ 2.

We will show that Theorem 4(ii) is close to best possible by exhibiting, under the
assumption of the abc-conjecture, infinite families of curves C for which there are ≫f

D1/(2g+1) squarefree integers d ≤ D with cd(Q) ≥ 2.
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In section 9 we make a couple of general remarks that arise from these considerations.
Then, in section 10, we extrapolate these ideas to make predictions about quadratic twists
containing infinitely many rational or integral points. Finally, in section 11, we extend
some of our results to the quadratic twists of superelliptic curves.

Notation: Throughout f(x) is a polynomial of degree n, with leading coefficient f0 6= 0,
with all integer coefficients and no repeated roots. Here n = 2g+1 or 2g+2, and we define
F (x, z) = z2g+2f(x/z).

Define Vf = 2|f0|−1/n and Af = 1 or 2, equalling 2 if and only if there exists ℓ ∈ Z
such that f(x) = f(ℓ − x). For each integer r let ω(r) be the number of residue classes t
(mod r) for which r divides f(t). Then define κf = κf,2 where

κf,m :=
Vf

Af

∏

p

{

1 +

(

1 − 1

pm/n

)(

ω(pm)

pm(1−1/n)
+

ω(p2m)

p2m(1−1/n)
+

ω(p3m)

p3m(1−1/n)
+ . . .

)}

.

For m ≥ 2 this converges unless deg(f) = n = 1 or m = n = 2. An analogous definition
can be made over any number field. Note that if p ∤ disc(f) then ω(pk) = ω(p) for each k,
so that the pth term of the Euler product is 1 + ω(p)(pm/n − 1)/(pm − pm/n).

Let ω′(r) be the number of pairs of residue classes (u, v) (mod r) with gcd(u, v, r) =
1 for which F (u, v) ≡ 0 (mod r). By the Chinese Remainder Theorem both ω(.) and
ω′(.) are multiplicative functions. (Note that if p ∤ f0 then ω′(pk) = pk−1(p − 1)ω(pk).)
We define V ′

f to be the area of {(x, y) ∈ R2 : |F (x, y)| ≤ 1}; and Af (Q) to be the

number of distinct Q-linear transformations (x, z) 7→ (αx + βz, γx + δz) of F for which
F (αx + βz, γx + δz) ≡ F (x, z) mod (Q∗)2. Comparing both sides of this equation, this
happens if and only if ρ 7→ (αρ+β)/(γρ+δ) is an automorphism of the roots ρ of f(ρ) = 0
(including ρ = ∞ if f has odd degree), and either F (α, γ) and F (1, 0) are non-zero with
F (α, γ)/F (1, 0) ∈ Q2, or γ = F (1, 0) = 0 with αδ ∈ Q2, or F (α, γ) = F (1, 0) = 0 and
γ 6= 0 with −(αδ − βγ)f ′(α/γ) ∈ Q2. In the second case ρ 7→ (α/δ)ρ + β/δ, which implies
that α/δ = 1 or −1; since αδ ∈ Q2 we deduce that α = δ which implies that β = 0 and this
transformation is thus the identity. Note that we must have αδ−βγ 6= 0. (In the appendix
to [12] this is explored in detail and it is shown that Af (Q) must equal 1, 2, 3, 4, 6, 8 or 12.)
Let N = m(g + 1) and κ′

f = κ′
f,2 where

κ′
f,m :=

V ′
f

Af (Q)

∏

p

{

1 +

(

1 − 1

p2m/N

) (

ω′(pm)

p2m(1−1/N)
+

ω′(p2m)

p4m(1−1/N)
+ . . .

)}

.

For m ≥ 2 this converges unless m = N = 2, or m = N = 3, or N = 4 and m = 2.
Analogous definitions and predictions can be made for any number field K. If p ∤ f0disc(f)
then the pth term of the Euler product is 1 + ω(p)(p − 1)(p2m/N − 1)/p(pm − p2m/N).

One may think of Vf and V ′
f as the local factors at infinity, to go with the local factors

at the finite primes p in the products defining κf,m and κ′
f,m.
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2. Bounding the height of points on curves

A key tool in the proof of Theorem 1 is Theorem 5 from [12] which states:

Proposition 1. Assume that the abc-conjecture is true. Suppose that G(x, y) ∈ Z[x, y] is
homogenous, without any repeated factors. Then, for any coprime integers r and s,

∏

prime p|G(r,s)

p ≫G max{|r|, |s|}deg(G)−2−o(1).

Now, given a polynomial f without repeated roots, take G(x, y) = ydeg(f)+1f(x/y) and
apply Proposition 1 to obtain the following result:

Corollary 2. Assume that the abc-conjecture is true. Suppose that f(x) ∈ Z[x] is without
repeated roots. Then, for any integer r,

∏

prime p|f(r)

p ≫f |r|deg(f)−1−o(1).

Proof of Theorem 1 for integral points. We have integers d, t, r satisfying

(1) d t2 = f(r).

By Corollary 2 we have, assuming the abc-conjecture,

(|d||r|deg(f))1/2 ≫f |d f(r)|1/2 = |d t| ≥
∏

p|d t

p =
∏

p|f(r)

p ≫f |r|deg(f)−1−o(1),

and the result follows.

Proof of Theorem 1 for rational points. Homogenizing f to obtain F as above, we have

(2) d t2 = F (r, s)

for some integer t. Let H = max{|r|, |s|}, so that |F (r, s)| ≪f H2g+2. Applying Proposi-
tion 1 we get, assuming the abc-conjecture,

|d|1/2Hg+1 ≫f |d F (r, s)|1/2 = |d t| ≥
∏

p|d t

p =
∏

p|F (r,s)

p ≫f H2g−o(1),

and the result follows.

