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Close Lattice Points on Circles

Javier Cilleruelo and Andrew Granville

Abstract. We classify the sets of four lattice points that all lie on a short arc of a circle that has its

center at the origin; specifically on arcs of length tR1/3 on a circle of radius R, for any given t > 0. In

particular we prove that any arc of length (40 + 40
3

√
10)1/3R1/3 on a circle of radius R, with R >

√
65,

contains at most three lattice points, whereas we give an explicit infinite family of 4-tuples of lattice

points, (ν1,n, ν2,n, ν3,n, ν4,n), each of which lies on an arc of length (40 + 40
3

√
10)1/3R1/3

n + o(1) on a

circle of radius Rn .

1 Introduction

How many lattice points (x, y) ∈ Z
2 can be on a “small” arc of the circle x2 + y2

= R2?
(If there are points with integer coordinates on the circle x2 + y2

= R2, then R2

must be an integer. Henceforth we shall assume this, whether we state it or not.)

A. Córdoba and the first author [3] proved that for every ǫ > 0 the number of lattice
points on an arc of length R

1
2
−ǫ is bounded uniformly in R. More precisely, they

proved the following (see also [4, 6]).

Theorem 1.1 For any integer k ≥ 1, an arc of length
√

2R
1
2
− 1

4[k/2]+2 on a circle of radius

R centered at the origin contains no more than k lattice points.

This result cannot be improved for k = 1, since the circles x2 + y2
= 2n2 + 2n + 1

contain two lattice points, (n, n + 1) and (n + 1, n), on an arc of length
√

2 + o(1).
For k = 2, Theorem 1.1 was first proved by Schinzel and then used by Zyg-

mund [10] to prove a result about spherical summability of Fourier series in two

dimensions. In [2] the first author gave a best possible version of Schinzel’s result
(which we will prove more easily in Section 2).

Theorem 1.2 An arc of length (16R)1/3on a circle of radius R centered at the origin

contains no more than two lattice points.

This result cannot be improved, since the circles x2+y2
= R2

n := 16n6+4n4+4n2+1
contain three lattice points, (4n3−1, 2n2 +2n), (4n3, 2n2 +1), and (4n3 +1, 2n2−2n),

on an arc of length (16Rn)
1
3 + on(1).

Let [ν] = (ν1, . . . , νk) denote a k-tuple of lattice points lying on the same circle

of radius R = R[ν] centered at the origin, and Arc[ν] = Arc(ν1, . . . , νk) the length of

the shortest arc containing ν1, . . . , νk.
The next result shows that we cannot improve the constant (16)1/3 if we omit the

examples above.
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Theorem 1.3 The set {Arc[ν]R
−1/3
[ν] , [ν] = (ν1, ν2, ν3)} is dense in [(16)1/3, +∞).

Since we have sharp versions of Theorem 1.1 for k = 1 and 2, we focus in this

paper on giving a sharp version of Theorem 1.1 for k = 3. We begin with showing

that the exponent given in Theorem 1.1 is best possible for k = 3 by exhibiting
infinitely many circles x2 + y2

= R2 with four lattice points in an arc of length ≪ R1/3.

The Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all
n ≥ 0. The circles x2 + y2

= R2
n := 5

2
F2n−1F2n+1F2n+3 contain the four lattice points

1
2
(F3n+3, F3n) + (−1)nz j for j = 1, 2, 3, 4, where

z1 = 2(−Fn−1, Fn+2), z2 = (−Fn−2, Fn+1),

z3 = (Fn−1,−Fn+2), z4 = (Fn,−Fn+3).

The chord length between z1 and z4 is
√

10F2n+3, implying that the arc containing all
four lattice points has length

2Rn arcsin
(

√
10F2n+3

2Rn

)

= 20
1
3

( 1 +
√

5

2

)

R1/3
n +

2
√

5

3Rn
+ O

( 1

R
7/3
n

)

.

In fact this arc can be shown always to have length > 20
1
3 ( 1+

√
5

2
)R

1/3
n . (The reader

might like to compare this example with the more easily appreciated example given
in Section 10 for the analogous problem involving lattice points on hyperbolae.)

We see here a family F = {[ν]n = (ν1,n, ν2,n, ν3,n, ν4,n), n ∈ N} of 4-tuples of

lattice points, lying on circles centered at the origin, with

Arc[ν]n ∼ CFR1/3
n , as n → ∞.

There are other examples of such families F, which we will describe in detail in Sec-

tion 3, though there are only finitely many such F with CF ≤ t . The main result
of this paper is that any 4-tuple of lattice points that lie on a short arc of a circle,

specifically on an arc of length tR1/3 on a circle of radius R centered at the origin,
either belongs to one of a finite set F(t) of such families or is one of a finite number

of small examples (that is, examples which lie on circles with a bounded radius). We

shall show how explicitly to construct the families in F(t), as well as all the “small
examples”. These small examples are either so small that the bound tR1/3 on the arc

length is bigger than the radius R, or they are small members of families F with CF

a tiny bit bigger than t , or they belong to a class of “degenerate examples” which we
will study in detail.

Theorem 1.4 For any t > 0, any arc on a circle x2 + y2
= R2 of length less than tR1/3

with R > 2−17t15 contains at most three lattice points, except for those arcs containing

4-tuples of lattice points from the families F, where F ∈ F(t) = {F, CF ≤ t}. The set

F(t) is finite.

Note that although F(t) is finite, it is also true that #F(t) → ∞ as t → ∞.

In contrast to Theorem 1.3, we deduce from Theorem 1.4 the following.
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Corollary 1.5 The set {Arc[ν]R
−1/3
[ν] , [ν] = (ν1, ν2, ν3, ν4)} has only finitely many

accumulation points in any interval [0, t), where t ∈ R
+.

We order the families F1, F2, . . . so that CF1
≤ CF2

≤ · · · . For fixed t we can

explicitly determine F(t) using Algorithm 1, described in Section 8; indeed, in Table
1 there we describe all seven families belonging to F(5). We found that CF1

= (40 +
40
3

√
10)1/3

= 4.347 · · · , and then CF2
= 20

1
3 ( 1+

√
5

2
) = 4.3920 · · · , where F2 is the

family given above.
Algorithm 2, which is also described in Section 8, gives an effective version of

Theorem 1.4 and allow us to describe all 4-tuples of lattice points with Arc[ν] ≤
tR1/3. As a consequence we deduce the following result.

Corollary 1.6 An arc of the circle x2 + y2
= R2 with R >

√
65, of length

≤ (40 + 40
3

√
10)1/3R1/3, contains at most three lattice points. On the contrary, there

are infinitely many circles x2 + y2
= R2

n containing four lattice points in arcs of length

(40 + 40
3

√
10)1/3R

1/3
n + o(1).

As an example of how this corollary may be extended, we also give the following

result.

Corollary 1.7 An arc of the circle x2 + y2
= R2 with R >

√
325, of length

≤ 2(1 +
√

2)R1/3, contains at most three lattice points, except for the 4-tuples

(ν1, ν2, ν3, ν4), belonging to the families Fi , 1 ≤ i ≤ 6 described in Table 1 of Section 8.

Let Nk(t, x) be the number of k-tuples of lattice points that lie on an arc of length

tRek of a circle of radius R centered at the origin, with R ≤ x and for an appropriate
exponent ek. The only exponents we know are e2 = 0, e3 = e4 = 1/3; the rest remain

a mystery (see Section 12). It is not difficult to show, via elementary means, that

N2(t, x) =
16

π
xt log t + O(xt + t2 log t).

For k = 3 and 4, the arc is only larger than the circle itself once x ≫ t3/2. In this, the
non-trivial range, we prove the following result.

Theorem 1.8 x2/3t2 log t ≪ N3(t, x) ≪ x2/3t2 log3 t, for x ≫ t3/2 ≫ 1. For each

fixed t there exists a constant Bt such that N4(t, x) ∼ Bt log x as x → ∞.

We finish this introduction with an overview of the paper. In Section 2 we prove
Theorems 1.2 and 1.3 concerning 3-tuples [ν] of lattice points in short arcs. We

return to this theme in Section 9 when we estimate how often short arcs contain

3-tuples of lattice points (Theorem 1.8). In Section 3 we construct the families F

of 4-tuples of lattice points on short arcs that we mentioned above. In Section 5

we study the key invariant QF of a family F of 4-tuples of lattice points. Roughly

speaking, the larger QF is, the larger CF is. Section 6 is devoted to classifying the
degenerate 4-tuples [ν] (which are those [ν] for which Q[ν] is a square). In Section 7

we study the constant CF associated with a family F, obtaining an effective version

of Arc[ν]n ∼ CFR
1/3
n . We also prove that if CF is small, then F or F̂ contains a small
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4-tuple. The results of Sections 5, 6, and 7 are needed to justify the two algorithms
that we present in this section: Algorithm 1 determines all families F with CF ≤ t ,

for any t > 0, and Algorithm 2 determines all the 4-tuples [ν] with Arc[ν] < tR1/3
[ν] .

In Section 10 we discuss work in progress on the analogous problem for divisors in

short intervals. In Section 11 we discuss related questions and in Section 12 the key

open problems that arise after this paper.

2 Three Lattice Points

We give here the proof of several results that were discussed in the introduction. Our

new proof of Theorem 1.2 is somewhat simpler than that in [2].

Proof of Theorem 1.2 Suppose that ν1, ν2, ν3 are three lattice points, in order, on a

circle of radius R so that

|ν1 − ν2||ν2 − ν3||ν1 − ν3| < Arc(ν1, ν2)Arc(ν2, ν3) Arc(ν1, ν3) ≤ 1

4
Arc(ν1, ν3)3.

A theorem attributed to Heron of Alexandria states that if ∆ is the area of the triangle

with sides a, b, c and R is the radius of the circle going through the vertices of the
triangle, then abc = 4∆R. Applying this to the triangle with vertices ν1, ν2, ν3, we

have that |ν1 − ν2||ν2 − ν3||ν1 − ν3| = 4∆R.

It should be noted that any triangle with integer vertices has area ≥ 1/2 so, a

priori, ∆ ≥ 1/2. However, we can do better than this: since ν1, ν2, ν3 lie on the same

circle, an easy parity argument implies that the coordinates of two of these lattice
points, say νi 6= ν j , have the same parity, and so 1

2
(νi + ν j) is also an integer lattice

point. Therefore the triangle ν1, ν2, ν3 is the disjoint union of two triangles with

integer coordinates, which implies that ∆ ≥ 1. The result follows.1

Henceforth we identify the lattice point (x, y) ∈ Z
2 with the Gaussian integer

x + i y.

Proof of Theorem 1.3 Let C ≥ (16)1/3 and let α satisfy (1 + α)( 4
α+α2 )1/3

= C. Take

p and q to be distinct large primes for which n2 ∼ αn1 where n1 = 2p and n2 = q.
Now take m1 to be an odd integer and m2 to be an even integer much larger than n1

and n2, such that m1n2 − m2n1 = ±1. Finally take n3 =
1
2
(n1 + n2 + m1 + m2) and

m3 =
1
2
(n1 + n2 − m1 − m2). We write µ j := n j + im j, j = 1, 2, 3 and consider

ν1 = µ1µ2µ3 ν2 = iµ1µ2µ3, ν3 = µ1µ2µ3.

Notice that |µ1| ∼ m1, |µ2| ∼ m1α and |µ3| ∼ m1(1 + α)/
√

2, so that

R1/3
= |ν j |1/3 ∼ ((α + α2)/

√
2)1/3m1.

Now |ν3−ν1|R−1/3
= |µ3||µ1µ2−µ1µ2|R−1/3

= 2|µ3|R−1/3 ∼ (1+α)( 4
α+α2 )1/3

= C,

and similarly both |ν3 − ν2|R−1/3 ∼ ( 4
α+α2 )1/3 and |ν2 − ν1|R−1/3 ∼ α( 4

α+α2 )1/3.

1The second author posed a weak version of Theorem 1.2 as problem A5 on the 2000 Putnam exami-
nation; about 45 contestants had the wherewithal to provide a solution somewhat like that above.
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3 The Construction of the Families of 4-Tuples of Lattice Points

Given a given 4-tuple [ν] of lattice points in a short arc we will construct a family F

of such 4-tuples, containing [ν], by giving an explicit expression for all elements of
F in terms of powers of certain algebraic numbers (and they can also be described in

terms of a certain second-order linear recurrence sequence). In each such family we
will discover a canonical initial 4-tuple, and each such family will have an explicitly

described “dual” family.

Before proceeding, we note that one can find many other 4-tuples from trivial
operations applied to a given 4-tuple, so we wish to restrict our attention to a sin-

gle element of such an “equivalence class”. Indeed, if g = gcd(ν1, ν2, ν3, ν4), then
Arc[ν]

R
=

Arc[ν/g]
R/|g| , so that Arc[ν] = |g|Arc[ν/g], and we can reduce our study to

primitive 4-tuples of lattice points, where [ν] is primitive if gcd(ν1, ν2, ν3, ν4) = 1.

One can also obtain further (ordered) 4-tuples of lattice points by re-ordering the
lattice points, and by the natural symmetries in the plane (taking conjugates, and by

multiplying through by a fourth root of unity). We will take just one element of each

such “equivalence class” of 4-tuples.
We therefore consider primitive 4-tuples of lattice points [ν] = (ν1, ν2, ν3, ν4) that

all lie on the same circle centered at the origin, say x2 + y2
= R2, and we assume that

σ := ν1 + ν2 + ν3 + ν4 6= 0.

(Note that if σ = 0, then the νi cannot all lie on the same half circle, and hence
Arc[ν] ≥ πR; we shall have more to say about this case at the start of Section 6.)

Next define

ω[ν] =

( ν1ν2ν3ν4

|ν1ν2ν3ν4|
)

1
4

=
(ν1ν2ν3ν4)1/4

R
so that − π/4 < Arg(σ[ν]ω[ν]) ≤ π/4.

Let Ψ[ν] := Arg(σ[ν]ω[ν]), so that −1 < tan(Ψ[ν]) ≤ 1 and cos(Ψ[ν]) > 0.
Let Q = Q[ν] be the smallest positive integer for which

√
Qω2 ∈ Z[i] (we will

prove that Q exists in Section 5). If Q[ν] is a square, then [ν] is degenerate, a simple

case that we will examine in Section 6. Typically Q[ν] is not a square, that is, [ν] is
non-degenerate, in which case we select the smallest possible positive integers p and

q for which2

p2 − q2Q = ǫ = ±1,

and we write α := p + q
√

Q and β := p − q
√

Q.

For a given [ν], we define the complex numbers3

ω1 =
(ν1ν2ν3ν4)1/4

R
, ω2 =

(ν1ν2ν3ν4)1/4

R
, and ω3 =

(ν1ν2ν3ν4)1/4

R
.

2But see Remark 3.1
3There is some ambiguity here, in that these quantities are well defined only up to a fourth root of

unity. Our protocol is to make a choice for the value of each ν
1/4
j /R (out of the four possibilities) so as to

validate the choice of fourth root of unity in the definition of ω = ω[ν], and then to use this same value

for ν
1/4
j /R consistently throughout these definitions.
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For each integer n we define

(3.1) ωi,n = αn ωi + ωi

2
+ βn ωi − ωi

2
, i = 1, 2, 3.

and then a sequence of 4-tuples of lattice points {[ν]n = (ν1,n, ν2,n, ν3,n, ν4,n), n ∈ Z}
by

(3.2) ν1,n = Rωω1,nω2,nω3,n,

ν2,n = Rωω1,nω2,nω3,n,

ν3,n = Rωω1,nω2,nω3,n,

ν4,n = Rωω1,nω2,nω3,n.

We immediately deduce that the lattice points ν j,n, j = 1, 2, 3, 4 all lie on the same

circle, and that ω4
[ν]n

= ω4. Multiplying out the terms in this definition we obtain

(3.3) ν j,n = α3n σ + ω2σ

8
+ (ǫα)n

( ν j − ω2ν j

2
− σ − ω2σ

8

)

+ β3n σ − ω2σ

8
+ (ǫβ)n

( ν j + ω2ν j

2
− σ + ω2σ

8

)

,

so that

(3.4) ν j,nω =
α3n

4
Re(σω) + i(ǫα)n

(

Im(ν jω) − Im(σω)

4

)

+ i
β3n

4
Im(σω) + (ǫβ)n

(

Re(ν jω) − Re(σω)

4

)

for j = 1, 2, 3, 4. We deduce that ν j,n = ωRn + O(R
1/3
n ) as α > 1 > |β|, and that

σn :=

4
∑

j=1

ν j,n = α3n σ + ω2σ

2
+ β3n σ − ω2σ

2
= ω

(

α3n Re(σω) + iβ3n Im(σω)
)

.

Now

| tan(Arg(σnω))| = |β
3n Im(σω)

α3n Re(σω)
| = |β6n tan Ψ[ν]| < 1,

as |β| < 1 if n ≥ 0, and also cos(Arg(σnω)) > 0, as α > 0 and Re(σω) > 0, which

implies that ω[ν]n
= ω (since we already know that ω4

[ν]n
= ω4). In other words, ω is

an invariant of the family, and so Q = QF is also.

With a formula like (3.3) it is evident that one can express the ν j,n in terms of a

recurrence. For n ≥ 0 we have

(3.5) ν j,n+1 = pq
(

qQσn + p
√

Qω2σn

)

+ ǫ
(

pν j,n − q
√

Qω2ν j,n

)

.
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We deduce that each ν j,n is in Z[i] by induction on n ≥ 0, since
√

Qω2 ∈ Z[i]. This
completes the proof that each [ν]n with n ≥ 0 gives rise to a 4-tuple of lattice points

on a circle centered at the origin.
We can re-express (3.5) in the more friendly looking form

(3.6) ν j,n = aG3n + bG3n+1 + ǫn
(

a jGn + b jGn+1

)

for all n ≥ 0,

with b = σ/4, a = q
√

Qω2b − pb, and b j = b − ν j , a j = q
√

Qω2b j + pb j for each

j, where the recurrence sequence {Gn : n ≥ 0} is defined by

(3.7) G0 = 0, G1 = 1, and Gn = 2pGn−1 − ǫGn−2 for all n ≥ 2.