Theorem 1 is “best possible”. Suppose that f(x) = (x2 − 1)g(x). For any fixed positive,
non-square, integer D we know that there are arbitrarily large integer solutions (r, v) to
r2 − 1 = D v2. Therefore if d t2 = f(r) = (r2 − 1)g(r) = D v2g(r) with d squarefree then
d divides D g(r) and so d ≪g |r|deg(g) = |r|deg(f)−2; that is |r| ≫f |d|1/(deg(f)−2). This
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same construction works whenever f has a factor of degree 2 over the rationals, call it h(x)
with leading coefficient h0 > 0, and D is a positive integer such that Dh0 is not a square,
since one then knows that there are arbitrarily large integer solutions (r, v) to h(r) = Dv2

whenever there is at least one, by the theory of the Pell equation.
Now assume that f has a factor h(x) of degree 4 over the rationals, with h(0) = 0, so

that f(x) = h(x)g(x). Select any rational w for which h(w) 6= 0 and let D be the squarefree
integer for which D h(w) ∈ Q2. It can be shown that for most w, the point (w, u) is a
point of infinite order on the elliptic curve D y2 = h(x). Taking a large enough multiple
of this point we obtain an arbitrarily large rational point (r/s, v/s2) on this curve, so that
d t2 = F (r, s) = H(r, s)G(r, s) = D v2G(r, s). Hence d divides D G(r, s) and so

|d| ≪G max{|r|, |s|}deg(G) = max{|r|, |s|}2g−2

and thus |r|, |s| ≫F |d|1/(2g−2).

3. Heuristic in support of Conjecture 1

Suppose that F (x, y) ∈ Z[x, y] is homogenous of degree 2g + 2, without any repeated
factors. We wish to count the number of solutions to (2) in coprime integers r, s, with
D < d ≤ 2D. We saw, in the previous section, that the abc-conjecture implies that in any
such solution to (2) we must have |r|, |s| ≪ D1/(2g−2)+o(1).

For most pairs r, s with X < max{|r|, |s|} ≤ 2X , we have F (r, s) ≍ X2g+2: the value
can be significantly smaller, but only rarely, and then it can be no smaller than X2g−o(1)

by Roth’s Theorem. To simplify our heuristic we ignore this possibility (though this is
taken into account in the proof of Theorem 2). Anyway, if F (r, s) ≍ X2g+2, then we must
have t ≍ Xg+1/D1/2 in (2). Thus X ≫ X0 := D1/(2g+2).

For a fixed t the number of solutions to (2) with X < max{|r|, |s|} ≤ 2X and (r, s) = 1
is around (ω′(t2)/t4)X2, and we expect a positive proportion of these values of d to be
squarefree. Note that ω′(pr) = pr−1(p − 1)ω(pr) if p ∤ f0, and that ω(pr) = ω(p) if
p 6 |disc(f). Therefore, by a standard contour integration argument for summing coefficients
of Dirichlet series, we know that ω′(t2)/t2 is ∼ cf (log Y )δ(f)−1 on average for values of t
around Y , where δ(f) denotes the number of irreducible factors of f . Thus the total
number of solutions to (2) with r, s in this range should be

∑

t≍Xg+1/D1/2

ω′(t2)X2

t4
≍f X2 (log(Xg+1/D1/2))δ(f)−1

(Xg+1/D1/2)

≍f D1/2 (log(X/X0))
δ(f)−1

Xg−1
,

where X0 = D1/(2g+2). Now, summing over X = X0, 2X0, . . .2
JX0 = X1 with X1 =

D1/(2g−2)+o(1), we find that the expected number of solutions to (2) with D < d ≤ 2D
when g > 1 is

≍ D1/(g+1).
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The main contribution to the above sum comes from those X with X ≪ X0, and when
these are carefully summed up they give Conjecture 1(ii). Indeed we shall do this in the
forthcoming proof of Theorem 2.

An analogous (but simpler) heuristic leads to Conjecture 1(i).

4. Theorems 2 and 4 for Integral Points

In this section we assume that the abc-conjecture is true; and that f(x) ∈ Z[x] has
degree n ≥ 7, and factors into distinct linear factors over Q.

Proof of Conjecture 1(i) for f . We have seen that all solutions to (1) satisfy |r| ≪
|d|1/(n−2)+o(1), assuming the abc-conjecture. Write f(x) = c

∏n
i=1(aiX + bi) where c, ai, bi

are all integers with (ai, bi) = 1, so that f0 = ca1 . . . an. If R < r ≤ 2R with R sufficiently
large then {|f0| + o(1)}Rn < |f(r)| < {2n|f0| + o(1)}Rn. If (1) holds with D < d ≤ 2D
then {|f0|/2 + o(1)}Rn/D < t2 < {2n|f0| + o(1)}Rn/D. Now, the number of r ∈ (R, 2R]
for which f(r) is divisible by t2 is ω(t2)(R/t2 + O(1)). Therefore, for R = (D T 2)1/n and

constants c1 and c2 satisfying 0 < c1 <
√

|f0|/2 and c2 >
√

2n|f0|, the number of such
solutions to (1) is

≪
∑

c1T<t<c2T

ω(t2)(R/t2 + 1) ≪ (R/T + T ) logn T

since ω(m) ≪ n#{p:p|m}. This gives ≪ D1/n solutions in total for T ≪ D1/n/ logn+ǫ D,
and in fact o(D1/n) as T → ∞. Unfortunately this just fails to cover the whole range
|r| ≪ |d|1/(n−2)+o(1), so this is where we use the fact that f is reducible.

Write each air + bi = dit
2
i with di squarefree so that d1 . . . dn = dt20 and t0t1 . . . tn = t,

for some integer t0 ≥ 1 which is uniformly bounded in terms of the coefficients of f . We
now show that there exists a divisor τ of t in the range R1/3 < τ ≤ R2/3. If there exists
ti for which ti > R1/3 then let τ = ti; note that t2i ≤ aiR + bi ≤ R4/3 so that ti ≤ R2/3.