Remark 3.1 This formula can be used to show that one can obtain Gaussian inte-

gers ν j,n even when p, q ∈ Z + 1
2

(instead of in Z); we take these semi-integer values

for p = p[ν], q = q[ν] whenever possible. For example, if

[ν] = (1 − 2i, 2 − i, 2 + i,−1 + 2i),

then Q = 5 and we can take p = q = 1/2 (as we now verify). The sequence Gn in

(3.7) is the Fibonacci sequence Fn, and we have

a1 = −1 + i, b1 = 2i,

a2 = 1 + i, b2 = −1 + i,

a3 = 2, b3 = −1 − i,

a4 = −2 − 2i, b4 = 2 − 2i,

so that (3.6) gives

ν j,n =
1 + i

2
F3n + F3n+1 + a jFn + b jFn+1.

Hence ν j,n is always a Gaussian integer, since F3n is always an even rational integer
(and we obtain the example given in the introduction).

What about n < 0? The above proof is easily modified to work for all negative n

except the requirement that |β6n tan Ψ[ν]| < 1. Thus we select n0 to be the smallest
integer for which |β6n tan Ψ[ν]| < 1, let [ν ′] := [ν]n0

be this initial 4-tuple, and then

define the family

(3.8) F([ν]) = {[ν ′]n = (ν ′
1,n, ν

′
2,n, ν

′
3,n, ν

′
4,n), n ≥ 0},

where the ν ′
j,n are defined as in (3.2). Note that [ν ′] is an invariant of the family F,

as is QF := Q[ν] and hence α, β, p, q, . . . above.

Remark 3.2 There is an irritating ambiguity in the definition of [ν]n, in that it may
stem from a chosen [ν], or from [ν ′] as above. These two possibilities differ only by

the translation n → n − n0 of the parameter n, and we hope that which one is being
used is clear from the context.

If [ν]0 is an initial 4-tuple, then [ν]-1 is an initial 4-tuple of a different family, the

dual family, which we denote by F̂ := F([ν]−1.
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3.1 The Main Constant CF

By (3.4) we see that Rn ∼ (α3n/4) Re(σω) and |ν j,n − νk,n| ∼ αn| Im((ν j − νk)ω|, as

α > 1 > |β|, from which we deduce that

Arc[ν]n ∼ R1/3
n max

1≤ j<k≤4

|2 Im((ν j − νk)ω|
|2 Re(σω)|1/3

as n → ∞. The constant multiplying R
1/3
n is evidently an invariant of the family F

and does not depend on the choice of [ν] ∈ F. Hence we can define

(3.9) CF := lim
n→∞

Arc[ν]n

R
1/3
n

= max
1≤ j<k≤4

|2 Im((ν j − νk)ω|
|2 Re(σω)|1/3

,

for any [ν] ∈ F. Similarly, it can be checked that

C
F̂

= lim
n→−∞

Arc[ν]n

R
1/3
n

= max
1≤ j<k≤4

|2 Re((ν j − νk)ω|
|2 Im(σω)|1/3

,

for any [ν] ∈ F (indeed that C
F̂

([ν]) = CF(i[ν])). An alternative and useful expres-

sion for CF, which can be deduced directly from (3.3), is

CF = max
1≤ j<k≤4

|
√

Q(ν j − νk) −
√

Qω2(ν j − νk)|
Q1/3|

√
Qσ +

√
Qω2σ|1/3

and similarly

C
F̂

= max
1≤ j<k≤4

|
√

Q(ν j − νk) +
√

Qω2(ν j − νk)|
Q1/3|√Qσ −√

Qω2σ|1/3
.

We will prove Theorem 1.4 by using the construction in this section. The idea
is that every 4-tuple of lattice points leads to a family of 4-tuples of lattice points

as described above. A few of the 4-tuples are degenerate and are easily classified

and determined (as in Section 6 and then Algorithm 2, step 2). If we want to find
all families F which contain 4-tuples [ν] with Arc[ν] < tR1/3, then, as one might

expect from (3.9)), one only needs to consider families F with CF no bigger than a

few percent larger than t . In fact if CF ≤ t , then Arc[ν] < tR1/3 for every [ν] in
those families except perhaps when R[ν] is smaller than an explicitly given bound;

and if CF > t , then one can only possibly have Arc[ν] < tR1/3 for [ν] in those
families if R[ν] is smaller than an explicitly given bound (see Theorem 7.3). Finally

one can compute each of the finitely many [ν] with R[ν] smaller than that bound to

determine whether they satisfy Arc[ν] < tR1/3.
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4 Summary of Notation

• ν, ν1, . . . denote lattice points or gaussian integers, depending on the context.
• [ν] = (ν1, . . . , νk) denotes a k-tuple of lattice points (gaussian integers), all on the

circle of radius R[ν] centered at the origin. Typically k = 4.
• σ = σ[ν] = ν1 + ν2 + ν3 + ν4.
• We say that [ν] is primitive if gcd(ν1, . . . , νk) = 1.
• Arc[ν] denotes the length of the shortest arc containing ν1, . . . , νk.
• F denotes a family F = {[ν]n = (ν1,n, ν2,n, ν3,n, ν4,n), n ≥ 0}, as described in

(3.8). The 4-tuple [ν]0 is the initial 4-tuple of the family.
• F([ν]) is the family F that contains [ν].
• F̂ is the dual family of F.
• Rn = R[ν]n

when the family is given, but see Remark 3.2.
• σn = σ[ν]n

when the family is given, but see Remark 3.2.

• CF is the constant limn→∞ Arc[ν]nR
−1/3
n .

• ω[ν] = (ν1ν2ν3ν4)1/4R−1
[ν] such that −π/4 < Arg(σ[ν]ω[ν]) ≤ π/4, which is an

invariant of the family, so can be written as ωF.
• Ψ[ν] := Arg(σ[ν]ω[ν]).
• Q[ν] is the smallest positive integer for which

√
Q[ν]ω

2
[ν] ∈ Z[i], which is an in-

variant of the family, so can be written as QF .
• p = p[ν] = pF, q = q[ν] = qF are the smallest positive integers such that

p2 − q2Q = ǫ = ±1.
• α = α[ν] = αF = p + q

√
Q and β = β[ν] = βF = p − q

√
Q.

5 Properties of Q

In this section we suppose that [ν] is given and will determine properties of

Q = Q[ν] = QF , R = R[ν], C = C[ν] = CF.

Lemma 5.1 There exists a positive integer Q, not divisible by 4, for which

√

Qω2 ∈ Z[i].

In fact, if an odd prime p divides Q, then p ≡ 1 (mod 4). Moreover Q/(2, Q) divides

R2.

Proof Let γi be the exact power of a prime ideal p of norm p which divides νi ,

i = 1, 2, 3, 4, say with γ1 ≥ γ2 ≥ γ3 ≥ γ4. Since [ν] is primitive, we know that

p 6= 2, γ4 = 0, and pγ1 is the exact power of p dividing R2, so that γ1 − γi is the exact
power of that prime ideal p that divides νi . Therefore if γ = γ1 − γ2 − γ3 − γ4, then

the exact powers of p and p dividing ω4 are given by (p/p)γ , which equals (p2/p)γ

if γ > 0, and equals (p2/p)−γ if γ < 0. We see that if Q1 is the product of these
p|γ|, then Q1ω

4 ∈ uZ[i]2 for some unit u, since all ideals of Z[i] are principal. Taking

square roots, we see that we can take Q = Q1 if u = ±1, and Q = 2Q1 if u = ±i, so
that Q is not divisible by 4, and all of its prime factors are norms of elements of Z[i]

and are thus not ≡ 3 (mod 4).

Finally note that |γ| = |γ1 − γ2 − γ3| ≤ γ1, so that Q1 = Q/(2, Q) divides R2.
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Lemma 5.2 Let p be a prime ideal in Z[i], |p|2 6= 2. If [ν] = (ν1, ν2, ν3, ν4) is

primitive and pα divides
√

Qω2, then pα divides exactly three of {ν1, ν2, ν3, ν4}.

Proof In the notation of the proof of the previous lemma one finds that the exact
power of p which divides

√
Qω2 is pmax{0,−γ}, and

max{0,−γ} = max{0, γ3 − (γ1 − γ2)} ≤ γ3,

so the result follows.

Lemma 5.3 If [ν] is a primitive 4-tuple we have Arc[ν] > (16 r(Q))1/3R1/3 where

(5.1) r(Q) := min
r1r2r3r4=Q/(2,Q)

(ri,r j )=1, i 6= j

max
1≤i≤4

ri .

Proof Let gi = gcd(ν j : j 6= i) for i = 1, 2, 3, 4. If p 6= ±1 ± i, then by the

previous lemma we know that any prime ideal power pα dividing
√

Qω2 divides
one of the gi . Therefore

√
Qω2 divides (1 + i)g1g2g3g4, so that Q/(2, Q) divides

|g1|2|g2|2|g3|2|g4|2. Therefore, as [ν] is primitive, so that (|gi|2, |g j|2) = 1, i 6= j,

there exists some j for which |g j |2 ≥ r(Q). Suppose that j = 4 here and let
g = g4. Let νi = gτi for i = 1, 2, 3. Then

Arc[ν] ≥ Arc[ν1, ν2, ν3] = Arc(g[τ]) = |g|Arc([τ]) ≥ |g|(16R[τ ])
1/3

= |g|2/3(16R[ν])
1/3

by Theorem 1.2, as R[ν] = |g|R[τ ]. The result follows.