Otherwise let τ = t1t2 . . . tj where j is chosen as small as possible so that this is > R1/3; in

this case τ = (t1t2 . . . tj−1)tj ≤ R1/3 ·R1/3 = R2/3. Also j exists since (t1 . . . tn)2 = t2/t20 ≫
Rn/D ≥ R2/3 if T ≫ D1/(3n−2). Now (t2i , t

2
j)|(air + bi, ajr + bj)|(aibj − ajbi); hence, the

fact that τ divides t implies that r is in one of ω(τ2
f ) congruence classes (mod τ2

f ) for

some integer τf , where τ/τf is an integer ≪f 1. Therefore the number of such solutions
to (1) is

≪
∑

R1/3<τ<R2/3

ω(τ2)(R/τ2 + 1) ≪ R2/3 logn R,

which is ≪ D1/n/(logD)n/3, for T ≪ D1/4/(log D)n2

.

These two ranges for T allow us to account for all |r| ≪ |d|1/(n−2)+o(1) provided n ≥ 7.
To obtain an asymptotic formula for the number of such values of d, we need only consider
|r| < D1/nU as U → ∞ slowly with D, by the above estimates. Theorem 2 in [8] implies
that there are a bounded number of integer solutions (r, s) to uf(r) = vf(s) where u 6= v
are given. Moreover there are a bounded number of integer solutions (r, s) to f(r) = f(s)
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other than s = r or ℓ − r (if such an ℓ exists). These results imply that the number of
solutions to (1) with d ≤ D is given by

∑

t≤T

#{r : |f(r)| ≤ D t2, t2|f(r) and f(r)/t2 is squarefree}/Af + o(D1/n)

as T → ∞. Now the condition |f(r)| ≤ D t2 is essentially equivalent to |r| ≤ {1 +
o(1)}(D t2/|f0|)1/n. If t2|f(r) then r is in one of ω(t2) residue classes mod t2. If that
class is, say, r0 then write r = r0 + t2s and then g(s) = f(r0 + t2s)/t2 and so we need to
estimate #{s : |s| ≤ S : g(s) is squarefree} where S = St := {1 + o(1)}(D t2/|f0|)1/n/t2.
By the main result of [12] this is ∼ ∏

p(1 − ωg(p
2)/p2)2S (which can be shown to apply

uniformly in this case) where ωg(p
2) denotes the number of m (mod p2) for which g(m) ≡ 0

(mod p2). In fact if pb is the exact power of p dividing t then ωg(p
2) = ω(p2b+2, r0) where

ω(p2b+2, r0) is the number of m (mod p2b+2), with m ≡ r0 (mod p2b) for which f(m) ≡ 0

(mod p2b+2). Thus if t =
∏

i pbi
i then the contribution of the “t terms” to the sum above

is

∼ 2St

∏

p∤t

(

1 − ω(p2)

p2

)

∏

i

∑

ri (mod p2bi )

f(ri)≡0 (mod p2bi )

(

1 − ω(p2bi+2, ri)

p2

)

= 2t2St

∏

p∤t

(

1 − ω(p2)

p2

)

∏

i

(

ω(p2bi)

p2bi
− ω(p2bi+2)

p2bi+2

)

;

and then summing over t we obtain the first result.

Proof of Theorem 4(i). From the work of Bombieri and Pila [2] we know that there are
≪ R1/n(log R)O(1) pairs of distinct integers r1, r2 ∈ [R, 2R] for which t22f(r1) = t21f(r2),
uniformly for any given t1, t2. Thus the number of d for which Cd has a pair of non-

trivial integer points f(r1) = d t21, f(r2) = d t22 with t1, t2 ≤ T = R(1/3)(1/n−1/n2) is ≪
T 2R1/n(log R)O(1), which is certainly acceptable. For larger d we simply bound the number
of twists with two points by the number with one point, for want of a better argument,
and we obtain our result.

5. Proof of Theorem 2 for Rational Points

Define F from f as above. Define S(R, z) to be the set of pairs of coprime integers (r, s)
such that R < max{|r|, |s|} ≤ 2R for which 0 < |F (r, s)| ≤ Rn/z. By Roth’s theorem
S(R, z) is empty if z ≫ R2+o(1).

We claim that if 1 ≤ z ≤ R then |S(R, z)| ≍f R2/z: For z ≪ 1 this is trivial. Otherwise,
write F (x, y) = c

∏n
i=1(aiX + biY ) where c, ai, bi are all integers with (ai, bi) = 1, so

that f0 = ca1 . . . an. Since max{|air + bis|, |ajr + bjs|} ≍ R, we see that there exists i
such that |air + bis| ≪ R/z while |ajr + bjs| ≍ R for all j 6= i. Now if ai 6= 0 then
−R/(zai) − bis/ai ≪ r ≪ R/(zai) − bis/ai so that there are ≍ R/(zai) possibilities for r,
for each s, and thus we obtain the claim.
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Now define N(R, z) to be the number of (r, s) ∈ S(R, z) such that F (r, s) = D t2 where
d is squarefree and D ≤ d ≤ 2D. The abc-conjecture tells us that in any such solution
max{|r|, |s|} ≤ D1/(n−4)+o(1).

Now, N(R, z) ≤ |S(R, z)| ≍f R2/z, so that
∑

j≥0 N(D1/n · 2j , 2(2+ǫ)j) ≪ D2/n.
Given residue classes 1 ≤ u, v < m which are coprime with m, and integers a, b, we will

need an uniform estimate for the number of pairs of integers r, s satisfying |ar + bs| ≤ X
and vr ≡ us (mod m). In fact the pairs (r, s) lie on the lattice generated by (u, v), (m, 0)
and (0, m) which has determinant m. The number of lattice points in this region can be
estimated by 1/m times its volume, with an error no bigger than some multiple of the
length of its perimeter.