We deduce the following result from Lemma 5.3 and (3.9).

Corollary 5.4 If F is a non-degenerate family, then CF ≥ (16r(QF))1/3.

6 Degenerate 4-Tuples

In this section we shall assume that we are given a degenerate [ν], that is, a [ν] for
which Q[ν] is a square. One can verify that, in this case, α = β = 1, so that ν j,n = ν j

for all n and j, and thus the (purportedly infinite) sequence of 4-tuples of lattice
points degenerates into a single example.

In Section 2 we noted that if σ = 0, then the νi cannot all lie on the same half

circle, implying that Arc[ν] ≥ πR; now we will show that if [ν] is also primitive, then
it is degenerate. Since ν1 + ν2 = (−ν3) + (−ν4) where |ν1| = |ν2| = | − ν3| = | − ν4|,
we either have ν1 + ν2 = 0 (in which case ν3 + ν4 = 0), or that the non-zero sum

of two vectors, ν1 and ν2, of the same length equals the sum of two other vectors,
−ν3 and −ν4, of the same length, and it is then easy to show that those two sets of

two vectors must be identical. Thus, by re-ordering the indices if necessary, we have
ν1 + ν2 = ν3 + ν4 = 0. But (ν1, ν3) = 1 since [ν] is primitive and hence ν3 = uν1

where u = 1,−1, i or −i. Therefore ν1ν2ν3ν4 = (ν1ν3)2
= u2R4 so that ω2

[ν] = ±u

and therefore Q[ν] = 1.
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Lemma 6.1 If Q[ν] is a square, then Arc[ν] > 2R1/2/Q
1/8
[ν] .

Proof The argument of Lemma 5.1 implies that if Q is a square, then Q is odd, each
γ must be even, and u = ±1. Therefore there exists ℓ ∈ Z[i] for which Qω4

= ±ℓ4,

so that |ℓ| = Q1/4. We deduce that (ℓν1)(ℓν2)(ℓν3)(ℓν4) = ℓ
4
R4ω4

= ±|ℓ|8R4/Q =

±QR4. Let [ν ′] = ℓ ′[ν] where ℓ ′ = ℓ if ± is + and ℓ ′ = (1 + i)ℓ if ± is −. Writing
ω ′

= ω[ν ′], Q′
= Q[ν ′], and R′

= R[ν ′], we have (ω ′)4
= 1, so that Q′

= 1.

If R′ <
√

5, then there are exactly four lattice points on our circle, so that

σ[ν ′] = 0. Hence σ[ν] = σ[ν ′]/ℓ ′ = 0 and therefore Arc[ν] ≥ πR, as noted at
the beginning of the Section 3.

We now prove that if R′ ≥
√

5, then Arc[ν ′] ≥ 25/4(R′)1/2. We may assume
that Arc[ν ′] < π

2
R′, else this is immediate. Using the obvious symmetries (that is,

multiplying [ν ′] through by a unit or replacing it with [ν ′]), we may assume that

−π/2 < ϕ1 < ϕ2 < ϕ3 < ϕ4 < π/2, where ν ′
j = R′eiϕ j = x j + i y j , j = 1, 2, 3, 4,

and we already know that ϕ1 + ϕ2 + ϕ3 + ϕ4 = 0. Thus ϕ1 < 0 < ϕ4, and suppose

that |ϕ1| ≥ ϕ4. This implies that ϕ3 > 0, so that y3 > 0 and x3 > x4, and thus

Arc[ν ′] > 2y4 = 2

√

R′2 − x2
4 ≥ 2

√

R′2 − (x3 − 1)2

≥ 2
√

R′2 − (R′ − 1)2 = 2
√

2R′ − 1 > 25/4(R′)1/2,

as R′ ≥
√

5. Therefore, from the remarks at the beginning of Section 3 we have

Arc[ν] =
Arc[ν ′]

|ℓ ′| >
25/4(R′)1/2

|ℓ ′| =
25/4R1/2

|ℓ ′|1/2
≥ 25/4R1/2

(
√

2|ℓ|)1/2
≥ 2R1/2

Q1/8
.

Corollary 6.2 If Arc[ν] < tR1/3 and [ν] is primitive and degenerate, then R ≤
t152−17.

Proof If Q[ν] is a square, then Arc[ν] > max{2R1/2/Q1/8, (16r(Q)R)1/3} by Lemmas

5.3 and 6.1. From (5.1) we see that r(Q) ≥ (Q/2)1/4. Therefore Arc[ν] > 223/20R2/5,

so R < t152−69/4 < t152−17 and the result follows.

7 The Constant CF Associated with a Family F

We begin this section by noting, without proof, two technical trigonometric lemmas

that will be useful below.

Lemma 7.1 If −π/2 ≤ x1 < · · · < xn ≤ π/2, then

max
1≤i< j≤n

| sin(xi) − sin(x j)| = | sin(x1) − sin(xn)|.

Lemma 7.2 If |x| ≤ π/4, then

(i) | sin x| < 1.0106|x| · | cos x|1/3,

(ii) | sin x| < |x| · | cos x+cos y
2

|1/3 whenever |y| ≤ |x| − 0.137|x|3,
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(iii) | sin x|| cos x|1/3 ≥ max(2|x|/π, |x| − |x|3/3).

The following is the main result in this section.

Theorem 7.3 If Arc[ν] < π
2

R[ν] where [ν] is primitive and non-degenerate, then

(i) Arc[ν] > 0.9895CFR
1/3
[ν] ,

(ii) Arc[ν] > CFR
1/3
[ν] for R[ν] > 0.08C

15/4
F

,

(iii) Arc[ν] ≤ CFR
1/3
[ν]

(

1 + π3

96

C2
F

R
2/3

[ν]

)

.

Proof Write ν jω = Reiϕ j , j = 1, 2, 3, 4, with ϕ1 < ϕ2 < ϕ3 < ϕ4 ≤ ϕ1 + π/2, so

that Arc[ν] = (ϕ4 − ϕ1)R, and note that ϕ1 + ϕ2 + ϕ3 + ϕ4 = 0 by the definition of
ω. Therefore,

CF([ν]) =
2R2/3| Im((ν1 − ν4)ω|

(2 Re(σω))1/3
=

2R2/3| sin(ϕ1) − sin(ϕ4)|
|2(cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + cos(ϕ4))|1/3

.

Now sin(ϕ1) − sin(ϕ4) = 2 sin( ϕ1−ϕ4

2
) cos( ϕ1+ϕ4

2
), and

cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + cos(ϕ4)

= 2
(

cos
( ϕ1 − ϕ4

2

)

+ cos
( ϕ2 − ϕ3

2

))

cos
( ϕ1 + ϕ4

2

)

,

since ϕ2+ϕ3

2
= −ϕ1+ϕ4

2
, and therefore

(7.1) CF =
2R2/3| sin( ϕ1−ϕ4

2
)| | cos( ϕ1+ϕ4

2
)|2/3

| 1
2
(cos( ϕ1−ϕ4

2
) + cos( ϕ2−ϕ3

2
))|1/3

≤ 2R2/3| sin( ϕ1−ϕ4

2
)|

| cos( ϕ1−ϕ4

2
)|1/3

,

since 0 ≤ cos( ϕ4−ϕ1

2
) ≤ cos( ϕ3−ϕ2

2
), as 0 ≤ ϕ3 − ϕ2 ≤ ϕ4 − ϕ1 ≤ π/2. By Lemma

7.2 we deduce that CF < 1.0106(ϕ4 − ϕ1)R2/3
= 1.0106R−1/3 Arc[ν], and part (i)

follows.

If (ϕ4 − ϕ1) − (ϕ3 − ϕ2) ≥ 0.137(ϕ4 − ϕ1)3, then

CF < (ϕ4 − ϕ1)R2/3
= R−1/3 Arc[ν]

by Lemma 7.2(ii), and the result follows. Otherwise (ϕ4 − ϕ3) + (ϕ2 − ϕ1) <
0.137(ϕ4 − ϕ1)3, and suppose, for example, that ϕ2 − ϕ1 < 0.137

2
(ϕ4 − ϕ1)3. Apply-

ing the argument in the proof of Theorem 1.2 to the triangle formed by ν1, ν2, ν4, we

obtain

2R ≤ 4∆R = |ν1 − ν2||ν1 − ν4||ν2 − ν4|
≤ Arc(ν1, ν2)Arc(ν1, ν4)Arc(ν2, ν4)

= (ϕ2 − ϕ1)(ϕ4 − ϕ1)(ϕ4 − ϕ2)R3

< 0.0685(ϕ4 − ϕ1)5R3
= 0.0685R−2 Arc5[ν],
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so that Arc[ν] > 1.963667195R3/5 > CFR1/3 for R > 0.08C
15/4
[ν] , and part (ii) fol-

lows.

Let us suppose that ϕ4 − ϕ1 = 4λ so that π/2 ≥ 4λ ≥ 0. Therefore,

0 = ϕ1 + ϕ2 + ϕ3 + ϕ4 = 4ϕ1 + mλ

for some m, 4 ≤ m ≤ 12, so that ϕ1 + ϕ4 = 2ϕ1 + 4λ = (4 − m/2)λ and therefore
|(ϕ1 + ϕ4)/2| ≤ λ. We therefore deduce that

∣

∣

∣
cos

( ϕ1 + ϕ4

2

)∣

∣

∣
≥ | cos λ| ≥ cos2 λ = (1 + cos 2λ)/2

≥
∣

∣

∣

1

2

(

cos
( ϕ1 − ϕ4

2

)

+ cos
( ϕ2 − ϕ3

2

))∣

∣

∣
.

Therefore (7.1) implies that

CF ≥ 2R2/3
∣

∣

∣
sin

( ϕ1 − ϕ4

2

)∣

∣

∣

∣

∣

∣
cos

( ϕ1 − ϕ4

2

)∣

∣

∣

1/3

.

Applying Lemma 7.2(iii) yields CF ≥ R2/3 2
π |ϕ1 − ϕ4| = R−1/3 2

π Arc[ν], so that

Arc[ν] < (π/2)CFR1/3,

and also that

CF ≥ 2R2/3
( ϕ1 − ϕ4

2
− (ϕ1 − ϕ4)3

24

)

=
Arc[ν]

R1/3
− Arc3[ν]

12R7/3
≥ Arc[ν]

R1/3
− π3

96

C3
F

R4/3
,

which implies part (iii).

Lemma 7.4 Given [ν] ∈ F, there exists [ν]n (as defined in (3.2)) such that

R2
[ν]n

≤ C3
F

p3. In other words, for any family F, there exists [ν] ∈ F ∪ F̂ such that

R2
[ν]n

≤ C3
F

p3.

Proof Fix δ > 0, and select m such that Arc([ν]m) ≤ (1 + δ)CFR1/3, which is

possible by (3.9). For convenience we replace [ν] by [ν]m. By (3.1) we have, using
the arithmetic-geometric mean inequality,

R2
[ν]n

/

R2
[ν] =

3
∏

i=1

(

α2n
∣

∣

∣

ωi + ωi

2

∣

∣

∣

2

+ β2n
∣

∣

∣

ωi − ωi

2

∣

∣

∣

2)

≤
( α2n

∑3
i=1

∣

∣

∣

ωi +ωi

2

∣

∣

∣

2

+ β2n
∑3

i=1

∣

∣

∣

ωi−ωi

2

∣

∣

∣

2

3

) 3

≤
(

α2n + β2n(1 + δ)2 C2
F

8R4/3

) 3

.
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To obtain this last inequality we first note that each |ωi +ωi

2
| ≤ 1 and that, if we write

each ν j = Reiϕ j where ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ ϕ4 < ϕ1 + π/2, then

2|ω1 − ω1| = 4
∣

∣

∣
sin

( ϕ1 − ϕ2 − ϕ3 + ϕ4

4

)
∣

∣

∣

≤ |ϕ1 − ϕ2 − ϕ3 + ϕ4| = |(ϕ4 − ϕ1) − (ϕ3 − ϕ1) − (ϕ2 − ϕ1)|
≤ |ϕ4 − ϕ1|,

and similarly, 2 |ω2 − ω2| ≤ |ϕ4 − ϕ1| and |ω3 − ω3| ≤ |ϕ4 − ϕ1|, so that

1

3

3
∑

i=1

∣

∣

∣

ωi − ωi

2

∣

∣

∣

2

≤ (ϕ4 − ϕ1)2

8
=

Arc[ν]2

8R2
≤ (1 + δ)2 C2

F

8R4/3
.

Now let n be the integer closest to
log((1+δ)2C2

F
/(8R4/3))

4 log α ; in fact, suppose that this equals

n − γ with |γ| ≤ 1/2. Then

R2
[ν]n

≤ R2
(

(1 + δ)
CF

81/2R2/3
(α2γ + |β|2γ)

) 3

≤ (1 + δ)3C3
F

(α + |β|)3

83/2
.

Now α + |β| = 2p if ǫ = 1, and α + |β| = 2q
√

Q if ǫ = −1. In the latter case we

have q
√

Q = p + 1/(p + q
√

Q) ≤ 21/2 p (which is attained when Q = 2). We obtain

our result by an appropriate choice of δ, since R2
[ν]n

is an integer. Finally note that

[ν]n ∈ F ∪ F̂.

8 Our Algorithms

Algorithm 1 This algorithm calculates, for a given t > 0, all the families
F ∈ F(t) = {F, CF ≤ t}.

Step 1: Finding admissible Q. We determine all the non-square values of Q 6≡ 0

(mod 4), whose prime factors are 2 or are ≡ 1 (mod 4), which can be written as
the product of four co-prime integers all of which are ≤ t3/16 (by Corollary 5.4).

Step 2: Finding possible families. For each Q in Step 1 we consider all the non-de-

generate 4-tuples [ν] such that Q[ν] = Q and R2
[ν] ≤ t3 p3, where p = p(Q) is

defined in Section 3. (Recall that if CF ≤ t , then F or F̂ contains at least one of

such 4-tuple, by Lemma 7.4.)
Step 3: Computing the constants CF. Use (3.9) to compute the constants CF and

C
F̂

for the families F = F([ν]) obtained in Step 2. Finally we save those with

CF ≤ t .

As an example we apply Algorithm 1 to calculate F(5) = {F,CF ≤ 5}. In Step
1 we see that 53/16 < 8 and so the possible values of the four (pairwise co-prime)

factors of Q are 1, 2, and 5, so that Q = 2, 5, or 10.

In Step 2, noting that p(2) = 1, p(5) = 2, and p(10) = 3, we consider those [ν]

for which Q[ν] = 2, 5, or 10, with R2
[ν] ≤ (5)3, (10)3, or (15)3, respectively. Then in
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Step 3 we found seven families (which we describe in Table 1), with constants

CF1
= 2

( 5

3
(3+

√
10)

)
1
3

< CF2
=

(

20
)

1
3
( 1 +

√
5

2

)

< CF3
= 4

( 1

7
(5+4

√
2)

)
1
3

< CF4
=

( 10

3
(14 + 5

√
10)

)
1
3

< CF5
= 3

√
2
( 2

7
(5 + 3

√
2)

)
1
3

< CF6
= 10

1
3

( 1 +
√

5

2

)
5
3

< CF7
= 2(1 +

√
2) < 5.

One can show that F8 := F̂6 = F(2 + i,−1 − 2i,−2 − i,−1 + 2i) where C
F̂6

=

5.490599585 · · · is the family F that gives the next smallest constant CF .

Theorem 8.1 If Arc[ν] < tR1/3, where [ν] is primitive and non-degenerate, then

either Arc[ν] ≥ π
2

R with R ≤ (2t/π)3/2, or [ν] ∈ F for some F ∈ F(t), or [ν] ∈ F for

some F ∈ F(1.01062t) with R ≤ 0.084t15/4.

Proof If Arc[ν] ≥ π
2

R, then π
2

R < tR1/3 and the first option follows. If CF ≤ t ,
then the second option follows. Finally suppose that Arc[ν] < π

2
R and CF > t .

Then tR1/3 > Arc[ν] > 0.9895C[ν]R
1/3 by Theorem 7.3(i), so that CF ≤ 1.01062t ,

that is, F[ν] ∈ F(1.01062t). But then R ≤ 0.084t15/4, else

R > 0.084t15/4 > (0.08)(1.01062t)15/4 ≥ 0.08C
15/4
F

implying that Arc[ν] > CFR1/3 ≥ tR1/3 by Theorem 7.3(ii).

Proof of Theorem 1.4 We have that max{2−17t15, 0.084t15/4, (2t/π)3/2} is equal to
2−17t15 for t ≥ 2.2871 . . . , and is less than 1.87 for smaller t . The result then follows

from Theorem 8.1 and Corollary 6.2.

For any given t , there are only a finite number of possible values of Q, and so only
a finite number of possible values of p, and hence by Lemma 7.4 every family in F(t)

contains a 4-tuple ν such that R[ν] is bounded by a quantity which depends only on
t . Therefore there are only finitely many such ν, and so there are only finitely many

families in F(t).

Algorithm 2 This algorithm determines, for a given t > 0, all primitive 4-tuples

[ν] of lattice points for which Arc[ν] ≤ tR
1/3
[ν] .

Step 1: Small 4-tuples. We examine each [ν] satisfying R[ν] ≤ (2t/π)3/2, to test

whether Arc[ν] ≤ tR
1/3
[ν] (as demanded by Theorem 8.1).

Step 2: Finding admissible Q. We determine all positive integers Q 6≡ 0 (mod 4),
whose prime factors are 2 or are ≡ 1 (mod 4), which can be written as the prod-

uct of four co-prime integers, all of which are ≤ t3/16 (by Lemma 5.3).

Step 3: Degenerate 4-tuples. By Lemma 6.1 we examine, for each such Q that is a
square, all [ν] with Q[ν] = Q and R[ν] ≤ (t/2)6Q3/4.