If R = (D T 2)1/n where z ≤ T 2 then t ≍ T/
√

z. Thus we have t2|F (r, s) where
|air + bis| ≪ R/z and |r|, |s| ≪ R and so, by the above, the number of lattice points is
≪ ω(t2)(R2/zt2 + R). Summing over all t, the number of lattice points is

≪ (R2/(
√

zT ) + RT/
√

z) logn(T/
√

z).

This is o(D2/n) whenever T ≤ D1/(n+2)/(log D)n−2 provided T → ∞; and for z ≥
(Tn+2/D)2/n log2n+1 T for larger T (provided n ≥ 5).

We use the fact that f is reducible. Write each air + bis = dit
2
i with di squarefree so

that d1 . . . dn = d and t1 . . . tn = t. We now show that there exists a divisor τ of t in the
range (R/z)1/3 < τ ≪ max{(R/z)2/3, R1/2}. If there exists ti for which ti > (R/z)1/3 then
let τ = ti; note that t2i ≤ (|ai|+ |bi|)R ≪ R. Otherwise let τ = t1t2 . . . tj where j is chosen

as small as possible so that this is > (R/z)1/3; in this case τ = (t1t2 . . . tj−1)tj ≤ (R/z)1/3 ·
(R/z)1/3. Also j exists since (t1 . . . tn)2 = t2 ≫ Rn/Dz ≥ (R/z)2/3 if z ≪ (T 3n−2/D)2/n.
Therefore, since (t2i , t

2
j) | (air + bis, ajr + bjs) | (aibj − ajbi)(r, s) = aibj − ajbi, the fact

that τ divides t implies that r/s is in one of ω(τ2
f ) congruence classes (mod τ2

f ) for some

integer τf , where τ/τf is an integer ≪f 1. Therefore the number of such solutions to (2)
is

≪
∑

(R/z)1/3<τ≪R2/3

ω′(τ2)(R2/zτ2 + R) ≪ R5/3 logn R,

which is ≪ D2/n/ log2 D since R ≤ D1/(n−4)+o(1).
Combining the above gives the result that the number of such d is ≪ D2/n as n ≥ 25,

and one finds that there is a significant contribution to the main term only when z, T ≪ 1.
To obtain the constant κ′

f we proceed much as in Theorem 2. The modular arithmetic
proceeds much as before. The contribution of the size of the numbers in the definition of
κf was 2|f0|−1/n, which is obtained from limU→∞ |{x ∈ R : |f(x)| ≤ U}/U1/n. Here the

analogous contribution is limU→∞ |{x, y ∈ R : |F (x, y)| ≤ U}/U2/n = Vf , and thus the
result.

Remark. The argument used to bound the number of Cd with two integral points (i.e.
the proof of Theorem 4(i)) does not seem to go through here: although Heath-Brown
showed that there are ≪ R2/n(log R)O(1) rational points on f(r1/s1)t

2
2 = f(r2/s2)t

2
1 with

r1, s1, r2, s2 ≤ R for any given t1, t2, we actually need to bound points on F (r1, s1)t
2
2 =

F (r2, s2)t
2
1.
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6. abc-theorems for polynomials.

In this section we establish unconditional results that are analogous to Proposition 1
and Corollary 2 for polynomials, which do not seem to have been observed previously:

Proposition 2. a) Suppose that g(x) ∈ C[x] has no repeated roots. For any r(t) ∈ C[t]
we have

#{α ∈ C : g(r(α)) = 0} ≥ deg(r)(deg(g) − 1) + 1.

b) Suppose that G(x, y) ∈ C[x, y] is homogenous, without any repeated factors. For any
coprime polynomials r(t), s(t) ∈ C[t], we have

#{α ∈ C : G(r(α), s(α)) = 0} ≥ max{deg(r), deg(s)}(deg(G) − 2) + 2.

Proof. a) follows from the fact that any polynomial r has exactly deg(r)−1 critical points
counted with multiplicity, and b) from the fact that any rational function r/s on P1 has
exactly 2 deg(r/s)−2 critical points counted with multiplicity. The proof also implies that
the results here are best possible.

7. Pairs of Points on the same twists

Suppose that we have two solutions to (1) for a given d; that is d u2 = f(x) and
d v2 = f(y). This then gives a solution to

(3) z2 = f(x)f(y)

with z = ±duv. Thus, for a given f , the set of pairs of different solutions to (1) with
u, v > 0, as we vary over d, is in 1-1 correspondence with the set of solutions to (3) with
z > 0, once we have discarded the “trivial” solutions with z = 0, and the “repeat solutions”
with x = y.

A surface of general type: Proof of Theorem 3

In order to apply the Bombieri-Lang conjecture we need to know that the surface defined
by (3) is of general type. Ernst Kani provided me with the following proof. Let n = 2g+2 ≥
6 (so that g ≥ 2). Applying a Möbius transformation if necessary, we may assume that f
has degree n. Let X = {(x, y, z) : z2 = f(x)f(y)} and view X as a double cover of P1×P1.
Then H := A1 ×P1 + P1 ×A2 (for points A1, A2) is an ample divisor on Y = P1 ×P1, and
the canonical divisor on Y is KY = −2H. Moreover, the divisor D defined by f(x)f(y) = 0
is linearly equivalent to nH (D ∼ nH) and has only simple singularities. Thus, if p : X
denotes the de-singularized double cover (as in [1], p. 182), then by equation (8) there we
have

KX ∼ p∗(−2H + (n/2)H) = p∗(mH), with m = (n − 4)/2.

Thus, for any k > 0,

(4) h0(kKX) = h0(p∗(kmH)) ≥ h0(kmH) ∼ ck2m2
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for some constant c 6= 0, the latter because H is ample. Here h0(D) = dimH0(X, L(D)),
for any divisor D on X (and similarly for divisors on Y ). But (4) implies that X has
Kodaira dimension 2 (i.e. X is of general type) when m > 0 (i.e. n > 4).

Since X is of general type we can apply the Bombieri-Lang conjecture, and so we wish
to understand the proper closed subvariety S ⊂ X . Since S is a proper closed subvariety
we may assume that S is a finite union of curves, and since we may discard finitely many
points, we may assume that all of those curves have genus 0 or 1 (by Faltings’ Theorem).

Counting pairs of points: Proof of Theorem 4(ii)

We have just seen that the d ≤ D for which cd(Q) ≥ 2 arise, other than in finitely
many examples, from points on finitely many curves of genus 0 and 1 on the surface (3).
The number of such d ≤ D arising from curves of genus 1 is Do(1), a relatively small
quantity, so we can now restrict our attention to those d that arise from curves of genus
0. These curves may always be parameterized by rational functions, that is we can find
x(t), y(t) ∈ C(t) for which f(x(t))f(y(t)) ∈ C(t)2.

Recall that f has degree 2g+2 with g ≥ 2, and F (X, Y ) = f(X/Y )Y 2g+2. We will write
x(t) = r(t)/s(t) and f(r(t)/s(t)) = d(t)(u(t)/s(t)g+1)2 with d(t), r(t), s(t), u(t) ∈ C[t],
where d(t) has no repeated roots, and s(t) has no roots in common with r(t)u(t); and
similarly y = R(t)/S(t). Let δ = max{deg(r), deg(s)} be the degree of x(t), which we may
assume to be ≤ δ′, the degree of y(t). We may find a Mobius transformation t 7→ Mt to
ensure that F (r(t), s(t)) has degree 2δ(g +1) and that F (R(t), S(t)) have degree 2δ′(g +1)
(i.e. there is no cancellation in either product).

By Proposition 2b we have deg(u) ≤ 2δ − 2, and so d(t) has degree ≥ 2δ(g − 1) + 4.
Therefore deg d(t) ∈ [2δ(g − 1) + 4, 2δ(g + 1)], so we deduce that

2δ′(g − 1) + 4 ≤ 2δ(g + 1).

Thus if δ ≤ g/2 then δ′ = δ (else δ′ ≥ δ + 1 whence (δ + 1)(g − 1) + 2 ≤ δ(g + 1) giving a
contradiction). Note that if δ = 1(≤ g/2) then δ′ = 1 and so deg u = deg U = 0; therefore
the two solutions are connected by an automorphism, so are of no interest to us. We
henceforth assume δ ≥ 2.

Now d(t) has even degree ≥ 2δ(g − 1) + 4 ≥ 4g for δ ≥ 2. The number of such
integers d ≤ D is ≪ D1/2g assuming Conjecture 1(ii); and ≪ D1/(2g−2)+o(1) assuming the
abc-conjecture by Corollary 2(ii).

Remark. These bounds improve to ≪ D1/(2g+1) and ≪ D1/(2g−1)+o(1), respectively, when
d(t) has degree > 4g. If d(t) has degree 4g then deg U = 1

2(2δ′(g+1)−deg d) = δ′(g+1)−2g,
whereas deg U ≤ 2δ′ − 2 by Proposition 2b and therefore δ′ ≤ 2. Thus δ = δ′ = 2, and so
there exist rational functions x(t) and y(t) of degree 2, not in the same orbit of Aut(C),
for which f(x(t))/f(y(t)) is the square of a rational function of degree 2. It may be that
there does not exist such an exotic example when f has large enough degree.

Numerous twists with pairs of points:
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• Let f(x) = xh(x(2−x)) for a given h(x) ∈ Z[x] of degree g ≥ 1, so that n = 2g+1. We
get a rational solution x = u, y = 2−u to (3) if and only if u(2−u) ∈ Q2. This occurs if and
only if u = (t+1)2/(t2 +1) for some rational t, in which case u(2−u) = ((t2−1)/(t2 +1))2.
Thus u and 2 − u are the x-coordinates of rational points on Cd where

d = (t2 + 1)2g+1h(((t2 − 1)/(t2 + 1))2).

By Conjecture 1(ii) the number of such d ≤ D is ∼ κ′
fD1/(2g+1).

• Let f(x) = (x − 1)(x − 2)(x − 4)...(x − 2n−1). We get a rational solution x =
u, y = 2u to (3) if and only if 2n−1(2u − 1)(u − 2n−1) ∈ Q2. This occurs if and only if
u = 2n−1(t2 − 1)/(t2 − 2n) for some rational t. In this case with n divisible by 4, u and 2u
are the x-coordinates of rational points on Cd where

d = (2n − 1)
n−1
∏

j=1

((2j − 1)t2 + (2n − 2j)).

By Conjecture 1(ii) the number of such d ≤ D is ∼ κ′
fD1/(2g+1).

• Let f(x) = x4 − 4ax2 − a2. We get a rational solution x = t + a/t, y = at/(t2 − a)
to (3) in rational functions of degree 2 that are not in the same orbit of Aut(C), where
f(x(t))/f(y(t)) = (i(t2 − a)2/at2)2 is the square of a rational function of degree 2.

Several interesting future projects emerge from these considerations:

• Classify all f(x) ∈ C[x] and x(t), y(t) ∈ C(t) of degree two for which f(x(t))/f(y(t)) is
the square of a rational function of degree 2. I guess that if deg(f) is sufficiently large then
x(t) and y(t) must be in the same orbit of Aut(C).

• Classify all f(x) ∈ C[x] and x(t), y(t) ∈ C[t] which give rise to solutions to (3). In other
words we wish to understand pairs of integral points on the Cd. Florian Luca and I have
shown that there are no solutions with deg(f) > 2 = deg(x) = deg(y). I guess that if
deg(f) is sufficiently large then x(t) and y(t) must be in the same orbit of Aut(C); this
implies Conjecture 2(i) assuming the Bombieri-Lang conjecture.