Step 4: Families with t ≤ CF < 1.01062t . We examine all [ν] ∈ F such that R[ν] ≤
0.084t15/4, to test whether Arc[ν] ≤ tR

1/3
[ν] (by the last part of Theorem 8.1).
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F̂ [ν]0 [ν]1 [ν]2 [ν]3 [ν]4

F1 (1,-2) (190,155) (46561,33448) (10882804,7844567) (2546700757,1835553826)

4.347370624 · · · F4 (2,1) (197,146) (46520,33505) (10883057,7844216) (2546699198,1835555989)√
Qω2 = 1 + 3i (1,2) (202,139) (46489,33548) (10883248,7843951) (2546698021,1835557622)

α = 3 +
√

10 (-1,2) (206,133) (46463,33584) (10883408,7843729) (2546697035,1835558990)

F2 (1,-2) (3,4) (18,-1) (70,25) (308,59)

4.392019964 · · · F2 (2,-1) (4,3) (18,1) (71,22) (307,64)√
Qω2

= 2 + i (2,1) (5,0) (17,6) (73,14) (304,77)

α = (1 +
√

5)/2 (-1,2) (4,-3) (15,10) (74,7) (301,88)

F3 (8,-1) (91,48) (1342,531) (18739,7822) (264028,109219)

4.601544787 · · · F5 (8,1) (93,44) (1338,541) (18749,7798) (264004,109277)√
Qω2 = 1 + i (7,4) (96,37) (1331,558) (18766,7757) (263963,109376)

α = 1 +
√

2 (4,7) (99,28) (1322,579) (18787,7706) (263912,109499)

F4 (37,16) (7516,5483) (1766281,1272658) (413271130,297871475) (96707495041,69702803308)

4.631841066 · · · F1 (35,20) (7532,5461) (1766183,1272794) (413271734,297870637) (96707491319,69702808472)√
Qω2 = 1 + 3i (29,28) (7568,5411) (1765961,1273102) (413273102,297868739) (96707482889,69702820168)

α = 3 +
√

10 (28,29) (7573,5404) (1765930,1273145) (413273293,297868474) (96707481712,69702821801)

F5 (1,-2) (6,7) (113,36) (1528,659) (21653,8906)

4.65445600 · · · F3 (2,-1) (7,6) (112,39) (1531,652) (21646,8923)√
Qω2

= 1 + i (2,1) (9,2) (108,49) (1541,628) (21622,8981)

α = 1 +
√

2 (-2,1) (9,-2) (104,57) (1549,608) (21602,9029)

F6 (16,13) (774,1307) (60800,98145) (4613294,7465447) (350706224,567450437)

4.804476431 · · · F8 (13,16) (789,1298) (60737,98184) (4613561,7465282) (350705093,567451136)√
Qω2 = −1 + 2i (8,19) (810,1285) (60648,98239) (4613938,7465049) (350703496,567452123)

α = 2 +
√

5 (5,20) (821,1278) (60601,98268) (4614137,7464926) (350702653,567452644)

F7 (-2,1) (9,8) (48,149) (869,2018) (11762,28589)

4.828427124 · · · F7 (-1,2) (8,9) (51,148) (862,2021) (11779,28582)√
Qω2

= −1 + i (2,1) (1,12) (68,141) (821,2038) (11878,28541)

α = 1 +
√

2 (2,-1) (-1,12) (72,139) (811,2042) (11902,28531)

Table 1: All families F with CF ≤ 5.
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Step 5: Families with CF < t . We examine each [ν] ∈ F such that

R[ν] ≤
( C3

F

t −CF

π3

96

) 3/2

,

to test whether Arc[ν] ≤ tR
1/3
[ν] . (For, if R[ν] >

( C3
F

t−CF

π3

96

) 3/2
, then Arc[ν] ≤ tR

1/3
[ν] ,

by Theorem 7.3(iii).)

Proof of Corollary 1.7 Write t = 2(1+
√

2) = 4.8284271 · · · < 5. To begin with, we

determine all such [ν] for which R2
[ν] ≤ (2t0/π)3 < (10/π)3 < 33; these all happen

to be degenerate examples (see the table below). In Step 2 we see that 53/16 < 8, and

so the possible values of the four (pairwise co-prime) factors of Q are 1, 2, and 5, so

that Q = 1, 2, 5, or 10. In Step 3 we look for degenerate 4-tuples on circles of radius
≤ (5/2)6Q3/4 for Q = 1, 2, 5, and 10, finding the examples listed in Table 2, as well

as examples equivalent to these via multiplication by 1,−1, i, or −i, or via complex

conjugation. Thus, if [ν] is degenerate and R[ν] >
√

325, then Arc[ν] > tR
1/3
[ν] .

R2 [ν] Arc[ν]R−1/3

5 1 + 2i, 2 + i, 2 − i, 1 − 2i 3.7863 · · ·
65 7 + 4i, 8 + i, 8 − i, 7 − 4i 4.1746 · · ·
5 2 + i, 2 − i, 1 − 2i,−1 − 2i 4.2716 · · ·

25 5i, 3 + 4i, 4 + 3i, 5 4.5930 · · ·
13 2 + 3i, 3 + 2i, 3 − 2i, 2 − 3i 4.6217 · · ·
125 10 + 5i, 11 + 2i, 11 − 2i, 10 − 5i 4.6364 · · ·
325 17 + 6i, 18 + i, 18 − i, 17 − 6i 4.6655 · · ·
85 2 + 9i, 6 + 7i, 7 + 6i, 9 + 2i 4.9836 · · ·
533 22 + 7i, 23 + 2i, 23 − 2i, 22 − 7i 4.9953 · · ·

Table 2: Degenerate 4-tuples [v] with Arc[ν] < 5R
1/3

[ν] .

In Step 4, the family F7 is the only family satisfying t ≤ CF ≤ t · 1.01062, and

we check that Arc[ν] > tR
1/3
[ν] for all [ν] ∈ F7 with R[ν] ≤ 0.084t15/4. For Step 5, a

simple calculation reveals that Arc[ν] ≤ tR
1/3
[ν] for all [ν]n ∈ Fm, 1 ≤ m ≤ 6, with

R[ν] ≤
( C3

Fm

t −CFm

π3

96

) 3

,

except the initial 4-tuples [ν]0 in F1, F2 and F5.

Proof of Corollary 1.6 Most of the work has been done in the proof above. Now

t =
(

40 + 40
3

√
10

)1/3
= 4.347370 · · · . The family F1 is the only family satisfying

t ≤ CF ≤ t · 1.01062, and we check that Arc[ν] > tR
1/3
[ν] for all [ν] ∈ F1 with

R[ν] ≤ 0.08t15/4
= 19.7897 · · · . Step 4 is vacuous because F1 is the first family. We

are therefore left only with a subset of the degenerate cases given above, namely the

top three cases, each of which have R ≤
√

65.
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9 Asymptotic Estimates for Nk(t, x), k = 3, 4

9.1 Counting 4-Tuples

The proof of Theorem 1.8 for 4-tuples Fix t . We wish to determine the number

of 4-tuples of lattice points that lie on an arc of length tR1/3 of a circle of radius R

centered at the origin, where R ≤ x. First we deal only with primitive 4-tuples. Since
there are only a bounded number of degenerate [ν] with Arc[ν] < tR1/3 by Corollary

6.2, this reduces to determining the number of primitive 4-tuples in each family F

with CF < t . For a given family F we have Rn ∼ α3n|Re(σω)|/4 by (3.4), so the
number with Rn ≤ x is log x/3 log α + O(1). Now each such 4-tuple is one of an

equivalence class of 8 examples (as we have discussed). Therefore there are a total of
∼ βt log x primitive 4-tuples of lattice points which lie on an arc of length tR1/3 on a

circle of radius R ≤ x centered at the origin, where

βt =
8

3

∑

F:CF<t

1

log αF

=
8

3

∑

α

|Fα(t)|
log α

,

with Fα(t) = {F, αF = α,CF < t}. Rather like in the prime number theorem, if

we count each primitive 4-tuple [ν] with weight log α = log α[ν], then we have

∑

primitive [ν]

Arc[ν]<tR1/3

R[ν]<x

log α[ν] ∼
8

3
#{F : CF < t} log x.

Write N4(t, x) = #{[ν] : Arc[ν] < tR
1/3
[ν] , R[ν] ≤ x} and, for g ∈ Z[i],

N4(t, x, g) = #
{

[ν] = (ν1, ν2, ν3, ν4) :

gcd(ν1, ν2, ν3, ν4) = g, Arc[ν] < tR1/3, R[ν] ≤ x
}

.

We proved above that N4(t, x, 1) ∼ βt log x for fixed t as x → ∞. To estimate N(t, x)

we use the formula Arc[ν] = |g|Arc[ν/g] to obtain

N4(t, x) =

∑

g

N4(t, x, g)

=

∑

g

N4(t|g|−2/3, x|g|−1, 1) ∼
∑

g

βt|g|−2/3 log(x|g|−1) ∼ Bt log x,

as x → ∞, where

Bt =
8

3

∑

α

1

log α

∑

g

|Fα(t|g|−2/3)|,

and the sums are over all g = a + bi, 0 ≤ b < a for which |g| ≤ (t/CF1
)3/2.
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By Theorem 1.4 and the fact that F(t) is finite, we know that Bt is a piecewise
constant function. We conjecture that Bt ≍ t3 log6 t and, more generally, that

N4(t, x) ≍ min{x2, t3}(log(min{x2, t3}))6 log x

for all t >
(

40 + 40
3

√
10

)1/3
. One can prove the slightly stronger estimate N4(t, x) ∼

c4x2 log7 x for x ≤ (t/(2π))3/2 for some constant c4 > 0 by a simple counting argu-
ment (the analogous argument for N3 is given at the beginning of the next section).