• Classify all f(x) ∈ C[x] and x(t), y(t), Y (t) ∈ C(t) which give rise to two solutions to
(3). That is, to determine triples of rational points on Cd; were the triples to give rise to
solutions of (3) involving distinct polynomials then there would be finitely many triples,
by Faltings’ theorem, unless the polynomials had extremely low degree. In any case we
believe that if deg(f) is sufficiently large then two of any triple of solutions lie in the same
orbit of Aut(C); this should lead to a proof of Conjecture 2(ii) assuming the Bombieri-Lang
conjecture.

8. Only finitely many twists with pairs of points

Theorem 5(i). Assume the abc-conjecture. Let f(x) ∈ Z[x] have degree n and no repeated
roots. If there exists a polynomial h(x) ∈ Z[x] of degree ℓ < n with no roots in common
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with f(x), such that g(x) := f(x) − h(x) has µ distinct roots and

n >
5 +

√
17

10
(4ℓ + 5µ)

then there are only finitely many squarefree integers d for which there is more than one
non-trivial integer solution to f(x) = d y2.

Proof. Let m be the number of distinct roots of gh so that µ ≤ m ≤ µ + ℓ. Suppose that
f(r) = d u2 and f(s) = d v2 for integers d, r, s, u, v with d squarefree and |r| ≤ |s|. Now
g(r)+h(r) = d u2, so applying the abc-conjecture we deduce that |r|n−o(1) ≍ |g(r)|1−o(1) ≪
∏

p|d u(gh)(r) p ≪ |d u||r|m; and therefore |u| ≪ |d|u2|r|m−n+o(1) ≪ |r|m+o(1). Similarly

|v| ≪ |s|m+o(1). Define α, β so that |u| = |r|αm and |v| = |s|βm, and thus 0 ≤ α, β ≤
1 + o(1).

Since |r| ≤ |s| thus u2|h(s)| ≪ v2|h(r)|. Let γ = gcd(v2g(r), u2g(s)) and so v2g(r)/γ +
(v2h(r) − u2h(s))/γ = u2g(s)/γ. By the abc-conjecture we find that |v2g(r)/γ|1−o(1) ≪
(v2|h(r)|/γ)|uv||rs|µ; and so |r|n−ℓ−µ−mα−o(1) ≪ |s|µ+βm.

Noting that |r|n−2mα = |r|n/u2 ≍ f(r)/u2 = d = f(s)/v2 ≍ |s|n/v2 = |s|n−2mβ, we
deduce that

(n − ℓ − µ − mα)(n − 2mβ) ≤ (µ + βm)(n − 2mα) + o(1).

Since the difference of the two sides of this equation is linear in α and β separately, the
extreme cases of the inequality must happen at the endpoints for the ranges of α and β
(that is at 0 or 1 + o(1)). We then easily prove that |r|, |s| ≪ 1 for

n > max

{

2m + ℓ + 2µ,
ℓ + 2µ + 3m +

√

ℓ2 + 4µ2 + 9m2 + 4ℓµ − 2ℓm + 4mµ

2

}

.

(The extreme cases here correspond to β = 1+o(1) and to α = 1+o(1) and 0, respectively).
This lower bound for n is an increasing function of m in its range µ ≤ m ≤ µ + ℓ, so
the theorem holds since the bound given is larger than the above expression taken with
m = µ + ℓ.

Examples. The hypothesis, and hence the result, of Theorem 5(i) holds for f(x) = g(x)+a

where a is a non-zero constant provided n > (5 +
√

17)m/2, where m is the number of
distinct roots of g(x). In particular for f(x) = xn + a once n ≥ 5. The hypothesis also
holds for f(x) = xn + ax + b once n ≥ 9; and indeed for any f(x) = xn + h(x) with
h(0) 6= 0, provided the degree of h is ≤ (n − 5)/4

We want to use an analogous argument to find f(x) for which there are only finitely
many squarefree d with more than one non-trivial rational point on f(x) = d y2. However
there is now no guarantee that h(r) and h(s) are small, so we need to rework the third
application of the abc-conjecture in the proof above. To do so we will use the following
generalization of the abc-conjecture:



RATIONAL POINTS ON HYPERELLIPTICS 15

The abcd-conjecture. If a, b, c and d are integers for which a + b + c + d = 0, where no
subsum vanishes and gcd(a, b, c, d) = 1, then

|a|, |b|, |c|, |d| ≪ N(abcd)3+o(1).

The exponent 3 is conservative based on the example 23k + 3 × 2k × (2k + 1) + 1 −
(2k + 1)3 = 0. A less conservative version of the conjecture is that the exponent should
be 1 outside of “finitely many subvarieties” (the above example belongs to the subvariety
{a + b + c + d = 0, b3 = 27acd}).
Theorem 5(ii). Assume the abc-conjecture and abcd-conjecture. Let f(x) ∈ Z[x] have
degree n and no repeated roots. If there exists a polynomial h(x) ∈ Z[x] with no roots
in common with f(x), such that h(x)(f(x) − h(x)) has < n/10 distinct roots, then there
are only finitely many squarefree integers d for which there is more than one non-trivial
rational solution to f(x) = d y2.

Sketch of Proof. We have |u| ≪ |r|m+o(1) and |v| ≪ |s|m+o(1) as in the proof of Theorem
5(i). Again define α, β so that |u| = |r|αm and |v| = |s|βm, and thus 0 ≤ α, β ≤ 1 + o(1).

Now we will let γ = gcd(v, u) and consider the equation

g(r)(v/γ)2 + h(r)(v/γ)2 = g(s)(u/γ)2 + h(s)(u/γ)2.

By the abcd-conjecture we find that |g(r)(v/γ)2|1/3−o(1) ≪ |uv/γ2||rs|m; which can be
rewritten as |r|n/3−m−αm−o(1) ≪ |s|m+βm/3, so that

(n − 2mβ)(n/3 − m − αm) ≤ (n − 2mα)(m + βm/3) + o(1).