9.2 Counting 3-Tuples

Writing N3(t, x) = #{3-tuples [ν] : |ν| ≤ x, and Arc[ν] < t|ν|1/3}, we conjecture
that

(9.1) N3(t, x) ≍ x2/3 min{x2, t3}2/3(log(min{x2, t3}))3

for all t > 161/3. We can prove a slightly stronger result when x ≤ (t/(2π))3/2, since
in this range all the 3-tuples with |ν| ≤ x are counted in N3(t, x), so that

N3(t, x) =

∑

n≤x2

(

r(n)

3

)

=
1

6

∑

n≤x2

r3(n) + O(r2(n)) ∼ c3x2 log3 x,

for some constant c3 > 0, via the usual counting argument using contour integration.
The conjecture in (9.1) is equivalent to N3(t, x) ≍ x2/3t2 log3 t for x ≥ (t/(2π))3/2;

we now prove a weak version of this estimate.

The proof of Theorem 1.8 for 3-tuples Defining

N3(t, x, g) = #{[ν] = (ν1, ν2, ν3) : gcd(ν1, ν2, ν3) = g, |ν| ≤ x, Arc[ν] < t|ν|1/3},

we have

N3(t, x) =

∑

|g|≤t3/2

N3(t, x, g) =

∑

|g|≤t3/2

N3(t|g|−2/3, x|g|−1, 1),

so to prove the theorem it suffices to obtain upper and lower bounds for primitive

3-tuples (that is, the case g = 1), which we will do in Lemmas 9.4 and 9.5 below.

First we introduce some lemmas and notation. For any l ∈ Z[i] let ϕl be the
argument of l, and then Z0[i] = {l ∈ Z[i] : 0 ≤ ϕl ≤ π/2} with Z

v
0[i] the set of

visible lattice points in Z0[i] (that is, the numbers a + bi ∈ Z[i] with (a, b) = 1 and
a ≥ b ≥ 0).

Lemma 9.1 For any 3-tuple [ν] there exists a unique g ∈ Z0[i], p1, p2, p3 ∈ Z
v
0[i],

(pi, p j) = 1, and t1, t2, t3 ∈ {0, 1, 2, 3} such that

ν1 = it1 gp1p2p3, ν2 = it2 gp1p2p3, ν3 = it3 gp1p2p3.
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Proof The values g = (ν1, ν2, ν3), p1 = (ν1/g, ν2/g, ν3/g), p2 = (ν1/g, ν2/g, ν3/g),
p3 = (ν1/g, ν2/g, ν3/g) are the only ones satisfying the conditions.

Lemma 9.2 If Arc[ν] < s|ν|1/3 and t1 = t2 = t3, then |ϕpi
− ϕp j

| < (s/2)|ν|−2/3

for i 6= j.

Proof Notice that ϕp2
− ϕp3

=
1
2
(ϕν1

− ϕν2
) ≤ s

2
|ν|−2/3; the same argument works

for the other differences.

Lemma 9.3 There are at most 4w2ǫ + 1 visible lattice points in the angular sector

|z| ≤ w, |ϕz − α| ≤ ǫ.

Proof Let P1, . . . , Pn denote the visible lattice points in the sector ordered according
to increasing argument. Each of the triangles (O, Pi , Pi+1), i = 1, . . . , n−1 are inside

the angular sector, each has area ≥ 1/2, and they are disjoint, so that

(n − 1) · 1

2
≤ Area of the angular sector = 2ǫw2

Lemma 9.4 If y > s3/2, then N3(s, y, 1) ≪ y2/3s2 log2 s.

Proof We will count 3-tuples [ν] with |ν| ≤ y, Arc[ν] < s|ν|1/3, and

g = gcd(ν1, ν2, ν3) = 1,

and restrict our attention, in the notation of Lemma 9.1, to the case where t1 =

t2 = t3 (the other cases following by analogous arguments), and |p1| ≤ |p2| ≤ |p3|
(the other cases following by re-arrangement of the νi). If 2 ji ≤ |pi | < 2 ji +1 for

i = 1, 2, 3, then j1 ≤ j2 ≤ j3, and the condition |ν| ≤ y implies that

j := j1 + j2 + j3 ≤ log2 y.

Now

2 j3 ≤ |p3| ≤ |ν2 − ν3| ≤ Arc[ν] ≤ s|ν|1/3
= s|p1p2p3|1/3 ≤ (2s)2 j/3,

so that j3 ≤ log2(2s) + j/3, and, similarly, j1, j2 ≤ log2(2s) + j/3. Together these
imply that

(9.2) −2 log2(2s) ≤ ji − j/3 ≤ log2(2s) for i = 1, 2, 3.

The condition Arc[ν] < s|ν|1/3 implies that |ϕpi
− ϕp1

| < s2−1−2 j/3 for i =

2, 3 by Lemma 9.2, and therefore pi is a visible lattice point in the angular sector

|z| ≤ 2 ji +1, |ϕpi
− ϕp1

| < s2−2 j/3. There are ≪ 22 ji · s2−2 j/3 such lattice points by
Lemma 9.3, since

1 ≤ 22 j2 2− j2 j3 ≤ 22 j2 2− j(2s)2 j/3 ≤ (2s)22 j2 2−2 j/3 ≤ (2s)22 j3 2−2 j/3.

There are ≪ 22 j1 lattice points π with |pi| < 2 j1+1, and hence the total number of

such triples p1, p2, p3 is ≪ s222 j/3.
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Now, for a given j, there are ≪ (log s)2 triples of integers j1, j2, j3 by (9.2), and
so our count of lattice points is

≪
∑

j≤log2 y

s222 j/3(log s)2 ≪ y2/3s2(log s)2,

as required.

We now prove bounds in the other direction.

Lemma 9.5 We have N3(s, y, 1) ≫ y2/3s2 for s sufficiently large.

Proof We construct examples in Lemma 9.1 with g = 1 and each ti = 0, so we

want p1, p2, p3 ∈ Z
v
0[i] with each |pi| ≤ y1/3, as well as (pi , p j) = 1 and

|ϕpi
− ϕp j

| < (s/2)y−2/3 for i 6= j. Consider the lattice points p = a + bi ∈ Z
v
0[i]

with a + b odd, |p| ≤ y1/3, and divide the circle of radius y1/3 into angular sectors
of width (s/2)y−2/3, which we will denote S1, . . . , Sk, with k ≍ [4πy2/3/s]. Note

that (p, p) = 1, as p is visible and a + b is odd. There are ∼ (1/2π)y2/3 such lattice
points, and so an average of ∼ s/8π2 per sector. We can thus prove that if s ≥ 25π2,

then there are ≫ ks3 ≫ y2/3s2 triples p1, p2, p3 ∈ Z
v
0[i] with each |pi | ≤ y1/3 and

|ϕpi
− ϕp j

| < (s/2)y−2/3 for i 6= j; however we do not necessarily have (pi, p j) = 1
for each i 6= j. Forcing this to happen complicates our argument.

We modify the above construction by considering only those p = a + bi ∈ Z
v
0[i]

with a+b odd and |p| ≤ y1/3 that have no divisor g ∈ Z[i] for which 1 < |g| ≤ B, for
some large fixed B to be chosen later. Sieve methods yield that there are ≍ y2/3/ log B

such lattice points. Thus if (pi, p j) = g 6= 1, then |g| > B. Now this implies
that pi/g, p j/g are distinct visible lattice points lying in an angular sector of angular

width (s/2)y−2/3 with |z| ≤ y1/3/|g|. There are ≤ 1 + 2(s/2)y−2/3(y1/3/|g|)2
=

1 + s/|g|2 such points by Lemma 9.3, and thus no such pair if |g|2 > s, and at most

k(1 + s/|g|2)(s/|g|2)/2 ≤ ks2/|g|4 such pairs otherwise. Therefore the total number
of pairs of such lattice points pi , p j with |(pi, p j)| > B is at most

∑

g : B<|g|≤
√

|s|

ks2

|g|4 ≤ 8ks2

B2
≤ 101y2/3s

B2
.

To complete our proof we translate this into a graph theory problem. Let Gi de-

note a graph whose vertices are the p = a + bi ∈ Z
v
0[i] with a + b odd and |p| ≤ y1/3

that have no divisor g ∈ Z[i] for which 1 < |g| ≤ B, and where p ∈ Si . Two vertices
in Gi have an edge between them if the corresponding p have no common factor.

Then N3(s, y, 1) is at least the total number of triangles in all of the graphs Gi . Let ni

be the number of vertices in Gi , and let ei be the number of edges in the complement
of Gi , that is, the number of pairs of p in this sector that have a common factor. Then

n := n1 + · · · + nk ≍ y2/3/ log B, k ≍ y2/3/s, e := e1 + · · · + ek ≪ y2/3s/B2.

Our result follows from the next lemma by taking B and then s sufficiently large.
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Lemma 9.6 Fix ǫ > 0. There exist constants c,C > 0 such that for any integers n, e, k

satisfying n ≥ Ck and e ≤ cn2/k, if Gi is a graph created by deleting ei edges from the

complete graph on ni ≥ 3 vertices, for i = 1, 2, . . . k, then there are ≥ (1/4 − ǫ)n3/k2

triangles in the set of graphs G1, . . . , Gk, where n := n1 + · · ·+ nk and e := e1 + · · ·+ ek.