This cannot hold if n > 10m.

Remark. If we can take exponent A instead of 3 in the abcd-conjecture, we get a contra-
diction if n > (3A + 1)m.

9. Discussion

Different models of a curve, and integral points

The choice of model for a hyperelliptic curve has little effect on the number of rational
points. However integral points are not so robust a notion since their definition does depend
on the chosen model for the curve. For example, rational points (r, s) on dy2 = x3 + 1 are
in 1-to-1 correspondence with rational points (u, v) on dy2 = x4 + x (via the birational
transformation u = 1/r, v = s/r2), yet Conjecture 1 predicts quite different quantities of
integral points on the quadratic twists of these two models for the same curve.

Are our predictions made on a firm basis?

Many researchers are skeptical about the full Bombieri-Lang conjecture, not least be-
cause of the extraordinary deductions that can be made from it, such as the results from
[4] mentioned in the introduction. One further consequence of the work of [4] is that if we
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fix g > 1 and any number field K with [K : Q] ≫g 1 then there are only finitely many
curves C of genus g defined over Q such that there is a point in C(K) which does not
belong to a subfield of K (else the point has [K : Q] distinct conjugates in C(L) where L
is the Galois closure of K/Q, contradicting the universal bound on the number of rational
points given by [4]). At first glance this seems implausible, but perhaps the conjecture is
true and rational points are very rare indeed, requiring many of us to gain new intuitions.

10. When there are infinitely many points

If g = 0 or 1, our argument with the abc-conjecture does not give an upper bound on
the height of solutions, which is just as well, since one knows that there can be solutions
of arbitrarily large height. Nonetheless we can exploit several other ideas in this article to
guess at the distribution of small points.

Extending our heuristics to curves of genus 0

We shall assume here that f has degree 2. By the heuristic of section 3, we expect
≍f XD1/2(log(X/D1/2))δ(f)−1 rational points on Cd with d ≍ D and max{|r|, |s|} ≍ X ,

where X ≫ D1/2: in particular, ≍f D rational points when X ≍ D1/2. This is all more-
or-less confirmed by known results on conics. Legendre’s theorem states that there are
solutions to (2) if and only if d and its prime factors belong to certain residue classes mod ℓ
where ℓ = ℓ(f) is a certain nonzero integer depending on f (for example, if f = ax2+b then
ℓ = 4ab). Considering only prime values of d we see that there are indeed ≍ D(log D)O(1)

integers d ∈ (D, 2D] for which (2) has solutions. Moreover, Holzer’s well-known bound [13]
on the height of points on a conic (if there is a non-zero integer solution to ax2 +by2 = cz2

where abc is squarefree then there is one with |ax2|, |by2|, |cz2| ≤ |abc|) translates to the
fact that if there is a non-trivial solution to (2) then there is one with |r|, |s| ≪ |d|1/2; thus
we do indeed have the predicted number and size of solutions.

We can extend the heuristic in section 3 to the easier case of solutions to (1), i.e.
integral points, when f has degree two, predicting ≍f D1/2(log(X/D1/2))δ(f)−1 integral

points on Cd with d ≍ D and |r| ≍ X , whenever X ≫ D1/2. The key question is in
what range for X is this true uniformly? In the range in which we can prove it holds,
that is X not much bigger than D1/2, the factor (log(X/D1/2))δ(f)−1 has little effect no
matter what the value of δ(f), and my guess is that this remains so. Therefore let us
predict ≍f D1/2+o(1) integral points uniformly in each dyadic interval [X, 2X ], for X up to

exp(D1/2+o(1)): the reason I choose this limit is that there are D1/2+o(1) dyadic intervals
up to this height, and therefore a total of about D1+o(1) such points. This fits well with
the theory of the Pell equation since we know that if f(x) = x2 − 1 then (1) has solutions
for a positive proportion of squarefree d. Moreover Dirichlet’s class number formula (or,
indeed, the construction of fundamental units using continued fractions) implies that the
smallest such solutions always have |r| ≤ exp(d1/2+o(1)). In fact our heuristic suggests
that most such fundamental solutions are this large, and hence that the class numbers
of the corresponding real quadratic fields are typically very small, supporting well-known
predictions of Cohen and Lenstra [5,6].

Extending our heuristics to rational points on curves of genus 1
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It is widely believed that, asymptotically, half of the quadratic twists of any given elliptic
curve over the rationals have finitely many rational points, and half have rank one (see [3]
for a survey).

The method of Gouvêa and Mazur [11], as refined by Stewart and Top [16] and Rubin
and Silverberg [15], constructs roughly the predicted number of curves with non-trivial
solutions to (2) when g > 1. Their technique only finds rational points of small size
(polynomial in d), which is all that there is for g > 1 assuming the abc-conjecture, by
Theorem 1. However, for g = 1, the heuristic of section 3 predicts that there are just
D1/2+o(1) twists with such small non-trivial rational points and indeed their method counts
this many, far fewer than “half the quadratic twists” (as in the previous paragraph). If
we assume that the range of validity of the prediction of section 3 can be extended for all
X up to exp(D1/2+o(1)) (as we did for integral points on curves of genus 0 in the previous
section) then we get a total of D1+o(1) such rational points, and so we might be led to
predict that all of the generators of the Mordell-Weil group of Cd are ≪ exp(d1/2+o(1)).
Such a prediction can be deduced assuming the weak Birch-Swinnerton Dyer conjecture
and the Riemann Hypothesis for L(Cd, s), as in [14].

One recently popular question is to estimate, for a given elliptic curve E, the number
of squarefree d ≤ D for which the dth quadratic twist of E has rank r ≥ 2. Based on
the growth of the coefficients of certain modular forms, Sarnak predicted something like
D3/4+o(1) such twists with rank ≥ 2, whereas, based on computational evidence, Rodriguez-
Villegas predicted something like D3/4(log D)O(1) such twists with rank 2. Conrey, Keat-
ing, Rubinstein and Snaith [7] developed a sharper prediction, ∼ cED3/4(log D)3/8+ηE

such twists of rank 2, based on (the GUE) conjectures for the distribution of values of L-
functions, where ηE depends explicitly on E[2] and Disc(E) (see [9]). Now [14] also predicts,
again assuming the Birch-Swinnerton Dyer conjecture and the Riemann Hypothesis for
L(Cd, s), that the smallest generator of the Mordell-Weil group of Cd is ≪ exp(d1/2r+o(1)),
when it has rank r. Combining this with our extenstion of the heuristic of section 3, we
predict that there are ≪ D1/2+1/2r+o(1) squarefree d ≤ D for which the dth quadratic twist
of E has rank r. When r = 2 this coincides with the predictions of Sarnak, Rodriguez-
Villegas, and Conrey et al.

There has been speculation that the number of quadratic twists of rank 3 should grow
like D3/4+o(1), that is, roughly as many as of rank 2 (see Remark 8.3 of [15]), whereas our
prediction gives ≪ D2/3+o(1), far fewer. Rubin and Silverberg [15] constructed ≫ D1/2

quadratic twists of rank ≥ 2, ≫ D1/3 quadratic twists of rank ≥ 3 and ≫ D1/6 quadratic
twists of rank ≥ 4, assuming only the parity conjecture, by creating elliptic curves with
several rational points of small height; however these points are smaller than what we
would predict is typical, so we believe that their lower bounds fall well short of the actual
count.

In a further article, with Mark Watkins, we will develop this heuristic approach to give
new evidence in favor of Honda’s conjecture that there is an absolute bound on the rank
of the elliptic curves in the family of quadratic twists of a given elliptic curve.
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11. Superelliptic curves.

The methods, results and conjectures of our study of hyperelliptic curves carry over to
the quadratic twists Cd : d ym = f(x) of a given superelliptic curve, C = C1 where m ≥ 3,
f(x) is a polynomial with integer coefficients, whose factors have multiplicity less than m,
and d is not divisible by the mth power of any prime. For simplicity we will make the
further assumptions that f has no repeated roots (which is so in most cases of interest),
and usually that the degree of f is divisible by m (which simplifies matters considerably
when we consider rational points). We again define cd(Z) and cd(Q) to be the number of
automorphism classes of non-trivial integral and rational points on Cd, respectively.

Throughout the rest of this section we assume the abc-conjecture.
We conjecture that there are ∼ κf,mD1/ deg(f) mth-power free integers d with |d| ≤ D

for which cd(Z) 6= 0, provided deg(f) ≥ 2, and that there are ∼ κ′
f,mD2/ deg(f) mth-power

free integers d with |d| ≤ D for which cd(Q) 6= 0, except perhaps when deg(f) ≤ m = 3.
The results in [12] can again be used to deduce that the implicit lower bounds hold; and
we can even prove these conjectures if f(x) factors into distinct linear factors over Q and
has degree > 4m(m + 1)/(m − 1)2.

We also conjecture that if deg(f) is sufficiently large then there are only finitely many
mth-power free integers d for which cd(Z) > 1, and only finitely many mth-power free
integers d for which cd(Q) > 2. Again we can exhibit certain infinite families of curves, C,
for which these conjectures are true, assuming the abc-conjecture.

Any integral point on Cd with x-coordinate r satisfies |r| ≪ |d|1/(deg(f)− m
m−1 )+o(1). For

f of degree mg + i, 1 ≤ i ≤ m, any rational point on Cd with x-coordinate r/s where
(r, s) = 1 satisfies

(5) |r|, |s| ≪ |d|1/(mg+i−1−
(m,i)+1

m−1 )+o(1).

Thus we can deduce that there are ≪f D1/(deg(f)− m
m−1 )+o(1) mth-power free integers d

with |d| ≤ D for which cd(Z) 6= 0 (which is non-trivial unless deg f ≤ 2); and that

there are ≪f D2/(mg+i−1−
(m,i)+1

m−1 )+o(1) mth-power free integers d with |d| ≤ D for which
cd(Q) 6= 0 (which is non-trivial unless deg f ≤ 3, or deg f = 4 and m = 3 or 4). It may
be that these results can be improved. To prove (5) let F ∗(r, s) = smg+if(r/s) so that
F (r, s) = F ∗(r, s)sm−i. Any rational point on Cd gives rise to a solution of F (r, s) = d tm,
so we may write F ∗(r, s) = d1t

m
1 , sm−i = d2t

m
2 , where d1d2 = d tm0 and t = t0t1t2 with

t0 ≪ 1. The key here is the bound
∏

p|s pm ≤ dm−1
2 |s|(m,i) which is easily proved by

considering the cases where p|d2 and p ∤ d2 separately. Therefore, by the abc-conjecture,
we have

Hmg+i−1−o(1) ≪
∏

p|sF ∗(r,s)

p =
∏

p|dt

p ≤
∏

p|d1t1

p
∏

p|s

p ≤ |d1t1|
∏

p|s

p,

and so Hm(mg+i−1)−o(1) ≪ dm−1|F ∗(r, s)||s|(m,i) ≪ dm−1Hmg+i+(m,i) and the result fol-
lows.

Assuming the Bombieri-Lang conjecture for surfaces of the form zm = g(x)/g(y) where
g(X) ∈ Z[X ] has degree divisible by m, the set of mth-power free integers d for which
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cd(Q) ≥ 2 may be parameterized by the rational points on a finite number of curves of
genus 0 and 1, together with finitely many exceptional d; in fact there are ≪ D4/m(n−1)

such integers d ≤ D for which cd(Q) ≥ 2 if our conjecture above is true and n ≥ m + 4.
This is not so far from best possible since the first two examples of section 7 both yield
≫ D2/m(n−1). such integers d ≤ D.
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