Proof A graph Gi with n2
i /4 + mi edges contains ≫ mini distinct triangles. Hence

the total number of triangles in G1, . . . , Gk is

(9.3) ≫
k

∑

i=1

ni max
{

0,
n2

i − 2ni

4
− ei

}

.

We shall suppose that for given n, e, k we have the choice of non-negative real num-
bers ei and n1 ≥ n2 ≥ · · · ≥ nk ≥ 3 that minimizes the right side of (9.3). This

is evidently minimized by taking ei = ei,0 := ni (ni−2)
4

for i = 1, 2, . . . , ℓ − 1, with

0 ≤ eℓ ≤ eℓ,0, and ei = 0 for i > ℓ. Now, for fixed e − eℓ =
∑

1≤i<ℓ
ni (ni−2)

4
, we

wish to maximize
∑

1≤i<ℓ ni (so as to minimize
∑

i>ℓ ni), and thus we take them all
to be equal. If nℓ > nk with eℓ < eℓ,0, then we get a contradiction of minimality

by taking n′
1 = n1 − δ, n′

k = nk + δ for some very small δ > 0. Thus we have

n1 = · · · = nℓ−1 = r, say, and nℓ = · · · = nk = s, say, with r ≥ s ≥ 3. Moreover we
have 0 < e− (ℓ− 1) r(r−2)

4
≤ s(s−2)

4
and r(ℓ− 1) + s(k− ℓ + 1) = n, and the right side

of (9.3) equals (k + 1 − ℓ) s2(s−2)
4

− eℓs.

This is now a classical optimization problem. If we take ℓ− 1 = λk for 0 ≤ λ ≤ 1
and r = ρn/k, s = σn/k, then ρλ + σ(1 − λ) = 1, so that ρ ≥ 1 ≥ σ ≥ 0. Solving,

we find that σ = (1 − ρλ)/(1 − λ). Now

e =
r(r + O(1))

4
(ℓ + O(1)) = λρ2n2/4k{1 + O(1/r + 1/ℓ)},

so that λ ≤ 4c/ρ2{1 + O(1/r + 1/ℓ)}, and so σ > 1 − O(c). The quantity to be
minimized is

≥ (1 − λ)ks3/4{1 + O(1/s)} = (1 − O(c))σ3n3/4k2 ≥ (1 − O(c))n3/4k2.

implying the desired result.

Remark 9.7 By slightly modifying this proof, one can show that if n ≥ (2 + ǫ)k

and e < (1/4 − ǫ)n(n − 2k)/k, then there are ≫ǫ n3/k2 triangles. Evidently the

restrictions in the hypothesis of Lemma 9.6 cannot be much improved since n ≥ 3k,
and since there is a triangle-free set of k graphs with e > n2/4k (by making each Gi a

complete bipartite graph with about n/2k vertices in each class).

10 Close Divisors

In a forthcoming paper [5], we will deal with the analogous problem for close divisors

d1, . . . , dk of a rational integer N. The quantity ω = (d1 · · · dk)1/k/N1/2 shows where

the lattice points (di , N/di) are located on the hyperbola xy = N. Since each N/di
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is also a divisor of N, we study only the k-tuples of large divisors, that is, those with
ω ≥ 1. We can give a lower bound for L(d1, . . . , dk) = maxi 6= j |di − d j |, analogous

to Theorem 1.1.

(10.1) L(d1, . . . , dk) ≥ N1/4−1/(8[(k−1)/2]+4).

The analysis of the cases k = 2, 3 is similarly straightforward, and one can obtain the

sharp estimates:

L(d1, d2) ≥ 2, L(d1, d2, d3) ≥ 22/3N1/6,

and that {L(d1, d2, d3)N−1/6} is dense in [22/3,∞).
The case k = 4 again requires more delicate arguments, as we found in this article

for the analogous problem for lattice points on circles. For the problem of close divi-
sors, (10.1) yields L(d1, . . . , d4) ≥ N1/6, and the exponent “1/6” cannot be increased,

as we see from the following example. The integers Nn = 2pn pn+1 pn+2qnqn+1qn+2,

have divisors

d1,n = 2qn pn+1qn+2, d2,n = 2qnqn+1 pn+2, d3,n = pn pn+1 pn+2, d4,n = 2pnqn+1qn+2,

where (pn, qn) denote the solutions of the Pell equation x2 − 2y2
= ±1. In fact

lim
n→∞

L(d1,n, d2,n, d3,n, d4,n)N−1/6
n = 27/12 + 213/12

= 3.6172 · · · .

This is not the only family with this kind of property. As in this paper, we can classify

all the “close” 4-tuples [d] = (d1, d2, d3, d4) of divisors of integers N into families F

such that

lim L(d1,n, d2,n, d3,n, d4,n)N−1/6
n = CF.

One can determine a formula similar to (3.6) to describe each family. We are then
able to deduce the following theorem (analogous to Corollary 1.6 herein).

Theorem 10.1 For any large 4-tuple of divisors d1, d2, d3, d4 of N we have

L(d1, d2, d3, d4) > 2
( 3

2

) 1/12( 8 + 3
√

6

5

) 1/3

N1/6,

whenever N > N0. On the contrary there exist infinitely many large 4-tuples of divisors

d1,n, d2,n, d3,n, d4,n of Nn with

lim
n→∞

L(d1,n, d2,n, d3,n, d4,n)

N
1/6
n

= 2
( 3

2

) 1/12( 8 + 3
√

6

5

) 1/3

= 3.006555939 · · · .

Although the ideas and techniques used in [5] are similar to those used in this
paper, there are sufficient differences that it seems necessary to write a different paper.

We do not know if the exponent in (10.1) is sharp for k ≥ 5, just as we do not

know if the exponent in Theorem 1.1 is sharp for k ≥ 5.
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11 Other Related Questions

Herein we have studied very precise questions on close lattice points on a circle, and

in [5] we develop a similar study of close lattice points on a hyperbola. Presumably it
should be possible to generalize these results to close lattice points on all other curves

of degree two in the plane, and perhaps to curves of higher degree. In this case one

knows that there are very few points, after Mumford’s theorem and Faltings’ theorem,
and those that there are should presumably be very sparse, but such questions appear,

for now, to lie deep. There is an important school of research that attempts to obtain

bounds that are within a small factor of best possible, which makes these bounds very
applicable. As in proofs of Theorem 1.1, the key articles by Bombieri and Pila [1],

Heath-Brown [9], and then Elkies [7], all use combinatorial arguments and linear al-
gebra; these have the severe limitation that they are unlikely to give bounds for typical

curves that are much better then what is obtained for the lattice-point rich, rational

curve, y = xd. Quite recently, Ellenberg and Venkatesh [8] have incorporated true
arithmetic-geometric techniques into these arguments, so as to distinguish between

rational and non-rational curves, and thus they get bounds of a strength that had

previously seemed inaccessible.

One can also ask about analogous questions in higher dimensions, for instance,

how close can one pack k lattice points on a sphere in R
3? One has to be a little careful

as Heath-Brown showed us: select an integer r which has many representations as
the sum of two squares; for example, if r is the product of ℓ distinct primes that

are ≡ 1 (mod 4), then r has 2ℓ such representations. Now let N be an arbitrarily
large integer and consider the set of representations of n = N2 + r as the sum of three

squares. Evidently we have ≥ 2ℓ such representations in an interval whose size, which

depends only on ℓ, is independent of n. Note though that these lattice points all lie
on the hyperplane x = N, so we can better formulate our question by asking: How

close can one pack k lattice points on a sphere in R
3, no four of which belong to the same

hyperplane?

12 Open Problems

We finish this article with two open problems.

Problem 1 Do there exist infinitely many circles x2 + y2
= R2

n with five lattice points

on an arc of length ≪ R
2/5
n ?

We doubt it. From Theorem 1.1 we know that an arc of length R2/5 contains, at
most, four lattice points, and our guess is that the exponent 2/5 can be increased,

perhaps to as much as 1/2.

Problem 2 Is there a uniform bound for the number of lattice points on an arc of

length ≪ R1/2?

Theorem 1.1 gives the upper bound ≪ log R for the number of lattice points on

an arc of length R1/2, and we would like to see this significantly improved. Indeed

this provokes the following (see also [4]).



1238 J. Cilleruelo and A. Granville

Conjecture 12.1 For every ǫ > 0 there exists a constant Bǫ such that there are no more

than Bǫ lattice points on an arc of length R1−ǫ of a circle of radius R that is centered at

the origin.

Fix m. Let a be a large integer. Let {σℓ : j = 1, 2, . . . ,
(

2m
m

)

} be the set of functions

σℓ : {1, . . . 2m} → {−1, 1} for which
∑2m

j=1 σℓ( j) = 0. Now define

vℓ :=

2m
∏

j=1

(a + j + iσℓ( j)).

Obviously vℓ =
∏2m

j=1(a + j)(1 + O(m2/a2)), so that |vi − v j| ≪m |vi |1−1/m. In other

words, we have constructed
(

2m
m

)

lattice points in an arc of length O(r1−1/m) on a

circle of radius r. Thus, if Conjecture 12.1 is true, then Bǫ would have to be at least

eC/ǫ for some constant C > 0.
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